9-2020

The Negative Effect of Lianas on Tree Growth Varies with Tree Species and Season

Alejandro Venegas-Gonzalez
University of São Paulo

Felipe N. A. Mello
Marquette University

Stefan A. Schnitzer
Marquette University, stefan.schnitzer@marquette.edu

Ricardo G. Cesar
University of São Paulo

Mario Tomazello-Filho
University of São Paulo

Follow this and additional works at: https://epublications.marquette.edu/bio_fac

Part of the *Biology Commons*

Recommended Citation
Venegas-Gonzalez, Alejandro; Mello, Felipe N. A.; Schnitzer, Stefan A.; Cesar, Ricardo G.; and Tomazello-Filho, Mario, "The Negative Effect of Lianas on Tree Growth Varies with Tree Species and Season" (2020). *Biological Sciences Faculty Research and Publications*. 827.
https://epublications.marquette.edu/bio_fac/827
The Negative Effect of Lianas on Tree Growth Varies with Tree Species and Season

Alejandro Venegas-González
Hémera Centro de Observación de la Tierra, Facultad de Ciencias, Escuela de Ingeniería Forestal, Universidad Mayor, Santiago, Chile
Department of Forest Sciences, University of São Paulo, Piracicaba, Brasil

Felipe N. A. Mello
Department of Biological Sciences, Marquette University, Milwaukee, WI

Stefan A. Schnitzer
Department of Biological Sciences, Marquette University, Milwaukee, WI

Ricardo G. César
Department of Forest Sciences, University of São Paulo, Piracicaba, Brasil

Mario Tomazello-Filho
Department of Forest Sciences, University of São Paulo, Piracicaba, Brasil
Abstract
Lianas reduce tree growth, reproduction, and survival in tropical forests. Liana competition can be particularly intense in isolated forest fragments, where liana densities are high, and thus, host tree infestation is common. Furthermore, lianas appear to grow particularly well during seasonal drought, when they may compete particularly intensely with trees. Few studies, however, have experimentally quantified the seasonal effects of liana competition on multiple tree species in tropical forests. We used a liana removal experiment in a forest fragment in southeastern Brazil to test whether the effects of lianas on tree growth vary with season and tree species identity. We conducted monthly diameter measurements using dendrometer bands on 88 individuals of five tree species for 24 months. We found that lianas had a stronger negative effect on some tree species during the wet season compared to the dry season. Furthermore, lianas significantly reduced the diameter growth of two tree species but had no effect on the other three tree species. The strong negative effect of lianas on some trees, particularly during the wet season, indicates that the effect of lianas on trees varies both seasonally and with tree species identity.

1 INTRODUCTION
Tropical lianas commonly proliferate following disturbance, and they are found in high densities in treefall gaps, young secondary forests, and forest fragments (Farah et al., 2014; Lobo, Leao, Melo, Santos, & Tabarelli, 2011; Schnitzer, 2018; Schnitzer, Dalling, & Carson, 2000). When in high densities, lianas can compete intensely with trees, reducing tree growth, reproduction, and diversity (García-León et al., 2018; Schnitzer & Carson, 2010; Toledo-Aceves, 2015). Lianas can hinder tree regeneration due to excess weight or competition for resources, and in extreme cases, lianas can arrest succession leading to liana-dominated forests (Schnitzer et al., 2000; Martínez-Izquierdo et al., 2016; Tymen et al., 2016). The reduction in tree growth and survival due to liana competition reduces forest-wide carbon accumulation and may result in future changes in forest structure and composition (Farah et al., 2014; van der Heijden, Powers, & Schnitzer, 2015; Schnitzer, Heijden, Mascaro, & Carson, 2014).

Lianas appear to grow particularly well during seasonal drought (Schnitzer, 2005; Schnitzer & van der Heijden, 2019), which may lead to stronger competition for limited resources, particularly water. By contrast, trees grow more during the wet season (Schnitzer & van der Heijden, 2019), when competition from lianas may actually have a larger negative effect on tree growth (van der Heijden, Powers, & Schnitzer, 2019). However, the season in which lianas exert stronger negative effects on trees is poorly understood. Determining the seasonal effects of lianas on tree growth is particularly important because extreme climatic events, such as longer droughts, are increasing in frequency (Cai, Schnitzer, & Bongers, 2009; DeWalt et al., 2010; Schnitzer & Bongers, 2011).

