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Abstract 
The microbiome is composed of many organisms and is impacted by an intricate exchange between 

genetics and environmental factors. The perinatal microbiome influences both the developing fetus 

and the pregnant person. The purpose of this article is to describe the tests that are currently available 

for laboratory analysis of the perinatal microbiome in relationship to probiotic interventions. This 

article focuses on the bacterial component of the microbiome. Although adverse outcomes associated 

with the perinatal microbiome have been studied, a comprehensive understanding of the physiologic 

perinatal microbiome is still emerging. Early efforts to influence the perinatal microbiome 

through probiotics are currently under investigation. Unique terminology is defined, and the microbial 

composition of perinatal microbiota is summarized. The outcomes of studies of 

antenatal probiotics are summarized. Microbiome testing and analysis are defined and compared. 

Implications for perinatal care and probiotics research are presented. 

The human microbiome is composed of microorganisms populating the human body, including 

commensals, symbionts, and pathogens.1 The microbiome is impacted by an intricate exchange 

between genetics and environmental factors.2 The perinatal microbiome influences nutrient 

absorption, the intrauterine fetal environment, immune system priming, and long-term impacts on 

health and illness of offspring. The diet and general health and well-being of the pregnant woman also 

influence the perinatal microbiome.3–6 

The focus of this article is the bacterial component of the microbiome and not the viruses, 

bacteriophages, fungi, and archaea populating pregnant women. The term “microbiota” refers to the 

collection of individual microbes present in a given sample or at a specified location, as well as their 

genetic information or collective coding capacity. Sites studied to understand the perinatal microbiota 

include the maternal oral, gastrointestinal (GI) and genitourinary tracts, as well as maternal skin and 

breast. In the perinatal period, the microbiome has been studied in the context of pathology, such as 

allergies, atopy, and dysbiosis.7–11 Adverse obstetrical outcomes, such as preterm labor and birth, 

preterm premature rupture of membranes, intrauterine growth restriction, gestational diabetes, 

stillbirth, and more, are believed to be linked to the perinatal microbiome12,13; yet, a comprehensive 

understanding of the physiologic perinatal microbiome is still emerging. Knowledge of the genomes of 

microorganisms, their hosts, and relationship to each other in specific environments continues to 

rapidly develop.11,12,14 

The purpose of this article is to describe the tests that are currently available for laboratory analysis of 

the perinatal microbiome in relationship to probiotic interventions. First, a broad overview of terms is 

presented. Second, probiotic interventions are described. Third, the microbial composition of perinatal 

microbiota is summarized by collection site. Studies of antenatal probiotics are presented as they 

relate to each of the sites. Fourth, both the microbiome testing and analysis are outlined. Finally, 

implications for perinatal care and probiotics research are described. 

TERMINOLOGY 
The taxonomical terminology associated with the microbiome and microbial analysis is essential to 

understanding relevant laboratory testing. Although nurses, midwives, and other perinatal clinicians 

are exposed to this terminology in undergraduate education, for many, it has not become a part of 



everyday practice. Table 1 provides terminology and definitions that serve as the foundation for an 

understanding of both the perinatal microbiome and probiotic interventions. 

Table 1. - Terminology used in microbiome-based research 

Term Definition 

16S rRNA A portion of the bacterial ribosome containing variable and 
conserved regions. Widely used as a phylogenetic marker of a unique 
population, including all of its descendents.15 

Alpha diversity Measures to address variation within a sample. Some measures take 
only richness into account, whereas others assess diversity.  
Common measures include Shannon,16 Simpson,17 ACE, and Chao1.18 

Amplicon sequence variants Individual DNA sequences recovered from marker gene analysis 
following removal of spurious chimeric sequences generated during 
PCR amplification.19 May also be called exact sequence variants, sub-
OTUs, and/or zero radius OTUs (zOTUs). 

Archaea Single-celled organisms structurally similar to bacteria, though 
evolutionarily distinct. The role of archaea in human health requires 
further investigations, though they likely play an important role. 

Beta diversity Measures how different composition is between 2 different samples, 
groups, or environments. Common measures include the Bray-Curtis 
dissimilarity,20 Jaccard distance,21 and UniFrac/Weighted UniFrac 
measures.22 

Clade Organisms that descend and evolve from a common ancestor. 

