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Lianas maintain insectivorous bird abundance and diversity in a
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Abstract. The spatial habitat heterogeneity hypothesis posits that habitat complexity
increases the abundance and diversity of species. In tropical forests, lianas add substantial habi-
tat heterogeneity and complexity throughout the vertical forest profile, which may maintain
animal abundance and diversity. The effects of lianas on tropical animal communities, how-
ever, remain poorly understood. We propose that lianas have a positive effect on animals by
enhancing habitat complexity. Lianas may have a particularly strong influence on the forest
bird community, providing nesting substrate, protection from predators, and nutrition (food).
Understory insectivorous birds, which forage for insects that specialize on lianas, may particu-
larly benefit. Alternatively, it is possible that lianas have a negative effect on forest birds by
increasing predator abundances and providing arboreal predators with travel routes with easy
access to bird nests. We tested the spatial habitat heterogeneity hypothesis on bird abundance
and diversity by removing lianas, thus reducing forest complexity, using a large-scale experi-
mental approach in a lowland tropical forest in the Republic of Panama. We found that remov-
ing lianas decreased total bird abundance by 78.4% and diversity by 77.4% after 8 months, and
by 40.0% and 51.7%, respectively, after 20 months. Insectivorous bird abundance and diversity
8 months after liana removal were 91.8% and 89.5% lower, respectively, indicating that lianas
positively influence insectivorous birds. The effects of liana removal persisted longer for insec-
tivorous birds than other birds, with 77.3% lower abundance and 76.2% lower diversity after
20 months. Liana removal also altered bird community composition, creating two distinct
communities in the control and removal plots, with disproportionate effects on insectivores.
Our findings demonstrate that lianas have a strong positive influence on the bird community,
particularly for insectivorous birds in the forest understory. Lianas may maintain bird abun-
dance and diversity by increasing habitat complexity, habitat heterogeneity, and resource avail-
ability.

Key words:  Barro Colorado Nature Monument; birds; Gigante Peninsula; habitat heterogeneity hypothe-
sis; insectivores; lianas; Panama; tropical forest.

habitat heterogeneity is thought to explain the higher

INTRODUCTION . o . .
diversity in tropical forests compared to their temperate

The contribution of habitat complexity to the mainte-
nance of species abundance and diversity has a long his-
tory in ecology (Huffaker 1958, MacArthur and
MacArthur 1961, Lack 1969, Tews et al. 2004, Stein
et al. 2014). Greater habitat heterogeneity has been pro-
posed to explain patterns of diversity at local, regional,
and global scales, with diversity increasing with spatial
habitat heterogeneity (Pianka 1966, Quan and Ricklefs
2007, Hovick et al. 2015). For example, greater spatial
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counterparts, where habitat heterogeneity is presumably
lower (Pianka 1966). For animals, habitat heterogeneity
is typically provided by the plant community, with more
diverse and vertically complex plant communities such
as forests providing greater spatial habitat heterogeneity
(Lawton 1983, Tews et al 2004).

One of the major differences between tropical and
temperate forest plant communities is the presence of
lianas, which can form dense tangles of stems that loop
through the forest understory on their path to the
canopy (Schnitzer and Bongers 2002, Schnitzer 2018).
Lianas increase habitat heterogeneity throughout the
vertical profile of tropical forests by increasing
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complexity and structure. For example, measurements
using terrestrial and airborne LiDAR, plant area index,
and manual leaf harvesting in intact forest and following
liana removal experiments have shown that liana stems
and leaves add considerable structure and complexity to
the understory, mid canopy, and upper canopy of tropi-
cal forests (Clark et al. 2008, Sanchez-Azofeifa et al.
2009, Marvin et al. 2016, Rodriguez-Ronderos et al.
2016, Moorthy et al. 2018). Liana fruits, flowers, leaves,
and stems are also valuable food resources to the animal
community. Thus, lianas increase heterogeneity through-
out the vertical profile of tropical forests, which can pro-
vide myriad habitat and food resources that maintain
animal abundance and diversity (Yanoviak and Sch-
nitzer 2013, Arroyo-Rodriguez et al. 2015, Lambert and
Halsey 2015, Adams et al. 2017, Odell et al. 2019).

