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ARTICLE INFO ABSTRACT

Lianas are key structural elements of tropical forests having a large impact on the global carbon cycle by re-
ducing tree growth and increasing tree mortality. Despite the reported increasing abundance of lianas across
Lianas neotropics, very few studies have attempted to quantify the impact of lianas on tree and forest structure. Recent
Terrestial LIDAR advances in high resolution terrestrial laser scanning (TLS) systems have enabled us to quantify the forest
PMyi;]:):;ii:;:g structure, in an unprecedented detail. However, the uptake of TLS technology to study lianas has not kept up
Tropical forests with the same pace as it has for trees. The slower technological adoption of TLS to study lianas is due to the lack

of methods to study these complex growth forms. In this study, we present a semi-automatic method to extract
liana woody components from plot-level TLS data of a tropical rainforest. We tested the method in eight plots
from two different tropical rainforest sites (two in Gigante Peninsula, Panama and six in Nouragues, French
Guiana) along an increasing gradient of liana infestation (from plots with low liana density to plots with very
high liana density). Our method uses a machine learning model based on the Random Forest (RF) algorithm. The
RF algorithm is trained on the eigen features extracted from the points in 3D at multiple spatial scales. The RF
based liana stem extraction method successfully extracts on average 58% of liana woody points in our dataset
with a high precision of 88%. We also present simple post-processing steps that increase the percentage of
extracted liana stems from 54% to 90% in Nouragues and 65% to 70% in Gigante Peninsula without compro-
mising on the precision. We provide the entire processing pipeline as an open source python package. Our
method will facilitate new research to study lianas as it enables the monitoring of liana abundance, growth and
biomass in forest plots. In addition, the method facilitates the easier processing of 3D data to study tree structure
from a liana-infested forest.

Keywords:
Automated liana extraction

1. Introduction (Schnitzer, 2018; Garcia et al., 2018; van der Heijden et al., 2015).

Attempts to disentangle aboveground and belowground competition

Tropical forests are undergoing large-scale structural changes in-
cluding an increase in liana abundance and biomass (Schnitzer and
Bongers, 2011). Lianas are woody climbing plants that use trees as
structural support for ascending to the canopy (Schnitzer and Bongers,
2002) and compete with trees for both aboveground and belowground
resources (Toledo-Aceves, 2015; Rodriguez-Ronderos et al., 2016).
Lianas have shown to reduce the net above-carbon uptake of the forest
by =~ 76% in three years mostly by reducing tree growth (van der
Heijden et al., 2015). As a result, increase in liana abundance results in
reduced tree growth, survival, reproduction, biomass and increased tree
mortality thereby playing an important role in the global carbon cycle

* Corresponding author.

between lianas and trees have shown that aboveground competition
affected the allocation of biomass in trees and resulted in poorly de-
veloped crowns (Schnitzer, 2005). A recent study has shown that liana
load on trees can alter the allometry of trees by decreasing tree slen-
derness resulting in shorter and thicker stems (Dias et al., 2017).
Recent advances in remote sensing technologies have enabled us to
view the forest structural complexity in new and unprecedented ways.
Terrestrial laser scanning (TLS) is an active remote sensing technique
and can measure various forest structural parameters non-destructively
with high spatial accuracy (Danson et al., 2007; Jupp et al., 2009;
Calders et al., 2014, 2015). Because of the millimeter-level spatial
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resolution, TLS is potentially useful to study the plot-level impact of
lianas on forest structure. In the past decade, there have been sig-
nificant advancements in the methods developed for 3D point cloud
classification using machine learning (Brodu and Lague, 2012). In
particular, progress has been made to separate leaf and wood points
from 3D data of forests using supervised and/or unsupervised machine
learning algorithms. The methods developed were either based on the
radiometric features Béland et al. (2014) or geometric features Ma et al.
(2016),Wang et al. (2017), Yun et al. (2016),Belton et al. (2013), Wang
et al. (2018),Vicari et al. (2019) or a combination of both Zhu et al.
(2018).

Despite the increasing importance of lianas, very few studies have
attempted to quantitatively study the liana structure and the impact of
lianas on individual tree and forest structure using TLS or other such
remote sensing technologies (Rodriguez-Ronderos et al., 2016;
Sanchez-Azofeifa et al., 2015, 2017; Krishna Moorthy et al., 2018). A
recent study has attempted to classify liana stems using a machine
learning algorithm in a point cloud using intensity values from the
sensor and geometric features, which makes the proposed method
sensor-specific (Bao et al., 2018). One of the main reasons for the
slower uptake of TLS for studying lianas is that, unlike trees, lianas have
irregular growth forms making them harder to study (Bongers et al.,
2005). There are multiple reasons why the existing tree segmentation
algorithms (Burt et al., 2018; Hackenberg et al., 2015) or machine
learning-based leaf vs wood segmentation algorithms (Ma et al., 2016;
Wang et al., 2017) do not work for segmenting or identifying lianas
from a plot. The main reasons are listed as follows:

e lianas are in general very small with almost all of the stems falling
within 10 cm diameter range. (Dewalt et al., 2000; Phillips et al.,
2005)

unlike trees, lianas are generally not self-supporting and hence are
generally thinner, longer and have irregular growth patterns. Our
visual observations in the field show that they can extend in almost
all the directions and tend to have branches that loop to the ground
multiple times before shooting up to the canopy.

unlike trees, lianas deploy their leaves in the mid- and upper-crown
region of their host trees thus avoiding the need for a tree crown-like
structure (Rodriguez-Ronderos et al., 2016; Krishna Moorthy et al.,
2018)

The main objective of the study is to build a novel machine-learning
based method for extracting liana woody points from 3D point clouds of
tropical rainforests, based only on the geometrical features extracted
from the points. The method builds on and extends the existing ap-
proaches for 3D point cloud classification, especially that of (Brodu and
Lague, 2012). In this manuscript, we explain in detail the TLS data used
for developing and testing the method (Section 2), entire processing
pipeline for liana stem point extraction (Section 3), critical evaluation
of the proposed approach on field data from two rainforest sites (Sec-
tion 4). In addition, we provide the entire processing pipeline for liana
woody point extraction as an open source python package.