Commensal Commensal organisms refer to the indigenous microorganisms 
present at a given anatomical site. Microorganisms that have 
coevolved with the host and have a symbiotic relationship with the 
host. Also referred to as resident microbes. 

Coverage depth The average number of times a genome is sequenced. Calculated by 
the number of bases of short reads matching a genome divided by 
the length of the genome. 

Diversity A measurement of species richness and evenness. How many species 
are present and how evenly distributed they are.15 

Evenness Describes the relative abundance of the species present in a sample; 
distribution of species. 

Facultative organisms Those able to grow with and without oxygen. 

Metabolomics Study of the metabolite profiles in a sample or tissue. Can be 
assessed using nuclear magnetic resonance spectroscopy or mass 
spectrometry. Metagenomics can be used to assess the function 
potential.23 

Metagenome/metagenomics The collection of all the genomes and genes from all the microbiota 
in a given environment. Metagenomics is the process of 
characterizing the metagenome through shotgun sequencing of 
DNA.23 

Metaproteomics Characterization of the proteins found in a given sample or 
environment. Proteins are identified from microbiota, hosts, and 



their environment, and computational methods are used to identify 
biologic origin.23 

Metatranscriptomics Analysis of meta-RNAs providing information on regulation and 
expression profiles of microbiomes.23 

Microbiome The entire ecosystem of microorganisms, their genomes, and their 
surrounding environmental and clinical conditions. The term should 
not be used to describe data arising from targeted amplicon 
sequencing, as it does not contain reliable functional information.23 

Microbiota The collection of individual microbes present in a given sample or at 
a specified location. The term can be used to describe composition 
and abundance of microbial communities.23 

Microflora Refers to bacteria, fungi, and archaea. Term arose prior to the 
restructuring of the domains of life. This term is now considered 
incorrect or obsolete as microorganisms are not plants or “flora.” The 
term “microbiota” should be used in its place. 

Next generation sequencing High-throughput or massively parallel sequencing technology catch-
all term used to describe modern sequencing methods. NGS has 
greater scalability and speed with reduced costs compared with 
Sanger sequencing.24 

Operational taxonomic units Clusters of sequence reads based on sequence similarity typically 
defined as 97% similar. Each cluster is intended to represent a 
taxonomic unit of bacteria typically at the genus level when 
possible.25 

Prebiotic Fermented or high-fiber foods used by probiotic bacteria to produce 
health benefits or to improve the balance of the microbes present.26 

Sampling depth Sometimes called library size. The number of bases sequenced in a 
given sample. 

Symbiont An organism living on or within the second, larger organism. Does not 
require a functionally significant relationship between the organisms, 
though the relationship can be neutral (commensalism), mutualistic 
(beneficial to both), or parasitic (beneficial only to the symbiont) 

Richness The number of different species in a given sample.27 

Abbreviations: ACE, abundance-based coverage estimator; NSG, next generation sequencing; OUT, 

operational taxonomic units. 

PROBIOTICS 
Probiotics are defined by the Food and Agriculture Organization of the United Nations and the World 

Health Organization as live microorganisms that confer a health benefit on the host when administered 

in adequate amounts.28 The human body naturally contains many species of probiotic bacteria. 

Probiotic bacteria can be used as a dietary supplement aimed at improving health. Most probiotic 

products contain live, freeze dried species of Lactobacillus and/or Bifidobacterium. Figure 1 shows the 

relationships among these 2 probiotic species to each other and to other commensals, as well as 

pathogenic bacteria relevant to perinatal care. 



 

Figure 1.: Bacteria identification. Attribution: Kara Hanson. This figure is available in color online 

(www.jpnnjournal.com). 

UNDERSTANDING PROBIOTICS 
An increasingly popular microbial intervention is the use of probiotics. When discussing probiotics, the 

World Health Organization has guidelines for proper identification of probiotic products that are 

consistent with those used by the scientific community to identify microorganisms.28,29 Many have 

called for standardization in fast and reliable methods for probiotic identification.30,31 Probiotic strains 

are identified by genus, species, and subspecies with an alphanumeric designation for the specific 

strain; an example of this is Lactobacillus (genus) acidophilus (species) NCFM (strain).28,29Figure 

2 shows the relationship between the taxonomic levels of Lactobacillus acidophilus NCFM. 

