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Moving Beyond Noninformative Priors: Why 
and How to Choose Weakly Informative Priors 
in Bayesian Analyses 
 

Nathan P. Lemoine 
Department of Biology, Marquette University, Milwaukee, WI 
 

Abstract 
Throughout the last two decades, Bayesian statistical methods have proliferated throughout ecology and 
evolution. Numerous previous references established both philosophical and computational guidelines for 
implementing Bayesian methods. However, protocols for incorporating prior information, the defining 
characteristic of Bayesian philosophy, are nearly nonexistent in the ecological literature. Here, I hope to 
encourage the use of weakly informative priors in ecology and evolution by providing a ‘consumer's guide’ to 
weakly informative priors. The first section outlines three reasons why ecologists should abandon 
noninformative priors: 1) common flat priors are not always noninformative, 2) noninformative priors provide 
the same result as simpler frequentist methods, and 3) noninformative priors suffer from the same high type I 
and type M error rates as frequentist methods. The second section provides a guide for implementing 
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informative priors, wherein I detail convenient ‘reference’ prior distributions for common statistical models (i.e. 
regression, ANOVA, hierarchical models). I then use simulations to visually demonstrate how informative priors 
influence posterior parameter estimates. With the guidelines provided here, I hope to encourage the use of 
weakly informative priors for Bayesian analyses in ecology. Ecologists can and should debate the appropriate 
form of prior information, but should consider weakly informative priors as the new ‘default’ prior for any 
Bayesian model. 

Throughout the last two decades, Bayesian statistical methods have proliferated throughout ecology and 
evolution (Touchon and McCoy 2016). Numerous ecology‐oriented papers and textbooks established both 
philosophical (Ellison 2004, Clark 2005, Gelman and Shalizi 2013, Hobbs and Hooten 2015, Lemoine et al. 2016) 
and computational (Gelman and Hill 2007, Kruschke 2010, Korner‐Nievergelt et al. 2015) guidelines for 
implementing Bayesian methods, but these sources generally emphasized the statistical model. Protocols for 
incorporating prior information, the defining characteristic of Bayesian philosophy, are nearly nonexistent in the 
ecological literature (but see Morris et al. 2015, Lemoine et al. 2016). Indeed, there has been no synthesis of the 
rich statistical literature on priors that describes why informative priors are preferable to noninformative priors, 
specifies the ‘reference’ priors available for common statistical models, and demonstrates how such informative 
priors affect posterior inference. As a result, ecologists remain understandably wary of supplementing Bayesian 
analyses with informative priors. 

Here, I hope to encourage the use of informative priors in ecology and evolution by providing a ‘consumer's 
guide’ to weakly informative priors. This guide is structured into two sections. The first section describes why 
ecologists should consider using informative priors. Although the reasons outlined here are not novel, no review 
has synthesized the multiple disparate opinions regarding the advantages of informative priors for ecology and 
evolution. Specifically, I contend that ecologists should move beyond noninformative (i.e. flat, vague, diffuse) 
priors for three reasons: 1) in some cases, flat priors can strongly influence posterior distributions and thus are 
strongly informative, 2) in most cases, Bayesian analyses with noninformative priors yield identical results to 
computationally and theoretically simpler frequentist analyses, and 3) informative priors can mitigate type I and 
type M errors. The second section provides a guide for implementing informative priors, wherein I detail 
convenient ‘reference’ prior distributions for common statistical models (i.e. regression, ANOVA, hierarchical 
models). I then use simulations to visually demonstrate how informative priors influence posterior parameter 
estimates. To further encourage ecologists to use informative priors, STAN code for all models is available in 
appendices for each section to illustrate the simplicity of implementing informative priors. 

Moving beyond noninformative priors 
Bayesian analyses differ from frequentist analyses by incorporating prior information via conditional 
probabilities, known as Bayes’ rule: 

(1) 

𝑃𝑃𝑃𝑃(θ)𝑃𝑃𝑃𝑃(𝑌𝑌|θ)
𝑃𝑃𝑃𝑃(𝑌𝑌) = 𝑃𝑃𝑃𝑃(θ|𝑌𝑌) 

where Pr(θ) is the probability of the parameter or hypothesis θ based on prior information, Pr(𝑌𝑌|θ) is the 
likelihood of the data conditioned on the hypothesis, Pr(𝑌𝑌) is a normalization constant, and Pr(θ|𝑌𝑌) is the 
posterior probability of the of the hypothesis conditioned on the observed data. In other words, posterior 
distributions describe the prior probability of the hypothesis or parameter updated with new information. 

Bayesian updating proceeds, in a general sense, via weighted averaging of the prior and likelihood functions, 
with weights corresponding to certainties (Gelman et al. 2013). High data certainty resulting from high statistical 
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power (i.e. large effect sizes, large sample sizes, low noise) strongly updates the prior. Likewise, highly certain 
priors exert a large influence on the posterior and require high‐powered data to yield updating. Conversely, the 
posterior distribution is relatively insensitive to low certainty in either the prior (i.e. noninformative priors) or 
the data (i.e. low statistical power). Although the consequences of low statistical power on posterior inferences 
have been extensively documented (Button et al. 2013, Lemoine et al. 2016, Parker et al. 2018), relatively little 
attention has been paid to the consequences of noninformative priors. Indeed, ecologists often relegate prior 
choice to a minor concern whereby priors are chosen to stabilize computations and minimally affect the 
posterior (Ellison 2004, Korner‐Nievergelt et al. 2015). 

Problems with noninformative priors 
Ecologists typically define noninformative priors as distributions that are flat over the entire real number line 
and thus contain no information (Table 1). Common noninformative priors include a wide uniform distribution 
[e.g. 𝓊𝓊(−1000,1000) or  𝓊𝓊(0,1000)for positive‐only variance parameters] or a diffuse normal distribution 
[e.g. 𝒩𝒩(0,10000)]. Indeed, most Bayesian analyses in ecology use flat priors (Table 1). However, flatness per se 
does not define a noninformative prior. A 𝒩𝒩(0,4) distribution is noninformative if, for example, the range of 
plausible parameter values lies between −1 and 1. Conversely, a flat distribution might be strongly informative if 
placed on a transformed parameter. A flat 𝓊𝓊(0,1000) distribution is noninformative for data on small numerical 
scales, but highly informative distribution is the scale of the data exceeds 1000. A more accurate definition of 
noninformative priors would therefore be ‘distributions that possess a range of uncertainty larger than any 
plausible parameter value’ (Gelman and Hill 2007). 