Lianas may also influence tree community composition by competing more intensely with some tree species than others. The differential response of tree species to liana competition may alter community composition by disadvantaging the tree species that suffer more from liana competition (Schnitzer, 2018). Currently, it is unclear whether some tree species suffer more than others from liana competition. Some studies have argued that shade-tolerant and slow-growing tree species are more prone to liana infestation, and thus, lianas have a greater negative effect on those species (Clark & Clark, 1990; Putz 1984a, 1984b, 1980; Schnitzer et al., 2000). Other studies have shown greater negative impacts of lianas on light-demanding and fast growth tree species than shade-tolerant and slow growth species (e.g., Visser, Muller-Landau, et al., 2018; Visser, Schnitzer, et al., 2018). And yet other studies have argued that all tree species respond similarly to liana competition (Alvarez-Cansino, Schnitzer, Reid, & Powers, 2015; Martínez-Izquierdo, García, Powers, & Schnitzer, 2016). Thus, whether different tree species differ significantly in their response to liana competition remains contentious.
Forest fragments are becoming a common forest type in the tropics and subtropics, such as the Brazilian Atlantic forest, where lianas can be particularly abundant (Turner & T Corlett 1996; Ribeiro, Metzger, Martensen, Ponzoni, & Hirota, 2009), and trees regenerating may be particularly vulnerable to liana infestation (Barry, Schnitzer, Breugel, & Hall, 2015; Putz 1984a, 1984b; Schnitzer et al., 2000). Despite the observed negative effects of lianas on tree performance (e.g., Alvarez-Cansino et al., 2015; Schnitzer & Carson, 2010; Toledo-Aceves, 2015; García León et al., 2018), there are little empirical data showing that lianas have a stronger negative effect with changing abiotic conditions (e.g., seasonally; van der Heijden et al., 2019). Here, we used a 2-year liana removal experiment (September 2012 to September 2014) to evaluate the effect of lianas on the growth of host trees in a forest fragment in Southeastern Brazil. We addressed two main questions: (a) Does the effect of lianas on tree growth vary seasonally? (b) Does the effect of lianas on tree growth vary with tree species identity? Considering that in 2013/2014, Sao Paulo state experienced the strongest drought since recording started in 1961 (Coelho, Cardoso, & Firpo, 2016), we also addressed the questions: (c) Does the effect of lianas on tree growth increase with extreme drought? and (d) Which climatic variables are correlated with tree growth after liana removal?

2 METHODS

2.1 Study area
We conducted this study in a 14-ha semideciduous seasonal forest fragment located in Piracicaba county, southeast Brazil (22°42′S, 47°37′W, 546 m a.s.l.). The region has a mean annual temperature of 20.5°C, with mean warmest and coldest months temperature of 23.3 and 16.7°C, respectively (Alvares, Stape, Sentelhas, Goncalves, & Sparovek, 2013). Mean annual rainfall is 1,281 mm, with 50% falling between December and January (Figure S1). According to Köppen's classification, the region supports humid subtropical forest (Cfa). The study site was located in an agricultural–urban landscape that historically has been exposed to degradation such as logging, recurrent incursions by cattle, and fire. The most recent fire was in 1981, 32 years before the study (Venegas-Gonzalez, Arx, Chagas, & Tomazello Filho, 2015). The forest fragment is extremely liana dense (~4,200 lianas >1 cm diam per ha, César et al., 2016; cf. Schnitzer et al., 2012), and it lacks a continuous canopy throughout most of the fragment. The tree community is a mix of early and late successional species (César et al., 2016).

