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Summary 
• There are two theories about how allocation of metabolic products occurs. The allometric biomass 

partitioning theory (APT) suggests that all plants follow common allometric scaling rules. The optimal 
partitioning theory (OPT) predicts that plants allocate more biomass to the organ capturing the most 
limiting resource. 

• Whole-plant harvests of mature and juvenile tropical deciduous trees, evergreen trees, and lianas and 
model simulations were used to address the following knowledge gaps: (1) Do mature lianas comply 
with the APT scaling laws or do they invest less biomass in stems compared to trees? (2) Do juveniles 
follow the same allocation patterns as mature individuals? (3) Is either leaf phenology or life form a 
predictor of rooting depth? 

• It was found that: (1) mature lianas followed the same allometric scaling laws as trees; (2) juveniles and 
mature individuals do not follow the same allocation patterns; and (3) mature lianas had shallowest 
coarse roots and evergreen trees had the deepest. 

• It was demonstrated that: (1) mature lianas invested proportionally similar biomass to stems as trees 
and not less, as expected; (2) lianas were not deeper-rooted than trees as had been previously 
proposed; and (3) evergreen trees had the deepest roots, which is necessary to maintain canopy during 
simulated dry seasons. 

Introduction 
The allocation patterns of metabolic products in plants have been studied by ecologists from at least the 
19th Century (Kny, 1894) until today (Poorter et al., 2015). Allocation to different organs is a zero-sum dynamic in 
that an increase in allocation to one organ will result in an equal decrease in allocation to another, and is 
thought to reflect strategies to optimize performance. Allometric biomass partitioning theory (APT) suggests 
that all plants follow common allometric scaling rules that constrain allocation to different plant organs (Enquist 
& Niklas, 2002; Niklas & Enquist, 2002; Niklas & Spatz, 2004; McCarthy et al., 2007). Enquist & Niklas (2002) 
proposed a universal allocation rule for nonjuvenile seed plants in which the scaling of leaf vs stem and leaf vs 
root (total belowground biomass) is to the ¾ power and stem vs root mass is to the 1 power (i.e. an isometric 
relationship). However, in the case of perennial plants, for juveniles younger than 1 yr, it was proposed that the 
scaling between above- and belowground biomass will have a slope of 1, possibly due to the initial growth 
provided by resources from the seed mass in young plants (Enquist & Niklas, 2002; Niklas, 2005). 

An alternative perspective is the optimal partitioning theory (OPT), which allows some flexibility within fixed 
allocation rules. This flexibility allows plants to allocate biomass dynamically to optimize resource capture, 
depending on which resource most constrains productivity (Davidson, 1969; Thornley, 1972; Bloom et al., 1985; 
Chave et al., 2014). Thus, if water and/or nutrients are limiting, then plants should allocate more biomass to 
roots; if light is limiting, allocation to shoots and/or leaves should increase (Bloom et al., 1985; Shipley & 
Meziane, 2002; Roa-Fuentes et al., 2012). In particular, the most limiting resource can vary across species and 
individuals and is tightly linked to specific lifeforms, ontogeny and life-history strategies (Shipley & 
Meziane, 2002; Banin et al., 2012; Poorter et al., 2012). 

In the tropics, one of the most distinctive contrasts in life forms is between lianas, which are woody vines, and 
trees. Lianas are thought to differ from trees in that they do not invest in stems for support, because they use 
trees for mechanical support (Givnish & Vermeij, 1976; Putz, 1983; Stevens, 1987; Castellanos et al., 1989; 



Gehring et al., 2004; Selaya et al., 2007; van der Heijden et al., 2013). Thus, it is believed that lianas allocate 
more biomass to leaves and perhaps roots, and less to stems in comparison to trees (Putz, 1983; 
Castellanos et al., 1989; van der Heijden & Phillips, 2009; van der Heijden et al., 2013, 2015; 
Schnitzer et al., 2014). For example, in a study comparing diameter growth between lianas and trees in an 
Amazonian forest in Peru, van der Heijden & Phillips (2009) found that lianas made up only one-third of the 
biomass that they displaced in trees due to competition, because lianas grew less in diameter than trees. In two 
other multiyear liana removal studies conducted in a seasonally moist lowland tropical forest in Panama, lianas 
were found to reduce tree stem growth in tree-fall gaps (Schnitzer et al., 2014) and in the forest (van der 
Heijden et al., 2015); in both experiments lianas did not make up for all the stem biomass that they displaced. 
However, these studies did not account for potential differences between lianas and trees in terms of stem 
length. Niklas (1994) found that temperate vines partitioned their leaf and stem biomass following similar 
patterns as self-supporting gymnosperms. In another study conducted in Xishuangbanna in SW China with tree 
and liana seedlings from a single genus, Bauhinia, Cai et al. (2007) found that lianas allocated more biomass to 
leaves and stems and less to roots than the trees. 