Table 1. Number of studies from five influential ecological journals using priors of various forms. I searched 
every study published in all five journals from 2014 to 2018 for the term ‘bayes’. Any studies professing to use 
‘Bayesian analyses’ were searched for ‘priors’ to identify the type of prior used. If priors were not mentioned in 
the main text, these were listed as ‘No mention’ (including studies who may have listed priors in supplementary 
info). I excluded non‐conventional analyses, such as phylogenetic tree construction and stable isotope mixing 
models. The number in parentheses is the percentage of studies falling into each category for that particular 
journal 

Journal Noninformative Weakly informative Strongly informative No mention 
Ecology 37 (54%) 6 (8%) 4 (6%) 20 (30%) 
Ecology Letters 11 (33%) 2 (6%) 0 20 (61%) 
Journal of Ecology 23 (66%) 1 (3%) 0 11 (31%) 
Oecologia 29 (76%) 2 (5%) 0 7 (18%) 
Oikos 6 (43%) 2 (14%) 0 6 (43%) 

 

Assigning flat prior distributions to transformed parameters often yields highly skewed, strongly informative 
priors for the parameter in the original scale. Hobbs and Hooten (2015) provided the example of using flat priors 
to estimate a probability from binary data. The data, 𝒚𝒚, are Bernoulli distributed with a probability of 
occurrence 𝑝𝑝: 

(2) 

𝑦𝑦 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝) 

Since computational procedures struggle to estimate 𝑝𝑝 near the boundaries of 0 and 1, the logit transformation 
places 𝑝𝑝 on the entire real line: 

(3) 
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𝑝𝑝 = 𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜−1(𝑎𝑎) 

and the algorithm estimates 𝑎𝑎. In a Bayesian framework, 𝑎𝑎 would typically receive a flat prior 
[e.g. 𝑎𝑎 ~ 𝒩𝒩(0,100)] to represent complete uncertainty over the value of 𝑝𝑝. Yet a flat prior on 𝑎𝑎 heavily 
biases 𝑝𝑝 towards 0 or 1 under the diffuse normal prior on 𝑎𝑎 (see Fig. 5.4.3 in Hobbs and Hooten 2015). Instead, 
assigning 𝑎𝑎 the seemingly informative prior of 𝑎𝑎 ∼  𝒩𝒩 (0,2) allows for a more uniform, noninformative prior 
for 𝑝𝑝 on the original scale (see Fig. 5.4.3 in Hobbs and Hooten 2015). In a more practical example, ecologists 
commonly use logistic regression to estimate how 𝑝𝑝 changes with a given predictor 𝒙𝒙:  

(4) 

p = 𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜−1(𝒶𝒶) 

(5) 

a = β0 + β1x 

Ecologists might represent complete uncertainty in β0 and β1 by placing diffuse normal priors on each 
parameter. However, such priors mistakenly place most of the distributional mass of the slope near 0 on the 
original scale (Fig. 1, Supplementary material Appendix 1). Symmetric distributions of the slope on the original 
scale are better captured by non‐flat prior distributions on the logit scale (Fig. 1). Thus, ecologists should 
exercise extreme caution when using flat priors on transformed parameters. 

 
Figure 1 Noninformative priors on transformed variables can often produce strongly informative priors on the 
untransformed variable of interest. In (A), noninformative priors on the parameters of a logistic regression 
[β0,β1~𝒩𝒩(0,100)] yield slopes that are highly spiked at 0. The panel shows the histogram of the prior 
distribution on the slope of a logistic regression, on the probability scale, at 𝑥𝑥  =  0.5. In (B), weakly informative 
priors [β0,β1~𝒩𝒩(0, 22)] stabilize the prior distribution on the probability scale. The panel shows the prior 
distribution of the slope on the probability scale at 𝑥𝑥  =  0.5. 
 
Even when ecologists carefully choose prior distributions to be noninformative on the correct scale, using such 
noninformative priors negates the advantage of Bayesian statistics. Specifically, Bayesian estimated parameters 
and inferences based on noninformative priors will be identical to frequentist analyses with standard methods 
(e.g. the lm or glm functions in R, Gelman et al. 2013). To demonstrate, I used both frequentist and Bayesian 
methods to estimate parameters from a simple linear regression. I drew 10 000 estimates of each parameter 
[β0~𝒩𝒩(−0.05, 0.152), β1~𝒩𝒩(−1.25, 0.52),log𝜎𝜎𝑦𝑦~𝒩𝒩(0.01, 0.12)] to generate 10 000 unique datasets 𝑦𝑦 (each 
dataset contained 100 observations). Every simulated dataset was subjected to three different parameter 
estimation techniques: 1) ordinary least squares, 2) maximum likelihood optimization, and 3) Bayesian 
estimation using MCMC sampling with noninformative priors [β0,β1~𝒩𝒩(0, 100002), 
σ𝑦𝑦 ~ InvGamma(0.01,0.01)]. The standard errors for each parameter (σβ) were estimated using the technique 
best suited to each procedure: least‐squares calculations, square‐root of the diagonal of the inverse Hessian 
matrix, and standard deviation of posterior estimates, respectively. Models were fit in Python ver. 3.6 using the 
statsmodels, scipy and pystan modules (Supplementary material Appendix 2). 
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Parameter estimates for β�1 were equivalent to multiple decimal places for all three methods (Fig. 2A). That is, 
noninformative priors converged on exactly the same slope as either least‐squares or maximum likelihood 
estimates, such that noninformative Bayesian analyses provided no unique information. Furthermore, the 
standard error for β1 was nearly identical for all three methods, indicating that inferences regarding uncertainty 
and ‘statistical significance’ would also be identical for all three methods (Fig. 2B). While least‐squares and 
Bayesian estimates of σβ1 fell along the 1:1 line, maximum likelihood had a few cases where the optimizer 
struggled to converge to the correct estimate (Fig. 2B), suggesting that MCMC sampling is a more robust, if 
slower, parameter estimation method than maximum likelihood optimization for even simple linear regression 
models. 

 
Figure 2 Least‐squares, maximum likelihood, and Bayesian noninformative priors provide nearly identical 
estimates for (A) point estimates of the slope (β�1) and (B) uncertainty estimates of the slope (σβ1) for a linear 
regression. Noninformative priors were [β0,β1]~𝒩𝒩(0, 10000) and σ𝑦𝑦 ~ InvGamma(0.01,0.01). The blue 
dashed line shows the 1:1 line of perfect equivalence. Estimates of σβ1 were derived from least squares 
methods (𝜎𝜎𝑦𝑦(X′X)−1), maximum likelihood methods (inverse Hessian), or standard deviation of Bayesian 
posteriors. The blue dashed line shows the 1:1 line of perfect equivalence. See Supplementary material 
Appendix 2 for more information. 

 
Figure 3 Maximum likelihood and Bayesian noninformative priors provide nearly identical estimates for (A) the 
slope (β�1) and (B) uncertainty estimates (σβ1) for a mixed‐effects regression. Noninformative priors 
were [β0,β1]~𝒩𝒩(0, 10000), σa ~ InvGamma(0.01,0.01), σ𝑦𝑦 ~ InvGamma(0.01,0.01), 𝜇𝜇~𝒩𝒩(0,10000), 
and 𝛼𝛼~𝒩𝒩(0,1). The blue dashed line shows the 1:1 line of perfect equivalence. Estimates of σβ1were derived 
from maximum likelihood methods (inverse Hessian) or standard deviation of Bayesian posteriors. See 
Supplementary material Appendix 2 for more information. 
 
