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Abstract 
Lianas reduce tree growth, reproduction, and survival in tropical forests. Liana competition can be particularly 
intense in isolated forest fragments, where liana densities are high, and thus, host tree infestation is common. 
Furthermore, lianas appear to grow particularly well during seasonal drought, when they may compete 
particularly intensely with trees. Few studies, however, have experimentally quantified the seasonal effects of 
liana competition on multiple tree species in tropical forests. We used a liana removal experiment in a forest 
fragment in southeastern Brazil to test whether the effects of lianas on tree growth vary with season and tree 
species identity. We conducted monthly diameter measurements using dendrometer bands on 88 individuals of 
five tree species for 24 months. We found that lianas had a stronger negative effect on some tree species during 
the wet season compared to the dry season. Furthermore, lianas significantly reduced the diameter growth of 
two tree species but had no effect on the other three tree species. The strong negative effect of lianas on some 
trees, particularly during the wet season, indicates that the effect of lianas on trees varies both seasonally and 
with tree species identity. 

1 INTRODUCTION 
Tropical lianas commonly proliferate following disturbance, and they are found in high densities in treefall gaps, 
young secondary forests, and forest fragments (Farah et al., 2014; Lobo, Leao, Melo, Santos, & Tabarelli, 2011; 
Schnitzer, 2018; Schnitzer, Dalling, & Carson, 2000). When in high densities, lianas can compete intensely with 
trees, reducing tree growth, reproduction, and diversity (García-León et al., 2018; Schnitzer & Carson, 2010; 
Toledo-Aceves, 2015). Lianas can hinder tree regeneration due to excess weight or competition for resources, 
and in extreme cases, lianas can arrest succession leading to liana-dominated forests (Schnitzer et al., 2000; 
Martínez-Izquierdo et al., 2016; Tymen et al., 2016). The reduction in tree growth and survival due to liana 
competition reduces forest-wide carbon accumulation and may result in future changes in forest structure and 
composition (Farah et al., 2014; van der Heijden, Powers, & Schnitzer, 2015; Schnitzer, Heijden, Mascaro, & 
Carson, 2014). 

Lianas appear to grow particularly well during seasonal drought (Schnitzer, 2005; Schnitzer & van der 
Heijden, 2019), which may lead to stronger competition for limited resources, particularly water. By contrast, 
trees grow more during the wet season (Schnitzer & van der Heijden, 2019), when competition from lianas may 
actually have a larger negative effect on tree growth (van der Heijden, Powers, & Schnitzer, 2019). However, the 
season in which lianas exert stronger negative effects on trees is poorly understood. Determining the seasonal 
effects of lianas on tree growth is particularly important because extreme climatic events, such as longer 
droughts, are increasing in frequency (Cai, Schnitzer, & Bongers, 2009; DeWalt et al., 2010; Schnitzer & 
Bongers, 2011). 

Lianas may also influence tree community composition by competing more intensely with some tree species 
than others. The differential response of tree species to liana competition may alter community composition by 
disadvantaging the tree species that suffer more from liana competition (Schnitzer, 2018). Currently, it is unclear 
whether some tree species suffer more than others from liana competition. Some studies have argued that 
shade-tolerant and slow-growing tree species are more prone to liana infestation, and thus, lianas have a 
greater negative effect on those species (Clark & Clark, 1990; Putz 1984a, 1984b, 1980; Schnitzer et al., 2000). 
Other studies have shown greater negative impacts of lianas on light-demanding and fast growth tree species 
than shade-tolerant and slow growth species (e.g., Visser, Muller-Landau, et al., 2018; Visser, Schnitzer, et 
al., 2018). And yet other studies have argued that all tree species respond similarly to liana competition (Alvarez-
Cansino, Schnitzer, Reid, & Powers, 2015; Martínez-Izquierdo, García, Powers, & Schnitzer, 2016). Thus, whether 
different tree species differ significantly in their response to liana competition remains contentious. 



