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Abstract 
1. Lianas rely on trees for support and access to high-light positions in the forest canopy, but the 

implications for how lianas explore the canopy compared to trees remain understudied. We present an 
in situ forest canopy study to test the hypotheses that: (1) lianas favour leaf display over stem 
investment compared to trees and (2) lianas have greater potential to colonize non-shaded, high-light 
areas effectively than trees. 

2. We compared branches of 16 liana species with those of 16 sympatric tree species in the canopy of two 
lowland tropical forests with contrasting rainfall regimes in Panama using 40–50 m tall canopy cranes. 
One forest was relatively dry and seasonal in rainfall and associated solar radiation. The other forest was 
relatively wet and had a weaker seasonality. 

3. We observed that lianas were more efficient in leaf display over stem investment than trees, particularly 
in the forest with lower precipitation and stronger seasonality. Specifically, lianas had a lower LMA (leaf 
mass per unit leaf area), stronger apical dominance, higher stem slenderness and fewer leaf layers than 
trees. In the forest with higher precipitation and weaker seasonality, lianas also had stronger apical 
control and fewer leaf layers than trees, but both lianas and trees were relatively similar in LMA and 
stem slenderness. 

4. Our study shows that lianas more effectively explore the canopy than trees under drier conditions, but 
much less so under wetter conditions. We argue that lianas display a functional strategy that allows 
them to better intercept light than the tree species in forests with low precipitation and strong 
seasonality, while they are constrained to display such strategy at high precipitation – light-limited – 
sites. 

1 INTRODUCTION 
Lianas (woody vines) are an important component of tropical forests. They contribute 5%–10% of above-ground 
biomass (Schnitzer et al., 2011) but up to 40% of leaf productivity (Hegarty & Caballé, 1991; Phillips et al., 2002). 
Lianas use trees for support and access to the canopy. They place their leaves over those of their host trees and 
compete intensely for light and soil resources (Rodríguez-Ronderos et al., 2016; Schnitzer et al., 2005), with 
adverse effects on tree dynamics and forest structure. Lianas reduce tree regeneration (Schnitzer & 
Carson, 2010), growth (Pérez-Salicrup et al., 2001; van der Heijden et al., 2015), reproduction (García León 
et al., 2018; Wright et al., 2015) and survival (Ingwell et al., 2010; Wright et al., 2015). 

Lianas differ considerably from trees in terms of their physiology, anatomy and chemical attributes (Asner & 
Martin, 2012; Isnard & Feild, 2015; Zhu & Cao, 2009, 2010), but stem morphology is arguably the most distinct 
difference between lianas and trees. Trees build relatively large trunks and branch systems to support and 
expose their leaves. By contrast, lianas use the architecture of their host trees and are hypothesized to favour 
stem elongation rather than constructing a large trunk themselves (Mooney & Gartner, 1991; Paul & 
Yavitt, 2011; Putz, 1984; Teramura et al., 1991). The host-dependent strategy of lianas may favour the 
development of relatively large leaf photosynthetic surface area and biomass in the forest canopy (Mooney & 
Gartner, 1991; Putz, 1984; Wyka et al., 2013). These distinct morphological investment strategies in stems and 
leaves may allow lianas to produce slender long branches with relatively larger leaf areas than trees, favouring 
carbon gain with greater potential for plant growth, particularly in high-light environments (Mooney & 
Gartner, 1991; Putz, 1983). By contrast, these growth advantages may be less likely to be pronounced in low-
light environments (Avalos & Mulkey, 1999). Nonetheless, few systematic, in situ studies have quantified and 
compared biomass allocation, branch development and leaf display between lianas and trees in tropical forest 
canopies. 