2.2 Tree species selection and growth evaluation
We installed dendrometer bands on 15–20 individuals of five tree species that were >7 cm in diameter at breast height (Table 1). Initially, in year 1, we installed 50 dendrometer bands in 10 individuals per species. In the second year, we added another 40 dendrometers to the trees (88 total individuals total; 2 trees died during the second year). The target trees had similar diameters (standard deviation <4.5 cm) and heights (Table 1). The minimum distance among trees within each treatment was five meters. We selected the tree species that were relatively abundant and thus provided enough replication. All individuals selected were located within the core area of the forest fragment and exposed to similar levels of liana infestation. The species selected were as follows: Ceiba speciosa (A. St.-Hil.) Ravenna; Piptadenia gonoacantha (Mart.) J.F. Macbr.; Aloysia virgata (Ruiz & Pav.) Juss.; Bauhinia forficata Benth.; and Trichilia clausseni C. DC.

Table 1. Characteristics of the five tree species and number of individuals per year (year 2 include trees of year 1) used in the experiment, with their respective average diameter at breast height (DBH), total height, and ecological classification

<table>
<thead>
<tr>
<th>Species</th>
<th>Treatment</th>
<th>No. trees</th>
<th>Classification</th>
<th>DBH (±SD)</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiba speciosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piptadenia gonoacantha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aloysia virgata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bauhinia forficata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichilia clausseni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The dendrometer bands were made of stainless steel ribbons (12.7 × 0.15 mm, width and thickness, respectively) with 0.2 mm precision (Botosso & Tomazello Filho, 2001). For half of the individuals of each tree species, we cut all lianas within a 10 m radius (methods follow Tobin, Wright, Mangan, & Schnitzer, 2012; Wright, Tobin, Mangan, & Schnitzer, 2015). We measured tree growth monthly for 24 months, starting in September 2012. Initially, we installed 10 dendrometer bands for each species, 5 for trees in the liana removal treatment (LR) and 5 for controls (NLR). In September 2013, we added dendrometer bands to 40 additional individuals of the five-target species. We quantified the change in stem diameter based on the initial diameter of each tree individual. The total mean relative growth was calculated as a percentage of the initial size for tree species with liana removals (LR) and controls (NLR)(Mello et al., 2020).

Table 2. Results of the log likelihood ratio test for the linear mixed model with treatment, season, species, and interactions as fixed factors and year and individuals nested on species as random factors

<table>
<thead>
<tr>
<th>Fixed effect</th>
<th>df</th>
<th>(\chi^2)</th>
<th>(\text{Pr (}>\chi^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>1</td>
<td>16.9893</td>
<td><0.0001</td>
</tr>
<tr>
<td>Season</td>
<td>2</td>
<td>77.4950</td>
<td><0.0001</td>
</tr>
<tr>
<td>Species</td>
<td>4</td>
<td>13.5832</td>
<td><0.0008</td>
</tr>
<tr>
<td>Treatment × season</td>
<td>2</td>
<td>6.7836</td>
<td>0.0336</td>
</tr>
<tr>
<td>Treatment × species</td>
<td>4</td>
<td>11.3494</td>
<td>0.022905</td>
</tr>
</tbody>
</table>
To test our third question, whether the effect of lianas on tree species growth varies with extreme drought, we used the tree accumulated relative growth per year as the response variable and included treatment type (removal vs. control), species (5 species), and year (normal and reduced precipitation) as fixed factors, as well as the interactions among the variables (Table 3). We used tree individuals (88 individuals) nested on species (5 species) as random factors to account for possible spatial autocorrelation.

Table 3. Results of the log likelihood ratio test for the linear mixed model with year, treatment, species, and interactions as fixed factors and individuals nested on species as random factors

<table>
<thead>
<tr>
<th>Fixed effect</th>
<th>df</th>
<th>χ^2</th>
<th>Pr ($>\chi^2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>1</td>
<td>10.9046</td>
<td>0.001</td>
</tr>
<tr>
<td>Year</td>
<td>1</td>
<td>12.9653</td>
<td>0.0003</td>
</tr>
<tr>
<td>Species</td>
<td>4</td>
<td>29.9693</td>
<td><0.008</td>
</tr>
<tr>
<td>Treatment \times year</td>
<td>1</td>
<td>0.487</td>
<td>0.485</td>
</tr>
<tr>
<td>Treatment \times species</td>
<td>4</td>
<td>9.8163</td>
<td>0.043</td>
</tr>
<tr>
<td>Year \times species</td>
<td>4</td>
<td>2.8775</td>
<td>0.578</td>
</tr>
</tbody>
</table>

Note: We used the yearly accumulated relative growth data for the five tree species studied. Treatment was the liana removal manipulation versus control, years were year 1 and year 2, and species were the five species described in Table 1.

