
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Biological Sciences Faculty Research and 
Publications Biological Sciences, Department of 

11-2019 

Embryonic Development of A Parthenogenetic Vertebrate, The Embryonic Development of A Parthenogenetic Vertebrate, The 

Mourning Gecko (Mourning Gecko (Lepidodactylus lugubris) ) 

Aaron H. Griffing 
Marquette University 

Thomas J. Sanger 
Loyola University - Chicago 

Juan D. Daza 
Sam Houston State University - Huntsville, TX 

Stuart V. Nielsen 
Florida Museum of Natural History - Gainesville 

Brendan J. Pinto 
Marquette University 

See next page for additional authors 

Follow this and additional works at: https://epublications.marquette.edu/bio_fac 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Griffing, Aaron H.; Sanger, Thomas J.; Daza, Juan D.; Nielsen, Stuart V.; Pinto, Brendan J.; Stanley, Edward 
L.; and Gamble, Tony, "Embryonic Development of A Parthenogenetic Vertebrate, The Mourning Gecko 
(Lepidodactylus lugubris)" (2019). Biological Sciences Faculty Research and Publications. 809. 
https://epublications.marquette.edu/bio_fac/809 

https://epublications.marquette.edu/
https://epublications.marquette.edu/bio_fac
https://epublications.marquette.edu/bio_fac
https://epublications.marquette.edu/biology
https://epublications.marquette.edu/bio_fac?utm_source=epublications.marquette.edu%2Fbio_fac%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=epublications.marquette.edu%2Fbio_fac%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/bio_fac/809?utm_source=epublications.marquette.edu%2Fbio_fac%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Aaron H. Griffing, Thomas J. Sanger, Juan D. Daza, Stuart V. Nielsen, Brendan J. Pinto, Edward L. Stanley, 
and Tony Gamble 

This article is available at e-Publications@Marquette: https://epublications.marquette.edu/bio_fac/809 

https://epublications.marquette.edu/bio_fac/809


 

Marquette University 

e-Publications@Marquette 
 

Biological Sciences Faculty Research and Publications/College of Arts and 
Sciences 

 

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The 
published version may be accessed by following the link in the citation below. 

 

Developmental Dynamics, Vol. 248, No. 11 (November 2019): 1070-1090. DOI. This article is © Wiley 
and permission has been granted for this version to appear in e-Publications@Marquette. Wiley does 
not grant permission for this article to be further copied/distributed or hosted elsewhere without the 
express permission from Wiley.  

 

Embryonic Development of A 
Parthenogenetic Vertebrate, The Mourning 
Gecko (Lepidodactylus lugubris) 
 

Aaron H. Griffing 
Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 

Thomas J. Sanger 
Department of Biology, Loyola University in Chicago, Chicago, Illinois 

Juan D. Daza 
Department of Biological Sciences, Sam Houston State University, Huntsville, Texas 

Stuart V. Nielsen 
Department of Herpetology, Florida Museum of Natural History, Gainesville, Florida 

Brendan J. Pinto 
Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 

Edward L. Stanley 
Department of Herpetology, Florida Museum of Natural History, Gainesville, Florida 

https://doi.org/10.1002/dvdy.72
http://epublications.marquette.edu/


Tony Gamble 
Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 
Milwaukee Public Museum, Milwaukee, Wisconsin 
Bell Museum of Natural History, University of Minnesota, Saint Paul, Minnesota 
 

Abstract 
Background 
One goal of evolutionary developmental biology is to understand the role of development in the origin 
of phenotypic novelty and convergent evolution. Geckos are an ideal system to study this topic, as they 
are species‐rich and exhibit a suite of diverse morphologies—many of which have independently 
evolved multiple times within geckos. 

Results 
We characterized and discretized the embryonic development of Lepidodactylus lugubris—an all‐
female, parthenogenetic gecko species. We also used soft‐tissue μCT to characterize the development 
of the brain and central nervous system, which is difficult to visualize using traditional microscopy 
techniques. Additionally, we sequenced and assembled a de novo transcriptome for a late‐stage 
embryo as a resource for generating future developmental tools. Herein, we describe the derived and 
conserved patterns of L. lugubris development in the context of squamate evolution and development. 

Conclusions 
This embryonic staging series, μCT data, and transcriptome together serve as critical enabling 
resources to study morphological evolution and development, the evolution and development of 
parthenogenesis, and other questions concerning vertebrate evolution and development in an 
emerging gecko model. 

1 INTRODUCTION 
A central goal of evolutionary‐developmental (evo‐devo) biology is to understand the developmental 
changes that result in phenotypic novelty and convergence. Interest in how developmental processes 
have influenced morphological diversity has led to the recent investigation of squamate (lizard, snake, 
and amphisbaenian) development. These studies have demonstrated the immense utility of squamates 
as models for the development of amniote bauplans.1-7 Ideally, model clades or species in evo‐devo 
will meet several criteria (reviewed by Jenner and Wills8). First, the primitive character states and 
subsequent evolution of derived character states should be known in a phylogenetic framework. 
Second, the study of this clade, or species, should reveal some combination of unique, derived patterns 
and broad, conserved patterns. Finally, the clade or species should be practical to rear in a laboratory 
setting and have available resources to facilitate the investigation of evo‐devo questions. 

Gecko lizards (Gekkota) are a clade that exemplifies these criteria. The gecko bauplan is considered 
similar to the ancestral squamate form9 while also exhibiting several derived morphologies, such as 
adhesive toepads, which have independently evolved numerous times within gecko evolutionary 
history.10-13 Homoplasies (convergent character states), such as this, have been uncovered with 



robust phylogenetic analyses of gecko relationships.10, 14, 15 Recent phylogenetic studies using 
molecular data find high support for geckos, with the exception of dibamid lizards, as the sister clade 
to remaining squamates.16, 17 Therefore, geckos are an integral component for studies exploring the 
full range of comparative squamate evo‐devo. This combination of the ancestral bauplan, complex, 
derived morphologies, rampant convergence on numerous character states, and robust phylogenetic 
hypotheses make geckos the ideal group to study gecko‐specific derived patterns, as well as enlighten 
squamate‐ or vertebrate‐wide conserved patterns. Logistically, many gecko species have simple 
protocols for their husbandry, can be reared in space‐efficient enclosures, and have an increasing 
number of genomic resources that are available or in development.18-24 

Of more than 1800 described species of gecko,25 the Mourning Gecko (Lepidodactylus lugubris) stands 
out as an ideal model to study developmental questions. Lepidodactylus lugubris is a small‐bodied 
gecko native to Southeast Asia and nearly all Pacific islands.18, 26, 27 This species belongs to the pan‐
Asian Gekko clade of gekkonid lizards, including the charismatic gliding geckos (Ptychozoon), flap‐
legged geckos (Luperosaurus), true geckos (Gekko), and slender geckos (Pseudogekko15, 28, 29). Like 
many other species in this clade, L. lugubris exhibits distally divided basal toe pads, which facilitate 
digital adhesion.13 Gekkonid lizards, such as L. lugubris, are oviparous; they reproduce by laying hard‐
shelled eggs, and have a fixed clutch‐size of two eggs.30 Arguably, the most interesting aspect of L. 
lugubris biology is parthenogenesis. This species is composed almost entirely of females, which 
reproduce successfully without male gametes, resulting in clonal daughters that are genetically 
identical to mothers (i.e., obligate parthenogenesis31). Male phenotypes are occasionally encountered 
in the wild or in captivity, however these individuals are extremely rare and typically infertile.31-
33 Numerous clonal lineages have been described for L. lugubris, each of which are considered to have 
been derived from separate hybridization events between Lepidodactylus moestus and an as of yet 
undescribed Lepidodactylus species from the South Pacific.34 Interestingly, backcrosses between 
diploid (2n = 44) L. lugubris lineages and one of the parental species can result in triploid (3n = 66) 
clonal lineages.34, 35 Thus, L. lugubris is a suitable model to study morphological development, 
phenotypic plasticity, sexual development, and the evolution of changes in ploidy. 

