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ABSTRACT 

INVESTIGATING THE IMPACTS OF BIN VARIABILITY  

ON PARTICLE SIZE DISTRIBUTIONS IN MULTIPHASE  

EULERIAN-EULERIAN SIMULATIONS 

Wilbert A. Cruz, B.S. 

Marquette University, 2024 

In this study, a 3D steady-state Eulerian-Eulerian simulation was developed to 

investigate flow performance in a dilute pneumatic conveying system. The investigation 

focused on two main objectives: (1) assessing the influence of bin selection on solution 

accuracy for representing the polydisperse mixture, and (2) exploring methods to simplify 

the modeling of polydisperse particles in the simulation by utilizing a mean diameter 

derived from the mixture’s particle size distribution. The system's geometry and initial 

boundary conditions featured a 10.6 m long, 150 mm diameter horizontal pipe with both 

gaseous and solid phases initially moving at 27
m

s
 . The steady-state simulation replicated 

an experimental pneumatic conveying system built by Laín and Sommerfeld, to compare 

and validate the proposed Eulerian-Eulerian model with experimental data. 

The dilute mixture used in this study mirrored Laín and Sommerfeld’s particle 

size distribution (PSD), consisting of particle diameter sizes of approximately 15 μm to 

85 μm. By incorporating an inhomogeneous discrete population model, a set of five bin 

cases were conducted using Laín’s PSD in the Eulerian-Eulerian simulation. An 

additional monodisperse case was examined, featuring particle sizes of 40 μm which 

corresponded to Laín and Sommerfeld's PSD mean diameter. This comparison aimed to 

evaluate the efficacy of representing the polydisperse mixture via bin characterization 

techniques, as opposed to utilizing a single mean diameter from the PSD. 

After validating the model, a series of four PSDs, ranging from 5 μm to 500 μm, 

were examined. Bin convergence studies were conducted for each PSD, as well as the 

viability of utilizing mean diameter expressions to represent each particle size 

distribution was investigated. Through this study, it was found that approximately 20 bins 

were necessary to accurately capture the pressure profiles of the system for most PSDs. 

Furthermore, simulations utilizing particle sizes based on the Sauter mean diameters 

demonstrated the most favorable agreement in pressure drop predictions, showcasing up 

to 0.086% deviations with highest bin cases. The remaining mean diameter expressions 

gave rise to similar system pressure drop values, with De Brouckere being the second 

most accurate, and volume mean, surface area mean and arithmetic mean diameters 

following respectively.
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I. INTRODUCTION 

A. CFD Modeling in Pneumatic Conveyors 

The designing process of pneumatic conveying systems is a critical aspect in various 

industries, where the efficient transport of bulk materials through pipelines is essential for 

a wide variety of manufacturing processes. Manufacturing industries heavily rely on 

these systems to efficiently move granular and powdered materials, emphasizing the 

importance of ensuring that pneumatic conveyor systems are designed accordingly by 

considering the interactions between material properties, system geometry, and the 

operational conditions the systems sustain. 

The intricacies of designing an effective pneumatic conveyor involve meticulous 

consideration of several parameters to optimize material handling. In particular, 

parameters such as particle size, shape, and density significantly influence material 

behavior within the conveying system [1].  To comprehend how a pneumatic conveyor 

design might be affected by the material behavior experienced throughout the conveying 

process, computational fluid dynamic models (CFD) are employed to further understand 

the solid-fluid multiphase interactions involved. 

By using CFD models, predictions and considerations can be made regarding the 

granular particle behavior and its influence on the system. Important particle effects that 

need to be considered when designing these systems include friction, conveying 

velocities, pressure drop induced by the granular phase and concentration distributions 

within the flow [2]. The ability to predict these effects using CFD models proves valuable 
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in the designing process by eliminating the need of developing largely scaled 

experimental prototypes to fully comprehend the multiphase flow behavior in the system. 

Through this approach, pneumatic conveying systems can be designed properly, ensuring 

their resilience and their ability to withstand the effects predicted during operation. 

In contrast to traditional physical and experimental testing methods, which rely on 

real-time data gathering for direct validation, the computational modeling approach 

stands out with its considerable advantages. Unlike the economically expensive and 

resource-intensive nature of physical testing, computational modeling proves to be cost-

effective, requiring minimal setup and possessing the ability to overcome geometric size 

limitations when simulating the system. Furthermore, CFD approaches can provide more 

detailed information on flow behavioral patterns and can expedite the data gathering 

process. It is important to note, however, that while computational models offer these 

benefits, their accuracy and reliability still necessitate validation to some extent through 

experimental testing.  

The validation process for CFD models is often achieved by conducting tests on a 

smaller-scaled replica of the system of interest. Through geometric, kinematic, and 

kinetic similarity, the validated simulated model can then be upscaled to accurately 

represent the larger system [3-5]. If the model is successfully validated for the smaller 

system, the similarity relationships can be applied and subsequently evaluated, thereby 

removing the need for an extensive and costly, larger-scale experimental setup. For this 

study, the proposed Eulerian-Eulerian model was validated using experimental data 

gathered by Laín and Sommerfeld [6], to validate the modeled pressure drop, particle 

velocity and mass flux solutions for the pneumatic conveying system.   
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B. Laín and Sommerfeld Pneumatic Conveying Study 

The studies conducted by Laín and Sommerfeld [6] and Huber and Sommerfeld [7] 

investigate the transport of solid particles in an experimental pneumatic conveying 

system. In the investigation conducted by Laín and Sommerfeld, the experimental 

configuration consisted of stainless steel horizontal and vertical pipes. This experimental 

setup was used for exploring crucial parameters, including particle velocities, pressure 

drop and mass fluxes of the solid phase through the pipes.  

The geometry proposed by Laín and Sommerfeld featured a 150 mm pipe diameter 

and an 8 m horizontal pipe length. For the air flow component, Laín and Sommerfeld 

employed a roots blower capable of achieving a maximum flow rate of 0.15 
m3

s
 and a 

maximum backpressure of 0.2 bar. This configuration allowed for the variation of 

transport velocities from 10
m

s
  to 30

m

s
 and for the accommodation of particle loadings up 

to 2 
kg dust

kg air
. The solid particles utilized in their research comprised a polydisperse mixture 

of spherical glass beads, featuring a density of  2500
kg

m³
 and a number mean diameter of 

approximately 40 μm. For solution data extraction, Laín and Sommerfeld collected 

particle velocity and mass flux data perpendicular to the flow, and collected pressure drop 

data parallel to the flow. Their experiment yielded valuable insights into the intricate 

dynamics of pneumatic conveying systems, particularly focusing on the effects of bends 

in the pipe and the characteristics of particle distributions in the mixture. In addition to 

their findings, they employed their experimental results to validate the Eulerian-

Lagrangian modeling approach used to simulate their dilute-flow case. 
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Based on their detailed investigation, the horizontal pipe framework used in their 

study was replicated in this report to create a series of Eulerian-Eulerian simulations. 

These simulations incorporated identical boundary conditions, geometry, meshing, and 

sizing techniques as those used in their Eulerian-Lagrangian model. The simulated pipe, 

as outlined by Huber and Sommerfeld [7], retained a diameter of 150 mm, a length of 

10.6 m, and a mean conveying velocity of 27
m

s
 for both phases. Similarly, a vertical 

profile was established for data extraction at a point 8m from the inlet boundary. The 

material properties for the fluid phase, including the density and dynamic viscosity of air, 

were defined at approximately 1.2
kg

m3 and 18.0 ×  10−6 kg

m·s
 respectively. In addition to 

the gaseous phase, the simulation characterized the particle phase by integrating the same 

properties of the experimental glass beads utilized in Laín and Sommerfeld's study. To 

further characterize the polydisperse mixture utilized in both studies, their particle size 

distribution, extracted from a continuous cumulative distribution, was digitized and 

employed for model validation. With these parameters, the accuracy of the proposed 

Eulerian-Eulerian model could be assessed against the empirical data obtained from the 

studies conducted by Laín, Sommerfeld, and Huber. 
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C. Applicability of the Eulerian-Eulerian Modeling Approach 

Within the available computational models, the Eulerian-Eulerian model’s versatility 

proves to be ideal for simulating dilute and dense granular flows for pneumatic 

conveying systems. Sarrami [8] validated the model's ability to predict pressure drop for 

both flow regimes by comparing it against experimental data. Sarrami found substantial 

quantitative agreement in pressure drop profiles between simulated results and dense-

flow experimental trials, with a mere 1% difference in solution data observed for the 

dense case. However, in dilute-phase conveying simulations, the pressure drop was 

underestimated by approximately 20%, although this disparity was reported to be within 

acceptable error ranges for this flow regime. Santosh's study [9] similarly aimed to 

compute pressure drop for a gas-solid, two-phase flow within a horizontal pipe. The 

granular concentration studied fell within the upper limit of the dilute phase flow regime, 

with the solid volume fraction of the mixture ranging from 1% to 10% of the total 

mixture. Utilizing these concentrations, Santosh reported a 2.7% agreement of the 

Eulerian-Eulerian model in simulating the pressure drop of his pneumatic system. 

The versatility of the Eulerian-Eulerian modeling approach highlighted in these 

studies stems from its ability to treat solid and fluid phases as continuous entities, 

incorporating a strategic pseudo-fluid treatment for the solid phase. This treatment 

enabled the utilization of volume-averaged equations for both phases, providing a 

simplified yet effective method for simulating dense and dilute granular flows. Through 

the Eulerian-Eulerian model's averaging process, conservation equations for mass, 

momentum, and energy could be solved for both solid and fluid phases in each cell 

throughout the computational domain.  
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The CFD simulations in this study were developed using ANSYS Fluent, a leading 

software tool for fluid dynamics analysis and simulation. Within ANSYS Fluent, the 

Eulerian-Eulerian model is available for simulating granular multiphase flows. However, 

to effectively utilize the Eulerian-Eulerian model, it is imperative to establish the 

necessary models needed to accurately describe the behavior of both the gaseous and 

solid phases within the flow. These models should capture key phenomena such as 

particle motion, collision, and interactions with the surrounding fluid. By incorporating 

the necessary models required to accurately describe phase interactions in the flow, the 

Eulerian-Eulerian approach can be effectively used to simulate the investigated 

pneumatic conveying system. 

 

D. Granular Model Studies for Eulerian-Eulerian Simulations 

The simplified phase description of the Eulerian-Eulerian model enables it to produce 

accurate results while remaining computationally efficient, rendering it particularly 

advantageous for modeling complex particulate flows. In contrast to more 

computationally demanding models like the Eulerian-Lagrangian approach, which tracks 

each particle individually, the Eulerian-Eulerian approach provides a valuable alternative 

that offers comparable accuracy and remains better suited for simulating larger-scale 

dense systems. 

Eulerian-Lagrangian models encounter several challenges when simulating dense 

flows with high collision frequencies among particles. These challenges arise from the 

computational complexity and intensity required for establishing coupling schemes [10]. 
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The Eulerian-Eulerian approach can bypass these difficulties by simulating the particulate 

phase as a fictitious fluid, representing the fluid dynamic behavior of the collection of 

particles. For this reason, the Eulerian-Eulerian approach has become valuable in 

accurately representing complex pneumatic conveying scenarios without the intensive 

computational demands associated with representing and tracking each individual 

particle. By incorporating the Kinetic Theory of Granular Flows (KTGF), the model can 

further describe interactions between the gaseous and particle phases, such as collisions, 

friction, cohesion, compression, expansion, momentum transfer, and clustering [11].  

According to the KTGF, there are multiple important granular properties that must be 

considered to accurately represent the particle behavior experienced in the flow. Within 

these parameters, particle drag, granular viscosity, granular temperature, solids pressure, 

radial distribution functions and more need to be considered.  

In prior research exploring the applicability of these models, Konstantin [12] 

examined the variance in drag correlation for gas-solid flows. Konstatin discovered that 

the Wen-Yu [24] and Gidaspow [15] models showed better alignment with experimental 

data, particularly for flows characterized by low Reynolds numbers. Mukesh [13] 

supported this assertion in his study on fluidized beds, where he examined various drag 

correlations similar to Konstantin. Mukesh found significant agreement between 

simulation results and experimental data for solid profiles when using drag models like 

Syamlal-O’Brien, Gidaspow, Wen-Yu, and Huilin-Gidaspow, resulting in Root Mean 

Square Error (RMSE) values ranging from 0.022 to 0.0245. 