Forest fragments are becoming a common forest type in the tropics and subtropics, such as the Brazilian Atlantic 
forest, where lianas can be particularly abundant (Turner & T Corlett 1996; Ribeiro, Metzger, Martensen, 
Ponzoni, & Hirota, 2009), and trees regenerating may be particularly vulnerable to liana infestation (Barry, 
Schnitzer, Breugel, & Hall, 2015; Putz 1984a, 1984b; Schnitzer et al., 2000). Despite the observed negative 
effects of lianas on tree performance (e.g., Alvarez-Cansino et al., 2015; Schnitzer & Carson, 2010; Toledo-
Aceves, 2015; García León et al., 2018), there are little empirical data showing that lianas have a stronger 
negative effect with changing abiotic conditions (e.g., seasonally; van der Heijden et al., 2019). Here, we used a 
2-year liana removal experiment (September 2012 to September 2014) to evaluate the effect of lianas on the 
growth of host trees in a forest fragment in Southeastern Brazil. We addressed two main questions: (a) Does the 
effect of lianas on tree growth vary seasonally? (b) Does the effect of lianas on tree growth vary with tree 
species identity? Considering that in 2013/2014, Sao Paulo state experienced the strongest drought since 
recording started in 1961 (Coelho, Cardoso, & Firpo, 2016), we also addressed the questions: (c) Does the effect 
of lianas on tree growth increase with extreme drought? and (d) Which climatic variables are correlated with 
tree growth after liana removal? 

2 METHODS 
2.1 Study area 
We conducted this study in a 14-ha semideciduous seasonal forest fragment located in Piracicaba county, 
southeast Brazil (22°42′S, 47°37′W, 546 m a.s.l.). The region has a mean annual temperature of 20.5°C, with 
mean warmest and coldest months temperature of 23.3 and 16.7°C, respectively (Alvares, Stape, Sentelhas, 
Goncalves, & Sparovek, 2013). Mean annual rainfall is 1,281 mm, with 50% falling between December and 
January (Figure S1). According to Köppen's classification, the region supports humid subtropical forest (Cfa). The 
study site was located in an agricultural–urban landscape that historically has been exposed to degradation such 
as logging, recurrent incursions by cattle, and fire. The most recent fire was in 1981, 32 years before the study 
(Venegas-Gonzalez, Arx, Chagas, & Tomazello Filho, 2015). The forest fragment is extremely liana dense (~4,200 
lianas >1 cm diam per ha, César et al., 2016; cf. Schnitzer et al., 2012), and it lacks a continuous canopy 
throughout most of the fragment. The tree community is a mix of early and late successional species (César et 
al., 2016). 

2.2 Tree species selection and growth evaluation 
We installed dendrometer bands on 15–20 individuals of five tree species that were >7 cm in diameter at breast 
height (Table 1). Initially, in year 1, we installed 50 dendrometer bands in 10 individuals per species. In the 
second year, we added another 40 dendrometers to the trees (88 total individuals total; 2 trees died during the 
second year). The target trees had similar diameters (standard deviation <4.5 cm) and heights (Table 1). The 
minimum distance among trees within each treatment was five meters. We selected the tree species that were 
relatively abundant and thus provided enough replication. All individuals selected were located within the core 
area of the forest fragment and exposed to similar levels of liana infestation. The species selected were as 
follows: Ceiba speciosa (A. St.-Hil.) Ravenna; Piptadenia gonoacantha (Mart.) J.F. Macbr.; Aloysia virgata (Ruiz & 
Pav.) Juss.; Bauhinia forficata Benth.; and Trichilia clausseni C. DC. 

Table 1. Characteristics of the five tree species and number of individuals per year (year 2 include trees of year 
1) used in the experiment, with their respective average diameter at breast height (DBH), total height, and 
ecological classification 

Species Treatment No. 
trees 

 Classification DBH 
(±SD) 

Height 



  
Year 1 Year 

2 

   

Aloysia virgata—Av (Verbenaceae) LR 5 10 NCT 12.6 (3.3) <10 m  
NLR 5 10 

 
10.1 (2.7) <10 m 

Bauhinia forficata—Bf (Fabaceae) LR 5 10 NCT 11.0 (2.6) <10 m  
NLR 5 10 

 
8.7 (2.4) <10 m 

Ceiba speciosa—Cs (Malvaceae) LR 5 7 CT 11.0 (4.0) >10 m  
NLR 5 10 

 
9.0 (1.3) >10 m 

Piptadenia gonoacantha—Pg 
(Fabaceae) 

LR 5 9 CT 11.5 (4.5) >10 m 
 

NLR 5 8 
 

9.7 (2.4) >10 m 
Trichilia claussenii—Tc (Meliaceae) LR 5 9 NCT 12.9 (5.1) <10 m  

NLR 5 5 
 

12.2 (4.4) <10 m 
Abbreviations: CT, canopy trees; DBH (Sd), diameter at breast height (standard deviation) in cm; LR, trees with 
liana removal; NCT, non-canopy trees; NLR, trees with non-liana removal. 
 