 

Figure 2.: Taxonomy of Lactobacillus acidophilus NCFM. Attribution: Kara Hanson. This figure is 

available in color online (www.jpnnjournal.com). 

Probiotic supplementation is the deliberate ingestion of potentially beneficial 

microorganisms. Probiotics work by lining the mucus membranes of the gut to provide a defensive 

barrier, promoting the host immune response, stabilizing the gut microbiota, and balancing the pro- 

and anti-inflammatory responses.32,33 

The most common probiotics in the human body are 

genera Lactobacillus and Bifidobacterium.30Lactobacillus belongs to the phylum Firmicutes, which are 

gram-positive, nonmotile, non–spore-forming, facultative anaerobic and fermentative 

bacteria. Lactobacillus is acid tolerant, so it can survive the digestive processes and is associated with 

mucous membranes, such as those found in the GI tract, vagina, and oral cavity.30Bifidobacterium is 

http://www.jpnnjournal.com/
http://www.jpnnjournal.com/
javascript:void(0)
javascript:void(0)


gram-positive, nonmotile, non–spore-forming, anaerobic, and heterofermentative.30 The presence, 

abundance, and diversity of Bifidobacterium are considered a marker of GI wellness; in 

neonates, Bifidobacterium also is associated with gut maturation.6 

The genus Lactobacillus has more than 100 species, and of these, 12 are in the Lactobacillus clade and 

2 belong to the Pediococcus clade. Lactobacillus has been identified through 16S ribosomal RNA (rRNA) 

sequencing (a laboratory technique described later in this article).34Lactobacillus has historically been 

used in food preservation in fermented foods, such as in pickled vegetables and 

yogurts.30 Probiotics often contain 106 to 109 (1 million to 1 billion) or more colony-forming units per 

milliliter (mL), and these bacteria must remain viable in order to offer maximum health benefits to the 

host.30Lactobacillus cannot be identified by only colony or cell morphology, but rather by phenotyping, 

genotyping, or fermentation properties.30 Examples of phenotyping methods are cell motility testing 

and gram staining.30 

Probiotics must be able to survive passage from the oral cavity through the GI system to have 

maximum potency and benefit.28 One study evaluated 6 different probiotic preparations including 

encapsulated pills and yogurt drinks and concluded that Lactobacillus is able to survive acid 

environments similar to the human gut.35 Although the mechanism of action is unknown, there is some 

evidence that even dead probiotics may offer some immunostimulation; however, it is believed that 

there is much greater benefit with a live probiotic.30 

PERINATAL-ASSOCIATED MICROBIOTA 
The physiologic changes in the perinatal microflora of the oral cavity, gut, placenta, and vagina during 

the perinatal period are summarized in Figure 3. The evidence from studies of probiotic interventions 

used to modify the microbiota in each site is also discussed. 

 

Figure 3.: Changes in maternal microbiota during pregnancy. From Nuriel-Ohayon et al.36 Reprinted 

with permission. This figure is available in color online (www.jpnnjournal.com). 

Maternal oral cavity 
The oral microbiota includes facultative organisms and strict anaerobes, 

including Streptococcus, Bacteroides, Lactobacillus, and more.33 There is a known connection between 

maternal periodontal disease and birth outcomes, with higher instances of preterm labor and birth 

http://www.jpnnjournal.com/
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found in women with periodontal disease. There are no published studies of probiotic interventions 

aimed at antenatal oral health, although there is evidence of a relationship between the maternal oral 

cavity and the perinatal microbiome.5 

Maternal gut 
In microbiome research, the term “gut” is used to refer to the entirety of the GI tract. The gut 

microbiome has the greatest number of bacteria, estimated at more than 100 trillion.14 The human gut 

has a major role in both immunity and metabolism, and dysbiosis (imbalance in commensal and 

pathogenic bacteria) has been linked to adverse health events, such as obesity, diabetes, diarrhea, and 

allergic disease.37 

Probiotic interventions aimed at altering the gut microflora have been studied during 

pregnancy. Probiotics have been shown to colonize the maternal gut during pregnancy and may also 

induce a beneficial proinflammatory state.38,39 A proinflammatory state naturally develops in 

pregnancy as labor approaches, which is protective for the maternal-neonatal dyad.39 A randomized 

controlled trial of prebiotics versus placebo found significantly higher levels of Bifidobacterium in the 

maternal gut among those in the probiotics group but no change in the neonatal gut.40 Results are 

conflicting regarding the impact of maternal gut colonization with probiotics on neonatal gut 

colonization with probiotic bacteria.37,41 

The maternal gut is known to be the reservoir for bacteria that colonize the vagina, including group 