The morphological investment strategies in stems and leaves of lianas relative to trees are highly variable. Lianas 
and trees may be more similar to each other in morphology at the juvenile stage since trees and many lianas 
have a vertical self-supporting structure and comparable leaf mass ratios (Cornelissen et al., 1996; Selaya 
et al., 2007). In more mature individuals, morphological differences become pronounced, as lianas further 
differentiate from trees in flexible stem properties after they begin to climb (Menard et al., 2009; Rowe & 
Speck, 2005). Some studies report that lianas develop more abundant leaf mass at comparable basal stem area 
(Gerwing & Farias, 2000; Putz, 1983) and stem mass (Ichihashi & Tateno, 2015; Wyka et al., 2013) than do trees. 
By contrast, Niklas (1994) reported for a set of 12 lianas, gymnosperm and pteridophyte species, that lianas do 
not allocate less biomass to stems than do self-supporting plants at equivalent stem diameters. Kaneko and 
Homma (2006) further observed comparable leaf mass ratios between a temperate Hydrangea liana species and 
congeneric shrubs, suggesting that most liana species reach similar above-ground biomass levels as those of 
trees at lower diameters, but tend to have relatively larger leaf area per overall plant mass and per unit cross-
sectional area than trees (Cornelissen et al., 1996; Isnard & Feild, 2015; Wyka et al., 2013). These results indicate 
that the investments in leaf mass in lianas and trees at comparable plant sizes are highly variable. However, the 
more consistently observed larger leaf areas in lianas than in trees at comparable plant sizes suggest that the 
ability of lianas to actively display relatively larger leaf area (or mass) than trees may be associated with the 
lower leaf mass per unit leaf area (LMA, i.e. the carbon construction cost for producing light intercepting unit 
area [Poorter et al., 2009]) (Asner & Martin, 2012; Cai et al., 2009; Kazda & Salzer, 2000; Santiago & 
Wright, 2007; Zhu & Cao, 2010) and the lower wood density of the liana form (WD; Wyka et al., 2013), in 
addition to the construction of slenderer stems. 

Both LMA and WD are part of a group of interconnected traits that are associated with trade-offs in growth-
survival strategies along a continuum of low to high levels of resource availability (Chave et al., 2009; Díaz 
et al., 2016; Sterck et al., 2011; Wright et al., 2004). Species with low WD and low LMA are typically found at 
high resource sites and tend to have high hydraulic conductivities, photosynthetic traits and leaf areas per unit 
shot mass (Chave et al., 2009; Santiago et al., 2004; Wright et al., 2004, 2006). Such species have faster growth 
rates, quicker return of leaf construction investments (i.e. Leaf Life Span - LLS) and lower survival rates than 
species with high WD and high LMA, typically found at low resource sites (Chave et al., 2009; Díaz et al., 2016; 
Poorter et al., 2009; Wright et al., 2004). Lianas show higher growth rates than trees under favourable resource 
conditions (Mooney & Gartner, 1991; Paul & Yavitt, 2011; Schnitzer, 2005; Schnitzer & van der Heijden, 2019; 
Teramura et al., 1991), which is consistent with observed lower WD, lower LMA, higher hydraulic conductivities 
and higher leaf nitrogen content and photosynthetic capacity on a mass basis of the liana form (see Asner & 
Martin, 2012; Wyka et al., 2013; Zhu & Cao, 2009). Nevertheless, studies contrasting leaf-level attributes 
between lianas and trees suggest a comparable nitrogen content and photosynthetic carbon fixation on an area 
basis (Cai et al., 2009; Kazda & Salzer, 2000; Santiago & Wright, 2007; Wyka et al., 2013; Zhu & Cao, 2010). 
Furthermore, observed differences in leaf-level light capture and growth chemical traits between lianas and 
trees, with lianas having a greater allocation to growth compounds and a higher capacity to benefit from high 
irradiance than trees, tend to disappear at high precipitation – light-limited – sites (>2,500 mm/year; Asner & 
Martin, 2012). Consequently, the higher relative growth rates in lianas than in trees (Mooney & Gartner, 1991; 
Paul & Yavitt, 2011; Schnitzer, 2005; Schnitzer & van der Heijden, 2019; Teramura et al., 1991) cannot be 
attributed solely to higher physiological or chemical attributes responsible for photosynthesis and growth. 
Instead, higher growth rates in lianas than in trees may be associated, particularly, with a favoured allocation 
towards the development of relatively larger leaf areas and cheaper leaves, a more rapid renewal of leaves via 
faster turnover rates, and more efficient structural elements that facilitate better exploration and use of space 
in lianas than in trees. 