Given a particular belowground biomass, lianas and trees may differ in their belowground architecture – that is, 
how belowground biomass is deployed in terms of the distribution of root length or surface area throughout the 
soil profile. For example, many have postulated that lianas are deeper-rooted than co-occurring trees, 
permitting lianas to access deeper sources of soil water than trees (Holbrook & Putz, 1996; Andrade et al., 2005; 
Schnitzer, 2005; Schnitzer et al., 2005; Toledo-Aceves & Swaine, 2008; Schnitzer & Bongers, 2011; 
Chen et al., 2015). Evidence for this idea, however, is mixed. In support of the hypothesis that lianas are 
relatively deep-rooted, one study showed that 15-yr-old liana saplings of one species had roots that reached 
depths of ≤ 10 m; however, that study focused only on one species, and co-occurring tree rooting depths were 
not examined (Restom & Nepstad, 2004). By contrast, in a common garden experiment with 4-yr-old lianas and 
trees, rooting depths of lianas and trees were similar (Smith-Martin et al., 2019). Additionally, De 
Deurwaerder et al. (2018) found that in a rain forest in French Guiana, lianas used more superficial water than 
trees during the dry season based on stable isotopes of hydrogen and oxygen. Johnson et al. (2013) also found 
that two species of lianas did not have deeper roots than their host tree species in a seasonally dry tropical 
forest in Panama. Although these findings suggest that lianas may not be more deeply-rooted than trees, the 
lack of in situ studies investigating rooting depths of lianas and co-occurring trees is conspicuous (Powers, 2015). 
Lianas are increasing in abundance in tropical forests (Schnitzer & Bongers, 2011) and decrease forest-wide 
carbon sequestration (Schnitzer et al., 2014; van der Heijden et al., 2015); thus, information on biomass 
allocation and maximum rooting depth is essential to fully understand their roles in forest ecosystems. However, 
whether either APT or OPT applies to lianas is unresolved. 

Furthermore, plant resource requirements may change with ontogeny. Givnish (1988) predicted rising costs of 
construction and maintenance of structural support tissues as trees become larger and several studies have 
found support for these predictions. For example, Sendall et al. (2015) found a decrease in net carbon gain with 
increases in tree size in Acer saccharum and Shipley & Meziane (2002) found that hydroponically grown 
herbaceous plants allocated proportionally more biomass to roots as they grew larger. Furthermore, based on a 
metanalysis, Poorter et al. (2012) concluded that both herbaceous and woody plants show a decrease of leaf 
mass fraction and an increase on stem and root mass fraction as they become larger. Also, Cavender-Bares & 
Bazzaz (2000) came to the conclusion that measurements conducted on seedlings of Quercus rubra, could not 
be extrapolated to mature individuals of Q. rubra as they found that the different age classes used different 
strategies to cope with drought. However, whether there are shifts in resource acquisition and biomass 
allocation patterns across ontogeny in tropical dry forest species is unknown. 



Finally, in seasonal tropical forests, belowground allocation and root distribution may be linked to leaf 
phenology that represents water-use strategies. In a recent individual-based modeling study in a Costa Rican 
tropical dry forest, trees of an evergreen plant functional type (PFT) required more than doubled rooting depth 
compared with similar size trees of deciduous PFT in order to maintain their canopy in the dry season in the 
Ecosystem Demography 2 model (Xu et al., 2016). In a seasonally wet forest in Panama, Markesteijn & Poorter 
(2009) found that evergreen drought-tolerant tree seedlings had high biomass investment in root systems, yet it 
is unknown whether adult trees follow the same allocation pattern as juveniles. In a tropical dry forest in 
Venezuela, Sobrado & Cuenca (1979) found that two evergreen woody shrubs had deeper roots than two other 
co-occurring deciduous species. However, due to the difficulty of excavating whole root systems, there have 
been few studies to determine variation in belowground allocation and rooting depths among species with 
distinct growth forms and/or phenology, especially for mature individuals. Because plant biomass partitioning 
and rooting depth play pivotal roles in both ecological theory (i.e. APT, OPT) and in ecosystem simulation 
models, better empirical data are needed to inform both these types of models. 

In the present study, whole-plant harvests in a seasonally dry tropical forest were used to address the following 
three knowledge gaps: (1) Do mature lianas comply with the common scaling laws proposed by Enquist & Niklas 
(2002), or do they invest less biomass in stems compared to mature trees? (2) Do juveniles follow the same 
allocation patterns as mature individuals? (3) Is either leaf phenology (deciduous or evergreen) or life form 
(liana or tree) a predictor of rooting depth? Simulations with the Ecosystem Demography 2 model were used to 
explore the consequences of the empirical data herein. 

Materials and Methods 
Site description 
This study was conducted in a tropical dry forest in Northwestern Costa Rica at Estación Experimental Forestal 
Horizontes (Horizontes; 10.718 N, 85.594 W), which is part of Área de Conservación Guanacaste (ACG). Mean 
annual precipitation is 1730 mm, mean annual temperature is 25°C, and there is a distinct 5-month-long dry 
season from December to May (www.investigadoresacg.org) during which there is little to no monthly rainfall. 
This experimental station was formerly a farm with mixed uses including cotton, sorghum and pasture (M. 
Gutierrez, pers. comm.). Current forests are c. 30 old and have regenerated naturally after Horizontes became a 
protected area (Werden et al., 2018) and are taxonomically and functionally diverse with over 60 species of 
deciduous, evergreen and semi-deciduous trees and lianas (Waring et al., 2019). Soils at Horizontes are Andic 
and Typic Haplustepts with a high clay content (38 ± 1%; Waring et al., 2019). Soils were deep and well-drained 
and in no cases were rooting depths constrained by rock or hard pans. 

Species selection 
Two groups of plants were sampled that differed in ontonogenic stage: juveniles and adults. Phylogenetically 
diverse species of deciduous trees, evergreen trees and lianas were planted in a common garden to be 
harvested as juveniles, and mature individuals were selected in the surrounding forest for harvesting. All of the 
species used in the present study are common in this region (Powers et al., 2009). The common garden 
experiment included seven species of deciduous trees (Bauhinia ungulata, Dalbergia retusa, Gliricidia 
sepium, Luehea speciosa, Lysiloma divaricatum, Swietenia macrophylla, Tabebuia rosea), two species of 
evergreen trees (Crescentia alata, Simarouba glauca) and four species of deciduous lianas (Acacia 
tenuifolia, Amphilophium crucigerum, Dioclea violacea, Tanaecium tetragonolobum; Table 1). For the forest 
harvest of mature individuals, four species of deciduous trees (G. sepium, Guazuma 
ulmifolia, L. speciose, T. rosea), two species of evergreen tree (Manilkara chicle, S. glauca) and five species of 
deciduous lianas (A. tenuifolia, A. crucigerum, Combretum farinosum, Securidaca diversifolia, Serjania 
schiedeana; Table 1) we selected. 