We present a table with the values of the log likelihood ratio tests for the models. To fit the models, we log-transformed the response variables to normalize the residuals and used the function lmer() from the package lme4, software R (R Core Team 2017). We present the β estimates of growth and the 95% interval confidence for the effects of treatment to control per species and year. We calculated the β estimates of growth per season excluding species from the fixed factors to allow generalization of the results. We adjusted the confidence interval based on Bonferroni correction with 98.3% CI for three post hoc comparisons.

Finally, to test out last question, whether climatic variables are correlated with tree growth after liana removal, we used generalized additive models (GAMs) to describe the effects of the climate variables precipitation, relative humidity, average temperature—Max and Min—and evapotranspiration on tree monthly relative growth. We used the package mgcv for GAM models in R (Wood, 2011). Climatic data sets were obtained from a weather station located 250 m from the study area.

3 RESULTS

3.1 Effect of liana removal on tree growth

The presence of lianas in the control trees substantially limited tree diameter growth compared to trees where lianas were removed (Mean annual relative growth LR treatment = 4.51 ± 0.73, controls = 1.85 ± 0.23). After 12 months, the mean tree relative growth was 304% higher for trees with lianas removed (mean annual relative growth during year 1 LR treatment = 7.6 ± 1.8, controls = 2.5 ± 0.53). The difference in mean tree relative growth between LR and controls was 192% by the end of the second year (mean annual relative growth during year 2 LR treatment = 2.81 ± 0.42, controls = 1.46 ± 0.18. Figure 1). Two tree species, Ceiba speciosa and Piptadenia gonoacantha, responded the strongest to liana removal compared to the other three species (mean annual
relative growth for *Ceiba speciosa* LR treatment = 8.2 ± 2.1, controls = 1.7 ± 0.5; mean annual relative growth for *Piptadenia gonoacantha* LR treatment = 7.6 ± 1.8, controls = 2.5 ± 0.53).

Figure 1. The total mean relative growth for all tree species as a percentage of the initial diameter size of the five tree species with liana removal (LR) and non-liana removal (NLR) in the forest fragment for year 1 and year 2 of the experiment. Sample size for the first year was LR: *N* = 24 and NLR: *N* = 24 and for the second year was LR: *N* = 45 and NLR: *N* = 43. Asterisks denote significant differences between treatments (*p* < .05 and **p** < .01).