Just as with linear regression, parameter estimates for mixed‐effects models also converge for maximum 
likelihood and noninformative Bayesian estimates. To illustrate, I simulated data from a multilevel model with 
random‐effects intercepts: 

(6) 
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𝑦𝑦𝑗𝑗 = 𝜇𝜇 + 𝛼𝛼𝑗𝑗 + β1xj + 𝜖𝜖𝑗𝑗  

(7) 

𝛼𝛼𝑗𝑗~𝒩𝒩(0,𝜎𝜎𝛼𝛼2) 

(8) 

𝜖𝜖~𝒩𝒩�0,𝜎𝜎𝑦𝑦2� 

As before, I used 10 000 sets of randomly generated parameters 
[𝜇𝜇~𝒩𝒩(0, 0.152), β1~𝒩𝒩(1.25, 0.52), 𝛼𝛼~𝒩𝒩(0, 0.52),log𝜎𝜎𝑦𝑦~𝒩𝒩(0.01, 0.12)] to simulate mixed‐effects datasets 
(Supplementary material Appendix 2). For each dataset, I estimated fixed and random effects using mixed‐
effects models based on maximum likelihood (statsmodels module) and Bayesian methods using noninformative 
priors ([𝜇𝜇,β1~𝒩𝒩(0, 100002)], σ𝑎𝑎 ~ InvGamma(0.01,0.01), σ𝑦𝑦 ~ InvGamma(0.01,0.01), 𝛼𝛼~𝒩𝒩(0, 12), pystan 
module). The parameters a were given informative priors of 𝒩𝒩(0, 12) because of the particular modeling 
approach used to impart numerical stability for the MCMC sampler (Supplementary material Appendix 2). As 
before, estimates of β�1 were identical between maximum likelihood and Bayesian approaches with 
noninformative priors (Fig. 3A). Noninformative priors also yielded identical estimates of σβ1 , with a few 
exceptions where the maximum likelihood optimizer did not fully converge (Fig. 3B). 

Because the same parameter estimates and statistical inferences result from both frequentist and 
noninformative Bayesian analyses, both methods suffer from the same statistical issues. The ‘winner's curse’ in 
particular has received considerable recent attention in both ecological and statistical literature (Button et 
al. 2013, Gelman and Carlin 2014, Lemoine et al. 2016). The winner's curse occurs when subsequent, repeated 
experiments cannot replicate an initial significant finding (Ioannidis 2005). Statistical significance of the original 
experiment occurred by chance, due to an overestimate of the true effect size (type M error), which caused a 
false positive (type I error). Type I errors are ostensibly controlled by setting 𝛼𝛼  =  0.05, but the true false 
positive rate (FPR) is the probability of a false positive given a significant result, which depends on statistical 
power: FPR = α/(α + power) (Moyé 1998, Supplementary material Appendix 3). Similarly, the true positive rate, 
known as the positive predictive value (PPV), is the probability of a true positive given a significant result: 
PPV  =  power/(α  +  power)  =  1  −  FPR (Button et al. 2013, Heston and King 2017, Supplementary material 
Appendix 3). PPV and FPR both vary with statistical power; for studies with highly variable data, FPR can exceed 
80% at low sample sizes before converging to α at high sample sizes (Fig. 4). In other words, with noisy data, 
weak effects, and small sample sizes, a statistically significant result is so unlikely that a significant result is more 
likely to be a false positive than a true positive. This is true regardless of whether significance is calculated by 
least squares, maximum likelihood, or Bayesian analyses with noninformative priors. 
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Figure 4 Small sample sizes increase the likelihood of a false positive due to low power. This figure was 
generated with Monte Carlo simulations of a paired t‐test. The difference between groups (µ  =  1) was smaller 
than the within‐group variance (𝜎𝜎  =  5). For each simulation, I drew data for the first group [𝑦𝑦1~𝒩𝒩(0  𝜎𝜎)] and 
the second group [𝑦𝑦2~𝒩𝒩(𝜇𝜇,𝜎𝜎)]. I then compared groups using a two‐sample t‐test, and significance was 
recorded as p < 0.05. This simulation was repeated 10 000 times for each sample size 𝑁𝑁 𝜖𝜖 [2,100]. Power at each 
sample size was calculated as the proportion of tests that returned significant results (true positives). I then 
calculated PPV and the true false positive rate using the equations defined in text. See Supplementary material 
Appendix 3 for more information. 
 

Informative priors 
Many authors advocate the use of informative priors to alleviate problems like the winner's curse that arise 
from low statistical power. Gelman and Hill (2007) and Gelman et al. (2013) state that noninformative priors 
facilitate model development but should be substituted for informative priors during the final analyses. More 
philosophically, both Kruschke (2010) and Hobbs and Hooten (2015) argue that current scientific philosophy 
improperly idealizes science in vacuum, wherein only the data on hand are used to draw inferences; science 
should instead utilize all available data. Despite these arguments, most textbooks on Bayesian data analyses 
provide analytical and computational examples using noninformative priors, avoid making explicit 
recommendations for informative priors, and do not illustrate how informative priors might affect results 
(Gelman and Hill 2007, Kruschke 2010, Korner‐Nievergelt et al. 2015, but see McElreath 2015, Lemoine et 
al. 2016). Because of the ambiguity surrounding prior choice and the pedagogy of Bayesian statistics 
emphasizing noninformative priors, informative priors remain underutilized in ecological data analysis (Table 1). 

This is unfortunate because many statistical issues like the winner's curse can be mitigated via the use of 
informative priors. Weakly informative priors serve as a method of statistical regularization, preventing the 
winner's curse by shrinking parameter estimates towards zero unless there is sufficiently strong evidence of a 
large effect (McElreath 2015). Low‐powered data result in larger shrinkage. In plainer words, large effect sizes 
arising from limited sample sizes and noisy data are treated skeptically. Consider a few practical examples of 
regularization. In the first example, imagine a t‐test comparing the mean of two groups. Standardizing the 
response variable and using a 𝒩𝒩(0, 12) prior for the difference between groups states that effect sizes are 
unlikely to be greater than one standard deviation of the response. This is an explicit acknowledgment that most 
ecological effects are small (Møller and Jennions 2002, Jennions and Møller 2003) and that unrealistically large 
effects in the data should be constrained unless supported by high statistical power (i.e. large sample sizes, low 
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noise). This effectively makes Bayesian analyses with weakly informative priors more conservative, but 
potentially more accurate, than analyses based on noninformative priors. Weakly informative priors reduced 
statistical power at sample sizes below 50, but also reduced type I error rates nearly by half (Fig. 5, 
Supplementary material Appendix 3). As another example, I conducted 10 000 simulation experiments for an 
independent t‐test with a statistical power of 0.2. For each simulation, I calculated the confidence interval for 
the effect size using both noninformative and weakly informative 𝒩𝒩(0, 12) priors. Under noninformative priors, 
the confidence interval failed to include the true effect size in 3.59% of simulations, whereas the failure rate for 
weakly informative priors was only 2.87%. Shrinkage can also mitigate the need for post‐hoc corrections for 
multiple comparisons. Gelman et al. (2012) simulated data from multiple treatment groups with small effect 
sizes and conducted all pairwise comparisons among groups. Out of 1000 simulations, classical tests recorded at 
least one significant difference 47% of the time, whereas Bayesian analyses with shrinkage recorded at least one 
significant difference only 5% of the time. However, Bayesian differences were 35% more accurate (i.e. correct 
sign) than classical analyses. Gelman et al. (2012) described the objective of regularization succinctly, as ‘the 
price to pay for more reliable comparisons is to claim confidence in fewer of them’. 

 
Figure 5 Weakly informative priors [𝒩𝒩(0,1)] reduce both (A) statistical power and (B) type I error rates for t‐
tests compared to noninformative priors [𝒩𝒩(0,10000)]. As sample size increases, prior choice has no effect on 
either statistical power or type I error rates. For each simulation, I drew 𝑦𝑦1 from a 𝒩𝒩(0,5) distribution. The 
effect was then either chose as false (µ  =  0) or true (µ  =  1). Then, 𝑦𝑦2 was drawn from a 𝒩𝒩(𝜇𝜇, 5) distribution. 
The Bayesian model estimated the difference between means (µ), where µ was given either noninformative or 
weakly informative priors. After model fitting, I determined significance by examining whether the 95% credible 
interval of µ overlapped with 0. A true positive was defined as statistical significance when µ  =  1, and a false 
positive rate was defined as statistical significance when µ  =  0. Each rate was estimated from 10 000 
simulations at each sample size. Prior to analyses, 𝑦𝑦1 and 𝑦𝑦2 were combined into a single vector and 
standardized. Models were fit using pystan. See Supplementary material Appendix 3 for more information. 
 