The dendrometer bands were made of stainless steel ribbons (12.7 × 0.15 mm, width and thickness, 
respectively) with 0.2 mm precision (Botosso & Tomazello Filho, 2001). For half of the individuals of each tree 
species, we cut all lianas within a 10 m radius (methods follow Tobin, Wright, Mangan, & Schnitzer, 2012; 
Wright, Tobin, Mangan, & Schnitzer, 2015). We measured tree growth monthly for 24 months, starting in 
September 2012. Initially, we installed 10 dendrometer bands for each species, 5 for trees in the liana removal 
treatment (LR) and 5 for controls (NLR). In September 2013, we added dendrometer bands to 40 additional 
individuals of the five-target species. We quantified the change in stem diameter based on the initial diameter of 
each tree individual. The total mean relative growth was calculated as a percentage of the initial size for tree 
species with liana removals (LR) and controls (NLR)(Mello et al., 2020). 

2.3 Data analysis 
To test our first two questions, whether the effects of lianas on tree growth varies with season and species 
identity, we used a linear mixed model. We classified the wet season as the period with rain >100 mm per 
month (October to March) and the dry season as the period with <50 mm per month (June to August). The 
months with intermittent precipitation in between the dry and wet seasons (50–100 mm per month) were 
considered as a transitional season (Figure S1; Álvarez-Cansino et al., 2015). We used the annualized monthly 
mean relative growth as our response variable, that was obtained by multiplying the 3-month season data by 4 
and the 6-month season data by 2 (e.g., Schnitzer & van der Heijden, 2019). We used treatment type (removal 
vs. control), season (wet, transition and dry), species (5 species), and interactions among variables as fixed 
factors and included year (2 years) and tree individuals (88 trees) nested on species (5 species) as random 
factors (Table 2). We selected the random factors to take into account the temporal variability of years with 
contrasting climate and the multiple measurements of individuals per species. 

Table 2. Results of the log likelihood ratio test for the linear mixed model with treatment, season, species, and 
interactions as fixed factors and year and individuals nested on species as random factors 

Fixed effect df χ2 Pr (>χ2) 
Treatment 1 16.9893 <0.0001 
Season 2 77.4950 <0.0001 
Species 4 13.5832 <0.008 
Treatment × season 2 6.7836 0.0336 
Treatment × species 4 11.3494 0.022905 



Season × species 8 10.1070 0.257594 
Note: We used the annualized monthly mean relative growth for the five host species studied. Treatment was 
the liana removal manipulation versus control, seasons were dry, transition, and wet, and species were the five 
species describe in Table 1. 
 

To test our third question, whether the effect of lianas on tree species growth varies with extreme drought, we 
used the tree accumulated relative growth per year as the response variable and included treatment type 
(removal vs. control), species (5 species), and year (normal and reduced precipitation) as fixed factors, as well as 
the interactions among the variables (Table 3). We used tree individuals (88 individuals) nested on species (5 
species) as random factors to account for possible spatial autocorrelation. 

Table 3. Results of the log likelihood ratio test for the linear mixed model with year, treatment, species, and 
interactions as fixed factors and individuals nested on species as random factors 

Fixed effect df χ2 Pr (>χ2) 
Treatment 1 10.9046 0.001 
Year 1 12.9653 0.0003 
Species 4 29.9693 <0.008 
Treatment × year 1 0.487 0.485 
Treatment × species 4 9.8163 0.043 
Year × species 4 2.8775 0.578 

Note: We used the yearly accumulated relative growth data for the five tree species studied. Treatment was the 
liana removal manipulation versus control, years were year 1 and year 2, and species were the five species 
described in Table 1. 
 

We present a table with the values of the log likelihood ratio tests for the models. To fit the models, we log-
transformed the response variables to normalize the residuals and used the function lmer() from the 
package lme4, software R (R Core Team 2017). We present the β estimates of growth and the 95% interval 
confidence for the effects of treatment to control per species and year. We calculated the β estimates of growth 
per season excluding species from the fixed factors to allow generalization of the results. We adjusted the 
confidence interval based on Bonferroni correction with 98.3% CI for three post hoc comparisons. 