Table 1. Family, species used in the study, age of individuals at the time of harvest – juveniles harvested in 
common garden experiment, and mature individuals harvested from secondary forest (mature) – growth form, 
and leaf habit. 

Species Family Age Growth form Leaf habit 
Acacia tenuifolia Fabaceae Juveniles, mature Liana Deciduous 
Amphilophium crucigerum Bignoniaceae Juveniles, mature Liana Deciduous 
Bauhinia ungulate Fabaceae Juveniles Tree Deciduous 
Combretum farinosum Combretaceae Mature Liana Deciduous 
Crescentia alata Bignoniaceae Juveniles Tree Evergreen 
Dalbergia retusa Fabaceae Juveniles Tree Deciduous 
Dioclea violacea Fabaceae Juveniles Liana Deciduous 
Gliricidia sepium Fabaceae Juveniles, mature Tree Deciduous 
Guazuma ulmifolia Malvaceae Mature Tree Deciduous 
Luehea speciosa Malvaceae Juveniles, mature Tree Deciduous 
Lysiloma divaricatum Fabaceae Juveniles Tree Deciduous 
Manilkara chicle Sapotaceae Mature Tree Evergreen 
Securidaca diversifolia Polygalaceae Mature Liana Deciduous 
Serjania schiedeana Sapindaceae Mature Liana Deciduous 
Simarouba glauca Simaroubaceae Juveniles, mature Tree Evergreen 
Swietenia macrophylla Meliaceae Juveniles Tree Deciduous 
Tabebuia rosea Bignoniaceae Juveniles, mature Tree Deciduous 
Tanaecium tetragonolobum Bignoniaceae Juveniles Liana Deciduous 

 

Common garden 
For the common garden, seeds were collected in ACG in 2014 and in 2016 and planted in 5 × 8 cm black 
polyethylene bags with a 3 : 1 mix of locally collected soil and sand in May 2014 and May 2016. The seedlings 
were grown for three months under 90% polyethylene shade cloth and then planted in August in a 1 × 1 m grid 
in an open field. One month before planting the seedlings in the common garden, the shade cloth was removed 
to acclimate the seedlings to higher light intensity before transplanting them. Before planting, the field was 
cleared of all vegetation and fence posts were installed for the lianas to grow on. All individuals from the 
common garden planted in 2014 were harvested from June to July 2016, and the ones planted in 2016 were 
harvested in June 2017. Thus, they were either c. 12 or 24 months old at harvests, depending on planting date 
(2014 or 2016). All juvenile lianas were climbing except for the 12-month-old Acacia tenuifolia saplings, which 
were self-supporting; however, 24-month old saplings of A. tenuifolia also were harvested and at that age, they 
were climbing. 

Mature plants 
In addition to the common garden with juveniles, mature trees and lianas were harvested, which were located 
in the surrounding forest matrix or close to single-lane unpaved roads on the edge of the forest. All mature trees 
had a diameter at breast height (DBH) > 12 cm, had reached the canopy, had crowns with access to full sun, and 
were not over topped by other trees. Mature lianas were those that had reached the canopy and were growing 
across the top of host trees. 

Biomass harvest 
In the common garden, two to three individuals per species were harvested from June–July in 2016 and in June 
2017 for a total of 47 individuals (Table 1). Harvest of all the mature individuals occurred between August 2016 
and June 2017. Three individuals per species were harvested for a total of 33 mature individuals (Table 1). Each 



individual was cut at ground level using a machete or chainsaw and aboveground liana biomass was pulled down 
from the canopy with a tractor (Fig. 1a). The stem diameter was measured at 20 cm from the base and at breast 
height (1.3 m from the base), and then separated into stems and leaves. Following stem removal, all 
belowground biomass was dug up with shovels and picks; all coarse roots down to diameters of c. 2–5 mm 
(Fig. 1b) were excavated and maximum rooting depth and the lengths of all of the excavated roots measured 
with a tape measure. Although fine roots can make up a large fraction of production allocation (20% or more), 
they represent a much smaller fraction of total biomass allocation, and are negligible for the questions 
addressed here. 

 
Figure 1. Image of aboveground biomass of liana Combretum farinosum (a) and a root of evergreen 
tree Manilkara chicle in the process of being excavated (b). 
 

All leaf, stem and coarse root biomass of juveniles was dried and weighed. For the mature individuals, all of the 
fresh biomass as weighed using a spring-loaded balance, and then between half and one-third of leaves, stems, 
coarse roots were dried and weighed to convert FW to oven-dried biomass estimates. All excavated 
belowground biomass herein constitutes coarse root biomass. Because some juveniles were < 130 cm, 
diameters at 20 cm above the base are reported for juveniles. The range of diameters at 20 cm from the base of 
juveniles was 4–83 mm for deciduous trees, 3–13 mm for evergreen trees and 4–44 mm for lianas. For mature 
individuals the range in stem DBH for deciduous trees was 132–307 mm and for evergreen trees 137–219 mm, 
and the sum of stem DBH for lianas was 19–290 mm. 

Canopy leaf area 
In order to determine canopy leaf area, specific leaf area (SLA, cm2 g−1) including petioles on 3–6 leaves per 
individual was measured, and total canopy leaf area extrapolated from SLA and total leaf biomass. 