Indeed, there are indications that the structure and
food resources provided by lianas may increase animal
diversity. Liana tangles in the forest understory may pro-
vide habitat and protection for many animal species
(Lambert et al. 2006). Lianas connect canopy trees
together, increasing ecosystem complexity (sensu Huf-
faker 1958), which can maintain animal diversity (Yano-
viak and Schnitzer 2013, Yanoviak 2015). For example,
in central Panama, Adams et al. (2019) removed lianas
from trees and found that ant diversity decreased signifi-
cantly after liana removal. In the same experiment, the
addition of climbing ropes between trees increased ant
diversity to pre-liana-removal levels, indicating that con-
nectivity among trees was an important structural addi-
tion by lianas. There are also many reports of the
importance of lianas as a food source for animals, par-
ticularly primates (reviewed by Arroyo-Rodriguez et al.
2015) and especially during the dry season (Dunn et al.
2012). Lianas tend to be far more active during the dry
season in terms of growth than co-occurring trees (Sch-
nitzer 2005, 2018, Schnitzer and van der Heijden 2019),
and thus lianas may be an important source of dry-sea-
son flower, fruit, and foliage for herbivorous animals. In
addition, lianas appear to attract many generalist and
specialist invertebrate herbivore species (@degaard 2000,
Odell et al. 2019), which provide a rich food resource for
predators. Therefore, lianas may maintain tropical forest
animal diversity by increasing habitat heterogeneity
across numerous niche axes.

Birds may be particularly sensitive to habitat hetero-
geneity (Tews et al. 2004), and bird communities may
benefit from lianas in a variety of ways. Lianas provide
fruit, nectar, and leaves that are used by many bird spe-
cies (Michel et al. 2015b). Lianas also support many
arthropod species that are likely consumed by insectivo-
rous birds (Odell et al. 2019). Several species of rain-
forest understory birds, notably insectivorous antwrens
and flycatchers, specialize on arthropods in dead leaf
clusters caught in liana tangles (Gradwohl and Green-
berg 1980), and densities of these specialist birds corre-
late with occurrence of liana tangles in the forest
understory (Michel et al. 20154). Lianas provide
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perching, lekking, and breeding sites, as well as nest
materials and nesting sites for many bird species (Michel
et al. 2015b). Indeed, in an observational study in a dry
forest in the Guanacaste province of Costa Rica, Hilje
et al. (2017) found that bird community diversity
increased with increasing liana density.

By contrast, high habitat heterogeneity can possibly
result in a decrease in bird abundance and diversity. Lia-
nas suppress canopy tree fruit production (Kainer et al.
2014, Garcia-Ledn et al. 2018), thus reducing food avail-
ability for birds. The majority of neotropical tree species
produce resource-dense fleshy fruits, whereas the major-
ity of neotropical liana species produce wind-dispersed
fruits, and thus lianas do not compensate for the repro-
ductive output that they suppress in trees (Garcia-Leon
et al. 2018). Furthermore, lianas can provide a conve-
nient path to bird nests for nonvolant predators, such as
snakes, possums, and small mammals, which can predate
bird eggs, nestlings, and even adults (Roper 1996, Koe-
nig et al. 2007, Michel et al. 2015b).

Apart from recent experimental studies on ants
(Adams et al. 2019), there are almost no in situ studies
that experimentally reduce tropical forest complexity to
study the effects on animal communities (Tews et al.
2004). We used a large-scale liana-removal experiment in
central Panama to test whether habitat heterogeneity
provided by lianas has a positive, negative, or neutral
effect on the bird community. We monitored bird abun-
dance and bird community diversity in a series of 16
80 x 80 m plots that contained both lianas and trees.
We then cut all of the lianas in eight of the plots and
conducted two additional bird surveys to determine the
effects of lianas on bird abundance, diversity, and com-
munity composition. Because of the potentially large
beneficial effects of lianas on birds, we predicted that
greater habitat heterogeneity provided by lianas would
have a net positive effect on birds, and that bird abun-
dance and species diversity would be higher in more
heterogeneous control plots where lianas were present.
We also predicted that insectivorous birds, particularly
understory insectivores, many of which forage primarily
or exclusively in liana tangles, would have the most
noticeable decreases in abundance, diversity, and com-
munity composition following liana removal.