Here we quantify and compare biomass allocation, branch development and leaf display between lianas and 
trees in the upper canopy of two tropical forests with contrasting rainfall regimes in Panama. One forest is 



characterized by relatively low precipitation and strong seasonality, and the other forest is characterized by 
higher precipitation and weaker seasonality (Condit et al., 2000). The 40–50 m tall canopy cranes in these forests 
allowed us to assess the benefits and costs associated with the host-dependent life history strategy of lianas 
compared to trees, and the consequences for the liana strategy of stem elongation and leaf deployment. We, 
therefore, evaluated exposed sun-lit branches to collect precise, replicated measurements, which is difficult for 
fully grown trees or lianas dwelling in the forest canopy. Moreover, exposed canopy branches are important 
since they represent potential bottlenecks for the hydraulic integrity and carbon gain of entire individuals given 
their potential for a high-light interception but also highwater losses. We hypothesize that: 

1. Lianas effectively display more leaves for a given stem investment by carrying more leaf mass (or area) 
for a given stem mass (or area) and by producing leaves and stem at lower structural costs realized by 
their lower LMA, quicker leaf turnover (LLS) and lower WD than trees. 

2. Lianas produce longer branches for a given diameter and their branches are under stronger apical 
dominance than trees. These differences between lianas and trees may result in more rapid elongation 
of slenderer and less ramified branches in lianas compared to trees. Moreover, these responses allow 
lianas to display their leaves in a single layer on top of their tree hosts, whereas trees build and maintain 
crowns with multiple layers in the upper canopy. 

3. Given that lianas are supposed to benefit from high-light conditions, we expected that lianas particularly 
show those hypothesized responses (see points 1 and 2) in the drier forest, where they could benefit 
from additional sunlight. 

2 MATERIALS AND METHODS 
2.1 Study sites 
We conducted this study in the Republic of Panama. We made observations between November 2015 and May 
2017 from two canopy cranes operated by the Smithsonian Tropical Research Institute (STRI) and located in two 
lowland tropical forests at the opposite sides of the precipitation gradient extending across the Isthmus of 
Panama. Both cranes were equipped with a gondola connected to a rotating jib that allowed access to the forest 
canopy. One crane was located in Parque Natural Metropolitano (PNM, 8°59′41.55″N, 79°32′35.22″W, 30 m 
above sea level), a seasonally dry forest near the Pacific coast and Panama City. This crane gave access to 
0.81 ha of forest. Annual rainfall averaged 1,864 mm and 91.8% occurred in the wet season, from May to 
December (means from 1995 to 2017, data provided by the Physical Monitoring Program of STRI). In this forest, 
monthly precipitation was < 100mm each month in the dry season, from January to April (see Appendix S1). 
Mean annual temperature was 26.1°C. 

The second canopy crane was located in the wet evergreen forest Bosque Protector San Lorenzo, near the 
Caribbean coast of Panama (BPSL, 9°16′51.71″N, 128 79°58′28.27″W, 130 m above sea level). This crane gave 
access to 0.91 ha of forest. Annual rainfall averaged 3,292 mm and 89.8% occurred in the wet season, from May 
to December. The dry season in this forest was less intense than the dry season in PNM, with monthly 
precipitation of <100 mm each month from January to March, and 145.4 mm in April (means from 1997 to 
2017). Mean annual temperature was 25.4°C. The PNM will hereafter be referred to as the dry forest and the 
BPSL as the wet forest (Holdridge, 1967; Murphy & Lugo, 1986). 

2.2 Species selection and branch census protocol 
We randomly selected eight liana and eight tree species at each crane site (see Appendix S2) from those species 
with two or more canopy individuals present. Both evergreen and deciduous species were included in the 
design. There was no species overlap between sites, which is consistent with the strong effects of seasonal 



drought and soil phosphorus on regional plant species distributions (Condit et al., 2013). The dry forest has a 
higher proportion of deciduous species, higher litter production (Santiago & Mulkey, 2005) and higher soil 
extractable phosphorus (P) tightly linked with better litter quality than the wet forest (Santiago et al., 2005). The 
32 species belonged to 22 families. We selected two individuals of each species and four fully exposed branches 
at the top of the canopy of each in November 2015. The host trees for the studied liana individuals were 
different from the studied tree individuals. The initial branches ranged from 30 to 70 cm in length and already 
had leaves present (see Appendix S3). We quantified the number of leaves and shoots present on each branch 
approximately every 30 days in the dry season and every 60 days in the wet season for 17 months. 