Data analysis 
A common framework for data analysis was employed to answer all of our questions. Linear mixed models were 
fitted with functional group as a categorical variable – that is, deciduous trees, evergreen trees and lianas 
(hereafter referred to as functional group) and species as a random effect. All continuous variables were log-
transformed in all linear mixed models. 

The first question to address was whether biomass allocation patterns to stems, leaves and coarse roots of 
juvenile and mature individuals from the different functional groups followed the same allocation patterns 
proposed by Enquist & Niklas (2002). To do this, linear mixed models were fitted with one fraction of biomass as 
a function of the other one, that is leaf biomass as a function of stem biomass and coarse root biomass and stem 
biomass as a function of coarse root biomass. Leaf mass fraction (LMF), stem mass fraction (SMF), and coarse 
root mass fraction (RMF) also were calculated to explore the optimal partitioning theory. Analyses were 
conducted separately for juvenile individuals and mature ones to address the second question of whether 
juveniles follow the same allocation patterns as adults. A model also was fitted with shoot biomass (leaves plus 

https://nph.onlinelibrary.wiley.com/cms/asset/79c5501d-6a66-45a5-8fbb-f1544c853c7e/nph16275-fig-0001-m.jpg


stems) as a function of coarse root biomass for the juveniles because Enquist & Niklas (2002) proposed that 
juveniles have an isometric relationship between above- and belowground biomass. 

The third question to address was whether coarse rooting depths differed predictably among functional groups 
of mature individuals, with respect to biomass allocation and canopy area. Linear mixed models were fitted with 
maximum coarse rooting depth as a function of leaf biomass, total canopy leaf area, stem biomass, coarse root 
biomass and total biomass, and functional group as a grouping factor. Using mixed models, it also was explored 
whether there was a difference among liana, deciduous tree and evergreen tree total coarse root length, and 
DBH, shoot biomass and total biomass. All linear mixed models (hereafter represented by chi-squared tests – χ2) 
were conducted in R (v.3.5.1) using the lme4 package (R Core Development Team, Vienna, Austria). When 
necessary, to be able to interpret significant differences, post hoc Tukey's HSD tests (hereafter represented by t-
tests – t) were conducted with R/emmeans package. 

Ecosystem Demography 2 model 
In order to better understand the implication of the observed allometric relationships and illustrate the 
importance of rooting depth as an evolutionary consequence of phenology, the Ecosystem Demography model 2 
(ED2) described by Xu et al. (2016) was used as a case study. ED2 is an individual-based terrestrial biosphere 
model that has been well-evaluated in tropical dry forests (Xu et al., 2016; Medvigy et al., 2019). In the model, 
plant height, leaf biomass, stem biomass and rooting depth change directly or indirectly with DBH following 
power-law allometric relationships. PFT-specific parameters of these relationships were calibrated from 
literature values or field observations in tropical dry forests (See table S3 in Xu et al., 2016, for details). 
Meanwhile, ED2 assumes constant ratios (1) between leaf biomass and fine root biomass and (2) between below 
ground coarse root and aboveground stem biomass. For tropical dry forest simulations, these two ratios are set 
to be 1.0 and 0.25, respectively. There is no difference in allometric relationships between juveniles and mature 
individuals in ED2. 

First, a comparison was made between the default biomass allocation and rooting depth relationships in ED2 
and the relationships acquired from the observations in the present study. Of interest was which allometric 
relationship in ED2 had the largest biases from the observation. Second, to evaluate the importance of rooting 
depth allometry for canopy phenology, simulations were conducted for six 0.1-ha plots in a Costa Rican tropical 
dry forest that differed in parameterizations of rooting depth. In the default (‘Default’) simulation herein, the 
same rooting depth parameters were used as Xu et al. (2016). Specifically, a maximum rooting depth was 
assigned to the evergreen plant functional type (PFT E) that was about twice the rooting depth of the deciduous 
plant functional type (PFT D). In the ‘Observation’ simulation herein, rooting depth parameters were assigned to 
the model's PFT E and PFT D based on the present study's measurements. Because there are only five evergreen 
individuals tall enough to measure DBH for which maximum rooting depth was measured, the root depth 
allometry was construct based on stem height and the height-based relationship implemented in ED2. In the 
‘Switch’ simulation herein, the measured PFT D rooting depth was assigned to the model's PFT E, and vice versa. 
In the ‘Same’ simulation herein, PFT E and PFT D were both assigned the same rooting depth parameter, 
calculated as the mean value of the OBSERVATION PFT E and PFT D parameters. The differences between 
deciduous and evergreen trees were focused on, because lianas are currently not represented in ED2 or any 
other ecosystem models. 

Results 
Biomass allocation patterns in juvenile lianas, deciduous trees, and evergreen trees 
In the whole-plant harvests of trees and lianas herein, allocation patterns differed among functional group 
(lianas, evergreen trees, deciduous trees) in juvenile plants. In general lianas allocated more biomass to leaves 



and stems, and the deciduous and evergreen trees allocated more to coarse roots. When comparing the 
allocation to leaves vs allocation to stems, lianas allocated proportionally more to leaves and deciduous trees to 
stems (Fig 2a; Supporting Information Table S1; χ2 = 10.07, P = 0.007; t = −2.95, P = 0.045). Furthermore, in the 
trade-off between the allocation to leaves vs coarse roots, lianas also allocated more to leaves and deciduous 
and evergreen trees to coarse roots (Fig 2b; Table S1; χ2 = 15.15, P < 0.001; deciduous–liana t = −3.64, P = 0.010; 
evergreen–liana t = −2.49, P = 0.051). Finally, when comparing allocation to stem vs allocation to coarse roots, 
lianas allocated more biomass to stems and deciduous and evergreen trees to coarse roots (Fig 2c; Table S1; 
χ2 = 13.39, P = 0.001; deciduous–liana t = −2.90, P = 0.036; evergreen–liana t = −2.65, P = 0.036). It also was 
found that juveniles did not scale isometrically between shoot and coarse root biomass. Instead, as they became 
larger, lianas allocated more biomass to shoots and deciduous and evergreen trees to coarse roots (Fig. S1; 
χ2 = 16.80, P < 0.001; deciduous–liana t = −3.60, P = 0.011; evergreen–liana t = −2.96, P = 0.018). 