METHODS

We conducted this study in a 60-yr old seasonal,
semideciduous moist forest on Gigante Peninsula, in the
Republic of Panama. The forest receives ~2,600 mm of
rain per year, most of which falls from May until Jan-
uary each year (Schnitzer and van der Heijden 2019). In
2008, we established 16 80 x 80 m plots in continuous
forest; plots were separated by at least 300 m (van der
Heijden et al. 2015). Each plot was divided into nine
20 x 20 subplots, which were marked with a PVC tube
at each corner, and a 10-m buffer zone that surrounded
the subplots. In 2008, we tagged, mapped, measured the
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diameter, and identified to species all trees and lianas
>1-cm diameter in the center 60 x 60 portion of each
plot. In late April 2011, we cut all of the lianas near the
soil surface in eight randomly selected plots, with the
remaining eight plots serving as positive controls where
lianas were present. We returned to the plots every 3—4
months in the year following the liana removal to prune
any new stems that may have sprouted from the cut lia-
nas. We also visited the control plots at this same fre-
quency to avoid the influence of a researcher visitation
effect (Cahill et al. 2001, Schnitzer et al. 2002).

We conducted two bird counts (censuses) before the
liana cutting, during the wet season in August 2010, and
during the dry season in early April 2011; and two post-
cutting counts at the beginning of the wet season, in Jan-
uary 2012 and 2013, approximately 8 months and
20 months after the liana manipulation. For each cen-
sus, we recorded all bird species encountered in the plots,
excluding the species that were outside of the plots. We
monitored the bird community using a modified line-
transect method. At each plot the surveyor walked four
linear transects running the length of the plot (60 m),
each spaced 20 m apart (i.e., 0, 20, 40, and 60 m), to
cover the plot area. We conducted transect surveys for
20 min at each plot, and each plot was visited one time
per census. For each observation, the surveyor noted the
number of birds, time of detection, distance to the bird
(s), whether the bird(s) were on or off the plot, and the
surveyor’s location at the time of observation (within
10 m in both cardinal directions). A single surveyor con-
ducted all censuses and the surveyor tracked the location
and movement of individual birds to avoid double
counting. All surveys were conducted on days with rela-
tively calm winds and no rain between 07:00 to 09:30,
when birds are most active. We identified and counted
birds using visual confirmation or from their vocaliza-
tions (call, song, or drumming). Birds that were flying
above the forest canopy (e.g., vultures) were not
recorded. For each census, we recorded all bird species
encountered within the 80 x 80 m plots, excluding birds
located outside of the plots.

Data analyses

We assigned each bird species observed in liana con-
trol or removal plots to one of four dietary guilds based
on Robinson (2001): frugivore, insectivore, nectarivore,
and omnivore (Appendix S1: Table S1). We summed
observations and calculated Shannon’s diversity of all
birds and by guild for each plot annually for each census.
We collected auxiliary data (i.e., distance, time of first
observation) to estimate density corrected for imperfect
detection, and we had the minimum 60 observations nec-
essary for distance estimation for eight species (Buck-
land et al. 2001). Rather than evaluate the effects of
liana removal on only a few highly abundant species, we
chose to use the observed (uncorrected) count as an
index of abundance (hereafter “abundance”) and to
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assess the bird community response. Indices are often
more strongly correlated with true density than detec-
tion-corrected estimates (Rigby 2016). Moreover, using
uncorrected counts provides a conservative estimate of
bird response to liana removal because denser vegetation
in one treatment (e.g., control plots; Rodriguez-Ron-
deros et al. 2016) could result in lower detection proba-
bility and, consequently, higher density estimates.