Table 1
Description of the plots where the TLS data were collected.
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With increasing liana abundance across pan-tropical regions, the
presented method will accelerate the research to study lianas with data
from remote sensing platforms like TLS (Phillips et al., 2002; Campbell
et al., 2018). By extracting liana stems from 3D point clouds, the
method provides an easier and consistent way to monitor liana stem
abundance and potentially stem biomass over time in forest plots. In
addition, the method would enable the easy processing of 3D data to
study trees from liana-rich sites.

2. Study area and LiDAR data collection

We collected TLS data from multiple plots of two different tropical
forest sites: Gigante Peninsula, Panama (Feb - Apr, 2016) and
Nouragues, French Guiana (August - October, 2017). Gigante Peninsula
is a = 60-year old secondary seasonal tropical forest with high liana
density (2544 lianas > 1 cm per ha) (van der Heijden et al., 2015).
Nouragues is an undisturbed old-growth lowland moist tropical forest
with medium liana density (1200 lianas > 1 cm per ha) (Schnitzer and
DeWalt, 2006).

On Gigante Peninsula, we collected data from the centre 15m X
15m area of two plots of a long-term liana removal experiment, where
in eight out of the sixteen plots lianas were cut since 2011 (van der
Heijden et al., 2015). TLS data was collected from four scan locations at
the corners of the two 15m X 15m plots. In Nouragues, TLS data was
collected by following a radial pattern around six trees with the trees of
interest at the centre. The location of the scan positions were chosen in
such a way as to get better visibility of the central tree and the sur-
rounding lianas. We randomly distributed 20 to 35 retro-reflective
targets in the field to co-register the data from all the scan locations to
get a single high resolution 3D point cloud with minimal occlusion
(Wilkes et al., 2017). We have attached the scanning pattern for each of
the six plots in Nouragues in Appendix A.1.

All the data were collected either using RIEGL VZ-400 (Gigante
Peninsula) or RIEGL VZ-1000 (Nouragues) scanners (RIEGL Laser
Measurement Systems GmbH, Horn, Austria). Both are multiple return
time-of-flight based scanners using a narrow infrared laser beam of
wavelength 1550 nm and a beam divergence of 0.35 mrad. Based on the
manufacturer’s specifications, the data from the two scanners are in-
teroperable (Calders et al., 2017). The registration of data from all scan
positions for each plot was done using the RISCAN Pro software (ver-
sion 2.5.3, RIEGL Laser Measurement Systems GmbH, Horn, Austria)
provided by RIEGL. Detailed description of the number of plots per site,
plot size, liana and tree density of the plots, proportion of liana points,
the TLS scanner and the angular resolution used for the specific plot is
given in Table 1.

3. Liana stem extraction pipeline

In this section, we explain in detail about the RF model built to
classify the liana points. We also outline the workflow to use the trained
RF model to extract lianas from new previously unseen forest plots as
shown in Fig. 1.

Site Plot Name Plot size Liana Tree Liana points proportion Scanner used No. of scans per Angular resolution used
stems stems (%) plot (deg)
Gigante Peninsula, Panama GIG_1 15mby 15m 56 18 8 RIEGL VZ-400 4 0.02
GIG_2 46 9 6
Nouragues, French Guiana NOU_1 10 m (circle) 1 11 3 RIEGL VZ-1000 3 0.04
NOU_2 10m (circle) 1 11 4 3
NOU_3 15m (circle) 3 22 1 6
NOU_4 15m (circle) 2 19 6 5
NOU_5 15m (circle) 3 26 3 5
NOU_6 10 m (circle) 1 14 2 4
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Fig. 1. Pipeline for extracting lianas from new forest plots.

3.1. Random Forest model development

This section explains in detail all the steps involved in building the
RF model for liana woody point classification.

3.1.1. Classification problem

We define the extraction of liana woody points from 3D point clouds
of tropical rainforest plots as a binary classification problem. We define
the two classes as follows:

® Class 1 refers to liana woody components in the forest plot
e Class 2 refers to other vegetation in the forest plots, including but
not limited to liana leaves, tree stems and leaves, palms, etc.

3.1.2. Training and validation data preparation

The first step to build an automated liana extraction model using a
supervised machine learning classifier is to have labelled training data
from which a classifier can learn. The data should be as representative
of the real problem as possible to create a robust classifier. The co-
registered TLS data from the two plots (plots GIG_1 and GIG_2) of
Gigante Peninsula and the six plots from Nouragues were manually
labelled into two different classes: 1 being liana woody points and 2
being non-liana points (including liana leaves, trees, etc.).