It is worth noting that the goal of regularization is agnostic of statistical philosophy and can be achieved using 
either frequentist (e.g. ridge, LASSO regression) or Bayesian (e.g. informative priors) methods (Gelman et 
al. 2017). Indeed, certain informative prior distributions in Bayesian statistics analytically reduce to frequentist 
ridge or LASSO estimators (Hoerl and Kennard 2000, Park and Casella 2008). However, Bayesian priors are 
conceptually and programmatically simpler to use, flexible in the strength of regularization, and easy to 
implement for generalized and hierarchical models. 

A guide to weakly informative priors 
There are several strategies for choosing informative priors. The most common perception of generating 
informative priors involves obtaining priors from earlier studies or expert opinion. This can be done informally, 
by surveying the literature and/or experts and deriving a prior distribution from those surveys (Murray et al. 
2009, Martin et al. 2012) or by integrating the new data analysis within a meta‐analysis of earlier studies and 
allowing estimates from earlier studies to serve as the prior for the new analysis (Gelman and Hill 2007, Gelman 
et al. 2013, Hobbs and Hooten 2015). Unfortunately, both methods are time and labor intensive. Alternatively, 
authors can conduct sensitivity analyses, re‐running a Bayesian analysis with progressively narrower prior 
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distributions (Korner‐Nievergelt et al. 2015). The narrowest distribution that does not affect results is thus the 
best ‘informative’ prior (Korner‐Nievergelt et al. 2015). However, the sensitivity method does not identify an 
informative prior so much as it identifies the narrowest prior that is noninformative (see the definition of 
noninformative priors above). Finally, ecologists can choose a default regularization prior. Regularization priors 
implicitly incorporate knowledge that most ecological data are noisy and effects sizes are typically small (Møller 
and Jennions 2002, Jennions and Møller 2003). The statistical literature is rich with advice on regularization 
priors for various models (see <https://github.com/stan‐dev/stan/wiki/Prior‐Choice‐Recommendations> for a 
thorough list of priors available for different models), and here I synthesize the prior choices available for 
common models and demonstrate how regularization priors affect posterior distributions. 

Linear regression models 
Linear regression models have the form: 
(9) 

y� = 𝑋𝑋𝑋𝑋 

(10) 

𝑦𝑦~𝒩𝒩�𝑦𝑦�,𝜎𝜎𝑦𝑦2� 

where B is a vector of regression coefficients and σ𝑦𝑦 is the residual standard deviation. In frequentist regression, 
parameters B are estimated from the data and σ𝑦𝑦 is a derived quantity. In Bayesian regression, both B and 
σ𝑦𝑦 are estimated parameters and thus both require priors. Typically, σ𝑦𝑦 can be given a noninformative prior 
[e.g. σ𝑦𝑦 ~ Cauchy(0,25)] because the emphasis of the analysis, and therefore the need for regularization, is 
on B. 

Several regularization options exist for B: 

1. B𝑖𝑖.𝑖𝑖.𝑑𝑑.~𝒩𝒩�0, 10002� 

This completely noninformative prior places independent, diffuse normal priors on each parameter in the 
vector B (Gelman and Hill 2007, Kruschke 2010, Korner‐Nievergelt et al. 2015). Parameter estimates suffer 
no regularization and will be identical to estimates from frequentist regression (Fig. 2, 3). 

2. B𝑖𝑖.𝑖𝑖.𝑑𝑑.~𝒩𝒩�0, 12� 

This prior states that parameter estimates will most likely fall between −1 and 1, and almost always fall 
between −2 and 2 (McElreath 2015, Lemoine et al. 2016). Because this prior is a standard normal 
distribution, ecologists must carefully consider the scale of both the predictor and response. For example, 
this prior can be noninformative when the units of y are very small (e.g. 0.001–0.009 g) or strongly 
informative when the units of X are very small (i.e. the change in y per unit change in X will be large). The 
safest option for using this prior is to standardize both the response and predictors, such that the prior 
states that a one standard deviation change in the predictor is unlikely to yield more than a 1 standard 
deviation change in the response and will almost never yield more than a 2 standard deviation change in the 
response. This prior reduces to frequentist ridge regression (Hoerl and Kennard 2000). 

3. B𝑖𝑖.𝑖𝑖.𝑑𝑑.~𝒩𝒩�0, 0.52� 
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This prior requires that y is also standardized to 𝒩𝒩(0,0.5), and is conceptually similar to the above prior 
(Gelman et al. 2008). This prior is more useful for logistic regression. 

4. B𝑖𝑖.𝑖𝑖.𝑑𝑑.~𝒩𝒩(0, 1 𝜏𝜏𝐵𝐵⁄ ), 𝜏𝜏𝐵𝐵𝑖𝑖.𝑖𝑖.𝑑𝑑.~Gamma (α,β) 

The normal‐gamma prior places an independent normal distribution on each parameter, and the inverse 
variance of each normal distribution is modeled as an independent gamma distribution. The normal‐gamma 
prior is the completely continuous version of the discrete spike‐and‐slab prior and, under certain α and β 
priors, similar in shape to the Laplace distribution (Griffin and Brown 2010, 2017). Like the Laplace 
distribution, the normal‐gamma distribution spikes sharply near zero, thus providing stronger regularization 
than the 𝒩𝒩(0,1) prior. This prior also requires careful consideration of the scale of both the response and 
predictors, and is a generalized version of frequentist LASSO regression (Park and Casella 2008, Griffin and 
Brown 2010). Careful choice of α and β allow the prior to become more or less informative (Supplementary 
material Appendix 4). 

5. 𝐵𝐵~𝒩𝒩(0,σ𝐵𝐵2 ),σ𝐵𝐵~Cauchy(0, v)ϵ[0,∞] 

This prior models B hierarchically, treating the parameters in B as coming from a positive‐truncated Cauchy 
distribution with some unknown variance among parameters. By modeling B hierarchically, results from 
each predictor informs the others (Kruschke 2010). Since most predictors will have weak parameter 
estimates, this prior shrinks all parameters towards zero. The degree of shrinkage depends on ν, which 
controls the width of the Cauchy prior on σ𝐵𝐵. An noninformative prior on σ𝐵𝐵 with large ν yields a standard 
mixed‐effects model with random parameters (Gelman 2006). While standard mixed effects models do 
provide regularization, using a small value of ν implies that there should be little variation among 
parameters and imparts stronger regularization (Supplementary material Appendix 4). 

These priors work for models that contain only quantitative predictors or a mixture of quantitative and 
categorical predictors. Categorical predictors must be encoded with caution. Dummy coding (0,1) treats a 
change in category as a unit change in X, such that the 𝒩𝒩(0, 12) prior, for example, states that changing the 
category or treatment level should not result in more than a 2 standard deviation change in the predictor. 
Effects coding, on the other hand, represents each factor as a deviation from the overall data mean. 
A  𝒩𝒩(0, 12) prior then assumes that treatments should not cause a large deviation from the mean. The special 
case of models that contain only categorical predictors (i.e. ANOVA designs) is discussed below. 