We analyzed Shannon’s diversity and abundance
using generalized linear mixed models in R version 3.5.2
(R Development Core Team 2018). Plot-level diversity
included zero values, and therefore was not suited to
gamma or beta distributions. Therefore, we log-trans-
formed diversity values and used Gaussian models in
package nlme (Pinheiro et al. 2018). For count data, we
fit generalized linear mixed models with Poisson (with
and without zero inflation), negative binomial (1 and 2,
with and without zero inflation), and Gaussian (using
log-transformed count) distributions using package
glmmTMB (Brooks et al. 2017). Model fit was compared
using AIC (Appendix S1: Table S2) and explored further
using quantile-quantile plots and plots of residual vs.
fitted values. As the Gaussian model of log-transformed
count best fit the data, we used nlme, as it enabled fitting
of variance structures to account for heterogeneity in
variance.

For both diversity and abundance models, treatment
(control, removal), year (2010, 2011, 2012, 2013), guild,
and their two- and three-way interactions were included
as fixed effects and plot was included as a random effect
in the model. We treated year as a categorical variable
because of the predicted sharp change in responses post-
treatment (2012 and 2013). We used AIC to evaluate the
fit of variance structures accounting for heterogeneity in
variances of treatment, year, and guild. The final models
included variance structures for guild (abundance) and
year (diversity; see Appendix S1: Table S2 for model
selection data, and Appendix S1: Table S3 for model
results). Fixed effects were evaluated using R package
emmeans (Lenth 2019) using multivariate ¢ (mvt) adjust-
ments for multiple comparisons and were plotted using
ggplot2 (Wickham 2016).

We compared bird community composition between
the liana-removal and control plots using a Jaccard’s
dissimilarity index and an analysis of similarities (ANO-
SIM). We used nonmetric multidimensional scaling
(NMDS) to identify clusters of species and sites post-
liana removal. We removed one outlier site (plot 14)
prior to conducting the 2012 NMDS analysis because it
contained only a single species (keel-billed toucan),
which was not observed at any other site that year. All
compositional analyses were conducted and plotted
using vegan (Oksanen et al. 2019).

REsuLTS

For the two premanipulation surveys, bird abundance
and diversity were nearly identical for all species and
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guilds in the control and liana-removal plots (Fig. 1A—
D). Eight months after liana removal, however, bird
abundance was 78.4% lower (B = —1.59 + 0.34 SE,
P <0.001) and bird diversity was 77.4% lower
(B =—1.11 &£ 0.22 SE, P < 0.001) compared to the con-
trols (in 2012; Fig. 1E, F; Appendix S1: Table S3).
Twenty months after liana removal (in 2013), both
total bird abundance (40.0%, P = —1.09 + 0.34 SE,
P =0.002) and species diversity (51.7%, B = —0.83
+ 0.24 SE, P =0.001) remained significantly lower in
the liana-removal plots compared to the control plots
(Fig. 1G, H). Liana removal reduced insectivorous bird
abundance and diversity in both post-liana-removal cen-
suses (Fig. 1IE-H). Insectivorous bird abundance and
diversity were 91.8% (B = —1.66 £+ 0.25 SE, P = 0.001)
and 89.5% (B = —1.11 4+ 0.21 SE, P < 0.0001) lower rel-
ative to control plots 8 months after liana removal, and
77.3% (p=-1.17 £ 025 SE, P=0.02) and 76.2%
(B =—-0.83 &£ 0.22 SE, P = 0.02) lower relative to con-
trol plots 20 months after liana removal. Liana removal
did not significantly alter the abundance or diversity of
nectarivores, frugivores, or omnivores (P > 0.5 for all
comparisons; Fig. 1E-H; Appendix S1: Table S3). Bird
abundance and diversity in control plots was highest in
April 2011 (Fig. 1C, D), lowest in August 2010 (Fig. 1A,
B), and moderate in January 2012 and 2013 (Fig. 1E—
H).