The manual labelling was the most intensive part of the machine
learning pipeline. We labelled the liana woody points in the tree crowns
as far as we could visually follow them or up until the liana stems
started to branch out to leaves. In dense canopies, it was indeed difficult
to follow them all the way up to the top owing to occlusion and the
sensor limitation to resolve an object of smaller size at increasing dis-
tance from the LiDAR. The manual labelling was done in CloudCompare
by an experienced person and took almost 120 man-hours (version
2.8.1, CloudCompare, GPL software) (Girardeau-Montaut, 2011).

After manual labelling, we downsampled the TLS data using a voxel
grid filter of size 0.04 m. We chose 0.04 m as the size for voxel grid filter
to make a trade-off between retaining the important information in the
point cloud and reducing the computational complexity (Burt et al.,
2018). Downsampling ensures a uniform distribution of points and aids
faster computation time by reducing the number of redundant points,
especially the points closer to the scanner. Though it is not absolutely
necessary to perform downsampling, it is recommended as it would
improve the computational and memory efficiency of the presented
algorithm by few-folds. However, the voxel grid size should be chosen
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based on the problem at hand and the beam divergence of the scanner
used.

In liana woody point classification, the classes are imbalanced with
liana woody points being the minority class contributing only to an
average of ~ 5% of all the points in a plot. To improve the performance
of the machine learning classifier when liana woody points represent <
5% of all points in a plot (eg. NOU_3 in Table 1), we randomly under
sampled 10% of the majority class to alter the class distribution (Van
Hulse et al., 2007).

Since our dataset is limited, we used all the points for training and
validation of the model. Sample training data from these two different
sites are shown in Fig. 2.

3.1.3. Predictor variables

In this study, we use the normalized eigen values of every point in
the TLS data from a plot, across multiple spatial scales, as the predictor
variables to classify liana woody points. We base our idea on the work
of Brodu and Lague (2012), who used eigen values to determine the
local dimensionality at multiple scales of a point in 3D space to separate
riparian vegetation from ground. Previous studies have used eigen va-
lues from TLS data at single spatial scale in forest ecosystems to sepa-
rate leaf from wood points, where the choice of the right spatial scale
was domain-specific (Ma et al., 2016; Wang et al., 2017). Few other
studies have proposed to choose the optimal spatial scale from multiple
scales for leaf-wood classification (Zhu et al., 2018). Here, we show that
the same concept of eigen values, but combined at multiple scales, is
effective in highly complex natural scenes like tropical forests to se-
parate liana growth forms from the rest.

The following are the steps involved in the extraction of normalized
eigen values from the point cloud:

1. to obtain eigen values at multiple spatial scales, we defined a sphere
around each point with that point at the centre with the following
radii: 0.1, 0.25, 0.5, 0.75 and 1.0 m. The point at the centre of the
sphere is referred to as the target point and all the points within the
sphere are considered as the neighbors for the target point. These
neighbors at multiple scales define the local dimensionality of the
target point at that particular scale. We did not consider spheres
with radii below 0.1 m, as our voxel grid based downsampling of
size 0.04 m will render most of the points without sufficient neigh-
bors. Also we did not go beyond 1 m for the practical purpose of
avoiding high memory requirements.
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Fig. 2. Sample training data from two different sites (a) plot GIG_2 from Gigante Peninsula and (b) plot NOU_4 from Nouragues.

2. we computed the covariance matrix of the target point along with its
neighbors at the above-mentioned spatial scales. As a result, we had
five 3 X 3 covariance matrices for each point. The covariance matrix
defines the spread and orientation of the points at that scale.

3. we computed the eigen values and vectors of the covariance matrix
at each scale for each of the points. This means that we have 3 eigen
vectors corresponding to three eigen values per point with the lar-
gest eigenvector pointing in the direction of largest variance of the
data and the corresponding eigenvalue indicating the magnitude.
With three eigen values for each of the five covariance matrices, we
had a total of 15 eigen values for each point.

. to standardize all eigen values into a common range, we normalized
the eigen values of each point for each scale between 0 and 1. This
was simply done by dividing each eigenvalue by the sum of all three
eigen values (denoted as 4;, A4, 43, (x m) where 4,>4>4; and x €
{0.1, 0.25, 0.5, 0.75, 1.0}). As a result, we had 15 normalized eigen
values for the five chosen scales of interest.

Fig. 3 illustrates the eigen vectors calculated for a set of tree, liana
and leaf points.
Since lianas are unique in a way that they are very small compared

324m

Leaves and other woody parts
Liana stems

to their counterparts across all vertical heights and do not usually
branch out to leaves unless they are in the mid- or upper-crown region
of the host trees, their eigen values represent a dominant variance
across one direction at multiple spatial scales (indicated by very high 4,
at 0.25m as shown in Fig. 4. The eigen values 4;, 4, and A5 at all the
spatial scales are shown in the Appendix A.2). Using multiple spatial
scales has some clear advantages, as some of the small branches in the
understory or canopy might have a dominant variance in one direction
at one spatial scale and probably not at the other.