Parthenogenetic organisms are ideal study systems for developmental studies for several reasons: (a) 
every individual in a laboratory colony, after reaching sexual maturity, is reproductively active (i.e., no 
“2‐fold” cost of sex36), (b) there is no need for mate pairing, and (c) individuals within a clonal lineage 
should theoretically be genetically identical. Despite these factors, few parthenogenetic vertebrates 
are routinely maintained in laboratory settings.37-42 Several additional characteristics make L. 
lugubris a desirable model organism, including reproductive output (they are highly fecund, laying eggs 
year round43), there are published protocols for husbandry and embryo collection,18 they can easily 
be targeted for field collection (including from populations in the Hawaiian Islands26) or commercial 
purchase, and, unlike the majority of squamates, have hard‐shelled eggs which make embryological 
dissection and manipulation substantially easier.5 

Embryonic staging series, or normal staging tables, are valuable foundational tools for the study of new 
and diverse developmental model systems.44-48 Detailed descriptions of embryonic development 
facilitate effective experimental design and allow for an understanding of the timing of major 
developmental events. Since the first squamate embryonic staging series was generated almost 



115 years ago (Lacerta agilis49), another 34 complete squamate embryonic staging series have been 
published (Lima et al50; reviewed in References 51-53), thus providing ample comparative material for 
broad investigations into trends of squamate evolution and development. 

Staging tables are not the only resource needed by modern developmental biologists. Genomic and 
transcriptomic resources are necessary for studying spatial and temporal aspects of gene expression 
during development. Having sequence information for gene families, such as bone morphogenetic 
proteins (BMPs), which are critical for myriad functions during embryogenesis (e.g., mesoderm 
formation and patterning, neural patterning, skeletal development, and so forth; reviewed in 
Reference 54), will allow for the designing and generation of qPCR primers and in situ hybridization 
probes. Other tools, such as micro‐computed tomography (μCT), have facilitated new view of staging 
series that can, for example, accurately trace ossification sequence of skeletal 
elements.52, 53, 55, 56 Despite what seems to be a renaissance of embryological work, few embryonic 
staging series of reptiles have utilized soft‐tissue μCT imaging.57 Using soft‐tissue μCT techniques for 
embryological characterization provides the opportunity to nondestructively track ossification 
sequence, as well as, detail the subtleties of visceral, limb, craniofacial, or neural development.58, 59 

Combining light microscopy with soft‐tissue μCT imaging, we herein describe the embryonic 
development of an emerging evo‐devo model species, L. lugubris, and provide an annotated de novo 
transcriptome of a late‐stage L. lugubris embryo as a resource for future evolutionary and 
developmental investigations. Data generated by this study, particularly the open‐access 
transcriptomic and μCT data, taken together, provide ample resources for the continued study of L. 
lugubris as an evo‐devo model and sets the foundation for the expansion of integrative developmental 
studies in squamates. 

2 RESULTS 
2.1 Characterization of external morphology 
We diagnosed 16 developmental stages using a numbering scheme commonly used for squamates.60-
62 Stage 28 corresponds to stage at oviposition and stage 43 corresponds to a stage that directly 
precedes hatching. Although temperature can significantly affect the length of incubation,63 our 
sample of 242 embryos ranged from 0 days post‐oviposition (dpo) to 77 dpo (Figure 1). 

 
Figure 1. The observed ranges of post‐ovipositional stages defined in this study when incubated at 
26°C. Black circles correspond to outliers 

https://anatomypubs.onlinelibrary.wiley.com/cms/asset/39a55a4b-c6e2-40e0-a545-206b819c4f58/dvdy72-fig-0001-m.jpg


Stage 28 (Figure 2A,B) 
 

 
Figure 2. Stages 28–31 of Lepidodactylus lugubris embryonic development. Stage 28: lateral view of the 
whole embryo (A) with closer view of the cranial region (B). Stage 29: lateral view of the whole embryo 
and illustration of the limbs (C), closer view of the cranial and pharyngeal regions (D), and closer view 
of the thorax (E). Stage 30: lateral view of the whole embryo and illustration of the limbs (F), closer 
view of the cranial and pharyngeal regions (G), SEM image of the eye (H), and dorsal view of the neural 
tube of a preserved embryo (I). Stage 31: lateral view of the whole embryo and illustration of the limbs 
(J.), closer view of the pharyngeal and thoracic regions (K), and closer views of a SEM forelimb (L) and 
hindlimb (M). Scale bars = 1 mm. 1–4, pharyngeal clefts 1–4; I–V, pharyngeal arches I–V; AER, apical 
ectodermal ridge; At, atrium; CF, choroid fissure; Die, diencephalon; ED, endolymphatic duct; Eph, 
epiphysis; ET, endocardial tube; FNP, frontonasal prominences; FL, forelimb; HL, hindlimb; Li, liver; Lu, 
lungs; MA, mandibular arch; Mes, mesencephalon; Met, metencephalon; Mph, mesonephros; Mye, 
myelencephalon; NgM, nephrogeneous mesenchyme; NP, nasal pits; OpC, optic cup; Otc, otic capsule; 
RPE, retinal pigmented epithelium; S, somites; T, tail; Tel, telencephalon; Ve, ventricle 

Mean SVL: 4.11 mm (Standard deviation [sd] = 0.18, n = 3). 

Neural: There is little cephalic bulging (Figure 2A). The mesencephalon is distinct from the 
metencephalon and diencephalon, and the telencephalon is distinct from the diencephalon (Figure 2B). 
The margin of the otic capsule is faintly visible and translucent. The neural tube is open along the 
dorsum, starting anteriorly at the metencephalon and open most posteriorly at the first three somites. 

Pharyngeal arches and facial prominences: Pharyngeal clefts 1–2 are distinct (Figure 2B). Pharyngeal 
arches I–III are distinct (Figure 2B). Facial primordia are present but unfused. 

Eye: The eye is completely unpigmented (Figure 2B). The optic cup is circular in shape and the margin 
of the lens is round but irregular in shape. The choroid fissure margins are in contact and in the process 
of fusing. 

https://anatomypubs.onlinelibrary.wiley.com/cms/asset/5c23a3ab-cef1-41e4-ae0f-8e125ad954db/dvdy72-fig-0002-m.jpg


Limbs: Limb buds are only present as small, barely visible swellings. 

Thorax and tail: 30–32 somites. The endocardial tube is prominent and beating. Liver formation is 
indicated by condensed tissue directly posterior to the endocardial tube (Figure 2B). The nephrogenous 
mesenchyme, which currently lacks mesonephric tubules and gives rise to the mesonephros, is visible. 

Flexures and rotation: The cranial flexure is underway with the axes of the hind‐ and forebrains at an 
acute angle. The dorsal contour from the mesencephalon to the tail is curved, with the lumbo‐sacral 
region exhibiting a more extreme curve (Figure 2A). 