 
Figure 2. Relationship between leaf and stem biomass, leaf and coarse root biomass, and stem and coarse root 
biomass of juvenile (a–c), and mature (d–f) deciduous trees (light green circles), evergreen trees (dark green 
triangles), and lianas (brown squares). Juvenile lianas allocated proportionally more biomass to leaves, 
deciduous trees to stems (a; χ2 = 10.07, P = 0.007; deciduous–liana t = −2.95, P = 0.045), and deciduous and 
evergreen trees to coarse roots (b; χ2 = 15.15, P ≤ 0.001; deciduous–liana t = −3.64, P = 0.010; evergreen–
liana t = −2.49, P = 0.051). Juvenile lianas also allocated more biomass to stems and deciduous and evergreen 
trees to coarse roots (c; χ2 = 13.39, P = 0.001; deciduous–liana t = −2.90, P = 0.036; evergreen–
liana t = −2.65, P = 0.036). Mature individuals allocated similar proportions of biomass to leaves and stem (d; 
χ2 = 5.26, P = 0.072), leaves and coarse roots (e; χ2 = 4.21, P = 0.122), and stems and coarse roots (f; 
χ2 = 2.89, P = 0.236). Shaded areas represent 95% confidence intervals and all variables have been log-
transformed. 
 

In terms of mass fractions, in general lianas allocated more biomass to leaves and less to coarse roots, 
deciduous trees allocated less biomass to leaves and more to stems and coarse roots, and evergreen trees 
allocated less biomass to stems and more biomass to coarse roots (Fig 3a–c). Specifically, lianas had greater 
LMFs than deciduous trees (Fig. 3a; χ2 = 12.03, P = 0.002; deciduous–liana t = −3.45, P = 0.019), deciduous trees 

https://nph.onlinelibrary.wiley.com/cms/asset/51dbf767-9e7a-4289-a7aa-d7068b503aed/nph16275-fig-0002-m.jpg


had greater SMFs than evergreen trees (Fig 3b; χ2 = 9.28, P = 0.010; deciduous–evergreen t = −2.53, P = 0.027), 
and deciduous and evergreen trees had greater RMFs than lianas (Fig 3c; χ2=16.89, P < 0.001; deciduous–
liana t = 2.72, P = 0.054; evergreen–liana t = 3.95, P = 0.006). 

 
Figure 3. Leaf (LMF), stem (SMF) and coarse root mass fraction (RMF) of juvenile (a–c) and mature (d–f) 
deciduous trees (light green), evergreen trees (dark green) and lianas (brown). Box plot midlines are medians, 
box edges are first and third quartiles, whiskers are the minimums and maximums, and points are outliers. 
Letters at the top of box plots indicate significant (P < 0.05) differences among groups based on  Tukey's HSD 
tests. 
 

Biomass allocation patterns in mature lianas, deciduous and evergreen trees 
Mature lianas, deciduous trees and evergreen trees all followed the same allocation patterns to leaves, stems 
and coarse roots. These patterns were consistent when comparing allocation to leaves vs stems (Fig 2d; Table 
S1; χ2 = 5.26, P = 0.0720), leaves vs coarse roots (Fig 2e; Table S1; χ2 = 4.21, P = 0.122), and stems vs coarse roots 
(Fig 2f; Table S1; χ2 = 2.89, P = 0.236). In terms of mass fractions, all individuals had similar LMFs (Fig 3d; 
χ2 = 4.43, P = 0.109) and SMFs (Fig 3e; χ2 = 0.07, P = 0.964); however, deciduous trees had greater RMFs than 
lianas (Fig 3f; χ2 = 10.46, P < 0.005; deciduous–liana t = 3.20, P = 0.030). 

Trends in maximum rooting depth in relation to biomass and canopy area in mature 
individuals 
Overall, it was found that contrary to expected lianas had the shallowest coarse roots followed by deciduous 
trees, and as expected evergreen trees had the deepest coarse roots (Fig. 4; χ2 = 34.33, P < 0.001; deciduous– 
evergreen t = −3.205, P = 0.026; deciduous–liana t = 3.14, P = 0.034; evergreen–liana t = 5.70, P < 0.001). 
Deciduous and evergreen trees had deeper roots than lianas independent of leaf biomass (Fig. 5a; Table S1; 
χ2 = 13.70, P < 0.001; deciduous–liana t = 2.77, P = 0.042; evergreen–liana t = 3.47, P = 0.011) and total leaf 
canopy leaf area (Fig. 5b; Table S1; χ2 = 21.45, P < 0.001; deciduous–liana t = 3.36, P = 0.019; evergreen–
liana t = 4.24, P = 0.005). Evergreen trees had deeper roots than deciduous trees and also lianas, when stem 
biomass was controlled for (Fig. 5c; Table S1; χ2 = 16.81, P < 0.001; evergreen–deciduous t = −3.11, P = 0.033; 
evergreen–liana t = 3.88, P = 0.008), coarse root biomass (Fig. 5d; Table S1; χ2 = 10.50, P = 0.005; evergreen–
deciduous t = −2.78, P = 0.054; evergreen–liana t = 2.62, P = 0.055), and total biomass (Fig. 5e; Table S1; 
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χ2 = 15.18, P < 0.001; evergreen–deciduous t = −3.09, P = 0.034; evergreen–liana t = 3.58, P = 0.012). When DBH 
was taken into account as a covariate, evergreen trees still had deeper roots than lianas (Fig. 5f; Table S1; 
χ2 = 11.05, P = 0.004; t = 3.23, P = 0.019). 

