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Abstract 
Bioerosion by reef-dwelling organisms influences net carbonate budgets on reefs worldwide. External 
bioeroders, such as parrotfish and sea urchins, and internal bioeroders, including sponges and 
lithophagid bivalves, are major contributors to bioerosion on reefs. Despite their importance, few 
studies have examined how environmental (e.g., nutrients) or biological drivers (e.g., the actions of 
other bioeroders) may influence bioeroder dynamics on reefs. For example, internal bioeroders could 
promote external bioerosion by weakening the coral skeletal matrix. Our study investigated: ( 1) 
whether nutrient supply influences the dynamics between internal and external bioeroders and ( 2) 
how the presence of a boring bivalve, Lithophaga spp., influences parrotfish bioerosion on massive 
Porites corals. We hypothesized that nutrient supply would be positively correlated with Lithophaga 
densities on massive Porites colonies, and that as bivalve density increased, the frequency and 
intensity of parrotfish bioerosion would increase. To test these hypotheses, we analyzed six time 
points over a 10-yr period from a time series of benthic images and nitrogen content of a dominant 
macroalga from the fringing reefs around Moorea, French Polynesia. We found Lithophaga densities 
were positively correlated with nitrogen availability. Further, massive Porites that are more infested 
with Lithophaga had both a higher probability of being bitten by parrotfish and a higher density of bite 
scars from parrotfishes. Our findings indicate that increasing nutrient availability may strengthen the 
relationship between internal and external bioeroders, suggesting that colonies at more eutrophic sites 
may experience higher bioerosion rates. 
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Introduction 
Bioerosion, the removal of calcium carbonate structure by living organisms, is an integral process 
on coral reefs that contributes to the persistence of these biodiverse, structurally complex ecosystems 
(Glynn and Manzello [28]; Perry and Harborne [42]). Bioeroding organisms are represented in four of 
the six kingdoms (Hutchings [33]; Glynn and Manzello [28]; Perry and Harborne [42]). Bioerosive action 
is generally considered in terms of external and internal bioeroders. External bioeroders, such as 
parrotfishes, pufferfishes, and sea urchins, remove external reef structure mechanically. Internal 
bioerosion occurs when carbonate structure is removed from the inside of coral skeletons 
mechanically and/or chemically by worms, bivalves, sponges, and other microborers (Hutchings [33], 
[32]; Tribollet and Golubic [61]; Weinstein et al. [65]). The abundance of these internal bioeroding taxa, 
and thus, bioerosion rates, vary considerably over space and time (e.g., Tribollet and Golubic [60]; 



Tribollet et al. [63]; Silbiger et al. [58], [55]). Given that bioerosion influences the net growth and 
overall carbonate budget of coral reefs (Perry et al. [43]; Glynn and Manzello [28]), there is a critical 
need to better understand the environmental and biological drivers that shape bioerosion patterns. 

The impacts of bioeroders on reef framework can be magnified by environmental conditions that 
hinder reef accretion, increase bioeroder populations, or favor bioerosive processes (Glynn [27]; Glynn 
and Manzello [28]; Perry and Harborne [42]; Silbiger et al. [55]). For example, increased nutrient supply 
rates often increase internal bioeroder densities (Rose and Risk [47]; Edinger et al. [23]; Holmes et al. 
[31]; Le Grand and Fabricius [34]), thereby stimulating bioerosion (DeCarlo et al. [21]; Prouty et al. [44]; 
Lubarsky et al. [37]). These relationships likely occur because eutrophication increases coral skeleton 
porosity (Dunn et al. [22]) and bolsters populations of filter-feeding (Le Grand and Fabricius [34]) and 
photosynthesizing internal bioeroders (Carreiro-Silva et al. [16]). Increased coral skeletal porosity 
weakens the skeletal matrix, making corals more susceptible to mechanical damage by external 
bioeroders (Caroselli et al. [14]; Dunn et al. [22]; Mwachireya et al. [41]). For example, Littler et al. 
([36]) observed that parrotfishes selectively bioerode Porites corals with weaker skeletons. Filter-
feeding bioeroders, such as macroborers, become more abundant on eutrophic reefs because food 
resources (i.e., plankton) are available in greater quantities due to nutrient rich conditions (Scott and 
Cope [53]; Perry and Harborne [42]). In fact, inshore reefs, which tend to be more eutrophic due to 
land-based fertilizer and runoff (Fabricius [26]), often harbor higher macroborer densities than 
offshore reefs (Sammarco and Risk [50]; Scott and Cope [53]; Le Grand and Fabricius [34]). Yet inshore 
reefs tend to have lower external bioerosion rates by parrotfishes relative to offshore reefs (Hoey and 
Bellwood [30]; Bonaldo and Bellwood [ 6]). Thus, the influence of nutrient loading on bioerosion may 
differ for internal and external bioeroders. 