Stage 29 (Figure 2C–E) 
Mean SVL: 6.30 mm (sd = 0.42, n = 5). 

Neural: A dorsal mesencephalic bulge (i.e., the developing optic tectum) is prominent (Figure 2C). The 
myelencephalic, metencephalic, and diencephalic bulges are present but less distinct than 
mesencephalon (Figure 2D). The diencephalic‐telencephalic boundary is visible. The otic capsule is still 
translucent but the margin is much more distinct than the previous stage. 

Eye: The retinal pigmented epithelium (RPE) is beginning to pigment. The optic cup is more ovoid in 
shape, expanding posteriorly. The lens is less irregular in shape than the previous stage. The choroid 
fissure is closing, but not yet fully fused (Figure 2D). 

Pharyngeal arches and facial prominences: Pharyngeal clefts 1–3 are present and distinct. Pharyngeal 
arch I is separated into the maxillary arch and the mandibular arch. Pharyngeal arch II now obscures 
the majority pharyngeal arch III and pharyngeal cleft 2. Pharyngeal arch IV is visible. The maxillary arch 
fused anteriorly to the cranial region. The nasal pits are present (Figure 2D). Facial primordia have yet 
to fuse. 

Limbs: Both hindlimb and forelimb buds are present and are similar sizes (Figure 2C,E). 

Thorax and tail: 40–41 somites extending into the tail. The liver is now opaque and completely visible 
posterior to the endocardial tube. The lungs are now visible as opaque tissue condensations dorsally 
adjacent to the endocardial tube. The mesonephros and its tubules are visible directly posterior to the 
forelimb buds (Figure 2E). 

Flexures and rotation: The axes of the hind‐ and forebrains are at a nearly right angle. The dorsal 
contour from the mesencephalon to the tail is similar to the previous stage (Figure 2C). 

Stage 30 (Figure 2F–I) 
Mean SVL: 7.76 mm (sd = 0.81, n = 17). 

Neural: The dorsal bulge of the optic tectum is more exaggerated than the previous stage (Figure 2F). 
The telencephalic bulges are paired and beginning to fuse in the frontal region. The margins of the otic 
capsule are distinct with the fluid filled inside remaining translucent (Figure 2F,G). The opening of the 
neural tube is closing from posterior to anterior (Figure 2I). 

Eye: The optic cup remains an ovoid shape (Figure 2G). Pigment has now spread to the anterior portion 
of the eye, though still heaviest at the posterior. The choroid fissure remains only as a faint groove 
(Figures 2H and 3A). 



 
Figure 3. Scanning electron micrographs of Lepidodactylus lugubris embryos at stages 30 (A, B), 31 (C, 
D), and 32 (E, F). Lateral views of the eye (A, C), fusing facial primordia (E), and limb development (B, D, 
F). Scale bars = 100 μm. CF, Choroid fissure; AER, apical ectodermal ridge; FP, facial primordia 

Pharyngeal arches and facial prominences: The frontonasal prominences are paired and visible. 
Pharyngeal arch V and pharyngeal cleft 4 is now present (Figure 2G). 

Limbs: Both hindlimbs and forelimbs are paddle shaped and similar sizes (Figures 2F and 3B). 

Thorax and tail: 45–47 somites. The heart now has a distinct unified atrium and ventricle. The liver is 
completely opaque white (Figure 2F). 

Flexures and rotation: The axes of the cervical and thoracic regions are nearly at a right angle. The 
contour of the thoracic region to the tail is similar to the previous stage (Figure 2F). 

Stage 31 (Figure 2J–M) 
Mean SVL: 9.69 mm (sd = 0.71, n = 23). 

Neural: The dorsal bulge of the optic tectum is more exaggerated than the previous stage (Figure 2J). 
The endolymphatic ducts are now opaque and separated (Figure 2J,K). The opening of the neural tube 
is now restricted to its most anterior portion. The otic capsule is more opaque than the previous stage 
(Figure 2K). The epiphysis (pineal gland) is prominent and located between the frontonasal 
prominences (Figure 2K). 

Eye: The choroid fissure is fused (Figure 3C). The optic cup remains ovoid in shape but has extended 
slightly along the antero‐posterior axis (Figure 2J). The eye is more pigmented, particularly at the 
equator near the lens and in the dorsal margin of the eye. 

Pharyngeal arches and facial prominences: There is fusion of the anterior three pharyngeal arches and 
clefts (Figure 2K). The mandibular arch spans halfway along the ventral length of the cranium 
(Figure 2K). 

https://anatomypubs.onlinelibrary.wiley.com/cms/asset/eafe5881-cf2c-4211-a398-8ee25287ec6b/dvdy72-fig-0003-m.jpg


Limbs: The autopodia of the forelimbs, but not the hindlimbs, are paddle shaped with obvious 
constriction distinguishing them from the zeugopodium from the rest of the limb (Figure 2J). The apical 
ectodermal ridge (AER) is present in both fore‐ and hindlimbs (Figures 2L,M and 3D). 

Thorax and tail: The somites are now present along the majority of the tail (Figure 2J). The tail is 
looping and exhibits a blunt distal tip. The cloaca is clearly visible proximal to the tail and exhibits 
subtle swellings of adjacent tissue. The heart is less bulbous and exhibits two atria. The liver has grown 
in size from the previous stage (Figure 2K). The lungs and mesonephros are more opaque than previous 
stages (Figure 2K). The mesonephros visibly spans from the posterior portion of the liver to the 
hindlimb. 

Stage 32 (Figure 4A–D) 
 

 
Figure 4. Stages 32–35 of Lepidodactylus lugubris embryonic development. Stage 32: lateral view of the 
whole embryo and illustration of the limbs (A), closer view of the craniofacial region (B), closer view of 
the thorax (C), and dorsal view of the closed neural tube of a formalin‐fixed embryo (D). Stage 33: 
lateral view of the whole embryo and illustration of the limbs (E), closer view of the limbs and the 
thorax (F), view of the developing cloacal region (G). Stage 34: lateral view of the whole embryo and 
illustration of the limbs (H), closer view of the craniofacial region (I), and closer view of a hindlimb and 
the cloacal region (J). Stage 35: lateral view of the whole embryo and illustration of the limbs (K) with 
closer view of the limbs (L). Scale bars = 1 mm. AER, apical ectodermal ridge; Aut, autopodium; FL, 
forelimb; GB, gallbladder; H, heart; HL, hindlimb; Hp, hemiphallus; Li, liver; M, mandible; Mes, 
mesencephalon; MP, mandibular prominence; Mph, mesonephros; Met, metencephalon; Sty, 
stylopodium; Zeu, zeugopodium. White arrows indicate interdigital webbing recession 

Mean SVL: 10.12 mm (sd = 0.72, n = 18). 

Neural: The optic tectum has grown (Figure 4A,D). The endolymphatic ducts are positioned more 
medially than the previous stage. 

https://anatomypubs.onlinelibrary.wiley.com/cms/asset/3159ed3a-444b-44cd-a478-610c2ca6b41b/dvdy72-fig-0004-m.jpg


Eye: There is more diffuse pigment, spread equally across the majority of the eye (Figure 4B). Iris 
development is underway superficial to the RPE and appears as condensed pigment along the margin 
of the lens. 