In the ANSYS Fluent Theory Manual, which discusses all modeling techniques 

available for various fluid applications, the Wen-Yu drag model is recommended for 
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describing dilute flow regimes where the volume fractions of the solid phase consist of 

less than 1% of the mixture [14]. Apart from drag correlations, ANSYS Fluent provided 

granular viscosity, temperature, conductivity, solids pressure, radial distribution 

functions, and boundary condition models for granular temperature at the wall, which 

were required to accurately simulate the system. Gidaspow provided correlations for 

defining granular viscosity, temperature, and conductivity through his multiphase flow 

and fluidization studies of circulating fluidized beds, which were proven to be accurate 

for simulating the flow regime targeted in this study [15-17]. Lun et. al [14] solids 

pressure and radial distribution functions were able to describe the minimal particle-

particle effects for the dilute flow, and the Johnson and Jackson’s [19] granular wall 

temperature model has been widely successful for simulating Eulerian-Eulerian solid-gas 

flows within this regime [18-19]. By utilizing these models, the solid phase and its effects 

on the gaseous phase could be predicted accordingly.  

Apart from literature, preliminary sensitivity studies were conducted to assess the 

impact of these models on pressure drop, velocity profiles, and volume fraction solutions 

within the simulated pneumatic conveyor, ensuring alignment with previously cited 

works. The sensitivity study results, consistent with literature, are detailed in Appendix B. 

In addition to the chosen granular models, it was crucial to incorporate a population 

balance modeling technique capable of accurately describing the polydisperse nature of 

the flow.  
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E. Population Balance Models in Eulerian-Eulerian Modeling 

Other advantages of the Eulerian-Eulerian model when simulating polydisperse solid-

fluid multiphase flows include its ability to represent particle size distributions through 

population balance models. Among these, the inhomogeneous discrete modeling 

approach can discretize the particle size distribution into a series of bins within the 

simulation. Each bin represents an average particle size calculated from a set of particle 

size ranges in the distribution. Independent mass and momentum equations are solved for 

each bin, giving rise to variations in particle behavior contingent on the particle size 

ranges prescribed to each bin. In this way, pressure, velocity and concentration dispersion 

effects can be studied individually for each bin within the polydisperse mixture. By 

adopting the inhomogeneous discrete method, the model can capture the intricate 

dynamics of real polydisperse multiphase flows observed in pneumatic conveyors. Thus, 

it is crucial to characterize the polydisperse mixture via a population model to accurately 

represent the system.  

Some examples of Eulerian-Eulerian studies describing polydisperse mixtures for 

multiple applications, such as Hassan’s water and oil two-phase numerical modeling [20], 

Kharoua’s horizontal three-phase separator [21] and Siamak bubbly flow columns 

analysis [22], incorporate population balance models to characterize a desired phase 

distribution. Most studies that use population balance models to discretize the particle 

size distribution (PSD) into a set of bins assume that using a higher number of bins to 

represent the polydisperse mixture will always give rise to the most optimized results. 

However, there have been limited quantifiable publications addressing how to select the 

optimal number of bins that could still give rise to highly accurate results, while 
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consuming a significantly lower number of computational resources. Furthermore, 

alternatives for representing the PSD as a monodisperse mixture to reduce the complexity 

of the model by using mean diameter particle sizes such as Sauter Mean, De Brouckere, 

arithmetic mean, surface area mean, and volume mean have not been thoroughly 

investigated in literature.  

Following this line of reasoning, the primary focus of this research is to investigate 

how pressure drop solution accuracy varied when employing various modeling 

techniques to depict the polydisperse mixture within the simulated pneumatic conveying 

system. By applying the Eulerian-Eulerian modeling approach, this study focused on (1) 

varying the number of bins representing the PSD used in the population balance model to 

investigate bin convergence, and (2) finding alternative methods of representing the PSD 

via a mean diameter expression that would still give rise to satisfactory results. In this 

manner, this investigation aims to offer a viable and simplified modeling technique that 

could be used to describe complex polydisperse mixtures in pneumatic conveying flow 

systems.  
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II. NUMERICAL METHODS 

 

A. Transport Equations  

To implement the proposed Eulerian-Eulerian simulation, the numerical scheme 

employed to model the solid-gaseous flow followed an implicit numerical scheme in 

which the volume fraction equations were discretized. The implicit scheme operated by 

simulating the volume fraction at the current time step as a function of various flow 

parameters at the same time step. This approach enabled scalar transport equations to be 

iteratively solved for each secondary-phase volume fraction in the simulation [14]. The 

discretized volume fraction for phase q was represented as shown in Equation 1, where n 

represents the index of the previous time step and n+1 the index of the current time step: 

 

(1)      
αq

n+1ρq
n+1−αq

nρq
n

Δt
V + ∑ (ρq

n+1Uf
n+1αq,f

n+1)f = [Sαp
+ ∑ (ṁpq − mqṗ )n

p=1 ] V  

 

 

 

Apart from the numerical scheme used, the Eulerian-Eulerian modeling technique 

selected treated both phases, the primary gaseous air phase and secondary solid glass-

beads phase, as interpenetrating continua [10]. By employing this approach, both phases 

were able to coexist, interact, and move within the same computational domain 

simultaneously. In this manner, a set of Navier-Stokes equations could be solved 

independently for each phase. By employing the Navier-Stokes momentum equations, the 

following general momentum balance was formulated for phase q as: 
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(2) 
∂

∂t
(αqρq) + ∇ ∙ (αqρqv⃗ qv⃗ q) = −αq∇p + ∇ ∙ τ̿q + αqρqg⃗ + ∑ (R⃗⃗ pq +n

p=1

ṁpqv⃗ pq −ṁqpv⃗ qp) + (F⃗ q + F⃗ lift,q + F⃗ wl,q + F⃗ vm,q + F⃗ td,q) 

 

The Eulerian-Eulerian model, apart from solving momentum and continuity 

equations for each phase, also shared a single pressure (∇p) between all phases. It is 

essential to recognize that this overall momentum balance could be streamlined according 

to specific phase interactions. Parameters such as the wall lubrication force for phase q 

(𝐹 𝑤𝑙,𝑞), which are significant in scenarios like liquid-gas bubbly flows, become 

inconsequential for fluid-solid flows [14]. Additionally, between the general terms 

𝜕

𝜕𝑡
(𝛼𝑞𝜌𝑞) and ∇ ∙ (𝛼𝑞𝜌𝑞𝑣 𝑞𝑣 𝑞) that account for the time-varying and convective 

momentum transfer between the phases respectively, the time-varying term could be 

neglected due to the steady-state condition prescribed to all simulations in this study. 

These conditions lead to additional simplifications of the transport governing equations. 

To achieve a fluid-solid configuration, the general transport equation shown in Equation 

2 was modified to represent the fluid-solid momentum equations used by ANSYS Fluent 

to solve for the solid and fluid phases respectively:  

 

(3) 
∂

∂t
(αsρsv̅s) + 𝛁 ⋅ (αsρsv̅sv̅s) = −αs∇p − ∇ps + ∇ ⋅ τ̅̅s + αsρsg̅ +  ∑ (R̅ls +N

l=1

ṁlsv̅ls − ṁslv̅sl) + (F⃗ s + F⃗ lift,s + F⃗ vm,s + F⃗ td,s) 

 

 

(4) 
∂

∂t
(αlρlv̅l) + 𝛁 ⋅ (αlρlv̅lv̅l) = −αl∇p + ∇ ⋅ τ̅̅l + αlρlg̅ +  ∑ (R̅sl + ṁslv̅sl −

N
s=1

ṁlsv̅ls) + (F̅l + F̅lift,l + F̅vm,l + F⃗ td,l) 
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In the pneumatic two-phase flow studied, the subscripts 𝑠 and 𝑙 referred to the 

solid and fluid phases respectively. If more secondary phases were added to describe the 

polydisperse mixture, they could be accounted for in the general expressions shown by 

increasing the number of 𝑛𝑡ℎ phases solved for. Before utilizing the momentum equations 

shown using ANSYS Fluent solver, it was important to identify which terms would 

dominate the flow and which ones could be disregarded due to their negligible impact on 

the flow regime selected. 

The virtual mass effect (�̅�vm,𝑞), an additional mass contribution attributed to a 

fluid particle when undergoing acceleration or deacceleration, was described as a force 

for phase q in Equation 2 and for the solid and fluid phase momentum equations in 

Equation 3 and Equation 4. The virtual mass force becomes significant usually when the 

secondary phase accelerates relative to the primary phase. In this case, in which the 

particle sizes studied remained below 500𝜇𝑚 and their flows were mostly denoted by the 

fluid carrier phase, the particle phase was not found to undergo significant acceleration 

effects relative to the gaseous phase. Additionally, preliminary testing showed that the 

secondary phase did not experience substantial acceleration relative to the primary phase, 

further detailed in Appendix A.  

Among the other parameters in the equation of motion, the turbulent dispersion 

force (𝐹 𝑡𝑑,𝑞), which represents the interphase turbulent momentum transfer and acts as a 

turbulent diffusion in dispersed flows, was neglected. Turbulent dispersion forces are 

mainly modeled to describe the spread of bubbles because of flow turbulence. In previous 

pneumatic conveying studies performed by Laín and Sommerfeld, it was found that 

turbulence dispersion forces were not very pronounced when particles exhibited 
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relatively low Reynolds Numbers [23]. The particle’s Reynolds Numbers for the flows 

present in this study were found to be relatively small, implying that the turbulent 

dispersion force for this case would not be very significant. Further numerical validation 

for disregarding this term can be found in Appendix A. 

In this scenario, where there were negligible virtual mass forces and turbulence 

dispersion forces acting on both continuous phases, both terms were disregarded. 

Additionally, the system analyzed did not experience any external forces (�̅�𝑞), allowing 

further simplification of the momentum equations. These simplifications aligned the 

general fluid-solid momentum equations with the specific configuration necessary to 

represent the solid-gas granular flow problem. In addition, the interphase forces between 

phases (�̅�𝑝𝑞), referring to the forces acting between phases in the multiphase system due 

to friction, pressure, cohesion, and other effects [14], could further be expressed in terms 

of the velocities and fluid-solid exchange coefficients of the phases (𝐾𝑝𝑞), a parameter 

that characterized the rate at which mass, momentum and heat were transferred between 

the adjacent phases. For multiphase flows, this relationship was achieved by establishing 

symmetry between the interphase momentum exchange coefficient for both phases. 

(5)                          R̅pq = Kpq(v̅p − v̅q)  𝐾𝑝𝑞 = 𝐾𝑞𝑝 

 

 

 

(6) 𝛁 ⋅ (αsρsv̅sv̅s) = −αs∇p − ∇ps + ∇ ⋅ τ̅̅s + αsρsg̅ +  ∑ (Kls(v̅l − v̅s) +N
l=1

ṁlsv̅ls − ṁslv̅sl) + (F⃗ lift,s) 

 

 

 

(7) 𝛁 ⋅ (αlρlv̅lv̅l) = −αl∇p + ∇ ⋅ τ̅̅l + αlρlg̅ +  ∑ (Ksl(v̅s − v̅l) + ṁslv̅sl −
N
s=1

ṁlsv̅ls) + (F̅lift,l) 
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B. Granular Property Models 

The interphase exchange coefficient is formulated as a function of the particle's drag 

coefficient (𝐶𝐷) and particle Reynolds number (𝑅𝑒𝑠). This allows for the selection of a 

drag coefficient model that suits the characteristics of the established granular case. 

Specifically, Wen and Yu introduced a fluid-solid exchange coefficient suitable for dilute 

flows [24]: 

 

(8)                                         Kls =
3

4

αsαlρl|v⃗⃗ s−v⃗⃗ l|

ds
CDαl

−2.65 

 

 

(9)                                    CD = 
24

αlRes
[1 + 0.15(αlRes)

0.687] 

 

 

(10)                                                  Res =
ρlds|v⃗⃗ s−v⃗⃗ l|

μl
 

 

 

The particle’s relative Reynold’s Number, representing the ratio of inertial forces 

to viscous forces exerted from the fluid phase to the solid phase, was necessary for 

determining the drag effects experienced by the particulate phase [25]. When examining 

the momentum equations for the solid and fluid phases presented in Equation 6 and 

Equation 7, the lift force (𝐹 𝑙𝑖𝑓𝑡), which accounted for the forces acting on the solid 

particles suspended by the gaseous phase, remained a critical consideration. In the 
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discussion of the lift forces experienced by the particles, the general expression for the 

lift force was defined as [14]: 

 

(11)                               F⃗ lift = −Clρsαl(v⃗ s − v⃗ l) × (∇ × v⃗ s) 

 

From the available models provided by ANSYS Fluent, the Saffman-Mei model 

proved to be a suitable choice for simulating the lift drag coefficient experienced by the 

granular phase, particularly under the assumption that the particles were spherical solids 

[26]. Mei and Klausner extended this model to be applicable to a wider range of particle 

Reynolds' Numbers, thereby enhancing its versatility in multiple applications [27]. In 

addition to Mei and Klausner enhancing the model, Laín evaluated the model's adequacy 

in describing particle behavior by including it in his Eulerian-Lagrangian model and 

successfully validating it with experimental data [6]. 