3.2 Effect of liana removal by tree species and season

The interaction between season and treatment (*df* = 2, *χ²* = 6.516, *p* < .038, Table 2) revealed a stronger effect of liana removal during the wet season (mean monthly relative growth LR treatment = 0.53 ± 0.05, controls = 0.22 ± 0.02; βₜ₋ₑ = −0.14; 98.3% CI = 0.09, 0.21) compared to the transition (mean monthly relative growth LR treatment = 0.27 ± 0.05, controls = 0.11 ± 0.02; βₜ₋ₑ = −0.076; 98.3% CI = −0.0005, 0.16) and dry seasons (Mean monthly relative growth LR treatment = 0.19 ± 0.03, controls = 0.07 ± 0.01; βₜ₋ₑ = −0.076; 98.3% CI = −0.012, 0.16, Figure 2). Moreover, the interaction between treatment and species (*df* = 4, *χ²* = 11.3494, *p* < .023, Table 2) revealed a species-specific growth response of trees to the liana removal treatment. The species *C. speciosa* had a stronger response to liana removal during the wet season (mean monthly relative growth during wet season *Ceiba speciosa* LR treatment = 1.1 ± 0.2, controls = 0.2 ± 0.07; βₑ = −0.3; 95% CI = −0.4, −0.15) compared to the transition (mean monthly relative growth during transition *Ceiba speciosa* LR treatment = 0.4 ± 0.1, controls = 0.1 ± 0.03; βₑ = −0.21; 95% CI = −0.33, −0.08) and dry season (mean monthly relative growth during dry season *Ceiba speciosa* LR treatment = 0.2 ± 0.08, controls = 0.07 ± 0.04; βₑ = −0.2; 95% CI = −0.32, −0.07, Figure 3). In contrast, the species *P. gonoacantha* had a strong response to liana removal during all seasons—wet season (mean monthly relative growth during wet season *Piptadenia gonoacantha* LR treatment = 0.9 ± 0.1, controls = 0.4 ± 0.06; βₑ = −0.24; 95% CI = −0.35, −0.12); transition (mean monthly relative growth during transition *Piptadenia gonoacantha* LR treatment = 0.8 ± 0.2, controls = 0.1 ± 0.04; βₑ = −0.17; 95% CI = −0.29, −0.04); and dry season (mean monthly relative growth during dry season *Piptadenia gonoacantha* LR treatment = 0.5 ± 0.1, controls = 0.1 ± 0.03; βₑ = −0.16; 95% CI = −0.28, −0.03). Tree growth of *Aloysia virgata*, *Bauhinia forficata*, and *Trichilia clausseni* did not respond to liana removal in either season (Figure 3).
3.3 Effect of liana removal by tree species and year

Tree growth was higher during the normal year compared to the extreme drought year; however, the non-significant interaction between treatment and year suggests no differences in the effect of liana removal on tree growth per year (df = 1, \(\chi^2 = 0.487, p < .485 \), Table 3; Figure 1). In contrast, the per year model showed significant interaction between tree species and treatment, suggesting a species-specific response of tree growth to liana removal per year (df = 4, \(\chi^2 = 9.8163, p < .043 \), Table 3). The species C. speciosa had an increased diametric growth in the LR treatment compared to the control in both years (mean annual relative growth for Ceiba speciosa during year 1 LR treatment = 12.6 ± 4.4, controls = 2.3 ± 1.3, \(\beta_{\text{Year 1 \ t-c}} = -2, 95\% \ CI = -2.9, -0.99 \); and year 2 LR treatment = 5.2 ± 1.1, controls = 1.4 ± 0.3, \(\beta_{\text{Year 2 \ t-c}} = -1.77, 95\% \ CI = -2.7, -0.8 \)), while P. gonoacantha responded the strongest during the year 1 compared to year 2 (mean annual relative growth for Piptadenia gonoacantha during year 1 in LR treatment = 19.8 ± 3.7, controls = 3.8 ± 1.7, \(\beta_{\text{Year 1 \ t-c}} = -1.02, 95\% \ CI = -2.03, -0.012 \); and year 2 in LR treatment = 4.3 ± 1.1, controls = 2.3 ± 0.4, \(\beta_{\text{Year 2 \ t-c}} = -0.8, 95\% \ CI = -1.73, 0.13 \). Figure 4; Figure S1). Diametric growth of the tree species Aloysia virgata, Bauhinia forficata, and Trichilia clauseni did not increase following liana removal in either year (Figure 4; Figure S1). Overall, all
species had a reduced diametric growth during the extreme drought year compared to the first year ($\beta_c = -1.02; 95\% \text{ CI} = -1.76, -0.27$; Figure 4).

Figure 4. The total mean relative growth per species as a percentage of the initial diameter size of the five replicated tree species with liana removal (LR) and non-liana removal (NLR) in the forest fragment. Panel “a” represents the first year after the liana removal treatment. Panel “b” represents the second year after the liana removal treatment. Species are *Aloysia virgata*, sample size N: LR = 10 and NLR = 10; *Bauhinia forficata*, sample size N: LR = 10 and NLR = 10; *Ceiba speciosa*, sample size N: LR = 7 and NLR = 10; *Piptadenia gonoacantha*, sample size N: LR = 9 and NLR = 10; and *Trichilia clausenii*, sample size N: LR = 9 and NLR = 5. Asterisks denote significant differences between treatments (*$p < .05$ and **$p < .01$).