 
Figure 4. Maximum depth of coarse roots of mature deciduous trees (light green), evergreen trees (dark green), 
and lianas (brown). Box plot midlines are medians, box edges are first and third quartiles, whiskers are the 
minimums and maximums, and points are outliers. Letters at the top of box plots indicate significant (P < 0.05) 
differences among groups based on Tukey's HSD tests. 
 

 
Figure 5. Relationship between maximum depth of coarse roots and leaf biomass (a), total canopy area (b), stem 
biomass (c), coarse root biomass (d), total biomass (e) and diameter at breast height (DBH) (f) of mature 
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deciduous trees (light green circles), evergreen trees (dark green triangles) and lianas (brown squares). 
Deciduous and evergreen trees had deeper roots than lianas independent of leaf biomass (a; 
χ2 = 13.70, P < 0.001; deciduous–liana t = 2.77, P = 0.042 evergreen–liana t = 3.47, P = 0.011) and total leaf 
canopy area (b; χ2 = 21.45, P > 0.001; deciduous–liana t = 3.36, P = 0.019; evergreen–liana t = 4.24, P = 0.005). 
Evergreen trees had deeper roots than deciduous trees and lianas independent of stem biomass (c; 
χ2 = 16.81, P < 0.001; evergreen–deciduous t = −3.11, P = 0.033; evergreen–liana t = 3.88, P = 0.008), root 
biomass (d; χ2 = 10.50, P = 0.005; evergreen – deciduous t = −2.78, P = 0.054; evergreen – 
liana t = 2.62, P = 0.055) and total biomass (e; χ2 = 15.18, P < 0.001; evergreen – deciduous t = −3.09, P = 0.034; 
evergreen – liana t = 3.58, P = 0.012). Evergreen trees still had deeper roots than lianas independent of DBH (f; 
χ2 = 11.05, P = 0.004; t = 3.23, P = 0.019). Shaded areas represent 95% confidence intervals and all variables have 
been log-transformed. 
 

Differences in total root length among functional group 
No difference was found among total coarse root length of deciduous trees, evergreen trees and lianas when 
accounting for DBH (Fig. S2a; χ2 = 2.81, P = 0.246), shoot biomass (Fig. S2a; χ2 = 2.71, P = 0.259) and total 
biomass (Fig. S2a; χ2 = 0.267, P = 0.263). However, in general the total coarse root length in lianas increased as 
they became larger, whereas the patterns in trees were more variable. 

Comparison of observed and ED2 allometry 
Key biomass-size allometry assumptions in ED2 are generally consistent with the observed values (Fig. 6a–d). In 
ED2, the evergreen PFT is featured with higher wood density and has 50–100% higher biomass than the 
deciduous PFT at a given size. Such difference is loosely supported by the observations in leaf biomass allometry. 
However, with limited data points in evergreen plants and large variations within each PFT, it is hard to evaluate 
the significance of the difference. The height and DBH relationship in ED2 clearly captured the difference 
between juvenile and mature plants in the observations but underestimates the stem height in juveniles for 
deciduous PFT (Fig. 6e). The largest mismatch between ED2 and the observation is the rooting depth allometry 
(Fig. 6f). Although the ED2 allometry allows evergreen PFT to have deeper roots than deciduous PFT, the rooting 
depth for both PFTs are underestimated compared with the observations. However, the absolute difference in 
rooting depth for mature individuals (> 10 cm DBH) is similar in the model and the observations (c. 100 cm). 

 
Figure 6. Key allometric relationships from this study (dots) compared with the default tropical dry forest 
relationships in Ecosystem Demography model 2 (ED2; lines) based on Xu et al. (2016). Parameters shown are (a) 
leaf biomass, (b) aboveground stem biomass, (c) belowground coarse root biomass, (d) total biomass, (e) stem 
Height and (f) maximum coarse root depth (depth above which 99% of fine root biomass is found in ED2) as a 
function of diameter at breast height (DBH). The allometry is plotted only for individuals taller than 1.3 m for 
both the observations and the ED2 relationships. 
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Subsequent numerical simulations herein demonstrated that evergreen tree species only maintained a high 
percentage of dry season canopy cover when the simulations were conducted with evergreen species having 
double the rooting depth of deciduous ones (‘Default’); and when the species were assigned the maximum 
rooting depths obtained from this study (‘Observation’), in which cases evergreen trees had deeper roots than 
the deciduous ones (Figs 7, S3). When the rooting depths of evergreen and deciduous species were switched 
(‘Switch’) in the simulation, then deciduous species maintained a higher percentage of cover than the evergreen 
species (Fig. 7). When all of the species were assigned the same rooting depth (‘Same’), they all maintained a 
low percentage of leaf cover during the simulated dry season (Fig. 7). In general, this result holds despite the 
fact that the evergreen plant functional type was parameterized to have the most drought-resistant 
aboveground traits (e.g. water potential at which 50% of hydraulic conductivity has been lost and turgor loss 
point) of any plant functional type. 