Pharyngeal arches and facial prominences: The mandibular prominences nearly meet the medial nasal 
processes (Figures 2E and 4B). The region of the craniofacial prominences does not project far past the 
anterior margin of the eye. 

Limbs: The podial elements (autopodia, zeugopodia, and stylopodia) are distinct in the forelimbs 
(Figures 2F and 4A). The autopodia are asymmetrical. The autopodia of the hindlimbs are distinct but 
stylopodium and zeugopodium are not. The AER is a solid, irregular line. The digits have not condensed 
yet but the blood vessels mark the position where digits will form. 

Thorax and tail: The tail has narrowed to a sharp tip (Figure 4A). The heart is less bulbous than the 
previous stage (Figure 4C). The liver now exhibits distinct lobes, is more pigmented, and is more 
vascularized (Figure 4A). The gallbladder is visible as a small green‐brown spot on the ventral side of 
the liver (Figure 4C). The mesonephros is more pigmented and vascularized than the previous stage. 
Paired cloacal swellings are visible, indicating the onset of cloacal and hemiphallic development. 

Stage 33 (Figure 4E–G) 
Mean SVL: 11.45 mm (sd = 0.57, n = 11). 

Neural: The optic tectum is now its largest relative to the cranial region of the embryo (Figure 4E). The 
endolymphatic ducts are nearly touching medially. 

Eye: The eye exhibits much denser pigment. The pupil is now readily defined based on pigmentation of 
the iris (Figure 4E). 

Pharyngeal arches and facial prominences: All pharyngeal clefts are fused. The maxillary prominence 
has fused with the medial‐nasal. The facial region has elongated anterior to the eye. The mandibular 
prominence does not extend to the tip of the face (Figure 4F). 

Limbs: Digital condensations are visible and the irregular margins of the autopodia mark where the 
distal tips of the digits will form and that the reduction of interdigital webbing has begun (Figure 4E,F). 
The AER is more distinct on digit tips rather than between digits (Figure 4F). All podial elements are 
distinct in the hindlimbs. The autopodia of both hind‐ and forelimbs are asymmetrical (Figure 4E). 

Thorax and tail: The majority of the viscera, with the exception of the posterior portion of the liver and 
gallbladder, is enclosed within the body wall and less visible (Figure 4F). The gallbladder exhibits darker 
color than the previous stage, indicating accumulation of bile. The tail is less coiled than the previous 
stages. Cloacal swellings and hemiphallus are prominent and easily distinguished using light 
microscopy (Figure 4G). 

Stage 34 (Figure 4H–J) 
Mean SVL: 12.46 mm (sd = 0.69, n = 8). 

Neural: There are no obvious changes in neural morphology (Figure 4H). 



Eye: The eye is heavily pigmented. The outer margin of the iris exhibits a band of lighter coloration and 
is expanded from the previous stage (Figure 4H,I). 

Craniofacial: The embryo has distinct snout which comes in contact with the mandible (Figure 4I). The 
prominences are no longer visible. 

Limbs: All podial elements are elongated (Figure 4H). Interdigital webbing has recessed to the point 
where the distal tips of the digits are free (Figure 4J). The digits themselves have expanded laterally. 

Thorax and tail: The body wall is completely closed, covering and obscuring the view of the heart and 
remaining viscera (Figure 4H). The hemiphallic bulges are more bulbous than the previous stage 
(Figure 4J). These bulges exhibit morphology more similar to developing hemipenes than hemiclitores 
in other squamates and will be henceforth be referred to as hemipenes.64, 65 

Stage 35 (Figure 4K,L) 
Mean SVL: 12.21 mm (sd = 0.69, n = 2). 

Neural: The areas of the brain adjacent to the optic tectum are relatively larger (Figure 4K). The 
endolymphatic ducts have met medially at the posterior portion of the mesencephalon. 

Eye: The overall shape of the eye is still ovoid, with the first signs of the upper and lower eyelid 
appearing where the eye meets the lateral portion of the face. The overall collection of eye pigment 
appears darker (Figure 4K). The light band of iris pigment from the previous stage has expanded in size. 

Craniofacial: The craniofacial region anterior to the eye (i.e., snout) is further elongated (Figure 4K). 

Limbs: All podial elements are further elongated (Figure 4K). Interdigital webbing has recessed further, 
resulting in a pointed digital condensation (Figure 4L). The digital condensations are wider than the 
previous stage. 

Thorax and tail: The vertebrae are faintly visible through the thorax and the tail (Figure 4K). 

Stage 36 (Figure 5A,B) 
 



 
Figure 5. Stages 36–39 of Lepidodactylus lugubris embryonic development. Stage 36: lateral view of the 
whole embryo (A) with closer view of the limbs (B). Stage 37: lateral view of the whole embryo (C) with 
closer view of the limbs (D). Stage 38: lateral view of the whole embryo (E), closer view of the manus 
(F), closer view of pigmentation density on dorsum (G), and ventral view of the cloacal region 
exhibiting everted hemiphallus (H). Stage 39: lateral view of the whole embryo (I.), closer view of the 
thorax (J), closer view of the manus (K), and closer view of the eye (L). Scale bars = 1 mm. E, ear; R, ribs. 
White arrows indicate tapering of the digit to form the claw. Red arrows indicate lateral expansion of 
the toepad 

Mean SVL: 13.98 mm (sd = 1.40, n = 3). 

Neural: The other regions of the brain, especially the telencephalon, have increased in size relative to 
the mesencephalon — the telencephalic bulge and bulge of the optic tectum appear similar in size 
(Figure 5A). 

Eye: The overall shape of the eye remains ovoid on the antero‐posterior axis while shape of the iris is 
circular (Figure 5A). The upper and lower eyelids are visible, overlaying a small portion of iris pigment. 

Craniofacial: Craniofacial region more elongate than the previous stage (Figure 5A). The ear is visible 
and open. 

Limbs: Reduction of interdigital webbing is complete (Figure 5B). Skeletal elements of the digits and 
limbs are visible. 

Thorax and tail: The ribs are faintly visible. Each of the two hemipenes is bilobed. 

Stage 37 (Figure 5C,D) 
Mean SVL: 14.98 mm (sd = 0.84, n = 5). 

Neural: The optic tectum is less distinct due to the relative increase in size of the embryo (Figure 5C). 

https://anatomypubs.onlinelibrary.wiley.com/cms/asset/08cd87c6-9bd6-4aa4-9b60-7457f1e6a4d7/dvdy72-fig-0005-m.jpg


Eye: The eye is superficially similar to the previous stage with the exception that the iris and the pupil 
have increased in size and the upper and lower eyelids appear fused (Figure 5C). 

Craniofacial: The craniofacial region is more elongate (Figure 5C). The ear is distinct and well 
developed. 

Limbs: The digits are more elongate than the previous stage. The distal tip of each digit is and 
beginning to taper, which will eventually form the claw (Figure 5D). The first subdigital lamellar ridges 
of the toepads are visible. 

Thorax and tail: The ribs are more visible through the body wall than the previous stage. The lobes of 
each hemipenis are more prominent than the previous stage. 

Scales and pigment: Besides the subdigital lamellae, the scales of the hind‐ and forelimbs are the first 
visible. 

Stage 38 (Figure 5E,H) 
Mean SVL: 15.51 mm (sd = 1.13, n = 4). 

Neural: The mesencephalon and telencephalon are less distinct (Figure 5E). 

Eye: The eye is more rounded and darker in color than the previous stage (Figure 5E). The pupil is 
rounded and, with the fusion of the eyelids, the brille (i.e., spectacle) is apparent. 