3.1.4. Building the RF model

We selected the Random Forest (RF) machine learning classifier to
build the model for the automated liana woody points extraction al-
gorithm. The RF has been widely used in different fields including re-
mote sensing mainly because of its ability to limit overfitting without
compromising on the accuracy of the classifier. The algorithm achieves
this ability by training random subsets of the data and random subsets
of the features for each decision tree. In addition, the RF has been
proved when using TLS point clouds as the most robust learner to se-
parate photosynthetic vs non-photosynthetic elements in forest eco-
systems (Wang et al., 2017). Since our problem is a binary classification

| z (m)
| (c) Leaves (A, = A, > Ay)
Sy (m)
x (m)
};2 v }\‘3 |, z(m)
. T | (b) Tree (A, > A, = A;)
s
A Je
o Ty(m)
X (m)
A H N I, z(m)
‘ (a) Liana (A, >> A, = A,)
//Jé’
M ey (m)
x (m)

Fig. 3. Eigen vectors calculated for a set of (a) liana, (b) tree and (c) leaf points indicated by black squares from plot NOU_5. 4;, /4, and Z; indicate the corresponding

normalized eigen values.
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0.0 0.32

A; (0.25 m)

Fig. 4. Illustrating the effectiveness of eigen values for classifying lianas in Nouragues (sample from plot NOU_5 in Table 1). The ground truth of the same plot is
given in Fig. 3. The color scale at the bottom indicate the range of 4;, 4, and A; at 0.25 m spatial scale from left to rig.ht respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

problem (liana stem points vs leaves and other non-liana points) in a
similar ecosystem, we chose the RF algorithm to build the classifier. For
more details on RF classifier, we refer to the original paper of Breiman
(2001).

There are two important hyperparameters to be specified when
employing RF for training: number of decision trees to be constructed
and number of random features to be chosen while constructing a tree.
We performed an exhaustive grid search with the following parameter
values for estimating the best combination of these two hyperpara-
meters: Number of decision trees: 10, 20, ...100 and Number of random
features per decision tree: 2, 3, ...8.

The model performance for the hyperparameter optimization was
assessed by k-fold cross-validation approach and the model that had the
best performance was chosen. The performance metrics used for the
assessment are described in the following Section 3.1.5.

Once the hyperparameters are optimized, we built the final model
on the entire dataset (all eight plots from two sites indicated in Table 1).
However, since our dataset is quite limited, we assessed the perfor-
mance of the model via k-fold spatial cross-validation, thus eliminating
the need for an independent test set.

3.1.5. Assessing the predictive performance

The performance of the liana woody points classification model is
assessed by k-fold spatial cross-validation approach (Goetz et al., 2015).
This ensures that the model’s fit on the dataset that is independent of
the dataset used for training is estimated, while still using all the
available information for training. In normal k-fold cross-validation, the
data is randomly split into k disjoint sets. Out of the k sets, one set at a
time is used for validating the model and the other k-1 sets are used for
training. The model performance is then reported as the average per-
formance of the k different model runs. In k-fold spatial cross-validation
approach, instead of splitting the data into k random sub-sets, we split
the data into k spatially disjoint sub-areas.

We evaluate the model performance in the following three different
categories:

1. self-site spatial cross-validation, where the models are trained
and validated on the same site. For Gigante site, we split the two 15
by 15 m plots into four equal disjoint sub-areas of size 7.5 by 7.5m
each and performed a eightfold spatial cross-validation as shown in
Fig. 5. Since the plots in Nouraugues had only one to three liana
individuals in a plot, we simply performed a sixfold cross-validation
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with one plot retained for testing and the rest of the five plots used
for training.

. cross-site spatial cross-validation, where the models are trained
on one site (eg. Gigante Peninsula) and validated on the other site
(eg. Nouragues) and vice versa resulting in a twofold cross-valida-
tion approach.

. mixed-site spatial cross-validation, where the models are trained
and validated on data from both sites. For Gigante site, we split the
two 15 by 15 m plots into six equal disjoint sub-areas of size 7.5 by
5m each and for Nouragues, we did not split the plots and had six
areas in total. As a results, we performed a sixfold cross-validation
by using one sub-area from each of the plots in Gigante and one plot
from Nouragues as validation set and the rest of the areas as training
set as shown in Fig. 6

We chose these three different validation schemes to evaluate the
performance of the method on different real-world usage scenarios.
Self-site cross-validation evaluates the performance of the method in
the base case scenario when new data comes from the same site as the
data used for model building. Cross-site cross-validation indicates how
the model would perform when the data comes from previously unseen
site. Mixed-site cross-validation indicates the performance of the more
sophisticated model, which has used data from multiple sites for
building the model.

As liana woody point classification problem is an imbalanced clas-
sification problem with liana woody points belonging to the minority
class, the traditional assessment metrics like accuracy and Receiver
Operating Characteristics (ROC) curves may provide an overly opti-
mistic view of the classifier performance (He and Garcia, 2008; Ozenne
et al., 2015; Saito and Rehmsmeier, 2015). For instance, a classifier
which always predicts a given point as a Class 2 point (leaves,tree or
other vegetation) might yield an accuracy of 95% in a plot with only 5%
liana woody points. As a result, to estimate the performance of the
classifier in an unbiased manner, we used precision, recall, F; score,
precision-recall (PR) curves and False Positive Rate (FPR) as metrics
using liana woody points as the positive class.

Precision quantifies the success of the classifier in predicting more
lianas as lianas than non-lianas. It is the fraction of correctly classified
liana points (True Positives (TP)) out of all classified liana points (TP
and False Positives (FP))

TP

Precision = ———
TP + FP

®



S.M. Krishna Moorthy, et al.