Finally, to test out last question, whether climatic variables are correlated with tree growth after liana removal, 
we used generalized additive models (GAMs) to describe the effects of the climate variables precipitation, 
relative humidity, average temperature—Max and Min—and evapotranspiration on tree monthly relative 
growth. We used the package mgcv for GAM models in R (Wood, 2011). Climatic data sets were obtained from a 
weather station located 250 m from the study area. 

3 RESULTS 
3.1 Effect of liana removal on tree growth 
The presence of lianas in the control trees substantially limited tree diameter growth compared to trees where 
lianas were removed (Mean annual relative growth LR treatment = 4.51 ± 0.73, controls = 1.85 ± 0.23). After 
12 months, the mean tree relative growth was 304% higher for trees with lianas removed (mean annual relative 
growth during year 1 LR treatment = 7.6 ± 1.8, controls = 2.5 ± 0.53). The difference in mean tree relative growth 
between LR and controls was 192% by the end of the second year (mean annual relative growth during year 2 LR 
treatment = 2.81 ± 0.42, controls = 1.46 ± 0.18. Figure 1). Two tree species, Ceiba speciosa and Piptadenia 
gonoacantha, responded the strongest to liana removal compared to the other three species (mean annual 



relative growth for Ceiba speciosa LR treatment = 8.2 ± 2.1, controls = 1.7 ± 0.5; mean annual relative growth 
for Piptadenia gonoacantha LR treatment = 7.6 ± 1.8, controls = 2.5 ± 0.53). 

 
Figure 1. The total mean relative growth for all tree species as a percentage of the initial diameter size of the 
five tree species with liana removal (LR) and non-liana removal (NLR) in the forest fragment for year 1 and year 2 
of the experiment. Sample size for the first year was LR: N = 24 and NLR: N = 24 and for the second year was 
LR: N = 45 and NLR: N = 43. Asterisks denote significant differences between treatments (*p < .05 and **p < .01) 
 

3.2 Effect of liana removal by tree species and season 
The interaction between season and treatment (df = 2, χ2 = 6.516, p < .038, Table 2) revealed a stronger effect of 
liana removal during the wet season (mean monthly relative growth LR treatment = 0.53 ± 0.05, 
controls = 0.22 ± 0.02; βt-c = −0.14; 98.3% CI = 0.09, 0.21) compared to the transition (mean monthly relative 
growth LR treatment = 0.27 ± 0.05, controls = 0.11 ± 0.02; βt-c = −0.076; 98.3% CI = −0.0005, 0.16) and dry 
seasons (Mean monthly relative growth LR treatment = 0.19 ± 0.03, controls = 0.07 ± 0.01; βt-c = −0.076; 98.3% 
CI = −0.012, 0.16, Figure 2). Moreover, the interaction between treatment and species (df = 4, 
χ2 = 11.3494, p < .023, Table 2) revealed a species-specific growth response of trees to the liana removal 
treatment. The species C. speciosa had a stronger response to liana removal during the wet season (mean 
monthly relative growth during wet season Ceiba speciosa LR treatment = 1.1 ± 0.2, controls = 0.2 ± 0.07; βt-

c = −0.3; 95% CI = −0.4, −0.15) compared to the transition (mean monthly relative growth during transition Ceiba 
speciosa LR treatment = 0.4 ± 0.1, controls = 0.1 ± 0.03; βt-c = −0.21; 95% CI = −0.33, −0.08) and dry season (mean 
monthly relative growth during dry season Ceiba speciosa LR treatment = 0.2 ± 0.08, controls = 0.07 ± 0.04; βt-

c = −0.2; 95%CI = −0.32, −0.07, Figure 3). In contrast, the species P. gonoacantha had a strong response to liana 
removal during all seasons—wet season (mean monthly relative growth during wet season Piptadenia 
gonoacantha LR treatment = 0.9 ± 0.1, controls = 0.4 ± 0.06; βt-c = −0.24; 95% CI = −0.35, −0.12); transition (mean 
monthly relative growth during transition Piptadenia gonoacantha LR treatment = 0.8 ± 0.2, 
controls = 0.1 ± 0.04; βt-c = −0.17; 95% CI = −0.29, −0.04); and dry season (mean monthly relative growth during 
dry season Piptadenia gonoacantha LR treatment = 0.5 ± 0.1, controls = 0.1 ± 0.03; βt-c = −0.16; 95% CI = −0.28, 
−0.03). Tree growth of Aloysia virgata, Bauhinia forficata, and Trichilia clausseni did not respond to liana 
removal in either season (Figure 3). 