The model calculates the lift coefficient (𝐶𝑙) for a range of particle Reynold’s 

numbers using the aerodynamic lift resulting from the interaction between both phases 

and the vorticity-induced lift resulting from interaction between particles and vortices 

shed by particle wakes [14]. To express the vorticity effects, the Reynolds number based 

on particle vorticity (𝑅𝑒𝜔) was calculated. A dimensionless parameter (𝛽) was defined to 

compare the vorticity and particle size effects on the flow and determine what parameters 

determined the flow behavior. The lift coefficient could then be expressed as a function of 

both Reynold’s numbers, and 𝛽: 

(12) Ci =
3

2π√Rew
C′l C′l = {

6.46 × f(Res, Reω)               Rep ≤ 40 

 6.46 × 0.0524(βRep)
1

2        40 < Rep < 100
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(13) β = 0.5 (
Reω

Rep
)            f(Res, Reω) = (1 − 0.3314β0.5)e−0.1Rep + 0.3314β0.5 

 

 

(14)                                          Reω =
ρs|∇×v⃗⃗ s|ds

2

μs
 

 

 

Similar to the lift force, addressing the solids pressure term within the momentum 

equation is crucial for accurately representing the system. The solids pressure (𝑝𝑠), 

referring to the pressure exerted by the solid particles in the multiphase flow system, can 

be defined for dilute flows consisting of a single solid phase by using the expression 

shown in Equation 15: 

 

(15)                             ps = αsρsθs + 2ρs(1 + ess)αs
2g0,ssΘs 

 

 

It was possible to extend Equation 15 for scenarios where multiple solid phases 

needed to be used to describe particle size differences within the polydisperse mixture 

studied. The following general solids pressure formulation in the presence of multiple 

solid phases, derived by Gidaspow [16], were applied by the solver to describe each PSD 

studied: 

 

(16)             ps1
= αs1

ρs1
θs1

+ (∑
ds2s1

3

ds1
3 [2(1 + es2s1

)g0,s2s1
αs1

αs2
]N

p=1 ) ρs1
Θs1
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(17)                                               ds2s1
=

ds2+ds1

2
 

 

 

Via these models, the solids pressure was able to represent how the solid particles 

contributed to the overall pressure field in the system. Given that solids pressure is 

influenced by a radial distribution function (𝑔0), which acts as a correction factor 

adjusting the probability of collisions between particles, it was crucial to choose a radial 

distribution function model that aligned with the selected solids pressure model. In 

compacted flows, where there is a larger number of particle-particle interactions, the 

radial distribution function exhibits a major influence on the granular properties [14]. 

However, in the chosen dilute flow regime the radial distribution function becomes less 

significant as the probability of particle collisions decreases. For this problem 

configuration, the radial distribution function model has been selected to agree with Lun 

et al and Gidaspow derivations, due to its applicability in characterizing dilute flows [28]. 

The values of the radial distribution function depended on the maximum packing 

limit of the mixture (𝛼𝑠,𝑚𝑎𝑥). The maximum packing limit refers to the maximum solid 

volume fraction achievable in a granular assembly when particles are arranged in a 

manner that allows for the densest packing. For this study, the maximum packing limit 

was set to a constant value of 0.63. This choice was motivated by the diluted nature of the 

solid-gas flow mixture, alleviating concerns about reaching the established maximum 

packing limit value. The general expressions for the radial distribution function model 

selected, applicable in the presence of a single solids phase and multiple solid phases, are 

shown in Equation 18 and Equation 19: 
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(18)                                      g0 = [1 − (
αs

αs,max
)

1

3
]

−1

 

 

(19)       g0,ll = [1 − (
αs

αs,max
)

1

3
]

−1

+
1

2
dl ∑

αk

dk

N
k=1   αs = ∑ αk

N
k=1  

 

Within the Eulerian-Eulerian model, the Kinetic Theory of Granular Flows 

(KTGF) incorporated the stress-strain tensor (𝜏̿) to account for shear and bulk viscous 

effects experienced by both phases. The stress-strain tensor for the solid phase (𝜏̿𝑠), 

shown in the fluid-solid momentum expression described in Equation 6, could be 

expressed in terms of the solid phase properties. The stress-strain tensor for the solid 

phase is described below in Equation 20: 

 

(20)                    τ̅̅s = αsμs(∇v⃗ s + ∇v⃗ s
T) + αs (λs −

2

3
μs)∇ ⋅ v⃗ sI̅ ̅

 

The stress-strain tensor can also be expressed for the fluid phase 𝑙 to solve for the 

gaseous phase transport expression shown in Equation 7. The solids stress-strain tensor 

represents the average stress distribution within the solid phase, measuring the internal 

forces acting on the particles due to external loads and deformation influenced by the 

gaseous phase.  

Within the solids stress-strain tensor expression, the solids bulk viscosity (𝜆𝑠), a 

parameter that reflects the resistance of granular particles to compression and expansion 

[14], was defined to be zero for the established problem configuration. In this system, the 
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glass beads were anticipated to remain mostly rigid and non-deformable due to the dilute 

flow regime in which they operated, further limiting the possibility of interaction between 

particles. These assumptions neglected the bulk viscosity’s influence prevalent in 

Equation 20. This justification can further be validated using Lun et. al’s bulk viscosity 

model [28], in which for dilute flows with low solids volume fraction (𝛼𝑠), the bulk 

viscosity tends to zero: 

(21)                                 λs =
4

3
αs

2ρsdsg0,ss(1 + ess) (
Θs

π
)

1

2
 

 

Apart from bulk viscosities, the solids stress tensor also describes the effects of 

shear stresses on the particles via a solids shear viscosity term (𝜇𝑠). In this way, the 

stress-strain tensor can encompass shear and bulk viscosities resulting from particle 

momentum exchange attributed to translation, collision, and friction [14]. The solids 

shear viscosity is defined as:  

 

(22)                                     μs = μs,col + μs,kin + μs,fr 

 

 

The collisional viscosity term (𝜇𝑠,𝑐𝑜𝑙) refers to the resistance to flow exhibited by 

the solid particles due to frequent inter-particle collisions within the fluid. It arises from 

the momentum exchange during collisions among the particles and affects the overall 

behavior of the solid phase within the multiphase flow. The collisional viscosity can be 

expressed in the following form [15]: 
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(23)                                μs,col =
4

5
αsρsdsg0,ss(1 + ess) (

Θs

π
)

1

2
 

 

For the kinetic viscosity term (𝜇𝑠,𝑘𝑖𝑛), which refers to the resistance of individual 

particles to deformation as they move through the fluid phase, the Gidaspow model was 

chosen to uphold consistency with the models utilized to describe previous flow 

parameters [15]. The radial distribution function was also employed in the calculation of 

this parameter, emphasizing the significance of maintaining consistency within the 

chosen models: 

 

(24)                         μs,kin =
10ρsds√Θsπ

96αs(1+ess)g0,ss
[1 +

4

5
g0,ssαs(1 + ess)]

2

 

 

 

The frictional viscosity term (𝜇𝑠,𝑓𝑟) shown in Equation 24 describes the 

additional resistance to flow experienced by the solid particles when particle interlocking, 

and entanglement occurs at maximum packing limits. Moreover, the influence of the 

frictional viscosity term was identified to be negligible in this study due to the dilute 

nature of the system, resulting in minimal frictional interactions between particles. Both 

bulk and frictional viscosity terms are more prevalent in dense systems, which do not 

align with the targeted flow regime of this study. Thus, the resulting shear viscosity term 

simplified to the following: 

 

(25)                                            μs = μs,col + μs,kin 
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Both shear viscosity and solids pressure models are calculated using the granular 

temperature of the solid phase (𝜃𝑠). Granular temperature, which functions as a measure 

of the thermal and kinetic energies associated with the random movement of particles 

within the granular system, was expressed as a partial differential equation (PDE). The 

PDE transport equation derived from Kinetic Theory of Granular Flows (KTGF) is 

represented below as the following [17]: 

 

(26) 
3

2
[
∂

∂t
(ρsαsθs) + ∇ ∙ (ρsαsv⃗ sθs)] = (−psI̿ + τ̿s): ∇v⃗ s + ∇ ∙ (kθs

∇θs) − γθs
+ φls 

 

 

To solve the granular temperature PDE, it is required to select a granular 

conductivity model (𝑘𝜃𝑠
) in the system to find the granular energy diffusive flux 

(𝑘𝜃𝑠
𝛻𝜃𝑠). The granular conductivity can be represented using the Gidaspow model [15] 

as the following:  

 

(27) kθs
=

150ρsds√θπ

384(1+ess)g0,ss
[1 +

6

5
αsg0,ss(1 + ess)]

2

+ 2ρsαs
2ds(1 + ess)g0,ss√

Θs

π
 

 

 

The granular temperature PDE also utilizes a collisional dissipation of energy 

model derived by Lun et al. [28] to represent the rate of energy dissipation within the 

solids phases due to collision between particles: 
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(28)                                     γΘm =
12(1−ess

2 )g0,ss

dS√π
ρsαs

2Θs

3

2 

 

 

The transfer of the kinetic energy from random fluctuations in the particle 

velocity from the solids phase to the fluid phase (𝜑𝑙𝑠), another term utilized in the 

formulation of the granular temperature PDE, was represented following the expression 

derived by Gidaspow [15]: 

 

(29)                                              φls = −3KlsΘs 

 

 

After concluding the numerical approach analysis for the fluid-solid momentum 

transfer equations and phase property models for each phase, it was important to identify 

the numerical techniques used to define the system's boundary conditions.  
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C. Wall Boundary Conditions and Turbulence Modeling 

To fully represent the granular phases, it was essential to include wall boundary 

conditions to address the wall shear forces and granular temperature effects at the walls 

of the simulated pneumatic conveyor. These wall conditions were contingent on the 

specularity coefficient (𝜙), the coefficient of restitution between the particle and the 

walls to describe particle-wall interactions (𝑒𝑠𝑤), and the particle slip velocities parallel 

to the wall (�⃗⃗� 𝑠,|). For this boundary, the specularity coefficient determined the fraction of 

collisions that would transfer momentum to the wall. The specularity coefficient ranged 

from 0 to 1, with 0 representing perfect specular collisions and 1 representing perfectly 

diffuse collisions, such as those obtained from the no-slip boundary condition [34]. The 

coefficient of restitution, which represented the amount of kinetic energy retained or lost 

by each particle when colliding, was set to 0.9, mirroring Laín’s study [6], and the 

specularity coefficient was set to 0.1. The expressions governing the shear forces at the 

wall (𝜏 𝑠) and granular temperatures at the wall in the modeling simulation were: 

 

(30)                                τ⃗ s = −
π

6
√3ϕ

αs

αs,max
ρsg0√ΘsU⃗⃗ s,| 

 

(31)         qs =
π

6
√3ϕ

αs

αs,max
ρsg0√ΘsU⃗⃗ s,| ∙ U⃗⃗ s,| −

π

4
√3

αs

αs,max
(1 − esw

2 )ρsg0Θs

3

2 

 

 

The heat flux (𝑞𝑠) in Equation 31 was able to describe the energy transferred 

between the granular phase and the wall using the Johnson and Jackson model [29]. For 
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turbulence modeling in the simulated pneumatic conveyor, a new set of transport 

equations was established to account for turbulent fluctuation effects. Among the 

turbulence models, the RNG k−ε model, also known as the renormalization grouping 

dispersed turbulent kinetic energy and dissipation rate model, was selected. Tai and Chi-

Hwa evaluated the model and portrayed it to be ideal for systems with dilute 

concentrations of the secondary phases [30]. It is particularly well-suited when using a 

two-way coupling scheme, making it optimal for this problem configuration.  