Bioeroders can also be influenced by biotic interactions. The weakening of coral framework or 
exposure of new calcium carbonate surfaces in a colony due to the actions of one bioeroder may 
facilitate the action of another bioeroding group (Glynn [27]). For example, higher densities of 
macroborers were found in eroded versus intact portions of individual Porites astreoides colonies, 
suggesting that Caribbean parrotfishes target coral colony surfaces that contain macroborers (Rotjan 
and Lewis [48]). Thus, coral colonies with internal bioeroders, such as sponges, barnacles, polychaetes, 
and bivalves, might influence feeding preferences (e.g., colony targeted, or area on a given colony 
targeted) of external bioeroders (Rotjan and Lewis [48]). Bivalves, such as Lithophaga spp., are 
common internal borers that infest live corals and occur in high abundances on massive Porites corals 
(> 1800 ind. m−2 live tissue) on inshore, eutrophic reefs (Glynn and Manzello [28]). We predicted that 
high nutrient availability increases the density of internal borers in coral colonies and that their 
presence intensifies parrotfish bioerosion of these same colonies. Thus, we hypothesized that high 
nutrient availability and the bioerosive activities of internal borers facilitate external bioerosion of 
coral colonies by scraping and excavating parrotfishes. 

Here, we tested whether internal borers, specifically lithophagid bivalves, were correlated with 
external bioerosion by parrotfishes (Labridae: Scarini) across a range of nitrogen availability. 
Specifically, we aimed to: ( 1) correlate the availability of nitrogen with internal bioeroders and ( 2) 
investigate the relationship between Lithophaga boreholes and parrotfish bite scars. We hypothesized 
that nitrogen availability would be positively correlated with the abundance of Lithophaga bivalves and 



that a higher density of these boring bivalves would increase the frequency and intensity of parrotfish 
bioerosion. 

Materials and methods 
Study site 
This study was conducted in Moorea, French Polynesia in conjunction with the Moorea Coral Reef Long 
Term Ecological Research project (MCR LTER). Since 2005, the MCR LTER has taken annual 
photoquadrats in the fringing reefs across six LTER sites ranging in depth between 4 and 6 m (Edmunds 
[24]). There is a 40-m transect at each site partitioned into five permanent sections. Each section has 
uniquely marked stainless steel posts placed at the beginning and end, and every 1-m mark there is a 
permanent 50 × 50 cm plot (n = 40 plots per site). The photoquadrats (50 × 50 cm) are positioned along 
the permanent transect at approximately the same position at the 1-m mark and photographed with a 
high-resolution SLR digital camera annually. 

Data collection 
We used image analysis to determine spatiotemporal changes in the density of parrotfish bite scars 
and Lithophaga boreholes on the dominant reef-building coral, massive Porites, across the fringing 
reefs from a 10-yr dataset of benthic photographs. We examined a total of 715 photographs taken in 
2006, 2008, 2010, 2011, 2013, and 2016 at three LTER sites characteristically dominated by 
massive Porites (Fig. 1a; Edmunds [24]). Distinct parrotfish bite scars and Lithophaga bores are visible 
on massive Porites in the photographs (Fig. 1b). In 350 photographs, massive Porites colonies were 
present; these photographs were analyzed to investigate hypothesized spatiotemporal patterns in the 
dynamics between internal and external bioeroders in relation to nutrient supply (Fig. 1c). All images 
were processed using standardized techniques adapted from Maher et al. ([38]) using ImageJ 
(Schindelin et al. [51]). A ruler was used to set the scale in ImageJ to 1 cm, and every 
massive Porites colony was outlined to estimate its 2D live surface area within the photoquadrat. The 
number of distinct parrotfish bite scars and Lithophaga bores was recorded for each live 
massive Porites coral using the Cell Counter plugin for ImageJ and normalized to live colony surface 
area for analyses. The percent cover of massive Porites was determined using all MCR LTER 
photographs during this time period (n =715 photographs total) using CoralNet software with a 
stratified random point distribution with 100 points and a confidence threshold of 95% for computer 
automation (Beijbom et al. [ 5]). 