B Streptococcus (GBS), which has implications for neonates.42,43 More than 20 probiotic bacteria, 

mostly Lactobacillus species, have been studied in vitro for antagonist activity against GBS.44–48 All 

showed efficacy in reducing GBS in coculture, indicating that these lactobacilli inhibited the growth of 

GBS in laboratory testing using human epithelial cells. The mechanisms of action of the probiotic 

bacteria against GBS include acidification/lowering the pH and competitive exclusion. Six clinical trials 

of probiotics to reduce antenatal GBS have been published.49–54 The findings of 5 of these studies were 

promising and show some efficacy in reducing antenatal GBS colonization or colony counts.50–53 The 

authors of studies in which the efficacy of the probiotic intervention against GBS was not 

demonstrated offered possible explanations including the following: the particular probiotic was 

ineffective; the dosage was too low; the sample size was too small; and encountering difficulty 

recruiting pregnant participants.49,54 More well-controlled studies are needed to determine 

effectiveness of probiotic intervention to reduce antenatal GBS. 

Vagina 
Irrespective of hygiene or sexual practices, organisms that constitute the vaginal microbiota arise from 

the maternal gut.55 The GI and genitourinary tracts share some microorganisms, as in the case of GBS, 

which colonizes the vagina but primarily is found in the gut.12 Some populations of healthy pregnant 

women have less vaginal bacterial diversity than nonpregnant women, and the vagina is dominated 

by Lactobacillus species.12 It is possible that this decrease in diversity is protective against other 

pathogens.12 Vaginal birth exposes the neonate to both the maternal vaginal microbiota and the rectal 

microbiota, likely via a fecal-oral route, colonizing the neonatal gut.56 Neonates born vaginally have 

more Lactobacillus species in their meconium than those born by cesarean delivery.57 One randomized 

controlled trial of an antenatal probiotic intervention versus placebo showed no significant difference 



in vaginal microbiota between the 2 groups.58 More recently, Yang and colleagues59 compared vaginal 

microbiota in pregnant women who took a probiotic from 12 weeks' gestation versus controls. They 

also found no difference between the groups. More research is needed to identify the possibility of 

modifying the vaginal microflora during pregnancy. 

Placenta 
The placental microbiome is controversial. Historically, the placenta and the uterine environment were 

considered to be sterile.60 Aagaard and colleagues61 conducted a recent study of a population-based 

cohort of 320 placentas, collected under sterile conditions, and conducted metagenomic studies using 

16S rDNA and whole genome shotgun sequencing to compare the placentas with other body sites. 

They found that the placenta had a unique microbiome that is most similar to the human oral 

cavity.61 Despite this finding, the microbial composition of the placenta remains controversial, with 

some scientists arguing that microbes obtained actually represent contamination during specimen 

collection.60,62–64 A strong argument has been made for a low biomass (containing limited numbers of 

bacteria) fetal and neonatal microbiome.61,65–67 Probiotics may be able to change this biomass; Kaplas 

and colleagues68 identified that an antenatal probiotic intervention modified placental phospholipid 

fatty acids. Several authors have described the type and importance of collection methods and 

emphasized the need for careful collection to avoid contamination.1,5,69 Specimen collection technique 

is critical for the clinical staff, who are often obtaining the samples. More research is needed to 

understand the relationship between collection, contamination, and the placental microbiome. 