Craniofacial: The craniofacial region is more elongate (Figure 5E). The nostrils are faintly visible. 

Limbs: Toepad development is well underway with more subdigital lamellae forming and the pads 
themselves expanding laterally. The claws are now distinct from the rest of the digits and beginning to 
curve down towards the plantar side of the autopodia (Figure 5F). 

Thorax and tail: The hemipenes are completely forked and engorged (Figure 5H). 

Scales and pigment: The hind‐ and forelimb scales are more distinct. The first signs of scales and sparse 
pigment appear along the dorsal surface of the thorax and head (Figure 5G). 

Stage 39 (Figure 5I–L) 
Mean SVL: 16.09 mm (sd = 1.39, n = 4). 

Neural: The mesencephalon and telencephalon are less distinct (Figure 5I). 

Eye: The chromatophores (xanthophores and melanophores) of the iris are visible (Figure 5L). The pupil 
is ovoid. 

Craniofacial: The snout is more elongate (Figure 5I). The first signs of labial scales are present. 

Limbs: The toepads continue to expand laterally (Figure 5K). The claw is now fully developed. 

Thorax and tail: The ribs are well developed and distinct (Figure 5J). The body wall is more opaque, 
beginning to obstruct the view of the liver and gallbladder. 

Scales and pigment: The dorsal scales are more distinct than the previous stage. The ventral and caudal 
scales are visible for the first time. Pigment is more widespread along the dorsum (Figure 5J). 



Stage 40 (Figure 6A,B) 
 

 
Figure 6. Stages 40–43 of Lepidodactylus lugubris embryonic development. Stage 40: lateral view of the 
whole embryo (A) with closer view of the head (B). Stage 41: lateral view of the whole embryo (C), 
closer view of the head (D), and closer view of the thorax (E). Stage 42: lateral view of the whole 
embryo (F), closer view of the head (G), and closer view of the cloacal region (H). Stage 43: lateral view 
of the whole embryo (I), with a closer view of the eye (J), medial view of the mouth (K), and ventral 
view of the cloacal region exhibiting recessed hemiphallus (L). Scale bars = 1 mm. Hp, hemiphallus; N, 
external naris 

Mean SVL: 17.60 mm (sd = 1.07, n = 3). 

Neural: The mesencephalon and telencephalon are less distinct (Figure 6A). 

Eye: Yellow coloration, presumably from xanthophores, is denser. The pupil remains ovoid but is 
thinner than the previous stage (Figure 6B). 

Craniofacial: There is no noticeable change in craniofacial region from the previous stage. 

Limbs: The toepads continue to expand laterally (Figure 6A). 

Thorax and tail: The previous 90° angle of head to the thorax is beginning to open, becoming more 
obtuse (Figure 6A). 

Scales and pigment: The external naris is visible (Figure 6B). The pigment is more widespread across to 
the body. Pigment is denser in areas, which will eventually become the postnatal coloration patterns 
(e.g., dorsolateral streak from the snout to posterior of the eye). 

Stage 41 (Figure 6C–E) 
Mean SVL: 19.24 mm (sd = 4.31, n = 2). 
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Eye: The pupil is narrower than the previous stage and its vertical slit shape has become irregular. 

(Figure 6D). 

Limbs: The toepads are now completely developed, taking a bulbous shape approximately half‐way up 
the length of the digit and tapering off again at the claw. The claw is now opaque (Figure 6E). 

Thorax and tail: The hemipenes remain everted and forked. Each individual hemipenis lobe is thicker 
than previous stages (Figure 6E). 

Scales and pigment: The labial scales are well defined and the external naris is closed (Figure 6D). 
Scales and associated pigments have made the dorsal surface of the embryo essentially opaque, thus 
obscuring the view of the vertebral column, epaxial muscle, and the brain (Figure 6C). The ventral 
surface remains somewhat translucent, with the liver, gallbladder, and some bones (e.g., ribs, femora) 
remaining visible (Figure 6C). 

Stage 42 (Figure 6F–H) 
Mean SVL: 18.31 mm (sd = 1.39, n = 4). 

Eye: The pupil is narrower and the irregular shape is forming, that when fully contracted, creates the 
multiple‐pinhole slit pupil (sensu Roth et al.66), which is typical of nocturnal gekkotans (Figure 6G). 

Thorax and tail: The hemipenes remain everted, yet have stopped growing with the rest of the body, 
giving the appearance of being smaller (0.75 mm hemipenes, 17.59 mm SVL; stage 42) than the 
previous stage (0.77 mm hemipenes, 16.50 mm SVL; stage 41) indicating recession into the cloacal 
region (Figure 6H). 

Scales and pigment: The scales are fully developed. The external naris is open. The pigment is denser 
along the ventrolateral region of the thorax and the ventral surface of the tail (Figure 6F). The ventrum 
remains somewhat translucent medially (Figure 6F). 

Stage 43 (Figure 6I–L) 
Mean SVL: 19.54 mm (sd = 1.52, n = 6). 

Eye: The pupil fully contracted, creating a multiple‐pinhole slit pupil (Figure 6J). 

Craniofacial: There are no externally visible egg teeth (Figure 6K; Figure 7). 



 
Figure 7. Egg teeth (ET) are not externally visible (A, C) but are easily identified using μCT volume 
rendering (B, D). Mediolateral (A, B) and ventral (C, D) views of a stage 42 Lepidodactylus 
lugubris rostrum. Scale bars = 500 μm 

Thorax and tail: The hemipenes are receded (Figure 6L). 

Scales and pigment: The scales are opaque, obscuring the view of the viscera, and fully pigmented 
(Figure 6I). 

2.2 Brain and CNS development 
The five secondary vesicles of the embryonic neural tube (i.e., the telencephalon, diencephalon, 
mesencephalon, metencephalon, and myelencephalon) are often used to define embryonic 
stages.6, 47, 62, 67, 68 The five vesicles give rise to the following brain structures: the telencephalon 
gives rise to the cerebral hemispheres and olfactory region; the diencephalon gives rise to the 
epithalamus, thalamus, and hypothalamus; the mesencephalon gives rise to the optic tectum and 
tegmentum; the metencephalon gives rise to the tegmentum and the cerebellum; finally, the 
myelencephalon gives rise to the medulla oblongata.67-69 Following previous brain developmental 
series of Podarcis siculus,69 we produced an approximate sequence of gross morphological changes in 
four of the main regions of the developing L. lugubris brain: telencephalon + diencephalon region (TD), 
optic tectum, cerebellum, and the remainder of the hindbrain. Although the identification of these 
structures is approximate, we believe the overall descriptions of these main regions might facilitate 
understanding of large regions of the brain, but we mention some important regions that are easy to 
visualize in tomography. The μCT‐reconstructed series of brain development is illustrated in Figure 8. 
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Figure 8. Embryonic development of the Lepidodactylus lugubris brain visualized through soft‐tissue 
μCT. Whole‐embryo μCT images are pictured below the corresponding isolated brain. The four distinct 
regions of the brain are color‐coded as follows: telencephalon + diencephalon, purple; Optic tectum, 
green; Cerebellum, blue; Hindbrain, yellow. Scale bars = 1 mm. Cb, cerebellum; Cr, cerebrum; HB, 
hindbrain; OB, olfactory bulbs; ON, optic nerve; OT, optic tectum; pg, pineal gland; ptg, pituitary gland 