The RNG k−ε model, similar in form to the standard k−ε model, differs from it by 

including an additional term in its dissipation rate equation, providing more accurate 

results for a wider range of flows [14]. The RNG k−ε turbulent model’s transport 

equations were as following:  

 

 

(32)            
∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj
(αkμeff

∂k

∂xj
) + Gk + Gb − ρε − YM + Sk 

 

 

 

(33) 
∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj
(αεμeff

∂ε

∂xj
) + C1ε
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− Rε + Sε 
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D. Population Balance Model 

In addition to turbulence modeling, particle size distributions need to be incorporated 

within the Eulerian-Eulerian model to accurately depict the polydisperse mixture. To 

model the particle-size-dependent dynamics within the simulated pneumatic conveyor, an 

inhomogeneous discrete population balance model was employed. This modeling 

approach facilitated the representation of each particle size distribution by dividing them 

into distinct bins, each representing a finite range of particle sizes. By considering each 

bin as an independent phase, the fluid-solid momentum equations could be solved 

separately for each phase, enabling a detailed analysis of particle flow behaviors based on 

their size distributions. This method captured variations in velocity gradients and particle 

concentration patterns, providing a better understanding of how particles within this 

polydisperse system behaved. The transport equation for the discrete bin fraction (𝑓𝑖) 

could be represented as the following:  

 

(34)                                    
∂

∂t
(ραfi) + ∇ ∙ (u⃗ pαfi) = Sbi 

 

 

The bin fraction represented the total number of particles that would fall within a 

defined bin or particle size range. Since the solid phase consisted of a mixture of 

differently sized particles, the total solids volume fraction of the mixture could be 

represented into segments characterizing specific particle size ranges. Each bin 

corresponded to a particle size range, consisting of a portion of the total solid’s volume 
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fraction available in the system. In Equation 34, the net mass source for particles (𝑆𝑏𝑖) 

described the net effect that breakage and agglomeration of particles could have on the 

established bins. If particles increased or decreased in size due to any of these processes, 

leading to the particles no longer belonging to their initial prescribed bin, this source term 

could be changed to account for these changes and adjust the new particle size 

distribution accordingly. For the inhomogeneous discrete method, in which bins with 

different particle size ranges were assigned to multiple solid phases to allow advection by 

different phase velocities [14], the net mass source for a given phase was expressed as:  

 

(35)                                               Si = ∑ Sbi
M
i=1  

 

 

As mentioned previously, bins in the inhomogeneous model for a phase can 

migrate to another phase through breakage or agglomeration, creating a net mass source 

term for phases present. However, this was not the case for the solid particles used in this 

study. The glass bead particles present in this study were assumed to not experience these 

phenomena due to the particle characteristics specified for them, which would not lead to 

any adhesion or breakage of the particles. With all these models accounting for phase 

properties, wall boundaries, turbulence and particle size distributions, the Eulerian-

Eulerian framework could be introduced to fully encapsulate the fluid dynamics of the 

granular flow.  
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III. METHODOLOGY 

A. Overview of Proposed Eulerian-Eulerian Model 

The proposed Eulerian-Eulerian model was developed to investigate crucial 

parameters essential for designing pneumatic dilute-phase conveying systems, focusing 

on pressure drop profiles, velocity gradients, and particle concentrations for each phase. 

In this study, where the key parameters depended primarily on the momentum transfer 

effects between phases, the system was configured to operate under room conditions to 

facilitate the selection of the computational models implemented within the Eulerian-

Eulerian framework. By assigning constant room temperature and density values to the 

geometry and all phases involved, the energy equations for each phase could be omitted 

due to the minimal heat transfer effects caused by the absence of heat sources and 

insubstantial temperature gradients in the system. 

To implement the Eulerian-Eulerian model and create the simulated pneumatic 

conveying system, ANSYS Fluent, the referenced CFD tool used to simulate fluid flow, 

was introduced. The modeled geometry in this study imitated Laín and Sommerfeld's 

dimensions, phase descriptions and boundary conditions used for their Eulerian-

Lagrangian simulation [6]. The problem configuration replicated a two-phase 

polydisperse flow consisting of air and glass bead particles, both initially moving at 27
m

s
 

through a 150 mm diameter, 10.6 m long pipe. A visual representation of the geometry 

with its boundary conditions is shown in Figure 1 and a more detailed preview of the 

geometry, material properties, and boundary conditions used in this study are shown in 

Table 1, 2 and 3 below:  
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Figure 1: Horizontal Pipe Geometry with Boundary Conditions 

 

 

 

 

Table 1: Dimensions for Horizontal Pneumatic Conveying Pipe 

Geometry Length [m] Diameter [mm] 

Circular Pipe 10.6 150 

 

 

Table 2: Property Values for Primary and Secondary Phases 

Phase Phase Type Material 

Density 

[
𝑘𝑔

𝑚3] 

Viscosity 

[
𝑘𝑔

𝑚∙𝑠
] 

Primary Phase Fluid Air 1.225 1.7894e-05 

Secondary Phase Solid (Pseudo-fluid) Glass-Beads 2500  

 

 

Table 3: Boundary Conditions for Gaseous and Solid Phases 

Phase Inlet 

Velocity 

[
𝑚

𝑠
] 

Inlet 

Volume 

Fraction 

Coefficient 

of 

Restitution 

Specularity 

Coefficient 

Granular 

Temperature 

[
𝑚2

𝑠2
] 

Wall 

Roughness 

[𝜇𝑚] 

Air 27 0.999657 N/A 

 

N/A N/A 50 

Glass-

Beads 

27 0.000343 

 

0.9 

 

0.1 0.0001 50 
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To further validate the granular property models selected, a sensitivity study was 

conducted to investigate particle velocity and volume fraction solution variability when 

using different granular models. Variability between the Syamlal-Obrien and Gidaspow 

models was investigated for granular viscosity and granular temperature PDE models. 

For drag coefficient models, cases using the Syamlal-Obrien, Gidaspow and Wen-Yu 

models were analyzed. Solids pressure and radial distribution functions for Syamlal-

Obrien and Lun et. al were studied, as well as the model’s sensitivity for different 

granular inlet temperatures ranging from 0.0001
m2

s2  to 0.1
m2

s2  was investigated. ANSYS 

Fluent's pressure-based solver and all granular properties selected based on previous 

works and preliminary sensitivity studies were used consistently to solve all simulations 

in this report. A more detailed review of the preliminary sensitivity test results obtained 

for each granular model can be found in Appendix B. A summary of the final simulation 

settings selected based on all sensitivity studies performed and on literature are shown: 

 

 

Table 4: Eulerian-Eulerian Model Simulation Settings 

Multiphase Model Solving Scheme Solver type 

Eulerian Model Implicit Pressure-based Solver 

Solids Pressure 

Radial Distribution 

Function Granular Temperature PDE 

Lun et. al Lun et. al Gidaspow 

Granular Conductivity Granular Viscosity Granular Inlet Temperature [
𝑚2

𝑠2 ] 

Gidaspow Gidaspow 0.0001 

Drag coefficient Lift coefficient Turbulent Model 

Wen-Yu Saffman−Mei RNG-k-𝜀 

Wall-Boundary Population Balance Model  

Johnson−Jackson 

Inhomogeneous Discrete 

Method  
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Using these settings, flow solution data was gathered for all cases from two 

regions of interest within the horizontal pipe. The first region of interest was the pipe’s 

centerline, in which pressure drop data was extracted from a horizontal line passing 

directly through the center of the pipe to obtain an overview of the overall pressure drop 

in the system. For particle velocity profiles and volume fraction distributions, data was 

extracted from a vertical line in the y-axis, drawn 8 m away from the pipe’s inlet. These 

locations coincide with regions where Laín and Sommerfeld reported data to validate the 

simulated model against experimental results. These regions of interest are highlighted in 

Figure 2. 

 

 

 

Figure 2: Regions of Interest for Property Data Extraction 
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B. Laín and Sommerfeld Comparative Study 

To fully capture the polydisperse nature of the solid-fluid flow from Laín and 

Sommerfeld’s study and validate the proposed model, an inhomogeneous discrete 

population balance approach was selected. After discretizing Laín’s PSD data, it was 

found that a small portion of the mixture consisted of a minimum particle size of 

approximately 1.7 μm and a maximum of approximately 99 μm, establishing the 

minimum and maximum particle size ranges that could be observed in the mixture. Using 

the data extracted from the PSD, simulations representing the polydisperse mixture as a 

series of bins were performed. The tools used to digitalize Laín’s data and to calculate the 

bin fractions for each particle size group were Automeris [31], and a specialized PSD 

calculator available from the Combustible Dust Performance-Based Design Center [32], 

respectively.  

After proving in Chapter IV that the solutions converged independently of mesh 

size used, a series of simulations were performed to compare Laín’s experimental results 

and validate the Eulerian-Eulerian framework selected. The first case consisted of 

simulating the particulate phase as a monodisperse mixture. The monodisperse case was 

made of particles with a diameter of 40 μm, which was the number mean diameter 

reported by Laín and Sommerfeld from their PSD. The rest of the cases consisted of 

simulating Laín’s PSD via the inhomogeneous discrete population balance model by 

using a series of bins to characterize the mixture. Cases consisting of two, five, ten, 

twenty and thirty bins were investigated. Bin convergence was studied for these cases to 

determine the number of bins needed for the solution to achieve significant agreement 
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with the case employing the highest number of bins. From these analyses, agreement 

between both monodisperse and polydisperse simulations could be established when 

compared to Laín’s experimental results. Laín and Sommerfeld’s particle size distribution 

discretized into the five different bin configurations mentioned can be seen in Figures 3-

7. 

 

 

Figure 3: Laín and Sommerfeld’s PSD Discretized into 2 Bins 

 

 

 

Figure 4: Laín and Sommerfeld’s PSD Discretized into 5 Bins  
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Figure 5: Laín and Sommerfeld’s PSD Discretized into 10 Bins 

 

 

 

Figure 6: Laín and Sommerfeld’s PSD Discretized into 20 Bins 

 

 

 

Figure 7: Laín and Sommerfeld’s PSD Discretized into 30 Bins 
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C. Particle Size Distribution Variance Study 

After analyzing the mean diameter monodisperse case and the polydisperse bin 

cases using Laín’s PSD alongside experimental data, a new study was conducted 

involving four additional particle size distributions ranging from 5 μm to 500 μm. This 

study explored the number of bins necessary for pressure drop solutions to converge and 

examined alternative methods that could be implemented to represent the polydisperse 

mixture as a simpler monodisperse case. Each PSD was formulated differently from each 

other by shifting the overall mean of the particle distribution. Three of the four PSD 

established were single peak distributions, while the fourth one was a three-peak 

distribution. The mean values for the particle size distributions studied were 250 μm, 325 

μm, and 175 μm for the first three single-peak distributions respectively, and 250 μm for 

the fourth three-peak distribution. By evaluating three single peak cases with different 

overall distribution mean, it was possible to investigate if variations in particle sizes 

within the distribution significantly affected the overall pressure drop of the system. The 

fourth case aimed to determine whether variations in particle distribution shape 

significantly influenced solution accuracy when employing different particle size 

characterization techniques. The particle size distributions studied are shown below in 

Figures 8-11 and Table 5: 
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Figure 8: Particle Size Distribution #1 

 

 

Figure 9: Particle Size Distribution #2  

 

 

Figure 10: Particle Size Distribution #3  
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Figure 11: Particle Size Distribution #4 

 

 

 

Table 5: Characteristics of Particle Size Distributions 

Particle Size Distribution Mean, μ (μm) Standard Deviation, 𝜎 

(μm) 

PSD-#1 250 25 

PSD-#2 325 25 

PSD-#3 175 25 

PSD-#4 250 25 
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D. Independent Mesh Convergence Study 

To ensure solution stability, a mesh convergence analysis was performed 

following Laín's meshing techniques. This analysis provided crucial insights into the 

convergence behavior of the model, ensuring the reliability and accuracy of the 

simulation results obtained for the studied flow parameters. The mesh was divided into 

three main edge sizing techniques, each describing a region with a different number of 

divisions needed to replicate Laín and Sommerfeld’s grid. This method gave rise to a 

reliable meshing structure that could produce results comparable with Laín’s 

experimental data. The meshing framework and defined regions are shown in Figure 12 

and Figure 13: 

  

 

 

 
 

Figure 12: Grid Framework for Laín’s Study and Proposed Model 
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Figure 13: Grid Edge Sizing Structure for Proposed Model 

 

Following the mesh structure shown in Figure 13, a mesh convergence study was 

conducted using five grid variations, each one characterized by a different number of 

elements. The five grid variations utilized the three main regions described in Figure 13 

to increase the number of divisions present in the mesh, hence refining the mesh, 

improving its quality and bettering solution convergence. The specific configurations 

used to create the five derived grid variations are shown in Table 6: 

Table 6: Grid Variations for Mesh Convergence Cases 

Mesh Name Nodes Elements Length 

Divisions 

Arms 

Division 

Core 

Divisions 

MCS-#1 1,278,320 310,050 450 10 13 

MCS-#2 2,361,829 576,640 530 13 16 

MCS-#3 3,538,008 867,350 550 16 19 

MCS-#4 4,452,344 1,093,680 560 18 21 

MCS-#5 4,611,144 1,132,740 565 19 22 
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Using the mesh sizes provided in Table 6, two mesh convergence studies were 

conducted. One study aimed to prove that pressure drop, particle velocity and volume 

fraction solutions converged independently of the grid selected using the minimum 

particle diameter size available in Laín and Sommerfeld’s PSD. The second study 

addressed convergence for these same parameters using the maximum available particle 

size. The main goal of these two studies was to implicitly prove that by reaching grid 

convergence using the minimum and maximum particle sizes within the PSD, any 

solutions obtained for the rest of the particle diameters within the distribution would be 

grid independent as well. The ten cases conducted using the minimum and maximum 

particle sizes available in Laín and Sommerfeld’s PSD have been described in Table 7. 