 
Figure 7. Ecosystem Demography model 2 (ED2) simulated dry season deciduousness (from 2009 to 2014) for 
coexisting deciduous (PFT D) and evergreen (PFT E) plant functional types in a Costa Rican tropical dry forest 
under different parameterization for rooting depth allometry based on Xu et al. (2016). The dry season 
deciduousness is defined as the average ratio of active leaf area over maximum leaf area in April, the peak of dry 
season. Higher leaf cover means more evergreenness. In the ‘Default’ simulation, maximum rooting depth of 
PFT E was about twice the rooting depth of the PFT D. In the ‘Observation’ simulation, rooting depth parameters 
were assigned to the model's PFT E and PFT D based on the present study's measurements. In the ‘Switch’ 
simulation, the measured PFT D rooting depth was assigned to the model's PFT E, and vice versa. In the ‘Same’ 
simulation, PFT E and PFT D were both assigned the same rooting depth parameter, calculated as the mean 
value of the observation PFT E and PFT D parameters. 
 

Discussion 
This is one of the first studies to use whole-plant harvest of juveniles and mature individuals to address 
allometric scaling laws in deciduous trees, evergreen trees and lianas, and to explore maximum rooting depth of 
these groups. Using the simple technology of shovels and chainsaws, four key discoveries were made. First, 
contrary to expectations, mature lianas did not allocate less biomass to stems than trees, but instead followed 
the same allometric scaling laws. Second, juveniles and mature individuals did not follow the same allocation 
patterns. The third discovery, also opposite to the general belief, was that lianas have shallower roots than 
trees. Fourth, evergreen trees had maximum rooting depth double that of deciduous trees, supporting the 
assumptions in previous modeling analyses. 

Allocation patterns of mature individuals of lianas and trees 
It was found that in general mature lianas followed the allocation patterns predicted by the allometric biomass 
partitioning theory (APT). Moreover, by excavating whole coarse root systems and harvesting all aboveground 
biomass of mature lianas and trees, it was found that lianas allocated more biomass to stems than expected. It 
has long been thought that lianas do not invest as much biomass in stems relative to trees, because lianas use 
the stem architecture of trees to reach the forest canopy (Givnish & Vermeij, 1976; Putz, 1983; 
Castellanos et al., 1989; van der Heijden & Phillips, 2009; van der Heijden et al., 2013). The results herein show, 
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at least for the individuals harvested, that lianas followed the same allocation patterns as mature co-occurring 
evergreen and deciduous trees. Stem length helps to explain this finding. Lianas and trees have similar biomass 
allocation patterns for stems, because even though lianas have smaller stem DBH than trees, they very long 
stems and many small branches in the canopy of the host trees. Cumulatively, when expressed as a proportion 
of total biomass, the ‘longer, skinnier’ liana stems compare favorably with the ‘shorter, fatter’ tree stems. This 
pattern also was observed by Niklas (1994) for aboveground biomass (leaves and stems) of temperate vines and 
gymnosperms; however, that study did not harvest roots. 

The only difference found herein among the growth forms was that the deciduous trees had larger coarse root 
mass fractions than the lianas. A potential explanation for this difference, is that trees require coarse roots, not 
only for water and nutrient transport, but also to prevent them from toppling over –that is, for mechanical 
support (Coutts et al., 1999; Ennos, 2000; Soethe et al., 2006). Because lianas do not support themselves, they 
only need to prevent themselves from being uprooted vertically (Ennos, 2000), which potentially requires less 
investment in coarse roots. Although evergreen trees had similar coarse root mass fractions as the deciduous 
trees and lianas, in general the evergreen trees harvested herein were smaller than the deciduous trees, which 
could explain why they needed fewer coarse roots for support. These findings suggest that when it comes to 
root mass fractions, mature individuals also may follow patterns associated with the optimal partitioning theory 
(OPT); in this, trees, by contrast to lianas, need to ‘optimize’ over a greater suite of pressures – nutrient and 
water acquisition plus support – whereas lianas only have to optimize for nutrient and water acquisition. It is 
acknowledged that forest age may affect allometry (Waring & Powers, 2017); however, as secondary forest now 
comprises the majority of all tropical forest, especially dry forest, results are likely to be broadly applicable. 

Juvenile vs adult biomass allocation patterns 
Juveniles and adults did not follow the same allocation patterns. The adult individuals in the present study all 
followed the same global allocation rules proposed by Enquist & Niklas (2002) in their biomass APT. However, 
the juveniles had biomass allocation patterns that complied better with the OPT. Perhaps although juvenile 
individuals are smaller, they optimize resource acquisition to survive and grow; however, as individuals become 
larger, they become constrained by maximum resource harvesting capacity and transport forcing them to follow 
the same allocation rules (Enquist & Niklas, 2002; Niklas & Enquist, 2002). Consistent with the findings of 
Cai et al. (2008) in Bauhinia liana and tree seedlings, it was found herein that juvenile lianas allocated more 
biomass to leaves and stems and less to roots than trees. In a shade house experiment conducted in the same 
region and with some of the same species, Smith-Martin et al. (2017) found that under lower light intensities 
seedlings allocated more biomass to leaves, whereas under higher light intensities they allocated more to roots. 
Thus, juveniles may need to be more flexible in their allocation patterns to be able to respond to the 
environment and dynamically allocate more biomass depending on whether above- vs belowground resource 
availability is scarcest. Irrespective of the causes of different allocation patterns between juveniles and adults, 
these results imply that allocation in mature plants cannot be inferred by studying juvenile plants. Nevertheless, 
such ontogenetic differences in allometry are not represented in individual-based models such as ED2 (Fig. 6), 
which can lead to biases in biomass accumulation and seedling survivals in model simulations. 