Skin and breast 
In physiologic births, or births allowed to proceed with no or few obstetric interventions, infants are 

placed skin to skin on the maternal chest and the neonate begins breastfeeding. The human axilla is 

known to have high microbial biomass, and the breastfed neonate is typically cradled in the mother's 

arms in close proximity to the axilla while receiving breast milk.70,71 Breast milk is a synbiotic food, 

meaning that it contains both prebiotics and probiotics. There is evidence that probiotics are passed 

through breast milk, especially Lactobacillus and Bifidobacterium.37,72 Breastfed neonates have 

increased Bifidobacterium in their guts compared with formula-fed neonates. Formula-fed neonates 

have increased gut bacterial diversity, including Bacteroides, clostridia, and streptococci, and (fewer) 

bifidobacteria.33 Probiotic interventions aimed at altering breast milk composition have been 

conducted and antenatal probiotic administration resulted in an increase in antibodies and cytokines in 

the breast milk of probiotic group participants compared with controls.73 It has become increasingly 

common for infant formula to contain probiotic bacteria in an effort to confer health benefits similar to 

breast milk.73 

Maternal-fetal dyad 
The maternal-neonatal dyad is a dynamic unit; maternal microbiome changes impact the neonate, and 

vice versa. The impact of probiotics on the maternal-fetal dyad is a developing science. Microbiome 

testing has been conducted on the maternal-fetal dyad to assess similarities and differences.2 Hegde 

and Munshi75 sought to examine the relationship between the vaginal microbiota and the neonatal 

oral cavity after birth. They found that Staphylococcus epidermidis (typically a commensal skin 

bacterium) persisted in the neonatal oral cavity; however, by the termination of the study, the 

neonatal oral cavity was dominated by Staphylococcus salivarius (a commensal oral cavity 



bacterium).75 This study helped demonstrate that part of the pioneer microbiota of the neonate occurs 

following vaginal birth. As previously stated, investigators in one study found similarity between the 

placental microbiome and the maternal oral cavity, which may demonstrate an additional route of 

colonization for the early perinatal microbiome.61 

One longitudinal study of 25 mother-neonate pairs conducted strain-level metagenomic profiling and 

followed the pairs from birth to 4 months to document the microbial transition from the mother to the 

neonate.2 The study sampled the maternal stool, oral cavity, vagina, skin, and breast milk and the 

neonatal stool and oral cavity.2 All of the neonatal pairs shared a large number of gut species with their 

mothers, while maternal skin and vaginal strains only temporarily colonized the neonates.2 The authors 

conclude that the maternal gut is the source of the largest number of neonatal microbial strains.2 

PURPOSE OF MICROBIOME TESTING/ANALYSIS 
Formerly, researchers relied on culture-based methods to study microbes and their 

interrelationships.14 As a result, many probiotic interventions available over the counter may be 

miscategorized. Huys and colleagues31 found that 28% of the probiotic cultures from 10 different 

manufacturers were mislabeled. More than half of the cultures (57%) were from the 

genus Lactobacillus, whereas 22% were from the genus Bifidobacterium.31 

As mentioned earlier, a number of probiotic interventions have been tested in vitro for efficacy against 

specific organisms, such as GBS.44–48 In these studies, the probiotic bacteria are grown in a liquid broth 

coculture with bacteria of interest to determine whether the probiotic bacteria can reduce the viability 

of the targeted bacteria. This type of testing can be useful before initiating a clinical trial. It can also 

yield information about the mechanism of action. 

Table 2 compares common approaches to laboratory testing of the microbiome. Significant advances 

have been made using laboratory methods that are independent of culture, allowing scientists a 

greater understanding of the human microbiome.77 Sanger sequencing was previously the most 

common culture independent test used to identify bacterial communities. Sanger sequencing provided 

laboratory reads of greater than 500 DNA pairs, whereas newer testing approaches that are described 

later give shorter reads of 200 to 400 pairs.14 Sanger sequencing differs from newer approaches by 

volume, since the Sanger technique can process only one genome sample at a time whereas next 

generation sequencing can simultaneously sequence millions of genes from multiple samples. 

Table 2. - Common techniques used to characterize microbiota and the microbiomea 

Method Description Advantages Limitations 

Culture and 
culturomics 

Isolation of microbes on 
selective media. May be 
combined with NGS 
approaches. 