3.4 Influence of climatic variables on tree growth after liana removal treatment

According to the GAM models, some tree species with liana removal had diametric growth significantly associated with climatic variables in both the normal year (year 1: October 2012–September 2013) and the extreme drought year (year 2: October 2013–September 2014, Table 4). We found a high percentage of variance (R^2_{adj}) and deviance explained (%Dev) by climatic variables for four tree species, with significant values for two species during the year one of the experiment and significant values for the other two species during the year 2 of the experiment (extreme drought year—Table 4). The species *A. virgata* and *C. speciosa* had the highest values of R^2_{adj} (>0.65) and %Dev (>83.6) during the year 1, while *P. gonoacantha* and *T. clausenii* had the highest values of R^2_{adj} (>0.76) and %Dev (>88.9) during the second year. Rainfall and humidity were correlated with tree growth after lianas removal during both years, being rainfall positively correlated with growth in *A. virgata*, *P. gonoacantha*, and *T. clausenii*, while humidity was positively correlated with growth in *C. speciosa* (Figure S3). All climatic variables had a large non-linear adjustment for the species *T. clausenii* with a particularly strong correlation with the climatic variable maximum temperature and humidity ($p < .01$). We did not find significant correlation between tree growth and climatic variables in the species *B. forficata*.

<table>
<thead>
<tr>
<th>Climatic variables</th>
<th>Av EDF</th>
<th>Av F</th>
<th>Bf EDF</th>
<th>Bf F</th>
<th>Cs EDF</th>
<th>Cs F</th>
<th>Pg EDF</th>
<th>Pg F</th>
<th>Tc EDF</th>
<th>Tc F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td></td>
</tr>
<tr>
<td>T_{max}</td>
<td>1.49</td>
<td>1.65</td>
<td>1.00</td>
<td>0.41</td>
<td>1.00</td>
<td>3.85</td>
<td>1.82</td>
<td>2.58</td>
<td>1.49</td>
<td>0.77</td>
</tr>
<tr>
<td>T_{min}</td>
<td>1.00</td>
<td>2.01</td>
<td>1.00</td>
<td>0.27</td>
<td>1.00</td>
<td>0.75</td>
<td>1.00</td>
<td>0.01</td>
<td>1.62</td>
<td>0.44</td>
</tr>
<tr>
<td>Rainfall</td>
<td>1.88</td>
<td>11.1***</td>
<td>1.00</td>
<td>0.58</td>
<td>1.00</td>
<td>3.99</td>
<td>1.00</td>
<td>0.69</td>
<td>1.00</td>
<td>0.68</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Humidity</td>
<td>1.00</td>
<td>8.95**</td>
<td>1.00</td>
<td>0.19</td>
<td>1.88</td>
<td>8.52</td>
<td>1.00</td>
<td>1.15</td>
<td>1.00</td>
<td>2.51</td>
</tr>
<tr>
<td>Evapotranspiration</td>
<td>1.00</td>
<td>3.28</td>
<td>1.00</td>
<td>0.94</td>
<td>1.00</td>
<td>1.33</td>
<td>1.00</td>
<td>0.72</td>
<td>1.00</td>
<td>0.42</td>
</tr>
<tr>
<td>(R^2)adj</td>
<td>.77</td>
<td>.42</td>
<td>.65</td>
<td>.42</td>
<td>.69</td>
<td>.42</td>
<td>.68</td>
<td>.67</td>
<td>.68</td>
<td>.68</td>
</tr>
<tr>
<td>%Dev</td>
<td>88.7</td>
<td>67.3</td>
<td>83.6</td>
<td>72.7</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>T_max</th>
<th>1.00</th>
<th>2.82</th>
<th>1.00</th>
<th>1.36</th>
<th>1.00</th>
<th>0.58</th>
<th>1.00</th>
<th>0.99</th>
<th>1.98</th>
<th>24.8***</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_min</td>
<td>1.00</td>
<td>1.78</td>
<td>1.00</td>
<td>0.09</td>
<td>1.00</td>
<td>0.28</td>
<td>1.48</td>
<td>0.60</td>
<td>1.00</td>
<td>14.4</td>
</tr>
<tr>
<td>Rainfall</td>
<td>1.00</td>
<td>2.39</td>
<td>1.00</td>
<td>1.59</td>
<td>1.00</td>
<td>1.53</td>
<td>1.00</td>
<td>7.63**</td>
<td>1.00</td>
<td>15.5</td>
</tr>
<tr>
<td>Humidity</td>
<td>1.23</td>
<td>0.31</td>
<td>1.00</td>
<td>0.86</td>
<td>1.00</td>
<td>1.37</td>
<td>1.00</td>
<td>26.3***</td>
<td>1.86</td>
<td>29.5***</td>
</tr>
<tr>
<td>Evapotranspiration</td>
<td>1.00</td>
<td>3.17</td>
<td>1.00</td>
<td>1.10</td>
<td>1.00</td>
<td>0.31</td>
<td>1.00</td>
<td>0.15</td>
<td>1.92</td>
<td>6.08</td>
</tr>
<tr>
<td>(R^2)adj</td>
<td>.24</td>
<td>-.27</td>
<td>-.22</td>
<td>.76</td>
<td>.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%Dev</td>
<td>60.5</td>
<td>30.5</td>
<td>33.5</td>
<td>88.9</td>
<td>97.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. The approximate significance of smooth terms is reported, with estimated degrees of freedom (EDF), F statistics (and significant p values, *p < .1, **p < .05, ***p < .01). The percentage of variance explained by climatic variables is given by the adjusted coefficient of determination *(R^2)adj* and deviance explained (%Dev).