Rooting depths of adult lianas and trees 
In the seasonally dry tropical forest studied herein, lianas had the shallowest maximum rooting depths, followed 
by deciduous trees, and evergreen trees tended to have the deepest maximum rooting depths. This overall 
pattern was consistent, even after taking into account total biomass, DBH, allocation to leaves, stems and roots, 
and total canopy area. Whether these patterns hold in other types of tropical forests is not known. The present 
findings that lianas do not have deeper roots than co-occurring trees are consistent with harvests of 4-yr-old 
lianas and trees in a common garden in Panama (Smith-Martin et al., 2019). Furthermore, a recent study using 
indirect methods to assess this question for wet forest in French Guiana showed that lianas do not use deeper 



sources of water than trees, even during the dry season (De Deurwaerder et al., 2018). As all of the species of 
lianas studied herein are deciduous, it would be logical to expect that deciduous trees and lianas would have 
had similar rooting depth. One potential explanation for the shallower rooting depth found in the lianas is that 
lianas only need their roots for resource uptake, whereas trees also need their roots for support, potentially 
explaining why deciduous trees had deeper roots despite having the same leaf phenology. 

The findings herein are contrary to the hypothesis that lianas are deep-rooted (Holbrook & Putz, 1996; 
Andrade et al., 2005; Schnitzer, 2005; Schnitzer et al., 2005; Toledo-Aceves & Swaine, 2008; Schnitzer & 
Bongers, 2011; Chen et al., 2015). The limitations of the present study are evident: it is difficult to harvest entire 
rooting systems of mature plants, the study of coarse roots does not allow us to distinguish roots designed for 
anchoring and support vs those designed for water uptake, and there was a limited sample size from only one 
location where lianas were deciduous and thus there may not have been the need for exceptionally deep roots. 
Nevertheless, the data herein do suggest no evidence that lianas have deeper rooting depths than co-occurring 
trees in this dry forest, consistent with findings from another common garden study (Smith-Martin et al., 2019), 
and thus the assumption of deeper liana rooting depths is not supported. 

The present findings leave many important questions unresolved. Lianas are increasing in many forests 
(Schnitzer & Bongers, 2011) and liana competition with trees has been shown to reduce net forest carbon 
storage (van der Heijden et al., 2015). This increase in lianas had been attributed to their better performance 
than trees during seasonal drought; part of the explanation for this pattern is the assumption that lianas have 
deeper roots than co-occurring tree, and thus can access deeper sources of water. However, based on the 
present study in Costa Rican dry forest and a previous study in moist forest in Panama (Smith-
Martin et al., 2019), direct evidence from harvests is accumulating and is overturning the common assumption 
that lianas are deeper-rooted than trees. How lianas maintain similar or better water status during seasonal 
drought (Smith-Martin et al., 2019) and are able to grow more during the dry season whereas co-occurring trees 
grow more during the wet season in semi-moist forest still remains unknown (Schnitzer & van der 
Heijden, 2019). Smith-Martin et al. (2019) found that lianas appeared to explore more soil volume per stem 
diameter than did co-occurring trees, yet the present study did not find that lianas had greater root extensions 
per stem diameter, shoot biomass, or total biomass. Moreover, the measurements herein did not quantify fine 
root biomass (typically defined as roots < 2 mm diameter), which may play a role in differentiating trees and 
lianas, if lianas have more fine root mass. Clearly, there is more to be learnt about the comparative morphology 
and physiology of trees and lianas, and their implications for forest carbon cycling and storage. 

Coordination between rooting depth and canopy phenology 
It is not surprising that the largest mismatch between the observed and ED2 default allometry was found in the 
rooting depth, which was the least-constrained relationship in Xu et al. (2016). However, the belowground 
excavation herein validates the assumption of the coordination between rooting depth and canopy phenology. 
Evergreen trees had the deepest coarse roots of all the individuals harvested. One explanation for this pattern is 
that plants coordinate their belowground allocation with their aboveground water demand. Although there is 
limited previous information on dry forest rooting depth, there seems to be a tendency for dry forest species to 
deploy a greater proportion of their roots deeper in the soil than wet forest species (Holbrook et al., 1995). 
Thus, to sustain leaves during the extended dry seasons, evergreen species are most likely deeper-rooted to 
access deeper sources of water during times when this resource is limited. Furthermore, the degree of 
deciduousness simulated by the ecosystem demography model indicates that evergreen plant functional types 
can retain sufficiently high water potential in the dry season and remain evergreen only by developing deeper 
rooting profiles relative to other plant functional types. Thus, the simulations suggest that the differences 
between evergreen and deciduous trees might result from an ecological coordination between above- and 
belowground processes. Moreover, the lianas measured in Costa Rica are deciduous in the dry season, which is 



again consistent with their observed shallow rooting depths. The present results provide evidence for such 
ecological coordination as well as valuable datasets for terrestrial biosphere models that consider vegetation 
demography (Fisher et al., 2018). 

Conclusion 
It is demonstrated that mature lianas follow the same biomass allocation patterns as co-occurring trees, and 
invest proportionally similar biomass to stems. The findings herein indicate that juvenile lianas, deciduous trees 
and evergreen trees differ in allocation patterns, potentially consistent with the optimal partitioning theory, 
whereas mature individuals show allocation patterns that follow allometric biomass partitioning theory. Thus, as 
proposed previously (Bazzaz et al., 1987; Cavender-Bares & Bazzaz, 2000), it is not possible to infer the allometry 
and allocation patterns of mature plants from studies of seedlings and/or saplings. Last, the results herein also 
show that lianas, which are deciduous at this site, had the shallowest rooting depths and evergreen tropical 
trees have the deepest roots, which are most likely needed to sustain their leaves during the extended periods 
of seasonal drought, as shown with the model simulation. There is an acute need to better understand how 
increasing liana abundances are impacting carbon storage and cycling in tropical forests (van der 
Heijden et al., 2015). Studies such as the present one that clarify the structure and implications of belowground 
biomass patterns in tropical forests are needed to inform both conceptual and simulation models of tropical 
forest dynamics and quantify the implications of global environmental change. 
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