Simulation experiments of a linear regression with an intercept (B0) and four predictors (B1, B2, B3, B4) 
demonstrated the regularizing effect of weakly informative priors (Supplementary material Appendix 4). 
Noninformative priors often produced type M errors when coupled with noisy data (Fig. 6). Parameters B1, B2 
and B3 were, for example, all overestimated at 𝑁𝑁  =  10 and σ𝑦𝑦 = 8. At N = 20, 30 and σ𝑦𝑦 = 8, parameter B4 
exhibited similar type M errors with noninformative priors (Fig. 6). Weakly informative priors mitigated type M 
errors by constraining parameter estimates closer to the true value for small effects at the cost of occasionally 
underestimating large true effects (Fig. 6). For example, at N = 10 and σ𝑦𝑦 = 8, regularizing priors prevented 
overestimation of B1 and B2 while shrinking estimates of B3 closer to the true value. Similarly, at N = 20, 30 and 
σ𝑦𝑦 = 8, regularizing priors shrunk erroneously large estimates of B4 towards zero and the true value. However, 
shrinkage also caused weakly informative models to underestimate the true effect of B3 at N = 20 and σ𝑦𝑦 = 8. At 
σ𝑦𝑦 = 2, the regularizing effect of weakly informative priors weakened until, at large sample sizes, prior choice 
had no impact on model results. Thus, ecologists should consider adopting a normal‐gamma or hierarchical 
weakly informative prior as a default prior for regressions; such priors conservatively estimate parameters and 
mitigate type M errors with low‐powered data but have little impact on posterior inference with high‐powered 
data. 
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Figure 6 A single example of how weakly informative regularizing priors affect posterior inference for 
parameters B0, B1, B2, B3 and B4 in a multiple regression. Regressions were run at various sample sizes (N = 10, 
20, 30) and data noise (σ𝑦𝑦 = 2, 8). Note that the dataset was fixed within each panel, such that the same dataset 
was analyzed with all five models. However, the dataset varied among panels. Points represent the best 
posterior point estimate, bars are one standard error. Supplementary material Appendix 4 contains all code for 
simulation exercises. Thorough demonstrations of how priors affect shrinkage based on Monte Carlo simulations 
or analytical results are found in Lemoine et al. (2016) – Supplementary material Appendix 2 Fig. A3 and Gelman 
et al. (2012) – Fig. 4. 
 

ANOVA models 
ANOVA models are a special case of linear regression comprised of only categorical predictors. In a hierarchical 
ANOVA, categorical factors are grouped into k batches of coefficients corresponding to different factors or sets 
of interaction terms (Gelman 2005, Gelman and Hill 2007). As an example, suppose an ecologist initiates an 
experiment to assess whether aquatic primary production is independently or jointly regulated by nitrogen (N) 
and phosphorus (P) (Allgeier et al. 2011). Each nutrient treatment has two levels (0, 10 g m−2), resulting in four 
treatments (N0–P0, N10–P0, N0–P10, and N10–P10). This experiment can be analyzed with a hierarchical two‐
way ANOVA: 

(11) 

𝑦𝑦~𝒩𝒩�y,� σ𝑦𝑦2� 

(12) 

y� = μ + B𝑁𝑁 + B𝑃𝑃 + B𝑁𝑁𝑁𝑁 

(13) 

𝐵𝐵𝑁𝑁~Prior 

(14) 

𝐵𝐵𝑃𝑃~Prior 

(15) 

𝐵𝐵𝑁𝑁𝑁𝑁~Prior 

 

Here, µ is the overall mean, 𝑩𝑩𝑁𝑁 contains the marginal means of each N treatment, 𝑩𝑩𝑃𝑃 contains the marginal 
means of each P treatment, and 𝑩𝑩𝑁𝑁𝑃𝑃 contains the cell means of the joint N–P treatments. Since ANOVAs 
emphasize comparing between‐ and within‐groups variance components, this model is purposefully 
overparameterized to estimate variance components for the marginal and cell means. 
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Because this model is over‐parameterized and non‐identifiable, linear constraints are imposed on each batch of 
coefficients to induce identifiability: 

(16) 

𝑦𝑦~𝒩𝒩�y�,σ𝑦𝑦2� 

(17) 

y� = μ∗ + B𝑁𝑁
∗ + B𝑃𝑃

∗ + B𝑁𝑁𝑁𝑁
∗  

(18) 

μ∗ = μ + E[B𝑁𝑁] + E[B𝑃𝑃] + E[B𝑁𝑁𝑁𝑁] 

(19) 

B𝑁𝑁
∗ = B𝑁𝑁 − E[B𝑁𝑁] 

(20) 

B𝑃𝑃
∗ = B𝑃𝑃 − E[B𝑃𝑃] 

(21) 

B𝑁𝑁𝑁𝑁
∗ = B𝑁𝑁𝑁𝑁 − E[B𝑁𝑁𝑁𝑁] 

 

(22) 

B𝑁𝑁~Prior 

(23) 

B𝑃𝑃~Prior 

(24) 

B𝑁𝑁𝑁𝑁~Prior 

The parameters B* now represent marginal and cell mean deviations from the overall mean (see Supplementary 
material Appendix 5 for other potential ANOVA model formulations). Finite population variation among groups 
can be calculated from the posteriors of each batch of coefficients (Gelman 2005): 

(25) 

Var[𝑁𝑁] = Var�B𝑁𝑁 − E[B𝑁𝑁]� = Var[B𝑁𝑁
∗ ] 

(26) 

Var[𝑃𝑃] = Var�B𝑃𝑃 − E[B𝑃𝑃]� = Var[B𝑃𝑃
∗ ] 

(27) 
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Var[𝑁𝑁𝑁𝑁] = Var�B𝑁𝑁𝑁𝑁 − E[B𝑁𝑁𝑁𝑁]� = Var[B𝑁𝑁𝑁𝑁
∗ ] 

(28) 

𝜖𝜖 = 𝑦𝑦 − 𝑦𝑦� 

(29) 

VAR[Residual] = VAR[𝜖𝜖] 

Comparing the relative sizes of each variance component provides an estimate not only of the significance but 
also, and perhaps more importantly, the importance of each factor. However, ecologists should be aware of 
three important differences between hierarchical and traditional ANOVAs. First, classical ANOVAs are sensitive 
to unbalanced designs and must be conducted with the appropriate sums‐of‐squares, while implementation of 
hierarchical ANOVAs does not depend on balanced data. Second, mean‐square‐error calculations for each factor 
in a classical ANOVA assume that every other variance component except the residual is zero. In hierarchical 
ANOVAS, variance components are estimated simultaneously and thus will differ from classical estimates 
(Gelman 2005). Finally, factors are considered ‘statistically significant’ in classical ANOVAs only when the 
variance component (mean‐square‐error) is acceptably larger than residual error. In a hierarchical ANOVA, 
significant factors need not have larger variance components than residual error; indeed, they often do not. 
However, comparing factor variance components to residual error provides an estimate of importance for each 
factor conceptually similar to 𝜔𝜔2 from classical ANOVAs (Bruno et al. 2006). 

As variance components are estimated from the variation among treatment effects, regularization priors that 
shrink treatment effects (B) towards the overall mean will also regularize the variance components. Several 
regularization options exist and many are similar to the priors for regression (see Supplementary material 
Appendix 5 for all model code). 