Bird community composition was similar between
control and liana-removal plots prior to treatment
(2010: R =0.01, P =0.38; 2011: R = —0.07, P = 0.74);
there was substantial overlap in multidimensional space
(Fig. 2A, B) and dissimilarity indices were similar (Jac-
card’s index of dissimilarity 2010: 0.83 + 0.01 SE; 2011:
0.80 + 0.01 SE). Following the liana-removal treatment,
however, bird community composition was significantly
different between control and liana-removal plots (2012:
R =049, P=0.001; Fig. 2C, D). The effect of liana
removal on bird community composition was strongest
in 2012, 8 months posttreatment, where birds grouped
into clearly distinct clusters in multidimensional space
(Fig. 2C) and the dissimilarity index was high (Jaccard’s
index of dissimilarity 2012: 0.96 + 0.01 SE). Insectivo-
rous birds were disproportionately associated with the
control plots following liana removal: 16 of 21 species
(76%) overlapped or were included within the bound-
aries of polygons delineating control plot space in
NMDS. The other three bird groups had lower associa-
tions with the control plots: 67% of the frugivores, 60%
of the nectarivores, and 60% of the omnivores (Fig. 2C).
By 2013, the bird community in liana removal and con-
trol plots partially overlapped in multidimensional space
(Fig. 2D), but the communities still differed significantly
(R=024, P=0.01) and the dissimilarity index
remained high (Jaccard’s index of dissimilarity 2013:
0.94 + 0.01 SE). Community differences between liana
control and removal plots in 2012 and 2013 were driven
by changes in removal-plot composition (Fig. 2).
Removal-plot community composition significantly
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differed between 2011 and 2012 (R = 0.33, P = 0.001)
and between 2011 and 2013 (R = 0.19, P = 0.03). Con-
versely, although control-plot community composition
differed somewhat between 2011 and 2012 (R = 0.21,
P =0.04), control plot community composition was
similar in 2011 and 2013 (R= —0.04, P = 0.67).

DiscussioN

Our findings support the spatial habitat heterogeneity
hypothesis. High habitat heterogeneity from lianas had a
clear positive influence on bird abundance and diversity.
The steep declines in bird abundance and diversity after
liana cutting were driven primarily by insectivorous
birds, which constituted the vast majority of bird indi-
viduals and species recorded in the study. Our findings
are consistent with most tests and meta-analyses of the
habitat heterogeneity hypothesis, particularly for verte-
brates (e.g., Tews et al. 2004, Stein et al. 2014). However,
our study represents one of the few large-scale, in situ
experimental manipulations in forests to evaluate the
spatial habitat heterogeneity hypothesis.

Determining the effect of habitat heterogeneity and
lianas on birds is important because birds play a vari-
ety of roles in tropical forest functioning. Birds control
insect herbivores, which can defoliate and reduce plant
vigor (Michel et al. 2015b, ¢, Whelan et al. 2016, Odell
et al. 2019). Birds are also key pollinators and seed
dispersers for many tropical plant species (Michel
et al. 20155, Anderson et al. 2016, Wenny et al. 2016).
Furthermore, lianas are increasing in abundance rela-
tive to trees in many neotropical forests (Schnitzer and
Bongers 2011, Schnitzer 2015), which may alter bird
abundance, diversity, and species composition. There-
fore, understanding the relationship between lianas
and birds is important to understanding how tropical
forests function now and how they may function in
the future.

Bird abundance and diversity in the control plots
changed relatively little during the study. The increased
abundance between August 2010 and January 2011 was
likely due to seasonal differences. Birds are most active
and sing most frequently during January—April, prior to
nesting, and vocalize less during August (Robinson et al.
2000). Yet since the 2011-2013 surveys all occurred dur-
ing peak activity period of January—April, it is clear that
the liana-removal manipulation was responsible for the
abrupt change in avian abundance and diversity. Like
most habitat manipulation experiments, plot sizes were
small relative to the home ranges of most of the bird spe-
cies that we encountered (Robinson 2010). Therefore,
changes in bird density, diversity, and composition are
likely an accurate reflection of the local changes in habi-
tat use within the plots. Similarly, the small increases in
bird abundance and diversity between 2012 and 2013
may reflect birds responding to tree leaf and stem pro-
duction that was observed in liana-removal plots 1-2 yr
following the treatment (Rodriguez-Ronderos et al.
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2016), and the possible increase in arthropod resources
accompanying that regrowth.