Inexpensive, 
semiquantitative, 
potential detection of 
low abundance 
organism 

Less than 20% of bacteria 
may be identifiable by 
culture, though this 
number is increasing; labor 
intensive 

qPCR Used to amplify and 
quantify specific genes. 

qPCR is quantitative, 
both are fast 

Unable to identify 
unknown species, subject 
to PCR bias 

https://journals.lww.com/jpnnjournal/Fulltext/2020/07000/Laboratory_Analysis_Techniques_for_the_Perinatal.12.aspx#T2


Microarrays Fluorochrome dyes are 
used to label probes that 
bind complementary 
nucleotides. The 
fluorescence emission 
pattern is detected by a 
laser and used for DNA 
identification 

Semiquantitative, fast PCR bias and cross-
hybridization, poor 
detection of low 
abundance organisms 

Targeted 
amplicon 
sequencing 

Massively parallel, ultra-
deep sequencing PCR 
products (amplicons). 
Typically amplification is of 
a marker gene such a 
portion of the 16S rRNA 
gene. 

Quantitative, faster 
than shotgun 
metagenomics, can 
identify unknown 
organisms 

Poor detection of low 
abundance organisms, PCR 
bias, somewhat expensive, 
genus-level phylogenetic 
information only, poor 
accuracy for functional 
predictions 

Whole 
genome 
shotgun 
sequencing 

Massively parallel 
sequencing of all of the 
genomic DNA in a sample. 

Quantitative, high 
taxonomic and 
functional information, 
no PCR bias, strain-level 
identification possible 

Most expensive, 
computationally intensive 
data analysis 

Abbreviation: NSG, next generation sequencing; PCR, polymerase chain reaction; qPCR, quantitative 

polymerase chain reaction. 
aAdapted from Fraher et al.76 

 

Microbiome analysis is still a new and emerging field and not widely used in all areas of clinical 

practice.77 An exception is Fecal Microbiome Transfer that is being applied in clinical care of patients 

with unrelenting Clostridium difficile diarrheal infections.78 

Microbiome testing is often used in probiotic intervention studies to compare treatment with control 

groups. In these studies, probiotics are administered to determine their efficacy at creating health 

outcome changes in pregnant women and their neonates.73 Microbial studies can also be used to 

determine the adherence to the probiotic intervention. For example, if a probiotic bacterial strain is 

found in the stool of a study participant, it is a potential adherence indicator if it was not present 

before, providing evidence that the participant took the probiotic. Locating the strain in stool also 

provides evidence the probiotic bacteria withstood the acidic environment of the GI tract, an essential 

characteristic of any oral probiotic intervention. 

COMPARISON OF CONTEMPORARY APPROACHES WITH MICROBIOME 

TESTING 
The 16S rRNA gene testing is frequently mentioned in the literature and was first introduced in 1985. 

This test allows for comparison between bacterial types and genes.1 This approach uses polymerase 

chain reaction to target and amplify (regions VI-V9) of the bacterial RNA. The pieces of RNA are called 

amplicons. Amplicons from separate samples are coded and pooled together and sequenced, the 

process where the nucleic acid order of the nucleotides is determined.77 The 16S rRNA area in bacteria 



allows for identification and classification of an area that is exclusive to bacteria. This is because the 

ribosomal subunit is a gene that is located on the 30S area of a prokaryotic ribosome; it contains 9 

subregions, and each can be targeted for amplification to allow for categorization.77 16S rRNA contains 

a specific region that is unique to each bacterial species, meaning the bacteria can be classified and 

also be added to a broad categorization of the species.14 This allows for detection of new microbes and 

for comparison between bacterial types and locations, sometimes referred to as niches.1 The 9 specific 

subregions are unique, and different regions better categorize different human microbiome regions. 

16S rRNA has some limitations, as the lowest level of taxonomic classification is usually the genus level, 

which can limit clinical utility.14 There also are several benefits to 16S rRNA use, including a low rate of 

false-positive results and currently it is the least costly approach for microbiome analysis. 

Because 16S rRNA is the most common target region for phylogenetic identification, it is often used to 

identify members of the genus Lactobacillus.30 16S rRNA and 16S-23S rDNA are tools that allow for 

faster identification of probiotics such as Lactobacillus than was possible in the past.30 However, 16S 

rRNA does not provide identification of probiotic bacteria to the strain level. This is extremely 

important because probiotic benefits are strain dependent.30 

Contemporary laboratory methods for microbiome analysis include shotgun sequencing. Unlike 16S 

rRNA (that uses only specific genes), shotgun sequencing uses all the DNA genomic material from a 

sample. This approach allows for analyses to the strain level and also allows for analysis of metabolic 

function and antibiotic resistance analyses. In comparison, deep sequencing provides a higher number 

of reads and is a better choice when samples may contain large amounts of host DNA. Deep 

sequencing may give more accuracy, but it is more costly. 