 
Fig. 1 Site map of Moorea, French Polynesia, example time series photograph, and conceptual diagram depicting 
the hypothesized relationship between nitrogen supply, Lithophaga colonization, and parrotfish bioerosion. a 
Map of Moorea, French Polynesia depicting the three LTER sites used in this study. b Photograph of massive 
Porites containing parrotfish bite scars and Lithophaga bores (photograph credit: Peter Edmunds). c As reefs 
shift from oligotrophic to eutrophic conditions, massive Porites colonies may become colonized with more 
Lithophaga borers, which may increase both the likelihood and intensity of bioerosion by parrotfish resulting in 
an increase in macro- and external bioerosion on eutrophic reefs 
 

We used the MCR LTER time series of percent tissue nitrogen (% N) in the brown macroalga Turbinaria 
ornata at each site to examine the relationship between macroborer densities and nitrogen (N) 
availability (Carpenter [15]). The nutrient content of macroalgae is often used as a proxy for ambient 
nutrient conditions as these macroalgae integrate nutrients over a relatively long time frame (i.e., 
weeks to months) (Atkinson and Smith [ 2]). Both field surveys and experiments show that algae in 
consistently enriched environments typically have higher tissue nutrients (e.g., Burkepile and Hay [13]; 
Vega Thurber et al. [64]). The MCR LTER collects the brown macroalga T. ornata annually at LTER 
fringing reef sites (Carpenter [15]). T. ornata integrates N into its tissues for ~ 3 months, providing 
more information about nutrient conditions at sites than water samples, which are ephemeral (Lin and 
Fong [35]). Briefly, in this study, T. ornata were brought back to laboratory where the epiphytes were 
brushed off and fronds were removed 5 cm below the apex of the thallus (n = 10 fronds per site). The 
algae were dried at 60 °C for ~ 48 h or until constant weight and processed for CHN at University of 
California Santa Barbara's analytical laboratory (for detailed methods see Carpenter [15]). Tissue CHN 
data were not available in 2006, so these data were not included in the analysis. 

Data on fish abundance from the MCR LTER time series were used to evaluate how parrotfish density 
varied across site and year. SCUBA divers estimated the abundance and length of fishes on permanent 
50 × 5 m belt transects running parallel to shore (n = 4 per site) between 0900 and 1600 h local time at 
~ 10 m depth in the fringing reef (Brooks [11]). We included Chlorurus microrhinos, Chlorurus 
spilurus, Scarus frenatus, and Scarus ghobban parrotfishes that were > 10 cm in total length in our 



analysis because they are known corallivores and were large enough for their bites to scrape or 
excavate calcium carbonate (Cole et al. [19]; Rotjan and Lewis [49]). 

In situ ground truthing of Lithophaga bores and parrotfish bite scars 
Counts of Lithophaga bores or parrotfish bite scars from corals could differ based on whether a given 
colony is examined in situ on the reef by a snorkeler versus image analysis of a 2D photograph of the 
colony. To explore potential variation in the data generated by these two methods, we collected paired 
counts of Lithophaga bores and parrotfish bite scars from individual massive Porites colonies using in 
situ and image analysis approaches. These data were collected at two fringing reef sites in August and 
September of 2018 (Site 1: 17° 29′ 1.31″ S, 149° 49′ 0.16″, Site 2: 17° 29′ 24.41″ S, 149° 49′ 33.80″ W, 
depths 1–3 m) on the north shore of Moorea. A total of 19 colonies were examined per reef site (n = 38 
colonies total). For in situ counts, a 50 × 50 cm quadrat was placed on a randomly selected 
massive Porites colony and Lithophaga bores and parrotfish bite scars were recorded over its entire 
surface. This same coral colony was then photographed with a 10-cm size standard using an Olympus 
TG-4 camera in plain view for subsequent blind image analysis. The same observer analyzed these 
photographs and the time series photographs. 

Data analysis 
General or generalized linear models were used to test for mean differences in Lithophaga, parrotfish, 
and parrotfish bite scar densities and percent cover of massive Porites by site and year and their 
interaction (i.e., two-way ANOVA). We took transect-level averages for massive Porites cover and 
summed across transects for parrotfish density. Parrotfish density was log (x + 1) transformed to meet 
assumptions of normality. A gamma hurdle model (i.e., two-way ANOVA based on a binomial and 
gamma distribution) was used for Lithophaga and bite scar densities because they were highly zero-
inflated and non-normal. We used linear regression to test for a relationship between parrotfish 
density and parrotfish scar density using the site and year means. 