4 DISCUSSION

Our finding that lianas substantially reduced tree diameter growth is consistent with other liana removal studies (reviewed by Estrada-Villegas & Schnitzer, 2018; Toledo-Aceves, 2015). We found that the effect of lianas on tree growth varied with species identity, where two tree species were much more sensitive to liana infestation than the other three species. Our findings are consistent with studies that found that lianas had a varying effect on different tree species (e.g., Putz 1984a, 1984b; Visser, Schnitzer, et al., 2018; Wright et al., 2015). By contrast, other studies have concluded that lianas generally have a negative effect on the growth and survival of all species. For example, in a liana removal experiment in central Panama, Martínez-Izquierdo et al. (2016) reported that lianas had a similar negative effect on the seedlings of all 14 tree species examined. In the same experiment, Alvarez-Cansino et al. (2015) reported that lianas had a similar negative effect on sap velocity and diameter growth of adults of seven canopy tree species.

The species with statistically significant diameter growth in our study are tree species that reach greater heights in the forest when compared to the other three species analyzed. For instance, *P. gonoacantha* and *C. speciosa* are both canopy trees, reaching heights of up to 20 and 30 meters, respectively (Lorenzi, 1992). Lianas seek light by climbing into the canopy of sun-exposed trees, intercepting light, and ultimately hindering canopy tree growth and carbon storage (Mohandass, Davidar, Somasundaram, Vijayan, & Beng, 2015; Schnitzer et al., 2014). Botosso, Filho, Maria, & Ferreira-Fedele, (2005) found that lianas reduced the diametric growth of the tall canopy tree *Centrolobium tomentosum*, a species that can reach heights up to 35 m in semideciduous seasonal forests of Southeastern Brazil. In addition, dendrochronological studies in forest fragments have verified the decrease of canopy tree diameter growth following liana infestation (Godoy-Veiga et al., 2018; Venegas-González et al., 2017).