ISPRS Journal of Photogrammetry and Remote Sensing 154 (2019) 114-126

([N GIG_1b ‘ GIG_1c | GIG_1c | GIG_2a | GIG_2b ‘ GIG_2c | GIG_2d |
GIG_la [N GIG 1c|GIG_lc GIG_2a | GIG_2b l GIG_2c | GIG_2d | Plot GIG_1 Plot GIG_2
|GIG_1a GIG_1b el GIG_1c | GIG_2a | GIG_2b |GIG 2c | GIG_2d ‘ GIG_1b|GIG_la| |GIG_2b|GIG_2a
15m

|GIG_1a GIG_1b ‘ GIG_1c [JCl[cIN GIG_2a | GIG_2b |GIG 2c | GIG_2d ‘ GIG_1c|GIG_1d[ |GIG_2¢c|GIG_2d
GIG_1a | GIG_1b | GIG_1c | GIG_1c JellcPEl GIG_2b | GIG_2c | GIG_2d

15m 15m
|GIG_1a GIG_1b ‘ GIG_1c | GIG_1c | GIG_2a e[l W GIG_2c | GIG_2d |

- Validation set
|GIG 1a | GIG_1b I GIG_1c | GIG_1c | GIG_2a | GIG_2b ‘GIG Pl GIG_2d ‘ |:| Training sets
‘GIG_la GIG_1b ‘ GIG_1c | GIG_1c | GIG_2a | GIG_2b ‘GIG_ZC GIG_2d ‘
Fig. 5. Eightfold spatial cross-validation approach for Gigante site.
Plot GIG_1 Plot GIG_2 Nouragues plots
15 m
15m 15m

| Validation set 1

Validation set 2

| I validation set 3

I validation set 4
I \alidation set 5

I Validation set 6
‘ l:l Training sets

Fig. 6. Mixed-site sixfold spatial cross-validation approach.
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Fig. 7. Illustration of the hyperparameter optimization having very little effect
on the F; score. The hyperparameters optimized are number of decision trees
and the number of features to be chosen per decision tree.

Recall quantifies the success of the classifier in correctly predicting
most of the liana points. It is the fraction of correctly classified lianas
(TP) out of all lianas in the data (TP and False Negative (FN))

TP

Recall = ————
TP + FN

(2)

F;score is the harmonic mean of both precision and recall with 1 as
its best value and O as its worst
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Precision * Recall

F, score =2 ¥ —MM8M8M8m8
Precision + Recall

3

Precision-Recall (PR) curve shows the trade off between precision
and recall for different liana woody point classification threshold va-
lues. The threshold values are derived from the probability with which
the positive class (liana woody points in this case) is predicted by the
model and could range from O to 100%. A very high threshold value
indicates a model with very high precision but low recall and vice versa.
As a result, a high area under the PR curve indicates a model with both
high precision and recall. We use Average Precision (AP) to summarize
the result of the PR curve. AP is calculated as the weighted average of
precision at each threshold with the increase in recall from the previous
threshold used as the weight. An ideal PR curve has a precision of 1 for
every increase in recall resulting in an AP of 1.

False Positive Rate (FPR) quantifies the percentage of leaves, trees
and other vegetation predicted as lianas. It is the fraction of Class 2
points (trees, leaves and other vegetation) misclassified as lianas (False
Positives (FP)) out of all the Class 2 points in the data (FP and True
Negatives (TN))

FP

FPR = ————
FP + TN

C)

3.2. Classification workflow and post-processing

We explained above the steps involved in the development and
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Table 2
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Precision, recall, F; score, Average Precision (AP) and False Positive Rate (FPR) metrics for all three cross-validation categories. The results are the average of the
eightfold and sixfold cross-validation for Gigante and Nouragues respectively for self-site category. The results are the average of the performance metrics from
sixfold cross-validation shown in Fig. 6 for the mixed-site category. The standard deviation of the results are reported in the brackets. The overall average per-
formance metrics of the random forest classifier is indicated as "Average" (in bold letters) in the last column of the table.

Cross-validation strategy Dataset type Precision Recall F; score AP FPR
Self-site Gigante Peninsula 0.85 ( £+ 0.06) 0.65 (= 0.1) 0.73 (= 0.1) 0.79 ( = 0.08) 0.03 ( = 0.02)
Nouragues 0.91 (£ 0.09) 0.54 (+0.1) 0.66 ( + 0.2) 0.81 (+0.1) 0.01 ( = 0.004)

Cross-site Train: Gigante Pen. and Val.: Nouragues 0.95 0.59 0.73 0.84 0.01

Train: Nouragues and Val.: Gigante Pen. 0.82 0.51 0.63 0.65 0.01
Mixed-site Mixed-site dataset 0.89 ( £+ 0.05) 0.62 (+0.12) 0.73 ( = 0.09) 0.77( = 0.09) 0.01 ( = 0.004)

Average 0.88 0.58 0.69 0.78 0.014

Precision-Recall curve

Precision-Recall curve

Fig. 8. Precision-Recall curves for all three cross-

0.84

0.61

Precision
Precision
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_2b: AP=0.88
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—— NOU_S: AP=0.77
—— NOU_6: AP=0.76

validation categories. AP refers to the average
precision explained in Section 3.1.5. (a) Self-site
cross-validation: Gigante Peninsula. The plot
names for each site are given in Fig. 5 for Gigante.
(b) Self-site cross-validation: Nouragues. The plot
names are given in Table 1 for Nouragues. (c)
Cross-site cross-validation: GIG refers to the model
built on Nouragues site and validated on Gigante

site. NOU refers to the model built on Gigante site
and validated on Nouragues site. (d) Mixed-site
cross-validation: The name of the validation data-
sets in the figure are explained in Fig. 6.
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assessment of RF model for extracting liana woody points from forest
plots in the previous section.