1. B(𝑘𝑘)𝑖𝑖.𝑖𝑖.𝑑𝑑.~𝒩𝒩�𝜇𝜇(𝑘𝑘), 10002� 

This prior gives every coefficient in the kth batch an independent, diffuse prior and provides no shrinkage. 
However, estimates of variance components will differ from frequentist analyses because variance 
components are estimated simultaneously rather than independently. In my personal experience, this 
model regularly fails to converge. 

2. B𝑖𝑖.𝑖𝑖.𝑑𝑑.~𝒩𝒩�μ(𝑘𝑘), 12� 

This prior states that deviations for any treatment or interaction term should be <2, though the scale of the 
response variable needs to be carefully considered. Note that because B contains the means for each 
treatment in the batch, the parameters B need not be centered around 0, but are instead centered around 
the mean of the two groups µ(k). Thus, this prior states that treatment means should not deviate from the 
mean of treatment means by more than 2. If y has been standardized, then µ(k) can be replaced with 0, 
because the overall mean will be 0. 

3. 𝐵𝐵(𝑘𝑘)~𝒩𝒩�μ(𝑘𝑘),σ𝐵𝐵
2(𝑘𝑘)� ,σ𝐵𝐵

2(𝑘𝑘)~Cauchy�0, v(𝑘𝑘)� ∈ [0,∞] 

This prior models each batch of coefficients hierarchically, treating each batch of coefficients k as coming 
from a normal distribution with a batch‐specific standard deviation. As ν increases, the prior 
on σ𝐵𝐵

2(𝑘𝑘)becomes essentially uniform and parameter estimates converge to the same parameter estimates 
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obtained from maximum likelihood mixed‐effect models (Gelman 2005). Because variances are difficult to 
estimate when the number of groups is small (i.e. variance among two nitrogen treatments), informative 
priors of σ𝐵𝐵

2(𝑘𝑘)~Cauchy(0,2.5) help constrain variance components to realistic values (Gelman 2006). 

4. B(𝑘𝑘)~𝒩𝒩�μ(𝑘𝑘),σ𝐵𝐵
2(𝑘𝑘)� ,σ𝐵𝐵2~Cauchy(0, v) ∈ [0,∞] 

This prior is slightly different from the above prior. Instead of modeling each variance component σ𝐵𝐵
2(𝑘𝑘) as 

coming from an independent prior distribution, all variance components are modeled with a single, 
hierarchical distribution (Gelman 2005). This prior states that most batches should have little variation 
among coefficients, but allows for occasional large variance components. Stronger priors restrict the 
probability of large variance components and thus provide more shrinkage. 

The severity of regularization induced by weakly informative priors depends not just on statistical power but 
also on data balance. With balanced data, weakly informative priors constrained estimates for treatments that 
deviated substantially from the overall mean and did so most strongly for low‐powered data (N = 5, σ𝑦𝑦 = 8, Fig. 
7). Treatment estimates for high‐powered data, resulting from either low noise (σ𝑦𝑦 = 2) or larger sample sizes 
(N = 30) exhibited less regularization with weakly informative priors (Fig. 7). In contrast, frequentist ANOVAs 
always yielded treatment estimates that converged to the data mean regardless of statistical power (Fig. 7). 
Unbalanced data led to more regularization for all models. Indeed, constraining estimates of the unbalanced 
treatment to the overall mean is one of the lesser appreciated aspects of frequentist ANOVAs. In contrast, 
hierarchical ANOVAs with weakly informative priors regularized all treatment means, especially those that 
deviated significantly from the overall mean (Fig. 7). Some degree of regularization of treatment means occurred 
across all permutations of sample size and data noise except in the ideal case of high sample sizes (N = 30) 
coupled with low noise (σ𝑦𝑦 = 2). Thus, weakly informative priors constrained treatment means only for less ideal 
situations: unbalanced data and/or low power. 

 
Figure 7 A single example of how weakly informative regularizing priors affect posterior inference in a two‐way 
ANOVA. N refers to the number of replicates per treatment, i.e. N = 5 means that each of the four treatments 
contained five observations. To create unbalanced data, I reduced the number of replicates in the N10–P10 
treatment by half. Points represent the best posterior point estimate, bars are one standard error. 
Supplementary material Appendix 5 contains all code for simulation exercises. 
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Hierachical models 
Bayesian statistics have become synonymous with hierarchical models. These models treat some combination of 
parameters as arising from an ‘overall’ or ‘population‐level’ distribution that allows extrapolation to unobserved 
cases. For example, Belenky et al. (2003) measured the reaction reaction time of humans to subjected to sleep 
deprivation for ten consecutive days (sleepstudy data available in the R lme4 package). A standard linear model 
for these data has the form: 

(30) 

y�𝑗𝑗 = β0 + β1Day + β2𝑗𝑗Subject𝑗𝑗 + β3𝑗𝑗Day × Subject𝑗𝑗 

(31) 

y~𝒩𝒩�y�𝜎𝜎𝑦𝑦2� 

where β0 is the intercept of subject 1, β1 is the slope of reaction time per day for subject 1, β2j is the difference 
in baseline reaction time between subject 1 and subject j, and β3j is the difference in slopes between subject 1 
and subject j. Here, subjects are treated as ‘fixed‐effects’ and, although the intercept and slopes are estimated 
for each observed subject, extrapolation of intercepts and slopes to the general population of unobserved 
individuals is impossible. 

Extrapolation requires the use of hierarchical, or random‐effects, models. A random‐intercept model accounts 
for the non‐independence of measurements by allowing intercepts to vary among subjects: 

(32) 

y�𝑗𝑗 = α𝑗𝑗 + β1Day𝑗𝑗 

(33) 

α𝑗𝑗~𝒩𝒩(μασ𝛼𝛼2 ) 

(34) 

y~𝒩𝒩�y�,σ𝑦𝑦2� 

where αj is the intercept of the jth subject, µα is the population‐level intercept, and σ𝛼𝛼2  is the between‐subject 
variance in α. This model is a repeated‐measures design (in R, repeated measures designs are fit in the lme4 
package by treating subject as random: reaction ~ time + (1|subject). This R formula corresponds to the random‐
intercept model here.) that assumes all subjects share the same slope. This assumption can be relaxed by 
treating slopes as a second random variable (in R, this model is fit in lme4 with the formula 
reaction ~ time + (time|subject). The lme4 model will assume that a and g are correlated.): 

(35) 

y�𝑗𝑗 = α𝑗𝑗 + γ𝑗𝑗Day𝑗𝑗  

(36) 

α𝑗𝑗~𝒩𝒩(μα,σ𝛼𝛼2 ) 

(37) 
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γ𝑗𝑗~𝒩𝒩�μ𝑦𝑦 ,σ𝛾𝛾2� 

(38) 

y𝑗𝑗~𝒩𝒩�y�,σ𝛾𝛾2� 

Intercepts and slopes now have distributions that enable researchers to extrapolate results to the general 
population. The shape of these distributions is controlled by the variance parameters, which in a Bayesian 
context receive priors. Weakly informative priors regularize population variances and, in so doing, shrink the 
individual parameter estimates. 

Priors for random‐intercept models 
Priors for random‐intercept models should regularize σ𝛼𝛼2 , reducing the among‐subject spread of intercepts 
unless supported by a large number of subjects. Importantly, the number of subjects now dictates parameter 
shrinkage, not the number of data points within each subject (see Supplementary material Appendix 6 for each 
prior distribution). 