 

 

Table 7: Mesh Convergence Study for Laín’s PSD 

Minimum Particle Diameter Cases Mesh Particle Diameter [μm] 

MCS-Min-#1 MCS-#1 1.66 

MCS-Min-#2 MCS-#2 1.66 

MCS-Min-#3 MCS-#3 1.66 

MCS-Min-#4 MCS-#4 1.66 

MCS-Min-#5 MCS-#5 1.66 

Maximum Particle Diameter Cases Mesh Particle Diameter [μm] 

MCS-Max-#1 MCS-#1 98.88 

MCS-Max-#2 MCS-#2 98.88 

MCS-Max-#3 MCS-#3 98.88 

MCS-Max-#4 MCS-#4 98.88 

MCS-Max-#5 MCS-#5 98.88 
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After completing the two mesh convergence studies for pressure drop, particle 

velocity and volume fraction distributions, grid MCS-#4 was selected to run a 

comparative analysis of the Eulerian-Eulerian model established with respect to Laín and 

Sommerfeld’s experimental data. By doing so, the effectiveness of the model to predict 

accurate data could be validated.  

In addition to the previous mesh convergence study, an additional grid 

independence study was conducted to analyze pressure drop data for the four newly 

generated particle size distributions. The new particle size distributions consisted of 

particles with diameter sizes between 5 μm to 500 μm. Since a newly established 

maximum particle size range of 500 μm was used for the four PSD, which bypassed the 

previous PSD range proposed by Laín and Sommerfeld, a new mesh convergence study 

was required to validate the grid selected for describing the particle sizes that would fall 

within the new range. Therefore, a new mesh convergence study was conducted to 

investigate pressure drop convergence for the new maximum particle size limit of  

500 μm. This study utilized the same five grid variations as before, as shown in Table 8: 

 

Table 8: Mesh Convergence Study for New PSDs 

Maximum Particle Diameter New Case Mesh Particle Diameter [μm] 

MCS-500𝜇𝑚-#1 MCS-#1 500 

MCS-500𝜇𝑚-#2 MCS-#2 500 

MCS-500𝜇𝑚-#3 MCS-#3 500 

MCS-500𝜇𝑚-#4 MCS-#4 500 

MCS-500𝜇𝑚-#5 MCS-#5 500 
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IV. POST-PROCESSING AND ANALYSIS OF RESULTS 

A. Grid Convergence Study Analysis 

i. Laín and Sommerfeld Minimum PSD Limit 

To investigate grid convergence for all the particles within Laín and Sommerfeld’s 

particle size distribution, a grid convergence study was conducted for the minimum and 

maximum particle sizes in the distribution. For the minimum particle size cases, pressure 

drops were found to converge for grid configurations MCS-#3 and MCS#4, showing 

under a 1% difference in the overall pressure drop when compared to MCS-#5. Similarly, 

volume fractions displayed under a 1% difference for MCS-#3 and MCS-#4. For particle 

velocities, the solutions showed difficulty in convergence, achieving approximately a 5% 

difference for MCS-#3 when compared with the finest grid configuration MCS-#5. Grid 

convergence solutions for pressure drop are shown in Figure 14, Figure 15, and Table 9.  

 
Figure 14: Pressure Drop Convergence for Minimum Particle Size 



43 
 

 

Figure 15: Pressure Convergence Analysis for Minimum Particle Range 

 

 

Table 9: Pressure Drop Grid Difference for Minimum Particle Size Cases 

Mesh Size ∆𝑃

∆𝑃𝑀𝐶𝑆−#5
 

MCS-#1 1.12451 

MCS-#2 1.04975 

MCS-#3 1.00139 

MCS-#4 1.00043 

 

In Figure 14, pressure values obtained from the centerline of the geometry were 

plotted against the axial length of the pneumatic conveying pipe. Figure 15 and Table 9 

depict the overall pressure drop difference between the grid sizes illustrated in Figure 14 

against the finest grid size MCS-#5. For particle velocity profiles, convergence behavior 

was observed for the grid solutions shown in Figure 16-17 and Table 10: 
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Figure 16: Velocity Grid Convergence for Minimum Particle Size 

 

 

 

Figure 17: Velocity Convergence Analysis for Minimum Particle Range 
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Table 10: Particle Velocity Grid Difference for Minimum Particle Size Cases 

Mesh Size 
√1

𝑛
∑ (𝑈𝑠𝑖

− 𝑈𝑠𝑀𝐶𝑆−#5𝑖
)𝑛

𝑖=1

2

   

(RMSD) 

1

𝑛
∑|

𝑈𝑠𝑖

𝑈𝑠𝑀𝐶𝑆−#5𝑖

|

𝑛

𝑖=1

 

MCS-#1 5.2714 1.19065 

MCS-#2 3.006 1.11049 

MCS-#3 1.602 1.05459 

MCS-#4 0.9771 1.01412 

 

For particle velocities and volume fraction distributions, property data was 

extracted 8 m from the inlet. Figure 16 illustrates the particle velocity relative to the 

pipe’s radial coordinate, while Table 10 and Figure 17 quantify the solution deviation 

from each mesh size case against the finest mesh. Volume fraction convergence solutions 

were extracted at the same 8 m location, shown in Figure 18-19 and Table 11: 

 

 
Figure 18: Volume Fraction Grid Convergence for Minimum Particle Size 

 



46 
 

 

Figure 19: Volume Fraction Convergence Analysis for Minimum Particle Range 

 

Table 11: Volume Fraction Grid Difference for Minimum Particle Size Cases 

Mesh Size 
√1

𝑛
∑ (𝛼𝑠𝑖

− 𝛼𝑠𝑀𝐶𝑆−#5𝑖
)𝑛

𝑖=1

2

 (RMSD) 
1

𝑛
∑ |

𝛼𝑠𝑖

𝛼𝑀𝐶𝑆−#5𝑖

|𝑛
𝑖=1    

MCS-#1 5.2378 1.11032 

MCS-#2 3.3339 1.04896 

MCS-#3 2.2183 1.00952 

MCS-#4 0.9201 1.00743 

 

. After evaluating pressure drop, particle velocities, and volume fractions using all 

grid configurations, it was found that MCS-#4 exhibited the closest agreement with 

MCS-#5, demonstrating deviations of approximately 1%  for cases employing the 

minimum particle size range. Consequently, grid configuration MCS-#4 was selected as 

an ideal mesh for accurately describing all three flow parameters when employing the 

minimum particle sizes in the PSD. 
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ii. Laín and Sommerfeld Maximum PSD Limit 

When examining grid convergence for the maximum particle size in the PSD, it was 

observed that pressure solution data converged showing errors of approximately 1% 

across all grid sizes tested, as depicted in Figure 20-21 and Table 12.  

 
Figure 20: Pressure Drop Grid Convergence for Maximum Particle Size 

 

 

 
Figure 21: Pressure Convergence Analysis for Maximum Particle Range 
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Table 12: Pressure Drop Grid Difference for Maximum Particle Size Cases 

Mesh Size ∆P

∆PMCS−#5
  

MCS-#1 1.01601 

MCS-#2 1.01124 

MCS-#3 1.00661 

MCS-#4 1.00554 

 

Pressure solutions gathered for all grid configurations gave rise to minimal deviations 

among each other. However, particle velocity and volume fraction solution data exhibited 

greater difficulty in reaching convergence, experiencing greater challenges compared to 

the minimum particle size cases. An average grid convergence agreement of about 2% 

could be achieved for particle velocity and volume fraction respectively, using grid 

configuration MCS-#4. Graphical and numerical depiction of these findings is shown 

below in Figure 22-23, Table 13 and Figure 24-25, Table 14 respectively. 

 

 
Figure 22: Velocity Grid Convergence for Maximum Particle Size  
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Figure 23: Velocity Convergence Analysis for Maximum Particle Range 

 

 

 

Table 13: Particle Velocity Grid Difference for Maximum Particle Size Cases 

Mesh Size 
√1

𝑛
∑ (𝑈𝑠𝑖

− 𝑈𝑠𝑀𝐶𝑆−#5𝑖
)𝑛

𝑖=1

2

   

(RMSD) 

1

𝑛
∑|

𝑈𝑠𝑖

𝑈𝑠𝑀𝐶𝑆−#5𝑖

|

𝑛

𝑖=1

 

MCS-#1 7.3063 1.25421 

MCS-#2 5.1355 1.11697 

MCS-#3 4.6535 1.06453 

MCS-#4 0.9125 1.01988 

 

 

 



50 
 

 

 
Figure 24: Volume Fraction Grid Convergence for Maximum Particle Size 

 

 

 

Figure 25: Volume Fraction Convergence Analysis for Maximum Particle Range 
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Table 14: Volume Fraction Grid Difference for Maximum Particle Size Cases 

Mesh Size 
√1

n
∑ (αsi

− αsMCS−#5i
)n

i=1

2

 

(RMSD) 

1

n
∑|

αsi

αMCS−#5i

|

n

i=1

 

   

MCS-#1 13.442 1.30421 

MCS-#2 8.549 1.16222 

MCS-#3 4.112 1.02543 

MCS-#4 2.215 1.01495 

 

 

Both grid convergence studies proved grid MCS-#4 as an optimal choice for 

accurately representing pressure drop, particle velocity, and volume fraction distributions 

across all minimum and maximum particle sizes within the PSD. Using this grid 

configuration, solution data could be gathered to validate the simulation using Laín and 

Sommerfeld’s PSD and experimental results.  

 

iii. PSD Study 500 μm Limit 

Previous investigations into grid independence demonstrated that pressure drop 

solutions converged more effectively than volume fraction and particle velocity. Building 

upon these findings, a similar study was conducted to explore pressure solution grid 

convergence in a simulation featuring 500 μm diameter particles, encompassing the new 

maximum particle size established for the newly developed PSDs. This study enabled the 

generation of additional PSDs to assess how different characterizations of the distribution 

influenced pressure drop solutions. 
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In this grid convergence study, MCS-#2 and MCS-#3 configurations showed 

differences below 5% in the overall pressure drop within the pneumatic system, 

respectively. Grid configuration MCS-#4 exhibited an even smaller difference under 1%, 

justifying the selection of the fourth grid configuration to represent both Laín and 

Sommerfeld’s PSD and the newly developed PSDs introduced in this study. Pressure 

convergence data for 500μm case study is shown in Figure 26-27 and Table 15.  

 
Figure 26: Pressure Drop Grid Convergence for 500μm Particle Size 

 

 

 
Figure 27: Pressure Convergence Analysis for 500μm Particle Size Range 
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Table 15: Pressure Drop Grid Difference for 500μm Particle Size Cases 

Mesh Size ∆P

∆PMCS−#5
 

MCS-#1 1.04945 

MCS-#2 1.02601 

MCS-#3 1.01291 

MCS-#4 1.00812 

 

B. Laín and Sommerfeld Model Validation and Bin analysis. 

i. Proposed Eulerian-Eulerian Model Validation 

When comparing the overall pressure drop between Laín and Sommerfeld 

experimental data and the simulation results, reasonable agreement was observed 

between the two datasets, as depicted in Figure 28 and Table 16.  