At stage 30, the TD shows a clear anterior region that corresponds to the cerebral hemisphere, a 
ventrally directed region or thalamus, and a superior region or epithalamus. One of the most 
prominent regions is the optic tectum, which protrudes on the dorsal surface of the head. The optic 
tectum lies between the telencephalon and the cerebellum. The cerebellum at this state is elongated 
and runs parallel to the rest of the hindbrain. The hindbrain is nearly straight, having a slight flexure 
and not wider than the spinal cord. Dorsal to the TD, a small knob projects dorsally representing the 
pineal gland. At stage 31, the cerebral hemisphere grows proportionally larger, reaching a similar size 
to the tectum. On the ventral surface of the TD, the pituitary gland is exhibited as a small projection. At 
stage 32, the optic tectum becomes the most prominent structure of the brain and the cerebellum 
folds. At stage 33, the olfactory bulbs appear and project anteroventrally. The cerebellum begins 
expanding towards the hindbrain. The pineal gland is distinct on the dorsal surface of the TD. At stage 
34, the olfactory bulbs elongate, the hindbrain becomes slightly larger in diameter than the spinal cord. 
At stage 35, the olfactory bulbs extend approximately four times the size in the previous stage and the 
optic nerve extends anteroventrally from the TD. The hindbrain curvature is more marked, to the point 
that this structure is mostly horizontal, followed by a cervical flexure that indicates the limit with the 
spinal cord. At stage 36, the cerebral hemisphere expands dorsally. The cerebellum and optic tectum 
are relatively smaller than the cerebral hemisphere. The cerebellum is embedded on the hindbrain. At 
stage 37, the size of the optic tectum is sub‐equal to the size of the cerebral hemispheres. At stage 38, 
the anterior portion of the olfactory bulbs starts expanding. Between stages 40 and 43, the expansion 
of the olfactory bulbs is more evident. The proportions of all the brain parts remain equal, but the 
brain increases its size. 

https://anatomypubs.onlinelibrary.wiley.com/cms/asset/d92e3598-7862-49a2-920b-18e74bc0a93b/dvdy72-fig-0008-m.jpg


2.3 Transcriptome assembly 
We generated our final de novo transcriptome assembly from 18,394,074 raw read pairs. This 
assembly contained 115,656 transcripts with a total length of 129,611,368 bases (bp), with transcripts 
ranging from 201 bp to 15,792 bp in length. The TransRate assembly score attempts to assess the 
reliability and completeness of the assembly by calculating the geometric mean of contig scores and 
multiplying by the ratio of mapped/unmapped raw reads.70 Our assembly queried a total of 58% of 
the reference Gekko japonicus peptides, which provided 32,823 conditional Reciprocal Best BLAST hits, 
to generate a modest TransRate assembly score of 0.0926. We assessed the completeness of this 
transcriptome by comparing its content against databases of conserved orthologs for tetrapods 
(tetrapoda_odb9; 3,950 genes) and core vertebrate genes (CVG; 233 genes). Against the database of 
conserved tetrapod genes, our assembly contained a total of 2,029 (51.4%) complete and single‐copy 
orthologs, 1,248 (31.6%) complete and duplicated orthologs, 388 (9.8%) fragmented orthologs, and 
285 (7.2%) missing genes; while against the CVG database, our assembly contained 209 (89.70%) 
complete orthologs, 226 (97.0%) complete and partial orthologs, and was missing only 7 (3.00%) of 
genes. Indeed, our assembly possesses at least a partial assembly of 92.8% conserved tetrapod 
orthologs (tetrapoda_odb9) and 97.0% CVG. 

There are 10 BMPs annotated in the G. japonicus genome, and we were able to confirm nine in our L. 
lugubris transcriptome assembly (BMPs 1–8, and 11). We used a subset of paralogous BMP genes that 
are hypothesized to be recently diverged71 to construct a gene tree to validate the accuracy of 
assigning these paralogs to their respective ortholog (Figure 9). Indeed, we found that each BMP 
paralog was present, correctly annotated, and the topology of the tree was similar to a Ducy and 
Karsenty's71 gene tree at well‐supported nodes. 



 
Figure 9. Maximum‐likelihood gene tree of paralogous BMP sequences. Each paralogous BMP gene 
clade is highlighted in alternating colors/shades. All short, terminal nodal support values were removed 
for clarity, while at deeper nodes, only bootstrap support >70 are shown. Tree was rooted at the 
divergence between BMP2/4 and BMP5‐8. Scale bar is in substitutions per‐site 

3 DISCUSSION 
This description of L. lugubris embryonic development is the sixth complete staging series of a 
gecko6, 53, 61, 62, 72 and the first staging series of an obligate parthenogenetic vertebrate. Similar to 
all other geckos investigated to date, eggs of L. lugubris are oviposited during embryo 
organogenesis.73 However, the precise developmental stage at oviposition varies between examined 
gekkotans without apparent phylogenetic specificity. Tarentola annularis (Phyllodactylidae) are 
oviposited at stage 29 and Paroedura picta (Gekkonidae) are oviposited approximately at stage 24 
(sensu6, 60, 61). The remainder of examined geckos, L. lugubris (Gekkonidae), G. 
japonicus (Gekkonidae), Hemidactylus sp. (Gekkonidae), and Eublepharis macularius (Eublepharidae) 
oviposit eggs at stage 28.53, 62, 72 Indeed, more taxonomic sampling is required to identify any trends 
in oviposition stage across geckos. However, the average developmental time between oviposition and 
hatching is longer for L. lugubris than most non‐gekkotan squamates studied, but similar to other hard‐
shelled gekkotan eggs (60–65 dpo). For example, the time between oviposition and hatching for Anolis 
sagrei (Pleurodonta) is 22–27 dpo.47 The longer incubation time of hard‐shelled gecko eggs is likely 
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due to lower amounts of gas exchange across the eggshell and thus lower amounts of oxygen available 
to the embryo.74, 75 

Prior to this study, little was known about L. lugubris development. Digital ossification of L. lugubris is 
discussed in‐depth by Rieppel.76 In short, phalangeal ossification occurs in a typical proximo‐distal 
direction; however, L. lugubris and Gehyra oceanica (Gekkonidae) exhibit delayed ossification in the 
shortened intermediate phalanges of digits III and IV of both the manus and pes. Delayed ossification 
of the second phalanx of digit IV is hypothesized to be a consequence of gekkotan digital 
paedomorphosis, another aspect that departs from the ancestral squamate bauplan.76, 77 This 
developmental delay often results in the loss of this element in some gecko lineages (e.g., Asaccus77). 
Gekkonids develop mineralized egg teeth between stages 39 and 40.78 Although egg teeth are not 
externally visible in any embryonic stages of L. lugubris (Figure 6K), μCT data along with cleared and 
stained data from Kluge79 corroborates their presence in the pre‐hatchling stages. The egg teeth are 
paired, erupting from the premaxilla, each directed medially to form a single point (Figure 7), a trait 
shared by several other gekkonid species.80 

A striking result of our investigation of L. lugubris is the presence and persistence of hemipenis‐like 
structures throughout embryonic development in an all‐female species. In the lizard Anolis 
carolinensis and Anguis fragilis, paired phalluses develop in both sexes; however, hemipenes are large 
in males and hemiclitores are small in females.64, 81, 82 However, other lizards, such as Pogona 
vitticeps and Barisia imbricata, have female embryos with large, hemipenis‐like organs that are equal 
in size and shape with males, that subsequently regress prior to and just after hatching, 
respectively.65, 83 Our results, coupled with results from the recent literature, make it clear that many 
aspects of squamate sexual development warrant more detailed examination. Further investigation of 
external genital development in L. lugubris will be discussed in‐detail separately. 