1. logσ𝛼𝛼2~𝑢𝑢(−100,100)This prior is noninformative for σ𝛼𝛼2  on the log‐scale, but highly informative on the 
natural scale (Browne and Draper 2006, Gelman and Hill 2007). On the original scale, this prior gives 
exponentially more weight to larger variances and, since log0 is undefined, results in an infinite 
probability mass at σ𝛼𝛼2 = 0. Thus, this prior is not recommended (Browne and Draper 2006). 

2. 𝜎𝜎𝛼𝛼~𝑢𝑢(0,100) 

This prior is completely noninformative and reduces to maximum‐likelihood estimation of between‐subject 
variances (Gelman and Hill 2007). Note that this prior is placed on the standard deviation, rather than the 
variance. 

3. σ𝛼𝛼2~𝑢𝑢(0,1/𝑒𝑒) 

This prior is also completely noninformative but, unlike the previous distribution, places the prior on the 
variance not the standard deviation. It is highly sensitive to the choice of e. Typically, e = 0.001 (Browne and 
Draper 2006). 

4. σ𝛼𝛼2~Gamma(1.5, 10−4) 

This prior is weakly informative and skewed towards zero (Chung et al. 2015). Note that 10−4 is the rate 
(scale−1) of the gamma distribution. 

5. σ𝛼𝛼2~InvGamma(𝑒𝑒, 𝑒𝑒) 

This prior should be used carefully. It becomes improper as e decreases and can inflate variances from small 
sample sizes (Daniels 1999). 

6. 𝜎𝜎𝛼𝛼 ~ Cauchy(0, ν) ∈ [0,∞] 

This prior is as above for regression and ANOVA models. McElreath (2015) suggests setting ν = 1. 

I analyzed the sleepstudy data with random‐intercept hierarchical models using each of the six weakly 
informative priors listed above (see Supplementary material Appendix 6 for model code). Because priors were 
placed on σ𝛼𝛼2 , as opposed to the subject intercepts, I demonstrate shrinkage using histograms of posterior 
distributions for σα (see Supplementary material Appendix 6 for plots of subject intercepts under each prior). 
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The histograms and confidence intervals in Fig. 8 showcase several important aspects of weakly informative 
hierarchical priors. First, logσ𝛼𝛼2~𝑢𝑢(−100,100) is unacceptable because the prior mass on σ𝛼𝛼2  is so infinitesimally 
small as to eliminate low among‐subject variance from the posterior regardless of sample size (Fig. 8). Across all 
sample sizes, the lower limit of CI95 was bounded at 1. Second, uniform priors did not shrink posterior 
distributions and yielded unrealistically high estimates (CI95 > 29) at N = 3 (Fig. 8). Conversely, the 
InvGamma(0.1,0.1) prior regularized priors too harshly by placing too much posterior mass on σα ≈ 0. Third, the 
two Cauchy priors provided the best posteriors for σα at N = 3, with Cauchy(0,1) reducing the right tail slightly 
more than Cauchy(0,2.5) (CI95 = 3.84, 4.91 respectively, Fig. 8). Finally, all priors converged to a stable posterior 
distribution as sample size increased (Fig. 8). At N = 9, the InvGamma(0.1,0.1) and two Cauchy priors provided 
more shrinkage than other priors, evidenced by the shorter right tail and smaller CI95 for σα (Fig. 8). At N = 18, all 
proper posterior distributions were essentially identical, with a slight degree of increased shrinkage for the 
InvGamma(0.1,0.1) and two Cauchy priors compared to other priors (Fig. 8). 

 
Figure 8 Histograms of posterior distributions for σα from a single example of a random‐intercept model of the 
sleepstudy data. Sample sizes were varied by taking the first N subjects. Supplementary material Appendix 6 
contains all code. 
 
Priors for random‐intercept and random‐slope models 
The random‐intercept model assumed that the relationship between reaction time and duration of sleep 
deprivation is constant among all subjects. Exploratory data analysis, on the other hand, indicated substantial 
variability in slopes among subjects (Supplementary material Appendix 6). It might therefore be more 
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appropriate to account for among‐subject variation in slopes. The model in Eq. 35–38, as described in Kruschke 
(2010), assumes that intercepts and slopes are independent. In practice, random effects should be modeled as 
correlated variables (Gelman and Hill 2007): 

(39) 

y�𝑗𝑗 = X𝑗𝑗B𝑗𝑗 

(40) 

B~ℳ𝒱𝒱𝒱𝒱(μ𝐵𝐵, Σ𝐵𝐵) 

(41) 

y~𝒩𝒩�y�,𝜎𝜎𝑦𝑦2� 

where X is the design matrix containing an intercept and duration data, Bj is a vector containing subject‐specific 
intercepts and slopes, µB is a vector of the population‐level intercept and slope, and ΣB is the covariance matrix 
for intercepts and slopes. Regularization priors must constrain variances and so are placed on ΣB. 

1. Σ𝐵𝐵 ~ InvWish(𝑰𝑰,𝑘𝑘  +  1) 

The inverse Wishart prior requires two parameters: a k × k identity matrix I and k + 1 degrees of freedom, 
where k is the number of random effects. Using k + 1 degrees of freedom is equivalent to setting a uniform 
distribution from −1 to 1 on correlations among parameters (Gelman and Hill 2007, Alvarez et al. 2014). The 
InvWish prior gained popularity as the conjugate prior for a multivariate normal distributions, facilitating 
computations via Gibbs sampling in BUGS and JAGS. However, the InvWish prior performs poorly when 
variances are small relative to means, constraining variances upwards and correlations downwards (Alvarez 
et al. 2014). 

2. Σ𝐵𝐵  =  Diag(τ)ΩDiag(τ), 𝜏𝜏~𝑢𝑢(0,100), Ω ~ InvWish(𝑰𝑰,𝑘𝑘  +  1) 

An alternative to the InvWish prior is scaled inverse Wishart prior (Gelman and Hill 2007). This prior still uses 
the inverse Wishart distribution to maintain conjugacy but alleviates the issue of bias by decomposing 
ΣB into two components: a vector of scaling coefficients for variances τ and an unscaled covariance matrix Ω. 
Note that Ω is not the correlation matrix and τ and Ω cannot be interpreted independently. The scaled 
InvWish prior alleviates bias by estimating variances without constraint via τ while placing a uniform prior on 
correlations in Ω. However, both τ and Ω receive noninformative priors, providing no regularization. 

3. Σ𝐵𝐵  =  Diag(τ)ΩDiag(τ), τ ~ Cauchy(0, ν) ϵ [0,∞],Ω ~ LKJ(ϕ) 

Since STAN does not require conjugacy, ΣB can be decomposed into conceptually simpler components. Now, 
τ is a vector containing the variances of each parameter and can be given a Cauchy prior for shrinkage as 
discussed for random‐intercept models, and Ω is the correlation matrix among parameters. The LKJ 
distribution has one parameter ϕ. When ϕ = 1, the prior is uniform over all possible correlation matrices. As 
ϕ > 1, the prior becomes more heavily spiked towards the identity matrix thereby shrinking correlations 
among parameters, and as ϕ < 1 the prior becomes biased against the identity matrix (Stan Development 
Team 2016). Weakly informative priors use ϕ slightly greater than one. 

4. Σ𝐵𝐵~Wish�(1 2 × 10−4⁄ )𝑰𝑰,𝑘𝑘 + 2� 
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The covariance matrix is given a Wishart prior with the identity matrix I multiplied by a large number and 
degrees of freedom equal to the number of parameters k + 1. This prior arises from the product of 
Gamma(1.5,10−4) priors on the eigenvalues of ΣB (Chung et al. 2015). 