2.3 Organ-level attributes 
We estimated species-specific LMA as the ratio between leaf mass and leaf area (g/cm2), without the petiole 
(see Appendix S4). We estimated species-specific leaf longevity (life span) from presence/absence records of 
fully expanded leaves collected from each census. The median age in days of leaf death (leaf longevity, LLS) was 
analysed using the Kaplan–Meier method, which accounted for right-censored leaves that were removed from 
the census due to loss or death of the branch (Efron, 1988). We determined species-specific WD (g/cm3) using 
five branch segments and the water displacement method (Cornelissen et al., 2003; Ilic et al., 2000). We 
collected each branch segment, of five centimetres length, at one metre from the distal end of five selected 
branches (with leaves) per species (see Appendix S4). 

2.4 Branch and whole-plant measurements 
We measured the diameter and length on every census branch and every axillary shoot within the study branch 
with a digital calliper and a measuring tape respectively. Branch measurements were done at the same time as 
the leaf census measurements. We estimated the number of leaf layers within the crown of each selected liana 
and tree individual by lowering a plummet through the crown and counting the number of contacts between the 
plummet and leaves (MacArthur & Horn, 1969; see Appendix S5). 

2.5 Associations among traits and trait differences between life-forms 
To test the hypothesis (one) that lianas produce leaves and stem at lower structural costs realized by their lower 
LMA, quicker leaf turnover (LLS) and lower WD than trees, we applied for each forest a one-way ANOVA to 
contrast LMA, LLS and WD between lianas and trees. LMA, LLS and WD were log (base e) transformed before the 
analyses. We also quantified the strength of the relationship between traits, for each forest, using standard 
Pearson correlation analyses. p-values for the bivariate associations were adjusted by controlling for the false 
discovery rate (Benjamini & Hochberg, 1995). 

We calculated measures of phylogenetical signal on the traits themselves and the relationship between traits. 
We generated a phylogeny tree for each forest using the program Phylomatic (Webb & Donoghue, 2005). This 
program generated the phylogenetic trees after matching the genus and family names of our study species to 
those contained in the species-level phylogeny constructed by Zanne et al. (2014). We tested whether trait 
values were independent of phylogenetic signal via Blomberg's K (Blomberg et al., 2003) and 
Pagel's λ (Pagel, 1999). We further tested if observed bivariate trait associations were a result of evolutionary 
divergences using phylogenetically independent contrasts (PIC; Felsenstein, 1985; see Appendix S6). 

2.6 Allometric relations 
For each forest, we related leaf area (LA) to branch cross-sectional area (BA) and leaf biomass (LB) to stem 
biomass (SB) to test hypothesis one, and branch length (BL) to branch diameter (BD) to test hypothesis two (see 
Appendix S7). We tested whether these associations varied between life-forms (lianas vs. trees) by using linear 
mixed-effects models (LMMs) with a normal error distribution (see Appendix S8). For each analysis, we 
evaluated alternative models that included the main effects of BA, SB, BD, and their interaction with life-form 



(liana = 0, tree = 1). For all models, we included random intercepts for branches nested within individuals 
derived from multiple species to control for the nested structure of the design and dependence among repeated 
measurements of each branch. We also included random slopes to allow for different associations in LA ~ BA, 
LB ~ SB and BL ~ BD across species. Over the entire study period, branches were under the effect of one wet 
season and two dry seasons. We thus added the variable ‘season’ (dry vs. wet season) as a random intercept to 
control for the effect of seasonality. To control for deciduousness, we added the variable ‘deciduousness’ 
(deciduous vs. non-deciduous) as an additional random intercept. Individual plants, not species, were marked as 
deciduous if the mean leaf area loss, calculated from the study branches per individual, was more than 80% of 
their maximum attained leaf area (see Cornelissen et al., 2003) during the whole study period. For the 
relationships LA ~ BA and LB ~ SB, we excluded leafless branches. 

2.7 Apical dominance and the number of leaf layers in the crown 
For hypothesis two, we related the number of axillary shoots (Nshoots) per branch per observation and the 
number of leaf layers (NLL) of each individual to life-form using generalized linear mixed-effects models 
(GLMMs). For the association Nshoots ~ life-form, we added the log (base e) of branch length (BL, refer to the 
section allometric relations) as an offset to control for differences in branch size per branch per observation. For 
this association, we included random intercepts as described in the section allometric relations. 

For the association NLL ~ life-form, we added the log (base e) of individual height (H) as an offset to control for 
differences in H. H was defined as the (perpendicular) distance between the soil surface and the uppermost leaf 
of the study individual. For this association, we included random intercepts for individuals nested within species 
to control for the nested structure of the design and multiple observations on each individual. 