The lack of response to liana cutting from the non-canopy trees *T. clausseni*, *A. virgata*, and *B. forficata* could be explained by their location in the forest understory. Since lianas tend to deploy the majority of their leaves above the forest canopy (Rodríguez-Ronderos et al., 2016), they would naturally have a much smaller effect on understory trees than on canopy trees. Indeed, using a large-scale experimental approach in a secondary forest in Panama, García León et al. (2018) found that lianas substantially reduced canopy tree reproduction, but not understory tree reproduction. Alternatively, the lack of response to liana cutting from non-canopy trees could...
also be explained by the generally slower growth rate of more shade-tolerant understory trees, thus reducing
our ability to detect a growth response within the 2-year study period.

Trees grow more during periods of high water availability, as demonstrated by the correlations of tree growth
with high humidity and rainfall, and thus, they respond more to liana removal during these periods of high
growth (van der Heijden et al., 2019; Schnitzer & van der Heijden, 2019). Unusually, low rainfall (<100 mm)
during the wet season in year 2 of the study (February 2013) limited tree growth response during that year,
which likely dampened the negative effects of lianas on tree growth (Figure 4).

The effect of lianas may have been greatest for C. speciosa during the wet season because trees were most
actively growing during this season. During the dry season, C. speciosa often shed their leaves and may decrease
their growth, thus reducing the effect of liana competition. The non-deciduous species P. gonoacantha had the
strongest growth during the wet season, although the effect of lianas on P. gonoacantha was similar for all the
three seasons. In a study at the community level, van der Heijden et al. (2019) found that the effect of lianas on
the tree community of a moist forest in Panama was similar during the wet and dry seasons (see also Schnitzer
& van der Heijden, 2019). The similar effect of lianas on P. gonoacantha growth across seasons compared to C.
speciosa may suggest stronger competition by lianas on non-deciduous trees during water limiting periods.

The results from previous liana removal experiments have shown that the intense negative effect of lianas on
trees should be considered when developing management recommendations for liana-dominated forests (César
et al., 2016; Estrada-Villegas & Schnitzer, 2018; Marshall et al., 2017; Sfair et al., 2015; Viani, Mello, Chi, &
Brancalion, 2015). The use of liana removal for the management of forest fragments can increase tree diameter
growth and carbon storage (van der Heijden et al., 2015). Our findings indicate that lianas have an intense
negative effect on tree growth in a forest fragment; however, the response of tree growth to liana removal
might differ in forest fragments with distinct characteristics. Lianas are also important in the provision of
resources for fauna (Adams et al., 2017, 2019; Morellato & Leitao, 1996; Yanoviak & Schnitzer, 2013), and thus,
more studies are necessary to evaluate the impacts of liana removal on several forest fragments as well as on
other forest community attributes before large-scale liana removal can be recommended as a viable forest
management strategy (Arroyo-Rodríguez, Asensio, Dunn, Cristóbal-Azkarate, & Gonzalez-Zamora, 2015; Restom

In summary, this study demonstrates that the negative effect of lianas on trees varies with tree species identity
and may be particularly strong on tall canopy species when compared to understory trees. Furthermore, lianas
compete with trees most during the wet season, when trees are particularly photosynthetically active, and have
a much more muted effect during the dry season, when trees have lower activity and lianas are more active (van
der Heijden et al., 2019; Schnitzer & van der Heijden, 2019). The recent increases in liana density and biomass in
neotropical forests (Schnitzer & Bongers, 2011) may result in even greater competition between lianas and
trees, which will likely be most intense during the wet season.

ACKNOWLEDGMENTS

We are grateful of the Dr. Edson Vidal and Dr. Pedro Brancalion contributions and logistical support in this study,
which received a fellowship from the Brazilian Research Council—CNPq [grant 561910/2010-3]. We thanks to
Priscila Amaral de Sá, Laura Melo Azevedo, and Bruno Otavio Gomes for the support in field, and Dr. Joseph
LaManna and Dr. Nate Lemoine for comments in the analysis. AVG received a doctorate scholarship from
BECASCHILE [CONICYT PAI/INDUSTRIA 79090016]. FNAM received a doctorate scholarship from CNPq—
“Ciências sem Fronteiras” [grant 234892/2014-15]. SAS was supported by grant NSF IOS 1558093 and NSF DEB
1822473.
References