 

 

Figure 28: Pressure Drop for Polydisperse and Monodisperse Cases 
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Table 16: Pressure Model Validation for Monodisperse and 30-Bin Cases 

Case 

∆𝑃 − ∆𝑃𝐿𝑎𝑖𝑛

∆𝑃𝐿𝑎𝑖𝑛
∗ 100 (%) 

40𝜇𝑚  4.054 

30-Bin 0.9189 

 

 

The first 40 μm monodisperse case representing the mean diameter obtained from 

Laín’s PSD displayed pressure drop variations under 5%. For the polydisperse 30-bin 

case, this pressure drop difference was reduced to under 1%. Through these findings, the 

30-bin polydisperse case proved to give rise to higher accurate pressure drop predictions 

than the monodisperse mean diameter case. However, the pressure drop prediction 

revealed a difference of only about 3% between the monodisperse and polydisperse cases. 

This finding further emphasized the practicality of representing the polydisperse mixture 

as monodisperse when predicting pressure drop profiles in pneumatic conveying systems 

operating with a similar PSD range, particularly when such a deviation is deemed 

acceptable. 

The characterization of larger particle sizes in Laín and Sommerfeld’s PSD via 

bins led to a notable surge in pressure drop within the system compared to the 40 μm 

case. This increase could be attributed to the increase in frictional resistances created by 

the interaction of larger particle’s surface areas with the pipe walls and the gaseous phase. 

This effect could not be described adequately in the 40 μm monodisperse case, given its 

constraint of describing all particles as the same size. 

Apart from pressure drop predictions, the viability of the proposed model for 

predicting particle velocities and volume fraction distributions was tested. For this 
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section, particle velocities and volume fractions were normalized using the same 

normalization parameters given in Laín and Sommerfeld’s and Huber and Sommerfeld’s 

pneumatic conveying studies [6-7]. The particle velocity (Us) was normalized by the 

average velocity at the inlet (Uav = 27
m

s
) and the volume fractions were used to find and 

normalize the particle mass flux (fp). The radial coordinates were also normalized using 

the pipe radius (R = 75mm). These normalization techniques allowed for the creation of 

normalized particle velocity and particle mass flux profiles that could be compared with 

the experimental data provided. Graphical comparisons between experimental and 

simulated results for both flow parameters are shown in Figure 29-30: 

 

Figure 29: Particle Velocity Profiles for Polydisperse and Monodisperse Cases 

Figure 30: Particle Mass Flux Profiles for Polydisperse and Monodisperse Cases 
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The sharp discontinuity in Figure 30 was attributed to the representation of the 

sharp interface between the solid and fluid phases [35]. Discontinuities in mass fluxes 

arose from inaccuracies in the volume fraction fields near this interface, where sharp 

transitions occurred between regions dominated by solid particles and those dominated 

by the fluid phase. To account for each bin, multiple continuous secondary phases were 

also created in the simulation, which introduced further complexity in the interface region 

between adjacent phases, impacting the sharp transitions between them. This was 

particularly relevant in the studied dilute flow regime, where rapid changes in phase 

properties occurred over small spatial distances. 

Furthermore, the representation of particle sizes through bins had a significant 

impact on the velocity and mass flux profiles, as shown in Figures 29-30. When 

increasing the number of bins used in the polydisperse simulation, it was found that the 

particle velocities decreased while the particle mass flux profiles increased. The 

phenomenon observed, where an increase in mass flux profiles coincided with a decrease 

in particle velocities in polydisperse simulations with an increased number of bins, may 

initially seem paradoxical. However, this behavior could be attributed to the finer bin 

resolution enabling a more accurate representation of particle sizes within the system. As 

the number of bins was increased, a broader range of particle sizes, including larger 

particles with lower velocities, were accounted for in the simulation. Similarly, individual 

particle velocities may decrease, but the overall mass flux could have increased due to the 

inclusion of larger particles contributing to a greater mass concentration within the lower 

regions of the pipe. 
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From these analyses, the modeled normalized particle velocity solutions exhibited 

a deviation of 4.1% for the monodisperse case and 3.8% for the 30-bin polydisperse case 

when compared to experimental results. However, the normalized mass fluxes for both 

cases showed higher averaged deviations, reaching up to 40.1% for the monodisperse 

case and 37.4% for the 30-bin polydisperse case. These findings indicated that, while the 

Eulerian-Eulerian model was able to accurately quantify pressure drop within the system, 

it had limitations in predicting particle velocities and mass fluxes. However, the predicted 

particle velocities and volume fraction profiles remained similar in nature to those 

obtained experimentally, demonstrating the potential of the model to provide insights into 

the behavior of these properties. Error analysis for particle velocity and volume fraction 

for the monodisperse and 30-bin polydisperse case compared to Laín and Sommerfeld’s 

experimental data is provided in Table 17 and Table 18 respectively. 

 

Table 17: Velocity Model Validation for Monodisperse and 30-Bin Cases 

Case 

1

𝑛
∑

|
𝑈𝑠𝑖

𝑈𝑎𝑣𝑖
−

𝑈𝑠𝐿𝑎𝑖𝑛𝑖

𝑈𝑎𝑣𝐿𝑎𝑖𝑛𝑖

|

𝑈𝑠𝐿𝑎𝑖𝑛𝑖

𝑈𝑎𝑣𝐿𝑎𝑖𝑛𝑖

∗ 100 (%)

𝑛

𝑖=1  

40𝜇𝑚  4.127 

30-Bin 3.809 

 

 

Table 18: Mass Flux Model Validation for Monodisperse and 30-Bin Cases 

Case 

1

𝑛
∑

|
𝑓𝑝𝑖

𝑓𝑝,𝑎𝑣𝑖

−
𝑓𝑝𝐿𝑎𝑖𝑛𝑖

𝑓𝑝,𝑎𝑣𝐿𝑎𝑖𝑛𝑖

|

𝑓𝑝𝐿𝑎𝑖𝑛𝑖

𝑓𝑝,𝑎𝑣𝐿𝑎𝑖𝑛𝑖

∗ 100 (%)

𝑛

𝑖=1  

40𝜇𝑚  40.0796 

30-Bin 37.388 
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Apart from validating the model’s capabilities for predicting the mentioned flow 

parameters, a bin convergence study was conducted for the polydisperse cases. When 

prescribing bins to the polydisperse mixture, it was found that particle velocity and 

volume fraction solutions were more sensitive to the number of bins selected than 

pressure drop. Between the 20-bin and 30-bin cases, only a 0.9% difference was observed 

in pressure drop solutions. Particle velocity and mass flux solutions reached bin 

convergence after more bins were used, showing average deviations of 3.3% and 4.1% 

respectively compared to the 30-bin case when using 20 bins. Based on these findings, it 

was determined that the optimal number of bins required to accurately represent Laín and 

Sommerfeld’s PSD fell within the range of 20 to 30-bins. Within this range, velocity and 

mass flux solution deviations were predicted to reduce to under 5%, a level of accuracy 

that may be acceptable depending on the design constraints of the pneumatic conveying 

system under study. The bin convergence findings for pressure, particle velocity and mass 

flux solutions are shown in greater detail in Table 19:  

 

Table 19: Bin Convergence Study Using Laín’s PSD 

Case 

∆𝑃−∆𝑃𝐵𝑖𝑛30

∆𝑃𝐵𝑖𝑛30
∗

100 (%)  

1

𝑛
∑

|
𝑈𝑠𝑖

𝑈𝑎𝑣𝑖
−

𝑈𝑠𝐵𝑖𝑛30𝑖

𝑈𝑎𝑣𝐵𝑖𝑛30𝑖

|

𝑈𝑠𝐵𝑖𝑛30𝑖

𝑈𝑎𝑣𝐵𝑖𝑛30𝑖

∗ 100 (%)

𝑛

𝑖=1  

1

𝑛
∑

|
𝑓𝑝𝑖

𝑓𝑝,𝑎𝑣𝑖

−
𝑓𝑝𝐵𝑖𝑛30𝑖

𝑓𝑝,𝑎𝑣𝐵𝑖𝑛30𝑖

|

𝑓𝑝𝐵𝑖𝑛30𝑖

𝑓𝑝,𝑎𝑣𝐵𝑖𝑛30𝑖

∗ 100 (%)

𝑛

𝑖=1  

2-Bins 5.365 31.335 45.634 

5-Bins 3.648 14.334 16.733 

10-Bins 1.193 5.957 6.334 

20-Bins 0.873 3.273 4.135 
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The sensitivity observed in the prescription of additional bins for particle velocity and 

mass flux parameters, not discernible in pressure solutions, can be attributed to the 

influence of particles on the examined flow. For this scenario involving particle sizes 

ranging approximately from 1 μm to 100 μm operating within a dilute flow regime, the 

contribution of particles to the overall pressure drop in the system becomes nearly 

negligible. This is because the particulate phase exerts only a minimal influence on the 

gaseous phase under these conditions, due to the minimal concentrations and surface 

areas of the particles interacting with the gaseous phase. 

While the solid phase has a slight influence on the fluid carrier phase, the gaseous 

phase predominantly dictates the dynamics of the particulate phase under these 

conditions. Following Stokes number principles, larger particles tend to track the fluid 

carrier less closely and exhibit more independent trajectories, whereas smaller particles 

readily disperse and mix with the gaseous phase. The Stokes number plays a significant 

role in flow characterization, as it considers both fluid and particle properties, with 

particle diameter being a critical factor to consider. As larger particle sizes are 

represented by more bins, the Stokes number would increase, resulting in a larger 

difference in the particle's flow behavior.  

Given that particle flow behavior is highly influenced by particle size, accurately 

characterizing particle sizes within the studied PSD is crucial for capturing the significant 

influence of the gaseous phase on the particulate phase, as well as the particulate phase's 

resistance to it. This reasoning explains the phenomena of why more bins were required 

to accurately portray particle velocity and mass flux solutions, reflected in Table 19. 
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ii. Mean Diameter PSD Characterization Study 

After comparing the 40 μm monodisperse case with experimental data, a new set of 

monodisperse cases using mean diameter expressions to represent the polydisperse nature 

of the mixture were conducted. The arithmetic mean, surface area mean, volume mean, 

Sauter mean and De Brouckere mean diameters for Laín and Sommerfeld’s PSD were 

calculated and used to set the particle sizes in the simulations. Laín and Sommerfeld’s 

calculated mean diameters are shown below in Table 20: 

 

Table 20: Mean Diameters for Laín and Sommerfeld PSD 

Mean Diameter Value [μm] 

Arithmetic Mean (d10) 40.0000 

Surface Area Mean (d20) 43.1341 

Volume Mean (d30) 45.7067 

Sauter Mean (d32) 51.2808 

De Brouckere (d43) 56.2823 

 

 

The arithmetic mean provided a measurement of the average size of particles in 

the distribution, giving equal weight to each particle [36]. The surface area mean 

emphasized on describing surface effects like friction due to the interaction of particle’s 

surface areas. The volume mean assisted in representing the volume occupied by the 
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particles, providing insights into the overall size of the particles and the space they 

occupied within the system. In addition, the Sauter mean diameter was able to provide a 

better volume to surface ratio estimation than the volume mean expression to represent an 

average diameter size from the PSD. Lastly, De Brouckere mean diameter definition was 

used to account for the skewness of the PSD [33]. Formulaic expressions for each mean 

diameter definitions are provided in Table 21: 

 

Table 21: Mean Diameter Expressions 

Mean Diameter Formula 

Arithmetic Mean (d
10

) 
𝑑10 =

1

𝑁
∑ 𝑑𝑖

𝑁

𝑖=1
 

Surface Area Mean (d
20

) 

𝑑20 = (
∑ 𝑑𝑖

2𝑁
𝑖=1

𝑁
)

1
2

 

Volume Mean (d
30

) 

𝑑30 = (
∑ 𝑑𝑖

3𝑁
𝑖=1

𝑁
)

1
3

 

Sauter Mean (d
32

) 
𝑑32 = (

∑ 𝑑𝑖
3𝑁

𝑖=1

∑ 𝑑𝑖
2𝑁

𝑖=1

) 

De Brouckere (d
43

) 
𝑑43 = (

∑ 𝑑𝑖
4𝑁

𝑖=1

∑ 𝑑𝑖
3𝑁

𝑖=1

) 

 

 

 Using the mean diameter expressions shown in Table 21, pressure drop, particle 

velocity and mass flux solution accuracies were investigated and compared to the 30-bin 

case. Among the mean diameters, the Sauter mean diameter displayed the most 
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agreement in pressure drop solutions with the 30-bin case, with De Brouckere, volume 

mean, surface area mean and arithmetic mean following respectively. The higher pressure 

drop observed in the Sauter and De Brouckere mean diameter cases were attributed to 

their accurate characterization of the effects of larger particles on pressure variations, 

consistent with the results obtained in the 30-bin case. While the De Brouckere mean 

diameter reflected larger particle sizes, the Sauter mean diameter was able to effectively 

capture the interplay between particle sizes and particle concentrations in the PSD, and 

their effects on pressure changes in the system. Pressure drop results showed variances 

ranging from 0.86% to 1.6% compared to the 30-bin case. Pressure drop solution for the 

30-bin case compared to the mean diameter cases is shown in Figure 31: 

 

 

 

Figure 31: Mean Diameter Pressure Drop Solution Using Laín’s PSD 
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Mean diameter particle velocities exhibited low solution sensitivity as well, 

ranging from 1.8% to 2.6% when compared to the 30-bin case. Similar to pressure drop 

solutions, the Sauter mean diameter displayed the most agreement in particle velocity 

solutions with the 30-bin case, with De Brouckere, volume mean, surface area mean, and 

arithmetic mean following respectively. The Sauter mean and De Brouckere mean 

diameters yielded slower velocity profiles compared to other mean diameters due to their 

larger average particle sizes, resulting in greater mass and increased resistance to 

acceleration within the conveying system. The arithmetic mean diameter resulted in the 

highest peak velocities due to its smaller mean particle size, making it more responsive to 

changes in flow velocity within the pneumatic conveying system. Particle velocity 

solutions for all mean diameter cases are shown in Figure 32(a) and Figure 32(b).  