2.8 Model selection, evaluation and inference 
We evaluated LMMs with the lme4 package version 1.1-23 (Bates et al., 2015) and GLMMs with 
the glmmTMB package version 1.0.2.9 (Brooks et al., 2017) in R version 3.6.3 (R Core Team, 2020). Model 
validation was assessed graphically as detailed in Zuur and Ieno (2016) and model selection was based on the 
Akaike information criterion (AIC; Burnham & Anderson, 2002). For GLMMs, we used a Poisson distribution and 
checked for overdispersion and zero inflation. We used a negative binomial distribution if overdispersion was 
present. If zero inflation was present, we used a ZIP (zero-inflated Poisson) or ZINB (zero-inflated Negative 
binomial) model when appropriate. We considered models with ΔAIC < 2 to have a substantial level of empirical 
support from the data (Burnham & Anderson, 2002). When two models had similar AIC values, we selected the 
simpler model. We estimated the precision of each fixed and random effect in all models by computing a 95% 
confidence interval of the parameter estimates using 1,000 nonparametric bootstrap simulations and the 
percentile interval method (Chernick, 2007). Parameter estimates with confidence limits that contained zero 
were considered as negligible at the community level. 

3 RESULTS 
3.1 Organ-level traits 
LMA was lower in lianas than in trees in the dry forest (F1,14 = 4.79, p = 0.046) but not in the wet forest 
(F1,14 = 0.67, p = 0.43; Figure 1a). WD was similar between lianas and trees in both forests (dry 
forest: F1,14 = 4.47, p = 0.053; wet forest: F1,14 = 0.83, p = 0.38; Figure 1b). For leaf life span (LLS), lianas were not 
different from trees in the dry forest (F1,14 = 1.68, p = 0.22). However, the species Serjania mexicana was an 
outlier (Dixon's Q test, Q = 0.7, p = 0.02) and after excluding it, the remaining seven liana species in the dry 
forest had a shorter LLS than trees (F1,13 = 4.8, p = 0.047, Figure 1c). In the wet forest, we did not observe 
differences in LLS between lianas and trees (F1,14 = 1.28, p = 0.28). We found a phylogenetic signal only for LLS in 
the dry forest (see Appendix S9). 



 
Figure 1 Boxplots comparing (a) leaf mass per area (LMA), (b) wood density (WD) and (c) leaf longevity (LLS) 
between lianas (orange) and trees (green) in a dry (PNM, the left side of the panel) and a wet (BPSL, the right 
side of the panel) forest in Panama. Asterisks in the left side of panels a and c indicate significant differences at 
the 0.05 level between lianas and trees calculated using a one-way ANOVA on the log (base e) transformed trait 
values. For the dry forest in panel c, we detected an outlier (Dixon's Q test, Q = 0.7, p = 0.02) and after excluding 
it, the remaining liana species had shorter LLS than trees. The dimensions are in their natural scale. Note the 
different vertical axes 
 

We did not observe an association between LMA with WD and LLS, neither did we observe it for WD with LLS for 
both the dry and wet forest (see Appendix S10). For PICs, we observed that 30% of the variation in LLS was 
associated with the variation in LMA for the wet forest (r2 = 0.3, r[13] = 0.54, p.adjusted = 0.11; see 
Appendix S10). 

3.2 Leaf display over stem support 
For the dry forest, leaf area supported by branches was consistently higher for lianas than for trees over the 
entire range of observed branch cross-sectional areas (Table 1, Models A and C; Figure 2a). Leaf mass was lower 
for lianas than for trees in small branch sizes but this difference reversed for bigger branches (Table 1, Model C; 
Figure 2c). For the wet forest, leaf area supported by branches was larger for lianas than for trees at smaller 
branch cross-sectional areas, but this difference reversed at larger branch cross-sectional areas (Table 1, Model 
B; Figure 2b). For the association between leaf mass and stem mass, the leaf mass supported by branches was 
similar for both lianas and trees over the entire range of stem mass in the wet forest (Table 1, Model D; 
Figure 2d). 