Bird community composition was essentially the same
in the control and liana-removal plots prior to the liana
removal; however, following habitat simplification via
liana cutting, the bird communities in the liana removal
and control plots were distinctly different (Fig. 2). The
striking change in bird community composition in the
liana-removal plots was driven disproportionately by the
loss of insectivorous bird species. The few insectivorous
birds that were associated with removal plots included
species that sally from the forest canopy to catch insects
in midair (e.g., great crested flycatcher [MYICRI] and

dusky-capped flycatcher [MYITUB]). Fewer liana stems
in the understory may have enhanced the ability of fly-
catchers to fly, and thus to forage in the understory.
Woodpeckers, such as the crimson-crested woodpecker
(CAMMEL), were also strongly associated with the
liana removal plots, possibly because the presence of
decaying liana stems increased beetle and termite abun-
dances, which provided a rich resource pulse.

Lianas may generally benefit insectivorous birds by
increasing the abundance of arthropods (@degaard
2000, Yanoviak and Schnitzer 2013, Adams et al. 2019,
Odell et al. 2019). Lianas add a complex array of stems
to the forest understory, which provide food sources for
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herbivorous insects (i.e., liana leaves and stems). Lianas
also form dense tangles of stems that trap dead leaf clus-
ters, which provide shelter and food for a wide range of
arthropods. Neotropical insectivorous bird abundance
and diversity are greater in forests with dense and
heterogeneous understories (Banks-Leite and Cintra
2008, Castano-Villa et al. 2014, 2019). More specifically,
several species of understory insectivorous birds, such as
the checker-throated stipplethroat and dot-winged
antwren, have been observed foraging for arthropods
primarily in dead leaf clusters (Gradwohl and Greenberg
1980). Recently, Michel et al. (2015a) showed that these
two species, plus the ruddy-tailed flycatcher, preferen-
tially foraged in areas with higher densities of liana tan-
gles, and the densities of these bird species were
positively correlated with liana tangle frequency across
six sites in Panama, Costa Rica, and Nicaragua. These
bird species travel in mixed flocks that rapidly deplete
arthropod resources, and some (notably ruddy-tailed fly-
catcher; Sherry 1984) use high-energy pursuit and glean-
ing foraging strategies, and as a result may benefit from
the high arthropod densities found in the dense vegeta-
tion provided by liana tangles (Gradwohl and Greenberg
1980, Sherry 1984).

Many insect species specialize on liana species, which
may further increase insect abundances and thus benefit
insectivorous birds compared to liana-free areas (Janzen
1970, Wolda 1979, Odell et al. 2019). For example, in
nearby, highly seasonal forest in central Panama, @de-
gaard (2000) found that beetles specialized significantly
more on liana species than on tree species, and that an
average of 47 beetle species had a specialized relationship
with each liana species. The ability of lianas to grow excep-
tionally well during the dry season in seasonal forests,
when trees are less active (Schnitzer and van der Heijden
2019, van der Heijden et al. 2019), may provide important
dry-season resources to herbivorous and stem-tapping
insects. In an extensive review of the literature, Odell et al.
(2019) reported that lianas appear to increase the abun-
dance of multiple arthropod taxa in both neotropical for-
ests as well as forests of Borneo and Australia. At least
149 species of insectivorous birds forage for arthropods
that are associated with lianas (Michel et al. 2015b).
Therefore, the presence of lianas, and the arthropods that
they support, may explain why insectivorous bird abun-
dance and diversity—and, therefore, total bird abundance
and diversity—was high in the presence of lianas.

Lianas provide nesting sites and materials for many
bird species, which also may explain the positive rela-
tionship between lianas and bird abundance and diver-
sity. However, few insectivorous birds are known to nest
in lianas or to use liana leaves or branches. Only 2 of the
41 species known to nest in or on lianas, or to use liana
material in nests, are insectivores (Michel et al. 20155).
Similarly, no insectivorous birds use lianas for lekking,
and only 10 species of insectivorous birds are known to
benefit from reduced predation (Michel et al. 20155).
Therefore, lianas most likely increase bird abundance
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and diversity by hosting a high density of arthropods,
and thus providing a rich resource base for insectivorous
birds, rather than providing safe nesting or lekking
opportunities.