In this section, we propose the following simple post-processing
steps, which are an essential part of the processing pipeline (Fig. 1), to
correct the misclassified liana woody points resulting from the RF
model predictions. The misclassified points belong to two different
categories: False Positives (FP) and False Negatives (FN). We propose
four post-processing steps to correct these misclassified points. Steps 1
and 2 are mainly focused on removing FPs, Class 2 points that are
misclassified as liana woody points, with basic filtering and with very
minimal manual intervention as explained below. Steps 3 and 4 focus
on correcting the FNs. This means that these steps mainly correct the
liana woody points that are misclassified by the model as belonging to
Class 2 (trees, leaves or other vegetation).

Step 1 This step aims at filtering noisy or ghost points from the Class
1 (liana woody points) model predictions. We apply the Statistical
Outlier Removal (SOR) filter implemented in the CloudCompare soft-
ware (Girardeau-Montaut, 2011) to remove the noisy points that are too
far from their neighbors in the point cloud classified as belonging to
liana woody points by the model (Rusu and Cousins, 2011). SOR filter
has two parameters: number of points to be considered for distance
mean distance (nPoints) estimation and standard deviation multiplier
threshold to be used for filtering the points (nSigma). We used the

04 0.6 08 1.0

Recall

(d)

following default settings of the CloudCompare: nPoints = 6 and
nSigma = 1.00

Step 2 This step aims at removing the FPs from Class 1 model
predictions. After SOR filtering, we manually remove the obvious sec-
tions belonging to Class 2 (points that are not liana woody components)
from the resulting point cloud from Step 1 using the polygonal selection
tool in CloudCompare (Girardeau-Montaut, 2011).

Step 3 We correct the misclassified liana points in the Class 2 model
predictions using the DBSCAN algorithm as follows. DBSCAN is a
density-based clustering algorithm, which given a set of points in some
space (Cartesian space in this case) groups together the points that are
closely packed together. DBSCAN has two main parameters influencing
the resulting clusters: € and minPts. € defines the maximum distance
between two points to be considered to belong in the same cluster and
minPts is the number of points to be in the neighborhood, defined by e,
for a point to be considered as a core point. Once the core points are
identified, the points that are connected to the core points in the €
neighborhood are identified and merged. For more information on
DBSCAN, we refer to the original paper of (Ester et al., 1996).

We identify the isolated cluster of points among the points classified
as Class 2 by the RF model. We achieve this by applying the DBSCAN on
the predicted Class 2 points.

Step 4 All the individual clusters of the predicted Class 2 points
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Predicted Class 2 points
23.8m

Predicted Liana stems

(b) RF model predictions

(a) Ground truth

1

/

(f) Step 3: DBSCAN on predicted Class 2
points

(e) Step 2: After manual removal
of FPs

Table 3

Increased recall for all eight plots from both Gigante Peninsula and Nouragues
sites after applying the post-processing steps on the self-site cross-validation
model predictions. Model recall for GIG_1 and GIG_2 are the average recall from
the four small sub-plots of GIG_1 and GIG_2 respectively as shown in Fig. 5.

Site name Plot Name Model recall  Final recall after post-processing
Gigante Peninsula GIG_1 0.69 0.73
GIG_2 0.61 0.68
Average 0.65 0.70
Nouragues NOU_1 0.50 0.89
NOU_2 0.84 0.87
NOU_3 0.47 0.95
NOU_4 0.28 0.98
NOU_5 0.67 0.87
NOU_6 0.46 0.82
Average 0.54 0.90

from Step 3 are then tested for connectivity with the corrected liana
woody points from Step 2. First, we cluster the corrected liana woody
points into small components using DBSCAN. We then test if a Class 2

/
(c) Predicted Liana woody
points
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Fig. 9. Illustration of the results from the
post processing steps for the plot NOU_4. (a)
Ground truth of the plot NOU_4 (b) Model
predictions of the plot NOU_4. (c) Points
predicted as liana woody points by the
model. (d) Step 1 of post-processing: noisy
points removed by Statistical Outlier
Removal (SOR) filtering. (e) Step 2 of post-
processing: points after manually removing
the misclassified tree segments using
CloudCompare (indicated by red squares in
(d)). () Step 3 of post-processing: DBSCAN
\ clustering algorithm on predicted Class 2
points. Different colors indicate points be-
longing to different clusters. (g) Step 4 of
post-processing: Final liana woody points
1 after merging the isolated clusters indicated
Y, by black squares in (f) with corrected points
from (e). (For interpretation of the refer-
ences to colour in this figure legend, the
reader is referred to the web version of this
article.)

4

i
VST A0

(d) Step 1: SOR
filtered points

(g) Step 4: Merged points after connectivity

analysis

cluster is in the € neighborhood of any of the corrected liana woody
point clusters (i.e. if these two clusters are close enough to be merged
into a single cluster using DBSCAN).

We chose a value of 0.05m for € and 5 for minPts for both Step 3
and Step 4. The choice of € here is mainly driven by the average point
spacing in the point cloud. Since we downsampled our point cloud to
have a point spacing of 0.04 m, we chose 0.05m as our € to ensure that
only the densely connected points are retained.