 

 

 

Figure 32(a): Mean Diameter Particle Velocity Solution Using Laín’s PSD 
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Figure 32(b): Magnified Mean Diameter Particle Velocity Solution  

 

 

 

Even though there were minimal solution variations for pressure drop and particle 

velocities, mass flux solutions exhibited higher disparities, ranging from 4.4% to 15.4% 

difference. The Sauter mean mass flux solution showcased the highest agreement with the 

30-bin case, with the following mean diameters solutions behaving in the same manner as 

in pressure drop and particle velocity solutions.  

The arithmetic mean diameter yielded the highest mass flux values, contrasting 

with the De Brouckere mean diameter, which resulted in the lowest. This distinction 

stemmed from the respective mean particle sizes in each case. Although the De 

Brouckere particle size of 56 μm exceeded the arithmetic mean particle size of 40 μm, the 

disparity was not significant enough to substantially alter the mass fluxes in the system 

due to additional mass contributions by the larger particles. In this scenario, the mass 

fluxes were primarily influenced by the velocity experienced by each particle. Therefore, 

despite its smaller particle size, the arithmetic mean diameter exhibited higher mass 
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fluxes due to the larger flow rate of particles in the system. This trend can be observed for 

mass flux solutions in Figure 33: 

 

 

 

Figure 33: Mean Diameter Mass Flux Solution Using Laín’s PSD 

 

 

Based on this study, it was revealed that certain mean diameter expressions could 

lead to deviations in particle velocity and mass flux solutions of less than 5% for the 

particle size distribution studied. Utilizing these expressions primarily for pressure drop 

predictions would be more advantageous, as they consistently yielded predictions with 

differences of under 1%. A quantifiable representation of the deviation between these 

solutions is shown in Table 22.  
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Table 22: Mean Diameter Analysis compared to 30-Bin Case  

Case 

∆𝑃−∆𝑃𝐵𝑖𝑛30

∆𝑃𝐵𝑖𝑛30
∗

100 (%)   

1

𝑛
∑

|
𝑈𝑠𝑖
𝑈𝑎𝑣𝑖

−
𝑈𝑠𝐵𝑖𝑛30𝑖

𝑈𝑎𝑣𝐵𝑖𝑛30𝑖

|

𝑈𝑠𝐵𝑖𝑛30𝑖

𝑈𝑎𝑣𝐵𝑖𝑛30𝑖

∗ 100 (%)

𝑛

𝑖=1  

1

𝑛
∑

|
𝑓𝑝𝑖

𝑓𝑝,𝑎𝑣𝑖

−
𝑓𝑝𝐵𝑖𝑛30𝑖

𝑓𝑝,𝑎𝑣𝐵𝑖𝑛30𝑖

|

𝑓𝑝𝐵𝑖𝑛30𝑖

𝑓𝑝,𝑎𝑣𝐵𝑖𝑛30𝑖

∗ 100 (%)

𝑛

𝑖=1  

Arithmetic 

Mean 1.648 2.609 15.437 

Surface Area 

Mean 1.445 2.165 12.677 

Volume Mean 1.392 1.834 10.354 

Sauter Mean 0.855 1.773 4.446 

De Brouckere 1.173 1.804 6.595 

 

 

The consistency of this modeling approach for predicting pressure within a system 

could be further tested by applying it to a wider range of particle size distributions. This 

expanded testing would validate the applicability and robustness of the modeling 

technique for predicting pressure across varying particle size distributions within the 

studied pneumatic conveying simulation. 
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C. Particle Size Distribution Bin Variance Analysis 

In this study, analyses were conducted for four particle size distributions to 

investigate bin convergence and to validate the usage of mean diameter expressions for 

representing the polydisperse mixture. Previously in this investigation, Table 5 

highlighted the standard deviations and mean values attributed to each PSD established.  

In the bin convergence studies, it was observed that simulations with smaller particle 

mean diameters tended to converge with fewer bins. For instance, PSD #3 reached bin 

convergence with fewer bins compared to PSD #1, and PSD #1 solutions converged with 

fewer bins than PSD #2. This trend was also reflected in the accuracy of mean diameter 

expressions for predicting pressure drop compared to the 30-bin case for each PSD. This 

behavior is shown in Figure 34. 

 

 
Figure 34: Bin Convergence Comparison for PSDs 
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 Across all mean diameter expressions studied for each PSDs, the Sauter Mean 

diameter was found to be the most accurate mean diameter expression for predicting 

pressure solutions, followed by the De Brouckere, volume mean, surface area mean, and 

arithmetic mean respectively. PSD #3, which had the smallest particle size mean, 

exhibited less deviation in mean diameter solutions for all expressions. Similarly, PSD #1 

demonstrated a smaller deviation in mean diameter solutions compared to its 30-bin case 

than PSD #2. 

One plausible explanation for the enhanced accuracy in predicting pressure solutions 

when dealing with smaller particles in the PSD could be attributed to the simplicity of 

capturing all the pressure drop effects within that distribution. For particle size 

distributions where all particles within the distribution are relatively small, these particles 

would exert less influence on pressure drop results. Within these distributions comprised 

of smaller particles, capturing the dominant particle size which would exhibit significant 

pressure effects becomes more manageable with fewer bins and with a single mean 

diameter size. This is because only a minimal concentrated fraction of the mixture, 

comprising larger particles, significantly contributes to the pressure-varying effects on the 

system, while the smaller particle’s contribution becomes nearly inconsequential. In 

contrast, with PSDs containing larger particle sizes, it becomes more challenging to 

accurately capture the pressure effects caused by all particles. In such cases, not only 

does one small concentration of particle sizes dominate the pressure drop effects, but all 

particle sizes contribute to determining the overall impact.  

Apart from investigating solution variance when using multiple particle sizes for 

PSDs, the study explored the effectiveness of the modeling technique in capturing 



69 
 

simulation solutions for two distribution patterns. When comparing single-peak PSD #1 

and three-peak PSD #4, it became apparent that the choice of mean diameter expression 

was influenced by the way particle sizes were distributed. Despite PSD #4 sharing the 

same mean distribution as PSD #1, it exhibited higher deviations in mean diameter 

simulations compared to its 30-bin case. This disparity was attributed to the complex 

distribution of PSD #4, which divided particle sizes into three distinct regions rather than 

in a single peak. Additionally, PSD #4 showed larger errors in certain mean diameter 

expressions, particularly when using the arithmetic mean diameter. Recall that the 

arithmetic mean diameter is intended to capture the average size of particles within the 

simulation space, regardless of their distribution. However, because PSD #4 exhibited a 

more complex distribution consisting of both larger and smaller particles, the arithmetic 

mean diameter failed to accurately represent the variations in particle sizes observed in 

the simulation. 

Overall, the mean diameter expressions tested for all PSDs showed minimal deviation 

differences compared to each 30-bin case, with a maximum error of 1.6% observed for 

the arithmetic mean expression in PSD #4. Considering that the simulated particle sizes 

remained within the micron range and adhered to the prescribed dilute flow regime, their 

impact on pressure drop was relatively small. However, this study showcased the 

potential of using the Sauter Mean diameter to predict pressure drop for polydisperse 

mixtures encompassing particle sizes within the investigated ranges, as illustrated in 

Figure 35: 
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Figure 35: Mean Diameter Comparison for PSDs 

 

 

i. Particle Size Distribution Analysis #1 

For the first PSD studied, the optimal bin number for accurately predicting pressure 

drop fell within the range of 10 to 20 bins. Solutions obtained within this range were 

expected to show less than a 1% difference, with an acceptable RMSD value below 1 for 

the collected data. Table 23 illustrates the bin convergence results for the first PSD. 

Figure 36 displays the pressure drop solutions obtained for each bin.  

 



71 
 

Table 23: Bin Convergence Study for PSD #1 

Case 
√

1

𝑛
∑ (𝑃𝑖 − 𝑃𝐵𝑖𝑛30)

𝑛
𝑖=1

2
 (RMSD) 

∆𝑃−∆𝑃𝐵𝑖𝑛30

∆𝑃𝐵𝑖𝑛30
∗ 100 (%)   

2-Bins 4.4212 2.0363 

5-Bins 2.0938 1.1933 

10-Bins 0.9179 0.6026 

20-Bins 0.3646 0.3814 

 

 

 

 

 
Figure 36: Pressure Drop Bin Convergence for PSD #1 

 

 

The Sauter mean diameter emerged as the most effective mean diameter definition for 

representing the polydisperse mixture in PSD #1, yielding deviations under 1%. 

Quantifiable error analyses for each mean diameter expression used are presented in  

Table 24. Figure 37 displays the pressure drop solutions obtained for each mean diameter 

expression. 
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Table 24: Mean Diameter Analysis Compared to 30-Bin Case for PSD #1 

Mean 

Diameter 
Value (μm) √

1

𝑛
∑ (𝑃𝑖 − 𝑃𝐵𝑖𝑛30)

𝑛
𝑖=1

2
 (RMSD) 

∆𝑃−∆𝑃𝐵𝑖𝑛30

∆𝑃𝐵𝑖𝑛30
∗ 100 (%)   

Arithmetic 

Mean 

250.000 1.7387 0.7621 

Surface Area 

Mean 

251.227 1.5281 0.6759 

Volume Mean 252.437 1.2013 0.6241 

Sauter Mean 254.874 0.281 0.2477 

De Brouckere 257.243 0.4486 0.4281 

 

 

 

 

 

Figure 37: Pressure Drop Mean Diameter Comparison for PSD #1 
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ii. Particle Size Distribution Analysis #2 

In the investigation of the second PSD, the ideal bin count for precise pressure drop 

prediction ranged from 20 to 30 bins. The bin convergence findings for the second PSD 

are detailed in Table 25, while Figure 38 visually presents the pressure drop solutions for 

each bin. 

 

Table 25: Bin Convergence Study for PSD #2 

Case 
√

1

𝑛
∑ (𝑃𝑖 − 𝑃𝐵𝑖𝑛30)

𝑛
𝑖=1

2
 (RMSD) 

∆𝑃−∆𝑃𝐵𝑖𝑛30

∆𝑃𝐵𝑖𝑛30
∗ 100 (%)   

2-Bins 5.4982 3.6896 

5-Bins 3.4242 1.8465 

10-Bins 2.2486 1.2221 

20-Bins 1.2288 0.6341 

 

 

 

Figure 38: Pressure Drop Bin Convergence for PSD #2 
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The Sauter mean diameter proved to be the most efficient means of representing 

the polydisperse mixture in PSD #2. Detailed quantifiable error analyses for each mean 

diameter expression employed are provided in Table 26. Additionally, Figure 39 presents 

a visual representation of the pressure drop solutions obtained for each mean diameter 

expression. 