We used a simple linear regression to test the relationship between Lithophaga densities and % N in 
tissues of T. ornata averaged across site by year. Tissue N data were not collected in 2006; thus, these 
three data points were excluded from the linear regression. To test the relationship 
between Lithophaga density and parrotfish bite scars on Porites, we first used a logistic regression to 
test whether Lithophaga density affected the probability of a coral being eroded by parrotfish. We 
then used a linear model to test the relationship between log-transformed Lithophaga and parrotfish 
bite scar densities when both were present. We also tested for a quadratic relationship 
between Lithophaga and parrotfish bite scar densities (i.e., Lithophaga density + Lithophaga density2), 
but the quadratic term was not statistically significant and, thus, was removed from the model. This 
two-step approach was used because both the Lithophaga and bite scar data were highly zero-inflated. 
Site and year were included as crossed random effects in the logistic and linear models to account for 
repeated measures. Lastly, linear regressions were used to explore correlations between log-
transformed Lithophaga and parrotfish bite scar counts based on snorkel observations in situ and 
image analysis. 

Normality and homoscedasticity of residuals were assessed visually for all models using quantile–
quantile plots and boxplots by site and year, respectively. All analyses were conducted in the program 



R (R Development Core Team [45]), and mixed effects models were analyzed using the lme4 package 
(Bates et al. [ 4]). All code and raw data used in this analysis are available at 
https://github.com/njsilbiger/MCRBioerosion (Silbiger et al. [56]). 

Results 
We observed 2420 Lithophaga bores and 1883 parrotfish bite scars. Lithophaga densities 
and Porites cover were both highly variable across sites and years and had a significant interaction 
term (Lithophaga density site × year: χ2 = 8.6, P = 0.013; Fig. S1a and Porites cover site × year: F2,84 = 
21.85, P < 0.0001; Fig. S1b). Massive Porites cover was highest at LTER 1 in 2006 (~ 13%) before it 
declined over time to ~ 2–4% cover by 2011, whereas at LTER 3 and 4, cover was relatively low and 
stable throughout the study period at ~ 2–4%. Lithophaga densities were consistently the highest at 
LTER 3, with an average of 0.09 ± 0.01 SE cm−2 on live massive Porites across all years: 4 times higher 
than LTER 4 and an order of magnitude higher than LTER 1. Parrotfish bite scar density 
on Porites varied by site (scars: χ2 = 7.03, P = 0.03; Fig. S1c) and year (scars: χ2 = 6.74, P = 0.01 Fig. S1c). 
Parrotfish density also varied by site (F2,50 = 8.19, P < 0.001; Fig. S1d) and year (F5,50 = 5.94, P < 0.001), 
but we did not observe a significant interaction term (F10,50 = 0.39, P = 0.9). We also did not observe a 
relationship between parrotfish density and parrotfish scar density (F1,16 = 0.25, P = 0.6, R2 = 0.15). 
Parrotfish scar densities were the highest at LTER 3, with an average of 0.08 ± 0.009 SE cm−2 of live 
coral across all years. 

The high spatiotemporal variability in Lithophaga densities may be influenced in part by nitrogen (N) 
inputs, as evident by the significant positive relationship between % N in algal tissue and 
mean Lithophaga densities (F1,13 = 6.92, P = 0.02, R2 = 0.3; Fig. 2). Notably, LTER 3 consistently had the 
highest Lithophaga densities through time and also had the highest algal tissue % N content across all 
years and (LTER 3: 0.85 ± 0.03%; LTER 1: 0.77 ± 0.02%; LTER 4: 0.77 ± 0.02%; mean ± SE). The 
elevated Lithophaga densities at sites with higher N input were correlated with an increased likelihood 
of parrotfish bite scars. Specifically, higher Lithophaga densities significantly increased the probability 
of a coral having a parrotfish bite scar (χ2 = 5.73, P = 0.017; Fig. 3a), where the odds of a parrotfish bite 
scar increased by 2.19 with every increase of 0.5 Lithophaga cm−2 on live massive Porites (Fig. 3a). 
When only considering colonies with Lithophaga borers, there was also a significant positive 
relationship between Lithophaga density and the density of parrotfish bite scars, where parrotfish bite 
scars increased by 1.5 for every increase in Lithophaga cm−2 on live massive Porites (F1,33 = 45.2, P < 
0.0001, marginal R2 = 0.23, conditional R2 = 0.25; Fig. 3b). 