4. Results and discussion

In section, we first report the results for hyperparameter optimiza-
tion to build the RF model. Then, we report the results of the model
performance for three different cross-validation categories explained
above. Finally, we report the results of the post-processing steps at in-
dividual plot-level for the self-site cross-validation models.

4.1. Model development

The model performance was assessed by a fivefold cross-validation
approach for hyperparameter optimization. The entire data from all
eight plots in Table 1 was put together and then split into five random
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(a) Ground-truth

(b) Model predictions

(c) Post-processing results

Fig. 10. (a) Ground truth and (b) Model predictions for plot GIG_1 in Gigante (c) Post-processing result. Red squares indicate the areas which could not be corrected
by post-processing. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

spatially disjoint sets, out of which four sets were used for training and
one set was used for validation. The resulting F; is the average result of
all five model runs.

The model performance remained relatively stable with F; scores
ranging between 0.72 and 0.73 for all different combinations of the two
hyperparameters (Fig. 7). However, the F; remained at 0.73 beyond 50
decision trees. As a result, we chose the number of decision trees as 50.
The number of features did not seem to play a major role in the model
performance and hence we chose the default value of /15 as suggested
in (Breiman, 2001).

4.2. Predictive performance of random forest classifier

We report all the performance metrics for all three cross-validation
categories in Table 2 and show the PR curves for all them in Fig. 8. FPR
was very low with values ranging between 1 to 3% across all three
categories of spatial cross-validation.

4.2.1. Self-site cross-validation

The model performed with a high precision of 0.85 and 0.91 for
Gigante and Nouragues respectively. However, the recall values were
much lower for Nouragues compared to Gigante. This was mainly due
to the thick straight liana stems (> 5cm) having a geometrical struc-
ture similar to that of trees closer to the ground.

The high AP values from the PR curves of 0.79 and 0.81 for Gigante
and Nouragues respectively indicate that the model has a good dis-
criminatory power. The corresponding PR curves are shown in Fig. 8a
and b. As it can be seen from the figure, precision retains a value of 80%
while the recall is increased to 70% for most of the models resulting in
the higher AP value.

4.2.2. Cross-site cross-validation

Both the independent and average performance metrics of the cross-
site cross-validation is shown in Table 2. Training on data from Gigante
site and testing on Nouragues gives better results than both training on
Nouragues and testing on Gigante and training and testing on Nour-
agues. This is in line with our expectations, as the plots GIG_1 and
GIG_2 combined have more lianas then the plots in Nouragues resulting
in more robust training data for the model to learn from.

Similarly the AP of the model trained with the data from Nouragues
site is only 0.65, indicating a much lower discriminatory power than
the model trained with data from Gigante site with a high AP of 0.84.
The corresponding PR curves can be seen in Fig. 8c. As the PR curve
indicates, the recall of the model drops to a low value of close to 60%
for a recall of 70% explaining the lower AP value.
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4.2.3. Mixed-site cross-validation

We indicate the average performance metrics of the sixfold cross-
validation (Fig. 6) in Table 2. As the results indicate, the model has a
high precision of 0.89, a rather low recall of 0.62 and an F; score of
0.73.

The PR curves indicate a good discriminatory power of the model in
general with an AP of 0.77 (Fig. 8d).

4.3. Performance of the post-processing steps

The liana woody points can be extracted from the 3D data of a
tropical rainforest plot by the final model trained on the entire dataset
including all eight plots from two sites. As the results indicate, the
models validated using the different cross-validation categories have on
average high precision and very low FPR across all the plots from the
two sites used in the study. This means that when the model predicts a
point as a liana woody point, the model is 88% sure that its correct
(indicated by the average from Table 2). This explains the very low FPR
of 1.4% of the model. The model’s high predictive performance is fur-
ther confirmed by analyzing the PR curves of the different models built.
AP, which summarizes the PR curve of the models, is high with an
average value of 0.78 indicating a good discriminatory power of the
model. However the recall is rather low with an average value of 0.58.
This means that only 58% of all liana woody points in the plot are
retrieved by the model. The recall values are much lower especially for
plots in Nouragues because of the thick straight stems having geome-
trical structures similar to trees closer to the ground. In addition, parts
of liana tangles are mis-classified as they look like a cluster of points
with geometrically similar features as leaves (Fig. 9a).

Since the FPR is much lower and is mainly caused by small stems
that do not grow beyond a few meters from the ground and small
segments of tree branches, we recommend a basic SOR filtering and
manual removal of these small segments below the canopy as explained
in Section 3.2. This manual removal is straightforward as it involves
removing some isolated segments that belongs to trees. After the re-
moval of FPs, we perform DBSCAN clustering and connectivity analysis
to correct the FNs.

We report the increased recall from the post-processing steps on the
predicted liana woody points from all the plots of Gigante Peninsula
and Nouragues sites from the self-site cross-validation models in
Table 3. While the cross-site models report the results for all the plots
combined for a site and mixed-site models report the results for plots
from the two sites combined, self-site models let us evaluate the ef-
fectiveness of the post-processing at individual plot-level.

The different post-processing steps are illustrated in Fig. 9.

These post-processing steps increased the recall from 54% to 90% in
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Nouragues plots without compromising on the precision. However, in
Gigante the recall only increased by 5% from the original 65% resulting
in a 70% recall overall. This was mainly because, the misclassified liana
woody points were too close to the other vegetation to be considered as
separate clusters as seen in Fig. 10. These 30% missing liana woody
points could be manually corrected in a straightforward way using
CloudCompare.