 

Table 26: Mean Diameter Analysis Compared to 30-Bin Case for PSD #2 

Mean 

Diameter 
Value (μm) √

1

𝑛
∑ (𝑃𝑖 − 𝑃𝐵𝑖𝑛30)

𝑛
𝑖=1

2
 (RMSD) 

∆𝑃−∆𝑃𝐵𝑖𝑛30

∆𝑃𝐵𝑖𝑛30
∗ 100 (%)   

Arithmetic 

Mean 

325.000 2.812 0.9275 

Surface Area 

Mean 

325.949 1.5814 0.7570 

Volume 

Mean 

326.889 1.5478 0.6993 

Sauter Mean 327.778 0.6882 0.3484 

De 

Brouckere 

329.635 1.1793 0.5112 

 

 
Figure 39: Pressure Drop Mean Diameter Comparison for PSD #2 
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iii. Particle Size Distribution Analysis #3 

During the analysis of the third PSD, it was determined that the most suitable bin 

count for obtaining a precise pressure drop prediction without expending excessive 

computational resources ranged between 5 to 10 bins. Despite the fewer number of bins 

representing particle sizes, it was anticipated that solutions within this range would 

display a deviation of approximately 1%. Table 27 outlines the results of bin convergence 

for the initial PSD, while Figure 40 visually presents the pressure drop solutions 

corresponding to each bin. 

 

Table 27: Bin Convergence Study for PSD #3 

Case 
√

1

𝑛
∑ (𝑃𝑖 − 𝑃𝐵𝑖𝑛30)

𝑛
𝑖=1

2
 (RMSD) 

∆𝑃−∆𝑃𝐵𝑖𝑛30

∆𝑃𝐵𝑖𝑛30
∗ 100 (%)   

2-Bins 3.6142 1.7651 

5-Bins 1.0368 0.7567 

10-Bins 0.5850 0.2234 

20-Bins 0.1584 0.0759 

 

 
Figure 40: Pressure Drop Bin Convergence for PSD #3 
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The Sauter mean diameter emerged as the most effective mean diameter definition for 

representing the polydisperse mixture in PSD #3. Quantifiable error analyses for each 

mean diameter expression used are presented in Table 28. Figure 41 highlights the 

pressure drop solutions obtained for each mean diameter expression. 

 

Table 28: Mean Diameter Analysis Compared to 30-Bin Case for PSD #3 

Mean 

Diameter 
Value [μm] √

1

𝑛
∑ (𝑃𝑖 − 𝑃𝐵𝑖𝑛30)

𝑛
𝑖=1

2
 (RMSD) 

∆𝑃−∆𝑃𝐵𝑖𝑛30

∆𝑃𝐵𝑖𝑛30
∗ 100 (%)   

Arithmetic 

Mean 

175.000 1.5922 0.7125 

Surface 

Area Mean 

176.737 0.7144 0.4952 

Volume 

Mean 

178.426 0.5351 0.3688 

Sauter Mean 181.850 0.1458 0.0856 

De 

Brouckere 

185.089 0.2603 0.1839 

 

 
Figure 41: Pressure Drop Mean Diameter Comparison for PSD #3 
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iv. Particle Size Distribution Analysis #4 

In the examination of the fourth PSD, the ideal bin count for precise prediction of 

pressure drop ranged between 10 to 20 bins. Table 29 demonstrates the outcomes of bin 

convergence for the initial PSD, while Figure 42 presents a visual representation of the 

pressure drop solutions corresponding to each bin. 

 

Table 29: Bin Convergence Study for PSD #4 

Case 
√

1

𝑛
∑ (𝑃𝑖 − 𝑃𝐵𝑖𝑛30)

𝑛
𝑖=1

2
 (RMSD) 

∆𝑃−∆𝑃𝐵𝑖𝑛30

∆𝑃𝐵𝑖𝑛30
∗ 100 (%)   

2-Bins 3.1018 1.9916 

5-Bins 2.4782 1.1967 

10-Bins 0.9623 0.7524 

20-Bins 0.7423 0.6186 

 

 

 
Figure 42: Pressure Drop Bin Convergence for PSD #4 
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The Sauter mean diameter proved to be the most effective mean diameter 

definition for characterizing the polydisperse mixture in PSD #4. Detailed error analyses 

for each mean diameter expression utilized are provided in Table 30, while Figure 43 

illustrates the pressure drop solutions obtained for each mean diameter expression. 

 

 

Table 30: Mean Diameter Analysis Compared to 30-Bin Case for PSD #4 

Mean 

Diameter 
Value [m] √

1

𝑛
∑ (𝑃𝑖 − 𝑃𝐵𝑖𝑛30)

𝑛
𝑖=1

2
 (RMSD) 

∆𝑃−∆𝑃𝐵𝑖𝑛30

∆𝑃𝐵𝑖𝑛30
∗ 100 (%)   

Arithmetic 

Mean 

250.000 1.7451 1.5849 

Surface Area 

Mean 

257.471 0.8658 1.1280 

Volume Mean 266.173 0.3640 0.7011 

Sauter Mean 282.261 0.2378 0.4473 

De Brouckere 294.780 0.3194 0.5888 

 

 

 

Figure 43: Pressure Drop Mean Diameter Comparison for PSD #4. 
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V. CONCLUSIONS 

In this report, three main studies were conducted: (1) a preliminary study focused on 

investigating and selecting the appropriate granular models required to correctly represent 

the dilute flow regime in the system, (2) a study focused on validating the proposed 

Eulerian-Eulerian model with Laín and Sommerfeld’s experimental data, and (3) a study 

focused on investigating the effectiveness of characterizing the polydisperse mixture 

using a simplified mean diameter technique. In the first study, a sensitivity analysis was 

performed for the proposed Eulerian-Eulerian model to select the appropriate granular 

property correlations necessary to describe the particulate phase, in accordance with the 

Kinetic Theory of Granular Flows (KTGF). From the sensitivity studies conducted and 

the available literature on these property models, the selected granular viscosity, 

temperature, and conductivity models used Gidaspow’s techniques, while solids pressure 

and radial distribution functions used Lun et. al correlations, respectively. Other granular 

properties such as drag and lift coefficients were described using Wen-Yu and Saffmain-

Mei correlations to fully represent the particle behavior present in the flow. To account 

for wall-particle interactions, the boundary conditions describing the change in granular 

temperature due to wall-particle interactions followed the Johnson and Jackson 

correlations. Since the solid phase consisted of 0.0343% of the total mixture on a volume 

basis and characterized a dilute flow regime, particle-particle interaction effects were 

found to be nearly negligible. In the second study, in addition to validating the model, an 

initial comparison between the polydisperse bin representation approach and 

monodisperse mean diameter approach was conducted. It was found that the flow data 
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obtained from the monodisperse case using the mean diameter from Laín’s PSD agreed 

partially with the solutions gathered from the polydisperse bin cases and Laín and 

Sommerfeld’s experimental data. The monodisperse mean diameter case exhibited mean 

differences of 4.0% in pressure drop, 4.1% in particle velocity and 40.1% in volume 

fraction distributions when compared to Laín’s experimental data, while the highest bin 

case exhibited mean differences of 0.9% in pressure drop, 3.8% in particle velocity and 

37.4% in volume fraction distributions. Particle velocities and volume fraction solutions 

were found to be more sensitive to the particle bin characterization techniques selected to 

represent the polydisperse mixture. In contrast, pressure drop readings exhibited lower 

sensitivity, displaying higher solution agreement in both monodisperse and polydisperse 

cases when compared with the experimental data. This second study briefly highlighted 

the feasibility of incorporating this simplified approach for simulating polydisperse flows 

to predict pressure drop within the pneumatic conveying system. 

In the third study, which investigated four different arbitrary particle size distributions 

to determine the most suitable mean diameter correlation for accurately representing flow 

behavior in polydisperse mixtures, it was noted that utilizing a Sauter mean diameter led 

to lower pressure drop differences in overall predictions. Additionally, it was observed 

that bin convergence was sensitive to the particle sizes selected, with PSDs consisting of 

larger particle sizes requiring more bins to reach convergence compared to those with 

smaller particle sizes. This trend also influenced the accuracy of the mean diameter 

approach in representing the polydisperse mixture, as PSDs with smaller particle sizes 

demonstrated better agreement in pressure drop solutions between polydisperse and mean 

diameter monodisperse cases.  
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VI. FINAL REMARKS AND FUTURE DEVELOPMENT 

In addition to the three main studies mentioned, future studies that would complement 

this investigation include exploring pressure drop effects for PSDs with larger particle 

size ranges. It is predicted for the solution deviation in pressure drop to keep increasing 

when dealing with larger particle sizes due to the increased influence the particles would 

have on the fluid carrier phase. The simulation could also be recreated using a transient 

solving scheme to investigate how particle-time dependent parameters, like particle 

settling time, play a larger role on pressure drop predictions. Particle velocities and 

volume fractions could be further analyzed using models that exhibit greater agreement 

with experimental data across the four established PSDs, revealing variations in solution 

data for these flow parameters among different cases. Lastly, integrating shape 

descriptors to predict particle irregularity effects in characterizing the PSD would 

enhance the realism of simulations for operational pneumatic conveyors. This approach 

could provide valuable flow data to support the development of new design and modeling 

strategies for these systems. 
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VII. APPENDICES 

 

A. Neglection of Virtual Mass and Turbulent Dispersion Forces 

 

 

Figure A.1: Gaseous and Solid Phase Velocities for 40 μm Dilute Case. 

 

In Figure A.1, Phase-1 represents the gaseous phase (air), while Phase-2 represents 

the solid phase (glass beads). As depicted, the velocities of the solid and gaseous phases 

exhibit a notable similarity. This similarity arises from the predominant influence of the 

fluid carrier phase on the particle flow. With the Stokes number within the flow 
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remaining below 0.1, the fluid carrier phase exerted dominant control over the motion 

and trajectory of the particulate phase. Because of this, the average percent difference 

between both velocity profiles was calculated to be 0.25463%.  

Furthermore, smaller particle sizes demonstrated greater agreement in velocity 

profiles, particularly noticeable for particles below 100𝜇𝑚. In contrast, agreement 

between phase velocities tended to decrease with larger particle sizes. This trend 

suggested that larger particles were more likely to move independently of the fluid 

carrier's influence, due to the Stokes number increasing in the flow. The absence of 

acceleration between phases relative to each other for the particle sizes studied allowed 

for the neglection of the virtual mass force term in the numerical models employed. 

 

 

Figure A.2: Reynold’s Number for 40 μm Dilute Case. 
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To exclude the turbulent dispersion force from the selected numerical models, it was 

necessary to assess the Reynolds numbers of the flows under investigation. Using Figure 

A.2, it was observed that the flows studied exhibited low particle Reynolds numbers. 

Specifically, Reynolds numbers decreased for smaller particle sizes, while they increased 

for larger particle sizes, consequently amplifying the error associated with neglecting the 

turbulent dispersion force. However, for the particle sizes examined in this study, the 

Reynolds numbers remained below the threshold outlined in Laín's study [23]. This 

justified the decision to neglect the turbulent dispersion force in the simulations. 

 

 

B. Granular Models Sensitivity Studies 

The sensitivity studies depicted in the following figures aimed to identify models that 

showed higher sensitivity to the chosen modeling scheme. These findings enabled further 

validation of the models documented in literature. Figure B.1 illustrates minimal 

disparities between the tested models, except for the volume fraction profiles for the 

algebraic temperature model. Given these observations, the Gidaspow model was chosen 

to accurately represent the granular temperature within the system. 
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Figure B.1: Granular Temperature Modeling Comparison 

 

Figure B.2 highlights significant agreement in volume fractions between the 

Gidaspow and Syamlal-Obrien models, along with disparities in velocity profiles for both 

the gaseous and solid phases. The utilization of the Gidaspow model facilitated the 

acquisition of appropriate volume fraction distributions while effectively representing the 

diverse velocities obtained when employing significantly different particle sizes: 
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Figure B.2: Granular Viscosity Modeling Comparison 

 

In Figure B.3 it can be observed that drag coefficient models gave rise to similar 

distributions across all particle properties investigated. Considering the negligible impact 

on solution accuracy demonstrated by these models and supported by previous studies, 

the Wen-Yu drag coefficient model was selected to characterize the dilute flow regime: 
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Figure B.3: Drag Coefficient Modeling Comparison 

 

Figure B.4 shows that the boundary value selected to describe the particulate phase 

inlet granular temperature had a negligible effect on solution accuracy. Based on these 

findings, the granular inlet temperature was selected to be 0.0001
𝑚2

𝑠2 : 
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Figure B.4: Inlet Granular Temperature Modeling Comparison 

 

When investigating solids pressure and radial distribution function models, the Lun 

et. al and Syamlal-Obrien model combinations were investigated. Both models showed 

comparable results. Given the negligible difference in solution accuracy and to keep 

consistency with previous literature, the Lun et. al model was selected to describe these 

parameters: 

 

 

Figure B.5: Solids Pressure and Radial Distribution Modeling Comparison. 
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