 
Fig. 2 Relationship between nitrogen availability and Lithophaga spp. densities. Dots and whiskers are % tissue N 
± SE (x) and mean borers cm−2 ± SE (y) for each site (LTER 1, 3, 4) × year (2008, 2010, 2011, 2013, 2016; n = 15 
total). Data for algal tissue % N were not available in 2006 from the MCR LTER; thus, three data points were 
excluded from the analysis. Predictions are best fit line ± 95% confidence intervals from a simple linear 
regression. Percent N of Turbinaria ornata were used as a proxy for nitrogen availability at each site 

 
Fig. 3 Models testing probability and densities of parrotfish bite scars as a function of Lithophaga spp. density. a 
The density of Lithophaga spp. significantly increased the probability of a coral having a parrotfish bite scar. Blue 
and red hash marks in the rug are the raw data (n = 939) and prediction lines are model fit ± 95% confidence 
intervals. Year and site were included in the logistic model as crossed random effects. Data were scaled for the 
analysis and back transformed for this figure. b When bite scars were present, parrotfish bite scar density 
significantly increased with the density of Lithophaga spp. Both Lithophaga spp. and parrotfish bite scar 
densities were log-transformed for the analysis. Black dots are the raw data (n = 170) and prediction lines are 
model fit ± 95% confidence intervals. Year and site were included in the both models as crossed random effects 
 



Lastly, we tested the efficacy of our image analysis by comparing Lithophaga and parrotfish bite scar 
densities counted using image analysis to data collected in situ. For parrotfish bites, there was a 
significantly positive relationship between parrotfish bite scars from image analysis and parrotfish bite 
scars counted in situ (F1,36 = 50.64, P < 0.001, R2 = 0.58, y =0.59x + 1.7; Fig. S2a). Similarly, 
for Lithophaga bore holes, there was a positive relationship between bore holes counted from images 
and those counted in situ (F1,36 = 48.8, P < 0.001, R2 = 0.58, y =1.2x − 0.20; Fig. S2b), although the image 
analysis slightly underestimated parrotfish bite scars at low densities. 

Discussion 
Our study demonstrates positive relationships among nitrogen enrichment, infestation with 
macroborers, and external bioerosion experienced by corals. Our results indicate that 
massive Porites colonies on more eutrophic reefs are likely to have higher densities 
of Lithophaga bivalves (Fig. 2), which increases both the probability of these colonies being bitten by 
parrotfishes (Fig. 3a) and the density of parrotfish bite scars (Fig. 3b). In fact, an increase of 0.5 
lithophagid bivalves cm−2 on a massive Porites colony more than doubled the odds of being bitten (Fig. 
3a). Thus, increases in nitrogen supply may strengthen the dynamics between external bioeroders and 
macroborers, likely resulting in elevated bioerosion on eutrophic reefs. 

Our results demonstrate that massive Porites infestation by Lithophaga is correlated with increased 
external bioerosion by parrotfishes in Moorea. Similarly, parrotfishes in the Caribbean also appear to 
target corals with increased macroborer densities (Rotjan and Lewis [48]), suggesting that this 
relationship between external bioeroders and macroborers may be widespread (e.g., generalized 
across ocean basins). However, more research testing these relationships is needed to determine how 
common this relationship is on reefs. Additionally, these ecological processes likely occur at different 
time scales. For example, parrotfish bite scars on Porites spp. heal within 2–3 months (Bak and 
Stewardvanes [ 3]; Bonaldo et al. [ 7]; Welsh et al. [66]), while Lithophaga populations likely have a 
lagged response to nutrient availability on the order of months to years. Despite this, several studies 
show strong correlations between nutrient concentrations and internal bioeroder densities (Sammarco 
and Risk [50]; Scott and Cope [53]; Le Grand and Fabricius [34]). Only a few studies have examined the 
relationship between nutrient supply and internal and external bioeroder dynamics, and these studies 
offer several potential mechanisms that could be driving the patterns in our study. 