Bird abundance and diversity may have decreased fol-
lowing liana removal because of the influx of light into
the understory; light penetration into the liana-removal
plots increased by ~20% during the first year (Rodri-
guez-Ronderos et al. 2016; see also Sanchez-Azofeifa
et al. 2009, Estrada-Villegas et al. 2020). Many under-
story birds are adapted to relatively dark microclimates
and avoid brightly lit gaps or matrix habitats (Walther
2002, Moore et al. 2008, Pollock et al. 2015). Light
avoidance is particularly pronounced in understory
insectivorous birds, many of which have large eyes that
allow them to detect and capture insects in the relatively
dark forest understory (Stratford and Robinson 2005).
Thus, the increase in understory light levels following
liana removal may have contributed to the decrease in
insectivorous birds following liana removal. Further-
more, the increase in tree vegetation between Years 1
and 2 post-liana removal and the accompanying
decrease in understory light levels (Rodriguez-Ronderos
et al. 2016) may explain why the liana-removal effect on
bird abundance and diversity weakened 20 months fol-
lowing treatment.

We had expected to find an increase in frugivorous birds
after removing lianas. Lianas in neotropical forests tend to
produce relatively small and nutrient-poor wind-dispersed
seeds, whereas trees produce far larger and more nutritious
animal-dispersed fruits that should be preferred by frugiv-
orous birds (Muller-Landau and Hardesty 2005). Lianas,
however, significantly reduced tree flower and fruit pro-
duction in the control plots compared to the liana-removal
plots (Garcia-Ledn et al. 2018), and lianas themselves
were not able to fully replace the quantity of lost tree flow-
ers fruits with their own (van der Heijden et al. 2015).
Indeed, frugivorous birds appeared to increase slightly
(but not significantly) following liana cutting, which is
consistent with greater tree fruit production following
liana cutting in these plots (Garcia-Leon et al. 2018). The
lack of a significant difference in frugivorous bird abun-
dance and diversity in the liana-removal and control plots
may have been due, in part, to the relatively small sample
sizes and thus low statistical power compared to the far
more common insectivorous birds.

Because lianas increase habitat heterogeneity, deter-
mining the factors that influence liana abundance in
tropical forests may be critical to predict bird abundance
and diversity accurately, particularly for the diverse guild
of insectivorous birds. Liana abundance tends to
increase with decreasing rainfall and increasing season-
ality in tropical forests, varying twofold across a gradient
from relatively aseasonal wet forest to seasonal moist
forest (Schnitzer 2005, DeWalt et al. 2015, Schnitzer
2018, Parolari et al. 2020). Liana abundance is also high
in young, regenerating tropical forests (Barry et al.
2015), decreasing with forest age after 70-100 yr of
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forest regeneration (DeWalt et al. 2000). Within mature
forests, liana density and distribution are influenced by
disturbance (Schnitzer 2018), and treefall gaps may
explain local liana distribution (Dalling et al. 2012, Sch-
nitzer et al. 2012, Ledo and Schnitzer 2014). Thus, if
insectivorous birds are dependent on lianas, then insec-
tivorous bird abundances should be high in seasonal and
recently disturbed forests, as well in more disturbed
areas of older forests.

Our findings support the spatial habitat heterogeneity
hypothesis and suggest that the contribution of habitat
heterogeneity by lianas regulates tropical bird abun-
dance, diversity, and community composition. Insectivo-
rous birds in particular were influenced by the presence
of lianas, presumably because lianas increased arthropod
abundance and diversity, which provided a rich resource
base for insectivorous birds. The few insectivorous bird
species that preferred the liana-free areas may be the
exceptions that prove the rule and may be explained by
their particularly foraging strategies. Determining the
factors that influence liana abundance and diversity in
tropical forests is important for a number of reasons
(Schnitzer 2018); one important reason is that lianas
strongly influence bird abundance and diversity.
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