Gekkotan development has been characterized by the following: later appearance of the paired 
hemiphallic bulges when compared to other squamates (excluding gymnophthalmids84), appearance 
of the three podial elements later than acrodonts but earlier than pleurodonts,84 larger relative pupil 
diameter than pleurodonts and lacertids,85 and earlier fusion of facial primordia than 
pleurodonts.85 Indeed, pupil diameter of embryonic gekkotans, including L. lugubris, is relatively larger 
than pleurodont and lacertid pupils.47, 86 However, L. lugubris exhibit deviations from the other three 
gecko‐specific character states. Paired hemiphallic bulges of L. lugubris appear at stage 32, which is 
later than the gecko P. picta, the same timing as some pleurodonts, acrodonts, and gymnophthalmids, 
but earlier than anguimorphs, and later than other pleurodonts and lacertids.6, 50, 60, 85, 87-90 All 
three podial elements appear in the forelimbs at L. lugubris stage 32, which matches the timing of 
most geckos, gymnophthalmids, lacertids, some acrodonts, and anguimorphs, but is earlier than other 
acrodonts and pleurodonts, and later than other pleurodonts. Finally, fusion of the facial primordia 
occurs at stage 33 which is the same timing as other geckos, some acrodonts, and anguimorphs, but 
earlier than lacertids, other acrodonts, and pleurodonts, and later than gymnophthalmids. Along with 
other squamate taxa, the deviations from these sequences observed in L. lugubris in mere three 
characters, which are considered by some to have gecko‐specific character states, suggest widespread 
heterochrony in squamate development. Further investigations into normal embryonic development of 



additional taxa are required to determine which developmental characteristics actually are clade‐
specific. 

Squamates are becoming increasingly used as models in evolutionary and developmental 
neurobiology.91-93 However, the general difficulty of gross dissection of delicate, soft tissues like the 
embryonic brain is challenging, especially in small species; this task is facilitated by means of 
nondestructive imaging methods, such as magnetic resonance imaging (MRI94) or diffusible iodine‐
based contrast‐enhanced computed tomography (diceCT58). Among amniotes, mammals and avian 
reptiles exhibit a well‐developed telencephalon that possesses derived internal 
architectures.93 Alternatively, nonavian reptiles (and squamates in particular) possess relatively 
smaller telencephalic regions that exhibit the ancestral amniote internal architecture, expanded 
olfactory regions, and small cerebella.93, 95 Gekkotan brains exhibit average “brain mass:body mass” 
ratios on par with limbed non‐Gekkotan squamates96 and exhibit further elaboration in size of the 
main olfactory bulbs.97 Indeed, the large relative size and cellular structure of gekkotan olfactory 
bulbs, when compared to other squamate lineages, suggests geckos are olfactory specialists with 
derived forebrain morphologies.97-99 Our investigation into the development of L. lugubris brain 
development demonstrates that anterior extension of the forebrain, and the resulting appearance of 
olfactory bulbs, occurs at approximately stage 33 (Figure 8). Furthermore, the olfactory peduncles, 
which link the olfactory bulbs with the telencephalon, do not appear to extend much past stage 35, 
suggesting that elongation and further gross morphological development of the olfactory region occurs 
postnatally. The cerebellum, which is extremely small in squamates when compared to birds or 
mammals, does not superficially appear to increase in volume relative to the other regions of the brain. 
The most substantial change in appearance that occurs is the movement of the pontine flexure, where 
the cerebellum folds in on itself between stages 30 and 33 (Figure 8). Alternatively, in birds, which have 
large cerebella that comprise approximately one quarter of the brain,93 the cerebellum is 
distinguishable by MRI at 9 dpo (stage 3545) and continues to grow rapidly within the next 10 days 
(stages 35‐4545, 68, 100). As nondestructive visualization techniques such as soft‐tissue μCT are 
relatively new, we expect development of resources for additional taxa that will facilitate robust 
comparative investigations of developmental neuroanatomy. 

The annotated transcriptome we presented here provides a description of transcripts expressed in a 
late‐stage L. lugubris embryo (i.e., BUSCO score of 83.0%). The presence of most BMPs annotated in 
the G. japonicus genome is evidence of its completeness and utility. Our gene tree, using a subset of 
recently diverged paralogous BMP genes validated the accuracy of our ortholog assignment. We also 
corroborate eutherian mammal‐specific duplication of BMP8 (i.e., BMP8A and BMP8B101, 102). Our 
characterization of the L. lugubris embryonic transcriptome will be useful in future investigations of the 
evolution and development of this species, such as mapping RNAseq reads for differential expression 
analysis or designing probes for in situ hybridization. Furthermore, the transcriptome may be useful for 
broader comparative analyses, particularly because there are few genomic resources available for 
geckos (G. japonicus, E. macularius, P. picta19, 21, 24), and even fewer transcriptomic resources (E. 
macularius, P. picta103, 104). 

Robust phylogenetic analysis, genomic information, and detailed developmental data are critical tools 
to investigate the origins of morphological novelty and convergence. Ideally, by employing a model 



clade approach, an integrated comparison between closely related taxa with variable phenotypes 
allows for polarization of ancestral character states and fine‐scale investigations into morphological 
evolution and development.105 By including another gecko species to the growing number of 
squamate embryonic staging series, we hope to promote model clade approaches to squamate and 
vertebrate evo‐devo. For example, comparative squamate evo‐devo studies that include a gecko and 
any other non‐gekkotan squamate species allow the investigators to sample the phylogenetic breadth 
of squamates. Furthermore, using geckos themselves as a model clade is becoming more feasible. 
Currently, normal stages of development are characterized for six gecko species, with varying 
morphologies and ecologies.6, 53, 61, 62, 72 Access to additional resources — protocols for husbandry 
and embryo collection,18, 23 genomic and transcriptomic resources,19, 21, 24, 103, 104 and now 
manipulatable soft‐tissue μCT data across development — sets the foundation for geckos, and 
specifically L. lugubris, to be powerful evo‐devo models. 

4 EXPERIMENTAL PROCEDURES 
4.1 Embryo collection and visualization 
We collected a post‐ovipositional ontogenetic series of 242 embryos from a captive colony of L. 
lugubris, housed at Marquette University (Milwaukee, Wisconsin; IACUC protocol AR‐279). The colony 
includes A and B clonal lineages as well as both diploid and triploid clones18 and we do not distinguish 
among them here. Incubation times of L. lugubris are known to range between 65 dpo and 103 dpo 
when incubated at 25.5°C and 22.0°C, respectively.63 The embryonic series in this study was incubated 
at approximately 26.0°C (room temperature in the Marquette University live‐lizard facility) and spans 
0‐77 dpo (Figure 1).106 Captive animals were cared for and embryos were collected following 
protocols described by Griffing et al.18 To summarize, we checked animal enclosures daily for eggs. We 
dissected embryos out of eggs using #5 watchmaker's forceps while immersed in diethyl 
pyrocarbonate (DEPC) treated, RNase‐free 1% phosphate‐buffered saline. We visualized the external 
morphology of embryos under a Nikon SMZ 74ST stereoscope and a Zeiss V16 with Axiocam 305 
camera. We visualized three embryos from stages 30, 31, and 32 using whole‐mount scanning electron 
microscopy (SEM) to verify choroid fissure closure, AER formation, and pharyngeal arch fusion 
(Figure 2). Additionally, we visualized a subset of embryos (N = 13), spanning embryonic stages 30‐43, 
using soft‐tissue μCT. To demonstrate the utility of the μCT data for evo‐devo research, we describe 
the prenatal development of the L. lugubris brain—a structure that is difficult to visualize three‐
dimensionally in embryos without careful microdissection. Voucher specimens utilized in this study are 
housed at Marquette University (Milwaukee, Wisconsin) or the Florida Museum of Natural History 
(Gainesville, Florida). 