4.4. Liana extraction library

We provide an open source python software package executing the
steps in Fig. 1 for the plot-level near-automated liana woody points
extraction given only the xyz coordinates of the pointcloud. Extracting
eigen values at multiple spatial scales on a small plot with approxi-
mately 500,000 points can be completed within 10 min even on a single
core machine. However, this high computational efficiency comes at a
cost of high memory requirements. The main specifications of the
machine we used to run the algorithm are the following: dual boot
(Ubuntu 16.04 LTS and Windows 10), Intel® Xeon® E5-1650 v4, 6
cores and 128 GB RAM. The python package has been tested on both
Ubuntu and Windows operating systems. More details on the practical
implementation and tips to work around the issue of high memory re-
quirements of the algorithm can be found in the github page (https://
github.com/sruthimoorthy/automated-liana-extraction.git).

4.5. Discussion

Our RF model performance indicates that the liana data is not site-
specific as the model trained on Gigante site could be applied to data
from Nouragues. The low F; score of the model trained on Nouragues
and tested on Gigante is mainly due to lack of sufficient training data as
Nouragues had fewer lianas than Gigante. However, additional testing
is needed on other sites to confirm this. The proposed post-processing
steps increased the recall to 90% in Nouragues from a low value of 54%
for the self-site cross-validation models mainly because of the very high
precision of 91% of the models.

It is possible that an important source of error in the RF model
development might arise from the errors made while manually labelling
liana points vs non-liana points for training and testing data especially
in the canopy. In the case of TLS, minimum size of the object distin-
guishable by the scanner increases with increasing distance from the
scanner. For most of the lianas, their woody component becomes almost
negligible in the canopy as they are much smaller than the trees even
when they are closer to the ground (Dewalt et al., 2000). This is a
sensor limitation and not a limitation of the method as such. Future
development of TLS instruments with smaller beam divergence could
help in resolving smaller objects at greater heights in the canopy.

The presented method is transferable to point clouds from any
platform of similar high quality (i.e. minimal occlusion in the data). In
addition, the proposed method only requires xyz coordinates of the
points (refer to Fig. 1) and does not depend on any spectral properties
of the points making it broadly applicable to 3D data collected from a
variety of sensors. Another major advantage of the proposed method is
combining the geometric features at multiple spatial scales, thus elim-
inating the need for optimal scale selection.

Future work could focus on improving the performance of the
classifier (especially the recall value), thereby reducing the amount of
manual intervention required, using more sophisticated machine
learning methods like deep learning. Recent advances in the field of
machine learning have extended the deep learning for 3D point cloud
classification to work directly on the unstructured point clouds (as
opposed to structured voxels etc.), thereby enabling automated feature
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learning to build the classifier (Qi et al., 2017). Though deep learning
requires large amount of data and substantial computing power (high-
performance GPUs), it is one of the promising ways to improve the
classifier performance and will be a topic of our future study.

5. Conclusions

We presented a method for semi-automated liana extraction from
plot-level TLS data with a high precision of 88%. The proposed method
was tested on two sites: Gigante Peninsula, Panama and Nouragues,
French Guiana. RF models had a low recall of 54% and 65% in
Nouragues and Gigante, which was increased to 90% and 70% by the
post-processing steps respectively. The method is semi-automated and
the remaining 10 to 30% of the points requires manual intervention.
Future developments of the method should focus on reducing this
manual intervention by using more sophisticated methods like deep
learning for liana woody point classification. We believe that our
method will accelerate the research in high liana dense forests (e.g.,
Gigante Peninsula (van der Heijden et al., 2015)) and in forests where
lianas continue to proliferate (Schnitzer and Carson, 2010; Schnitzer
and Bongers, 2011; Schnitzer et al., 2000; Schnitzer, 2018), thereby
enabling the quantification of their impact on tree and forest structure.
The method enables researchers working on tropical forest plots to have
a liana(noise)-free point cloud enabling an easier isolation of trees ei-
ther manually or through an automated algorithm leading to an accu-
rate quantification of tree structural metrics like tree volume. The
presented method enables us to monitor and quantify liana abundance
and biomass in forest plots, which is highly uncertain when calculated
from allometric equations (Miao et al., 2016).
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Appendix A

A.1. Scanning protocol for plots in Nouragues

The scanning pattern for the six target trees in Nouragues is shown in Fig. A.11.

Fig. A.11. Scanning protocol for all the plots in
Nouragues, French Guiana. (+ Scan position, @
target tree, @ lianas in the plot and © other trees
(> 10cm) in the plot). Size of @ and - circles
reflects the relative size (DBH) of the tr.ees in the
plot.

(a) NOU 1 (b) NOU_2

A.2. Eigen value at muliple spatial scales for NOU_5 plot

The eigen values 4;, 4, and 4; for the NOU_5 at the spatial scales of 0.1, 0.25, 0.5, 0.75 and 1 m are shown in the Fig. A.12.
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Fig. A.12. Illustrating the effectiveness of eigen values at multiple scales for classifying lianas in Nouragues (sample from plot NOU_5 in Table 1). The ground truth of
the same plot is given in Fig. 3. The color scales at the bottom of each figure indicate the range of 4;, 4, and 25 at (a) 0.1 m, (b) 0.25m, (c) 0.5m, (d) 0.75m and (e)

1 m spatial scale from left to rig.ht respectively.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.isprsjprs.2019.05.011.
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