https://onlinelibrary.wiley.com/cms/asset/1b9fb484-1438-47d0-9c4d-e43a5e59a14c/btp12796-fig-0001-m.jpg


 
Figure 2. The total monthly mean relative growth of the tree species with liana removal (LR) and non-liana 
removal (NLR) in the forest fragment by season (dry: June to August; transition: April, May, and September; wet: 
October to March). Sample size for the first year was LR: N = 24 and NLR: N = 24 and for the second year was 
LR: N = 45 and NLR: N = 43. Asterisks denote significant differences between treatments (*p < .05 and **p < .01) 

 
Figure 3. The monthly mean relative growth of species by season (dry: June to August; transition: April, May, 
and September; wet: October to March) of the five replicated tree species with liana removal (LR) and non-liana 
removal (NLR) in the forest fragment. The species are (a) Aloysia virgata, sample size N: LR = 10 and NLR = 10; 
(b) Bauhinia forficata, sample size N: LR = 10 and NLR = 10; (c) Ceiba speciosa, sample size N: LR = 7 and 
NLR = 10; (d) Piptadenia gonoacantha, sample size N: LR = 9 and NLR = 8; and (e) Trichilia claussenii, sample size 
N: LR = 9 and NLR = 5. Asterisks denote significant differences between treatments (*p < .05 and **p < .01) 
 

3.3 Effect of liana removal by tree species and year 
Tree growth was higher during the normal year compared to the extreme drought year; however, the non-
significant interaction between treatment and year suggests no differences in the effect of liana removal on tree 
growth per year (df = 1, χ2 = 0.487, p < .485, Table 3; Figure 1). In contrast, the per year model showed 
significant interaction between tree species and treatment, suggesting a species-specific response of tree 
growth to liana removal per year (df = 4, χ2 = 9.8163, p < .043, Table 3). The species C. speciosa had an increased 
diametric growth in the LR treatment compared to the control in both years (mean annual relative growth 
for Ceiba speciosa during year 1 LR treatment = 12.6 ± 4.4, controls = 2.3 ± 1.3, βYear 1 t-c = −2, 95% CI = −2.9, 
−0.99; and year 2 LR treatment = 5.2 ± 1.1, controls = 1.4 ± 0.3, βYear 2 t-c = −1.77, 95% CI = −2.7, −0.8), 
while P. gonoacantha responded the strongest during the year 1 compared to year 2 (mean annual relative 
growth for Piptadenia gonoacantha during year 1 in LR treatment = 19.8 ± 3.7, controls = 3.8 ± 1.7, βYear 1 t-

c = −1.02, 95% CI = −2.03, −0.012; and year 2 in LR treatment = 4.3 ± 1.1, controls = 2.3 ± 0.4, βYear 2 t-c = −0.8, 95% 
CI = −1.73, 0.13. Figure 4; Figure S1). Diametric growth of the tree species Aloysia virgata, Bauhinia forficata, 
and Trichilia clausseni did not increase following liana removal in either year (Figure 4; Figure S1). Overall, all 
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species had a reduced diametric growth during the extreme drought year compared to the first year (βt-

c = −1.02; 95% CI = −1.76, −0.27; Figure 4). 

 
Figure 4. The total mean relative growth per species as a percentage of the initial diameter size of the five 
replicated tree species with liana removal (LR) and non-liana removal (NLR) in the forest fragment. Panel “a” 
represents the first year after the liana removal treatment. Panel “b” represents the second year after the liana 
removal treatment. Species are Aloysia virgata, sample size N: LR = 10 and NLR = 10; Bauhinia forficata, sample 
size N: LR = 10 and NLR = 10; Ceiba speciosa, sample size N: LR = 7 and NLR = 10; Piptadenia gonoacantha, 
sample size N: LR = 9 and NLR = 8; and Trichilia claussenii, sample size N: LR = 9 and NLR = 5. Asterisks denote 
significant differences between treatments (*p < .05 and **p < .01) 
 