4.2 Computed tomography 
We imaged a series of 29 specimens (stages 30–43) using contrast‐enhanced microcomputed 
tomography at the University of Florida's Nanoscale Research Facility. We soaked specimens from 
stages 30–41 in 0.3% Phosphotungstic acid for 1–3 weeks, and 42–43 in 2.5% aqueous Lugol's Iodine 
(IKI) for 4 days, following modified protocols from Metscher.107 Prior to scanning, we embedded 
specimens in low‐melt agar, carefully excised them into in close fitting blocks, placed the blocks into a 
low‐density resealable plastic bag, which we then wrapped around a 2 mm diameter carbon fiber rod 
and placed in a drill chuck inside the computer numerical controlled stage of a dual tube GE Phoenix 



V|tome|X M. We scanned the specimens using the 180 kV nanofocus tube, with voltage, current, 
detector capture time, and rotation angles modified to optimize contrast and signal and minimize 
artifacts (Table S1). We converted the radiographs to tomograms using Phoenix DatosOS|X 
reconstruction software and then segmented various regions of interest from the volumes using 
VGStudioMax 3.3 (VolumeGraphics, Heidelberg, Germany). Tomogram stacks and metadata for all 
scans are available via www.morphosource.org (see Table S1 for DOIs). 

4.3 Diagnosing developmental stages 

We discretized and assigned 16 developmental stages based on external morphology using the 
embryonic staging series of E. macularius,62 A. sagrei,47 and Gallus gallus45 as guides. We primarily 
diagnosed stages by qualitative traits with the exception of somite number and mean snout‐to‐vent 
length (SVL). We calculated SVL for a sample of 118 embryos using the Fiji v2.0.0 image processing 
software108 by measuring from the tip of the craniofacial region, to hindbrain, down through the 
thorax, and ending immediately posterior of the hindlimb or hindlimb bud. Further investigation into 
development of different clone lineages may be needed to identify lineage‐specific differences in 
development. However, in this investigation, ontogenetic variation between different clonal lineages 
of L. lugubris appears negligible; therefore, these stage diagnoses may be applied to both A and B 
clones as well as diploid and triploid lineages, and potentially other L. lugubris clone lineages.34, 35 

4.4 Transcriptome sequencing, assembly, and annotation 
To further enable the utility of L. lugubris as a developmental model, we sequenced and annotated a 
transcriptome from a late stage embryo. Transcriptomic resources are vital for investigations in 
developmental biology as they facilitate use of a wide array of methodologies, including PCR primer 
design for qPCR; a reference for mapping RNAseq reads; and facilitating the design of probes for in situ 
hybridization. 

We extracted RNA from a whole L. lugubris embryo (specimen ID: “BJP18”) at 59 dpo (stage 42) and 
followed a modified protocol for extracting RNA from TRIzol preserved tissue.109 RNAseq library 
preparation was identical to methods used by Pinto et al.110 Briefly, we used the KAPA Stranded 
mRNA‐Seq Kit for Illumina (KR0960 [v5.17]) using oligo‐dT beads for mRNA enrichment. We sequenced 
this RNAseq library on an Illumina HiSeq 2500 at the Medical College of Wisconsin (Milwaukee, 
Wisconsin; paired‐end 125 bp reads). These reads were submitted to the NCBI Sequence Read Archive 
(SRA; Bioproject: PRJNA476550; Accession number: SRP150730). We calculated quality statistics and 
scores from these raw data using FastQC (v0.11.6111). 

We assembled a de novo transcriptome using the De novo RNA‐Seq Assembly Pipeline (DRAP 
[v1.91]112), which is a compilation of assembly and quality control scripts using several software 
packages. Briefly, raw Illumina paired‐end reads were trimmed, normalized, and assembled into 
contigs using Trinity (v2.4.0113). DRAP then filters, maps, compacts, and quality assesses the initial 
Trinity assembly using a series of integrated tools. Overall, DRAP generates an assembled 
transcriptome with less redundancy, without compromising the completeness, or quality, of the 
transcriptome assembly.112 Reference peptide sequences provided for reference mapping in all 
assemblies and assessment reports were from G. japonicus (21; GenBank 2 693 898, NCBI RefSeq 
Assembly v1.1). 



We identified candidate open reading frames (coding regions) using TransDecoder (v5.0.2114) within 
the de novo transcripts we assembled. Next, we determined the identity of each transcript by 
assessing homology between the predicted gene region and annotated proteins from the SwissProt 
database115 and Pfam (v31.0116) databases using BLASTp (v2.7.1117) and Hmmer (v3.1b2118), 
respectively. Finally, we associated these homology searches and gene predictions with each transcript 
using TransDecoder ([v5.0.2]119) and appended the final gene predictions to the FASTA headers in the 
final transcriptome file using SeqKit software package (v0.7.2120). We assessed our final transcriptome 
assembly using two transcriptome benchmarking methods: TransRate (v1.0170) and Benchmarking 
Universal Single‐Copy Orthologs (BUSCO, [v3.0]121;) against two different databases (tetrapoda_odb9 
and CVG). BUSCO analyses were conducted via the gVolante web server.122 

To illustrate the utility of this transcriptomic assembly, we used BLAST to identify paralogous 
sequences in the transcriptome from a subset of a well‐studied gene family with important 
developmental functions, the BMPs (bmp). 

We downloaded all annotated peptide sequences (BMPs 2, 4‐8) from published genomes within the 
major amniote lineages (mammals: Homo sapiens and Mus musculus; birds: G. gallus, and Taeniopygia 
guttata; crocodilians: Crocodylus porosus; turtles: Pelodiscus sinensis; and [non‐gecko] squamate 
reptiles: A. carolinensis and Pogona vittatus) via the Ensembl database [v96]. For geckos, we 
queried Anolis sequences to GenBank to identify the predicted sequence for each BMP gene in G. 
japonicus. We then used these Gekko sequences to query the de novo Lepidodactylus transcriptome, 
the P. picta genome,19 and the E. macularius genome.24 To further increase the sampling of squamate 
reptiles, we also incorporated Chamaeleo calyptratus BMP sequences.110 We aligned each BMP 
molecule separately using MAFFT [v7.388] implemented in Geneious [v11.1.2].123, 124 Then, used the 
Geneious consensus alignment function to generate an alignment of all six BMP paralogs. We 
generated gene trees using the RAxML Blackbox [v8.2.10],125 under the BLOSUM62 protein 
substitution matrix, implemented on the CIPRES portal.126 We rooted the gene tree at the split 
between the clade containing BMP2 and BMP4 as sister to the clade containing BMPs 5‐8, sensu Ducy 
and Karsenty.71 
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