First, parrotfish may be directly targeting macroborers in live coral due to the high nutritional content 
in macroborer tissues (Rotjan and Lewis [48]), or Lithophaga excretion may make the surrounding coral 
tissue richer in nitrogen (Mokady et al. [40]), possibly increasing parrotfish bioerosion. However, 
empirical evidence for these hypotheses is limited. Second, lithophagid infestation weakens the 
skeletal matrix (Scott and Risk [52]), which could focus parrotfish bioerosion on these colonies as they 
select for weaker structures (Littler et al. [36]; Chazottes et al. [17]). Third, the density 
of Lithophaga bivalves may covary with some other characteristics of the coral that influence 
bioerosion. For instance, in the Eastern Tropical Pacific, Porites evermanni consistently has a higher 
density of lithophagid bivalves than P. lobata, which induces local triggerfish to prey heavily on P. 
evermanni (Boulay et al. [10]). It is challenging to identify the massive Porites complex to species using 
image analysis, and thus different cryptic species of Porites may be driving some of the variation in 
our Lithophaga densities in Moorea. Fourth, parrotfish may be targeting endolithic and epilithic 



autotrophs (e.g., cyanobacteria). Most parrotfishes are microphages that consume microscopic benthic 
autotrophs as these dietary items are high in protein (Clements et al. [18]). Indeed, the abundance of 
microboring autotrophs, such as cyanobacteria, does increase with higher nutrient availability, 
resulting in higher microbioerosion rates on nutrient rich reefs (Perry and Harborne 
[42]). Lithophaga excretion may facilitate these autotrophs by increasing the availability of nutrients in 
neighboring coral tissues. The strong correlation we observed between Lithophaga densities and 
parrotfish scars strongly suggests that parrotfish are likely targeting either Lithophaga or the enriched 
coral tissue surrounding their bore holes. Given that lithophagid bivalves contribute substantially to 
internal bioerosion (Glynn [27]; Glynn and Manzello [28]) and that parrotfishes are the main drivers of 
external bioerosion on many reefs (Perry and Harborne [42]), we recommend that future studies 
explicitly test the mechanisms that drive increased bioerosion on corals with high lithophagid 
abundances using complementary methodologies (e.g., isotopic analysis, DNA metabarcoding). 

We observed fairly high external bioerosion pressure on the massive Porites colonies in our study. The 
densities of parrotfish bite scars on massive Porites colonies at our fringing reef sites (mean range: 
0.04–0.08 scars cm−2) are similar to those reported on an inner shelf reef (mean range: 0.004–0.07 bite 
scars cm−2; Bonaldo et al. [ 8]) and mid-shelf reef (mean range: 0.006–0.1 bite scars cm−2; Bonaldo and 
Bellwood [ 6]) within the Great Barrier Reef. This pattern is interesting given that fish corallivory and 
bioerosion rates tend to be higher on offshore reefs characterized by lower nutrients than nearshore, 
eutrophic reefs (Bonaldo et al. [ 9]). Although we lack data on parrotfish bite scar densities for offshore 
massive Porites colonies, we can speculate as to why we see such high bioerosion pressure on colonies 
inhabiting nearshore reefs. While bioeroding parrotfish abundance did change spatially and temporally 
(Fig. S1d), we did not see a relationship between parrotfish abundance and parrotfish bite scar density, 
suggesting that the observed patterns in bite scar densities was likely not driven by parrotfish 
abundance. Yet, massive Porites has been declining in the Moorea fringing reef habitats for the past 
decade (Fig. S1b), which may increase bioerosion pressure on the remaining colonies. Bonaldo and 
Bellwood ([ 6]) found that as massive Porites cover declines, bioerosion pressure increases. Similar 
trends have been observed in the Caribbean when preferred coral species decline (Burkepile [12]). 