3.4 Influence of climatic variables on tree growth after liana removal treatment 
According to the GAM models, some tree species with liana removal had diametric growth significantly 
associated with climatic variables in both the normal year (year 1: October 2012–September 2013) and the 
extreme drought year (year 2: October 2013–September 2014, Table 4). We found a high percentage of variance 
(R2adj) and deviance explained (%Dev) by climatic variables for four tree species, with significant values for two 
species during the year one of the experiment and significant values for the other two species during the year 2 
of the experiment (extreme drought year—Table 4). The species A. virgata and C. speciosa had the highest 
values of R2adj (>0.65) and %Dev (>83.6) during the year 1, while P. gonoacantha and T. clausenii had the 
highest values of R2adj (>0.76) and %Dev (>88.9) during the second year. Rainfall and humidity were correlated 
with tree growth after lianas removal during both years, being rainfall positively correlated with growth 
in A. virgata, P. gonoacantha, and T. clausenii, while humidity was positively correlated with growth 
in C. speciosa (Figure S3). All climatic variables had a large non-linear adjustment for the species T. clausenii with 
a particularly strong correlation with the climatic variable maximum temperature and humidity (p < .01). We did 
not find significant correlation between tree growth and climatic variables in the species B. forficata. 

Table 4. General additive model (GAM) for monthly growth of trees with liana removal as function of climatic 
variables (maximum and minimum temperature, rainfall, humidity, and evapotranspiration) 

Climatic variables Av  Bf  Cs  Pg  Tc   
EDF F EDF F EDF F EDF F EDF F 

Year 1           
Tmax 1.49 1.65 1.00 0.41 1.00 3.85 1.82 2.58 1.49 0.77 
Tmin 1.00 2.01 1.00 0.27 1.00 0.75 1.00 0.01 1.62 0.44 

https://onlinelibrary.wiley.com/cms/asset/c4b52d82-ffc3-4b54-bfa4-9752cac2e6a7/btp12796-fig-0004-m.jpg


Rainfall 1.88 11.1*** 1.00 0.58 1.00 3.99 1.00 0.69 1.00 0.68 
Humidity 1.00 8.95** 1.00 0.19 1.88 8.52** 1.00 1.15 1.00 2.51 
Evapotranspiration 1.00 3.28 1.00 0.94 1.00 1.33 1.00 0.72 1.00 0.42 
(R2adj) .77  .42  .65  .42  −.02  
%Dev 88.7  67.3  83.6  72.7  50  
Year 2           
Tmax 1.00 2.82 1.00 1.36 1.00 0.58 1.00 0.99 1.98 24.8*** 
Tmin 1.00 1.78 1.00 0.09 1.00 0.28 1.48 0.60 1.00 14.4* 
Rainfall 1.00 2.39 1.00 1.59 1.00 1.53 1.00 7.63** 1.00 15.5* 
Humidity 1.23 0.31 1.00 0.86 1.00 1.37 1.00 26.3*** 1.86 29.5*** 
Evapotranspiration 1.00 3.17 1.00 1.10 1.00 0.31 1.00 0.15 1.92 6.08* 
(R2adj) .24  −.27  −.22  .76  .90  
%Dev 60.5  30.5  33.5  88.9  97.3  

Note. The approximate significance of smooth terms is reported, with estimated degrees of freedom (EDF), F 
statistics (and significant p values, *p < .1, **p < .05, ***p < .01). The percentage of variance explained by 
climatic variables is given by the adjusted coefficient of determination (R2adj) and deviance explained (%Dev). 
 

4 DISCUSSION 
Our finding that lianas substantially reduced tree diameter growth is consistent with other liana removal studies 
(reviewed by Estrada-Villegas & Schnitzer, 2018; Toledo-Aceves, 2015). We found that the effect of lianas on 
tree growth varied with species identity, where two tree species were much more sensitive to liana infestation 
than the other three species. Our findings are consistent with studies that found that lianas had a varying effect 
on different tree species (e.g., Putz 1984a, 1984b; Visser, Schnitzer, et al., 2018; Wright et al., 2015). By contrast, 
other studies have concluded that lianas generally have a negative effect on the growth and survival of all 
species. For example, in a liana removal experiment in central Panama, Martínez-Izquierdo et al. (2016) reported 
that lianas had a similar negative effect on the seedlings of all 14 tree species examined. In the same 
experiment, Alvarez-Cansino et al. (2015) reported that lianas had a similar negative effect on sap velocity and 
diameter growth of adults of seven canopy tree species. 