Re‐analysis of the sleepstudy data using the model of Eq. 39–41 revealed marked differences in posterior 
distributions of σα and σγ among the four priors from ΣB (see Supplementary material Appendix 7 for model 
code). The InvWish prior resulted in prior posteriors but biased estimates upwards for σγ, as indicated by the 
slightly higher bounds for the CI95 compared to other priors (Fig. 9). I therefore follow Alvarez et al. (2014) in 
recommending that ecologists avoid the InvWish prior. Under the scaled InvWish and Wish priors, posteriors for 
σα and σγ were improper at N = 3 (Fig. 9). At N = 3, only the two Cauchy priors resulted in reasonable posteriors 
for both the intercept and slope. As sample size increased, the scaled InvWish and Cauchy priors converged on 
stable posterior distributions, albeit with slightly more shrinkage present in the Cauchy(0,1) posterior at N =  = 9 
(Fig. 9). I recommend that ecologists use the Cauchy priors when modeling correlated random effects for four 
reasons: 1) the decomposed components are easily interpretable, τ contains variances and Ω is the correlation 
matrix, 2) the Cauchy alone yielded proper posteriors across all sample sizes, 3) priors can be easily be 
strengthened or weakened via Cauchy and LKJ distributions, or by replacing Cauchy(0,1) with 𝒩𝒩(0,1), and 4) 
Cauchy posteriors converged towards the noninformative scaled InvWish prior at high sample sizes. 

 
Figure 9 Histograms of posterior distributions for σα and σγ from a single example of a random‐intercept and 
random‐slope model of the sleepstudy data. Sample sizes were varied by taking the first N subjects. 
Supplementary material Appendix 7 contains all code. 

Concluding thoughts 
In this manuscript, I have argued that ecologists should, at a minimum, incorporate weakly informative priors in 
Bayesian analyses in order to stabilize posteriors and regularize parameter estimates. Regularization can 
potentially mitigate or eliminate common errors associated with frequentist or noninformative Bayesian 
analyses, and weakly informative priors are simple to implement in any standard Bayesian model 
(Supplementary material Appendix 1–7). In this concluding section, I offer two final thoughts on practicing 
Bayesian statistics with weakly informative priors. 
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First, weakly informative priors provide modest, not severe, regularization. Readers may have noticed 
throughout the numerous examples provided here that posterior distributions from weakly informative priors 
almost always overlap with noninformative posteriors (Fig. 6–9). Indeed, the difference between noninformative 
priors and weakly informative priors would generally not be ‘statistically significant’. The distributional overlap 
among priors does not discredit the need for priors but instead is the hallmark of a well‐chosen weakly 
informative prior. Strongly informative priors would, on the other hand, significantly affect posterior 
distributions and are the subject of other reviews (Murray et al. 2009, Martin et al. 2012, Morris et al. 2015). 
Even the modest regularization provided by weakly informative priors with low statistical power can reduce type 
I errors (Fig. 5) and improve out‐of‐sample prediction for regression models (McElreath 2015). In ANOVA 
models, shrinkage provided by regularization priors can eliminate the need for post‐hoc corrections for multiple 
comparisons; pairwise contrasts of weakly informed posteriors often have lower error rates than Bonferroni‐
corrected pairwise comparisons among noninformed posteriors (Gelman et al. 2012). With high statistical 
power, differences among priors cease. The safest course of action is therefore to begin with a weakly 
informative prior to regularize low‐powered data and have no effect on high‐powered data. 

Second, given the variety of available priors and the ease with which multiple priors can be implemented, 
ecologists should always conduct Bayesian analyses utilizing multiple prior distributions of varying strength. 
Once an initial model has been coded and embedded within a pre‐ and post‐processing script, it is trivial to copy 
the script and alter priors to generate new figures or embed multiple models within the same processing script. 
Regardless of approach, data should be analyzed using multiple priors along a gradient of information. A 
completely noninformative prior allows ecologists to judge patterns in the data alone. Comparing 
noninformative posteriors to progressively stronger priors informs the ecologist about the strength of patterns. 
If posteriors are sensitive to prior choice then the ecologist should be cautious in their interpretation and choose 
a regularized prior for presentation as the main analysis. Conversely, posteriors that do not differ among priors 
enable ecologists to make strong inferences from their data. Posteriors from multiple priors can be presented 
together in the main text (i.e. Fig. 7, Rode et al. 2017) or as supplementary materials. By comparing results 
among multiple priors, ecologists will be explicitly forced to consider the power of their data and strength of 
effect sizes. During my survey of the literature, a surprising number of papers did not report prior information in 
the main text or anywhere in the supplemental literature. Papers using Bayesian methods should always report 
the priors used and the justification for each prior (see Rode et al. 2017 for an example). This information is 
crucial to interpretation of the results and should be present in the main text. 

Finally, I would be remiss if I did not provide concrete recommendations for prior choice. For linear regressions, I 
recommend the normal‐gamma prior due to its similar shrinkage with the hierarchical prior and flexibility in 
altering the strength of priors (Fig. 6). For example, priors for interaction terms can be strengthened as 
interactions should require more evidence, or interaction terms can be modeled hierarchically such that a weak 
prior for the interaction requires that one or both main effects be strong (Griffin and Brown 2017). Likewise, the 
full hierarchical priors for ANOVA models provide the best balance of regularization, ease of implementation, 
and flexibility (Fig. 7). For both random‐intercept and random slope models, ecologists should use Cauchy priors 
because only Cauchy priors provided proper posteriors at low sample sizes. Other priors biased estimates 
upwards or were improper at low sample sizes. Of course, prior choice is subjective, but ecologists should never 
use priors with hard limits (i.e. 𝑢𝑢 − (−1000,1000)), even for variance parameters. Variances should instead be 
modeled with an unbounded, positive‐only distribution. 

In summary, Bayesian analyses depend on prior information. Priors should not be considered a nuisance 
component of Bayesian analyses whose only role is to stabilize posteriors, but rather constitute an integral part 
of Bayesian statistical philosophy, interpretation, and model fitting. With the guidelines provided here, I hope to 
normalize the use of weakly informative priors for Bayesian analyses in ecology. Ecologists can and should 
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debate the appropriate form of prior information, but should consider weakly informative priors as the new 
‘default’ prior for any Bayesian model. 

Alternative viewpoints 
During the review process, I received several comments from reviewers (both friendly and anonymous) that 
Bayesian methods are not only used to incorporate priors, but also to fit complex models (e.g. hierarchical 
hurdle models, models with custom distributions, missing data models) that have no least squares solution and 
fail under maximum likelihood optimization. Such models only work using Bayesian MCMC parameter 
estimation. However, I believe that MCMC samplers are independent of Bayesian analyses for two reasons. First, 
it is possible to fit models via MCMC sampling without priors. Figure 2 and 3 demonstrate that MCMC samplers 
can yield the same estimates as OLS, and are more robust than maximum likelihood. Second, it is possible to 
conduct Bayesian analyses without using MCMC samplers. Bayesian linear regression and some simple 
hierarchical models have analytical solutions under conjugate priors, such that MCMC samplers are not 
necessary (Gelman et al. 2013). Yet because analytical solutions do not exist for many Bayesian models, MCMC 
samplers have become synonymous with Bayesian statistics. It is my opinion that ecologists carefully distinguish 
between the use of MCMC samplers for model fitting and the practice of Bayesian statistics, which requires 
priors. 
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