We demonstrated that elevated nitrogen supply is correlated with elevated Lithophaga densities on 
massive Porites (Fig. 2). In Moorea, various anthropogenic sources (e.g., land-based pollution, stream 
inputs, and submarine groundwater discharge) deliver high concentrations of nutrients into the lagoon, 
resulting in a mosaic of nutrient hotspots across fringing reef habitats (Haßler et al. [29]). This elevated 
nutrient supply often increases primary productivity (Fabricius [26]), which supports higher densities of 
filter feeders, like Lithophaga spp. (Scott and Cope [53]). Nutrient loading also weakens coral skeletal 
structure (Caroselli et al. [14]; Mwachireya et al. [41]; Rice et al. [46]), which could make corals more 
susceptible to infestation by macroborers in eutrophic reefs. Notably, environmental parameters other 
than nutrients (e.g., pH, temperature, etc.) also affect patterns of bioeroder densities and bioerosion 
rates (e.g., Le Grand and Fabricius [34]; Davidson et al. [20]; Silbiger et al. [57]; Enochs et al. [25]; 
Silbiger et al. [58], [55]). These parameters may covary or interact with nutrients (Manzello et al. [39]; 
DeCarlo et al. [21]; Prouty et al. [44]; Silbiger et al. [59]) and could contribute to the macroborer 
patterns in this study. However, our results are consistent with other studies that have shown higher 
abundances of macroborers on more eutrophic reefs (e.g., Sammarco and Risk [50]; Le Grand and 
Fabricius [34]; but see Chazottes et al. [17]). 



Image analysis of time series photographs can be a useful tool for quantifying macroborer abundances 
for mounding and encrusting coral morphologies (Maher et al. [38]). The correlation between 
abundances recorded in situ by snorkelers and through image analysis demonstrates that these two 
methods produce comparable results for both Lithophaga bores and parrotfish bite scars (Fig. S2). A 
previous study comparing in situ counts and image analysis of an internal bioeroding barnacle found 
that, on average, image analysis was more conservative than in situ counts (Maher et al. [38]). 
Similarly, in this study, for massive Porites colonies with higher Lithophaga abundances, photograph 
counts were more conservative than snorkeler counts (Fig. S2b). However, photograph counts 
overestimated the number of Lithophaga boreholes in about a third of all observations. These 
overestimations typically occurred on Porites colonies with lower Lithophaga abundances (Fig. S2b). 
There are two possible explanations for this pattern. First, snorkelers conducting in situ counts may 
have underestimated Lithophaga on colonies when they were rare, due to challenging field conditions 
and breath-holding time constraints associated with free diving. Second, other bioeroders could have 
been misidentified as Lithophaga in some photographs, artificially inflating 
reported Lithophaga densities in photograph counts. False positives for Lithophaga from photographs 
are unlikely, however, since we only observed Lithophaga or vermetid boreholes in the photographs, 
and Lithophaga spp. have characteristically distinct boreholes that differ from vermetid molluscs in 
Moorea (Fig. S3). 

Although in situ counts of Lithophaga and parrotfish bite scars more accurately estimate densities (Fig. 
S2), in situ quantification is often time intensive and costly (e.g., dive time on SCUBA surveys, ability to 
deploy and retrieve calcium carbonate blocks or to core reef substrate). Thus, analyzing existing time 
series images can help evaluate how macroborer abundances change temporally and spatially in live 
coral. This study was limited in scope to assessing Lithophaga boreholes on live 
massive Porites colonies. We did not assess abundances on dead substrate; therefore, our analysis 
likely underestimates total Lithophaga densities on these reefs. In addition, we were unable to monitor 
individual coral colonies over time due to slight variability in photoquadrat placement from year to 
year. Had we been able to quantify individual colonies over time we likely would have had more power 
to address temporal patterns in bioeroder densities. Research moving forward should couple image 
analysis methods with in situ methods to quantify macroborer densities in both live and dead coral and 
determine how these densities may translate to bioerosion rates. 

External bioerosion by herbivorous fishes is a major contributor to bioerosion on many reefs (Tribollet 
et al. [62]; Hoey and Bellwood [30]; Bonaldo et al. [ 9]). Thus, it is important to study the 
environmental and biological drivers that may facilitate this process. Our study found strong evidence 
that macroborers can increase external bioerosion on reef-building corals and that nitrogen supply 
positively influenced lithophagid abundances. Together, these processes likely amplify the total 
calcium carbonate excavated from these colonies via bioerosion. Future studies should quantify how 
these processes impact bioerosion rates for common reef-building corals. As internal bioerosion rates 
are predicted to increase under future ocean conditions (e.g., ocean acidification: Wisshak et al. [67], 
[68]; Andersson and Gledhill [ 1]; Silbiger and Donahue [54]; DeCarlo et al. [21]; nutrient enrichment: 
Prouty et al. [44]; Lubarsky et al. [37]), there is a critical need to better understand the relationship 
between internal and external bioeroders and how anthropogenic forcing may facilitate particular 
bioeroding taxa. 
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