The species with statistically significant diameter growth in our study are tree species that reach greater heights 
in the forest when compared to the other three species analyzed. For instance, P. gonoacantha and C. 
speciosa are both canopy trees, reaching heights of up to 20 and 30 meters, respectively (Lorenzi, 1992). Lianas 
seek light by climbing into the canopy of sun-exposed trees, intercepting light, and ultimately hindering canopy 
tree growth and carbon storage (Mohandass, Davidar, Somasundaram, Vijayan, & Beng, 2015; Schnitzer et 
al., 2014). Botosso, Filho, Maria, & Ferreira-Fedele, (2005) found that lianas reduced the diametric growth of the 
tall canopy tree Centrolobium tomentosum, a species that can reach heights up to 35 m in semideciduous 
seasonal forests of Southeastern Brazil. In addition, dendrochronological studies in forest fragments have 
verified the decrease of canopy tree diameter growth following liana infestation (Godoy-Veiga et al., 2018; 
Venegas-González et al., 2017). 

The lack of response to liana cutting from the non-canopy trees T. clausseni, A. virgata, and B. forficata could be 
explained by their location in the forest understory. Since lianas tend to deploy the majority of their leaves 
above the forest canopy (Rodríguez-Ronderos et al., 2016), they would naturally have a much smaller effect on 
understory trees than on canopy trees. Indeed, using a large-scale experimental approach in a secondary forest 
in Panama, García León et al. (2018) found that lianas substantially reduced canopy tree reproduction, but not 
understory tree reproduction. Alternatively, the lack of response to liana cutting from non-canopy trees could 



also be explained by the generally slower growth rate of more shade-tolerant understory trees, thus reducing 
our ability to detect a growth response within the 2-year study period. 

Trees grow more during periods of high water availability, as demonstrated by the correlations of tree growth 
with high humidity and rainfall, and thus, they respond more to liana removal during these periods of high 
growth (van der Heijden et al., 2019; Schnitzer & van der Heijden, 2019). Unusually, low rainfall (<100 mm) 
during the wet season in year 2 of the study (February 2013) limited tree growth response during that year, 
which likely dampened the negative effects of lianas on tree growth (Figure 4). 

The effect of lianas may have been greatest for C. speciosa during the wet season because trees were most 
actively growing during this season. During the dry season, C. speciosa often shed their leaves and may decrease 
their growth, thus reducing the effect of liana competition. The non-deciduous species P. gonoacantha had the 
strongest growth during the wet season, although the effect of lianas on P. gonoacantha was similar for all the 
three seasons. In a study at the community level, van der Heijden et al. (2019) found that the effect of lianas on 
the tree community of a moist forest in Panama was similar during the wet and dry seasons (see also Schnitzer 
& van der Heijden, 2019). The similar effect of lianas on P. gonoacantha growth across seasons compared to C. 
speciosa may suggest stronger competition by lianas on non-deciduous trees during water limiting periods. 

The results from previous liana removal experiments have shown that the intense negative effect of lianas on 
trees should be considered when developing management recommendations for liana-dominated forests (César 
et al., 2016; Estrada-Villegas & Schnitzer, 2018; Marshall et al., 2017; Sfair et al., 2015; Viani, Mello, Chi, & 
Brancalion, 2015). The use of liana removal for the management of forest fragments can increase tree diameter 
growth and carbon storage (van der Heijden et al., 2015). Our findings indicate that lianas have an intense 
negative effect on tree growth in a forest fragment; however, the response of tree growth to liana removal 
might differ in forest fragments with distinct characteristics. Lianas are also important in the provision of 
resources for fauna (Adams et al., 2017, 2019); Morellato & Leitao, 1996; Yanoviak & Schnitzer, 2013), and thus, 
more studies are necessary to evaluate the impacts of liana removal on several forest fragments as well as on 
other forest community attributes before large-scale liana removal can be recommended as a viable forest 
management strategy (Arroyo-Rodríguez, Asensio, Dunn, Cristóbal-Azkarate, & Gonzalez-Zamora, 2015; Restom 
& Nepstad, 2001). 

In summary, this study demonstrates that the negative effect of lianas on trees varies with tree species identity 
and may be particularly strong on tall canopy species when compared to understory trees. Furthermore, lianas 
compete with trees most during the wet season, when trees are particularly photosynthetically active, and have 
a much more muted effect during the dry season, when trees have lower activity and lianas are more active (van 
der Heijden et al., 2019; Schnitzer & van der Heijden, 2019). The recent increases in liana density and biomass in 
neotropical forests (Schnitzer & Bongers, 2011) may result in even greater competition between lianas and 
trees, which will likely be most intense during the wet season. 
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