The use of shotgun analysis is recommended for analyses of human saliva and feces, because it 

fragments a large genome into small random DNA fragments that are individually sequenced, 

compared by powerful computers for overlaps in the sequences, and then replaces them in their 

correct order to reconstitute the genome. There are 2 subtypes of shotgun sequencing: deep and 

shallow. Deep shotgun sequencing can be used for general human microbiome analyses. It provides 

limited coverage of bacteria, has a high risk of false positive, and is the costliest.79 Shallow shotgun 

sequencing has limited bacterial coverage, a high risk of false positives, and is less costly (but still more 

costly than 16S rRNA analysis). 

DISCUSSION 
A comprehensive understanding of perinatal microbiome is an evolving science. The past century has 

seen a rapid change in location, type, and interventions associated with birth: from the home to the 

hospital environment, from vaginal birth to approximately one-third of US births by cesarean section, 

and the use of interventions aimed at improving maternal and neonatal health such as intravenous 

intrapartum antibiotic prophylaxis to reduce GBS disease of the newborn. These changes may—or may 

not—have implications for the perinatal microbiome and for long-term human health and disease. 

Each aspect of the perinatal microbiome, the oral cavity, the GI tract, and the genitourinary tract, may 

be susceptible to the influence of microbial interventions. The use of probiotic inventions to improve 

health has been the focus of research during the past 20 years. More recently, perinatal researchers 



have been studying probiotic interventions to reduce GBS colonization, with the hopes of reducing the 

ongoing burden of both GBS disease of the newborn and intrapartum antibiotic use. 

As an understanding of the laboratory techniques aimed at evaluating probiotic interventions develop, 

the interventions may be targeted to more precisely impact specific areas of the perinatal microbiome. 

For example, if specific strains of probiotics are found to be more capable of reducing GBS colonization 

in clinical trials, the intervention could be applied in clinical practice. Currently, probiotics may be 

found at grocery stores, health food stores, and pharmacies and seem to be increasingly popular. 

However, probiotics are not available to women who lack the financial resources to purchase over-the-

counter supplements. Probiotics may be an innovative strategy to improve perinatal health; yet, 

rigorous studies and methodologies to evaluate their potency and effects are necessary before 

clinicians can recommend them. 

Laboratory analysis has developed quickly and continues to be increasingly precise and to offer a 

greater scope of identification. Although not currently part of routine clinical practice, clinicians must 

understand laboratory analysis techniques, both to comprehend the literature and to discuss the 

perinatal microbiome with pregnant women and their families. 

IMPLICATIONS FOR PERINATAL CLINICIANS AND RESEARCHERS 
It is important that perinatal clinicians and researchers become familiar with the laboratory analysis 

associated with the microbiome. Clinicians such as nurses and midwives will likely be the scientists 

collecting the specimens and will benefit from an understanding of the analysis techniques. 

Furthermore, clinicians will be the point of contact for pregnant people and therefore will need to 

understand what is known and what is unknown about the perinatal microbiome and which factors 

influence it. 

At this time, antenatal probiotic interventions are still under investigation and not widely applied to 

clinical practice. More well-controlled studies are needed to determine the effectiveness. Ames and 

colleagues14 state that microbiome research is currently a descriptive science and few interventions 

based on this research are available. However, interventions are emerging; in the perinatal world, one 

example of new microbiome research is of probiotics in pregnancy to reduce GBS. As this science 

continues to develop, perinatal nurses and midwives may be able to encourage interventions such 

as probiotics to improve short- and long-term health. 

CONCLUSION 
A scientific understanding of the perinatal microbiome is emerging and has the potential to impact 

human health and disease. Laboratory analysis of the perinatal microbiome has made great advances 

in recent years and is continuing to evolve. As this science develops, interventions such as the use 

of probiotics to improve perinatal health will be better understood and therefore may be 

recommended by perinatal clinicians. 
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