Table 1. Summary of the fixed effects for the (generalized) linear mixed-effects models that best-fitted leaf area 
as a function of branch cross-sectional area (Models A and B), leaf mass as a function of stem mass (Models C 
and D), branch length as a function of branch diameter (Models E and F), the number of axillary shoots (Models 

https://besjournals.onlinelibrary.wiley.com/cms/asset/5790cdb5-31de-4f2f-b38a-922a74fd5f33/fec13717-fig-0001-m.jpg


G and H) and the number of leaf layers (Models I and J) for lianas and trees in a dry (PNM, the left columns) and 
a wet (BPSL, the right columns) forest in Panama 

Models Dry forest 
(PNM) 

   Wet forest 
(BPSL) 

   
 

Est. Stat. lci uci Est. Stat. lci uci 
Leaf area ~ branch cross-
sectional area 

  
Model 
A 

 
  

Model 
B 

 

Intercept 8.75 40.85 8.34 9.20 7.33 38.07 6.97 7.70 
LifeformTree −0.67 −2.77 −1.18 −0.20 0.58 2.20 0.05 1.08 
B. cross-sectional area 0.95 11.59 0.80 1.12 0.42 3.63 0.19 0.64 
LifeformTree: B. cross-
sectional area 

— — — — 0.72 4.52 0.41 1.02 

Leaf mass ~ stem mass 
  

Model 
C 

 
  

Model 
D 

 

Intercept 1.04 6.64 0.73 1.35 1.37 15.99 1.19 1.55 
LifeformTree 0.53 2.58 0.14 0.96 — — — — 
Stem mass 0.74 16.40 0.65 0.84 0.56 14.11 0.47 0.63 
LifeformTree: Stem mass −0.17 −2.80 −0.29 −0.05 — — — — 
Branch length ~ branch 
diameter 

  
Model 
E 

 
  

Model 
F 

 

Intercept 6.03 19.49 5.44 6.64 4.86 15.60 4.28 5.48 
LifeformTree −1.40 −3.47 −2.25 −0.53 0.09 0.22 −0.80 0.96 
Diameter 2.40 13.07 2.03 2.73 1.48 6.85 1.07 1.93 
LifeformTree: Diameter — — — — 0.79 2.63 0.17 1.35 
Number of axillary shoots 

  
Model 
G 

 
  

Model 
H 

 

Intercept −4.52 −19.46 −4.74 −4.50 −4.17 −13.60 −4.31 −4.13 
LifeformTree 0.63 2.14 0.57 0.77 0.95 2.61 0.89 1.06 
Number of leaf layers 

  
Model 
I 

 
  

Model 
J 

 

Intercept −2.47 −15.78 −2.60 −2.38 −2.26 −17.27 −2.40 −2.15 
LifeformTree 1.77 8.61 1.62 1.93 1.30 8.02 1.14 1.47 

Notes: Est. indicates the estimated community-level mean of each parameter. Stat. indicates the test statistic for 
the continuous (t-statistic, Model A–F) and discrete (z-statistic, model G–J) models. The reference level for the 
variable life-form is ‘liana’ (liana = 0, tree = 1). ‘lci’ indicates the lower 2.5% confidence interval and ‘uci’ the 
upper 97.5% confidence interval based on 1,000 parametric bootstraps and the percentile interval method. For 
the models that best fitted the number of axillary shoots (Models G and H) and the number of leaf layers 
(Models I and J), we added the log (base e) of branch length (BL) and the log (base e) of individual height (H) as 
offsets respectively. The offsets for the discrete models (Model G–J) were defined as structural predictors and 
their coefficients were not estimated by the models but were assumed to be one. For the continuous models 
(Model A–F), all variables were log (base e) transformed before the analyses. Random effects are in 
Appendix S11. 



 
Figure 2 Mean predictions (solid lines) for lianas (orange) and trees (green) from the models (Table 1) that best-
fitted leaf area as a function of branch cross-sectional area (panels a and b), leaf mass as a function of stem mass 
(panels c and d) and branch length as a function of branch diameter (panels e and f) in a dry (PNM, the left 
panels) and a wet (BPSL, the right panels) forest in Panama. The dots in the background indicate the observed 
values. A 1:1 line (dashed line) was plotted in all panels for reference. The shading around the regression lines in 
each panel represents 95% confidence intervals of the mean predictions based on 1,000 parametric bootstraps 
and the percentile interval method. All variables were log (base e) transformed before the analyses. Note the 
different vertical and horizontal axes 
 

3.3 Potential for canopy colonization 
In the dry forest, branches were longer for lianas than for trees for any given branch diameter (Table 1, Model E; 
Figure 2e). For the wet forest, branches were longer for lianas than for trees only at small branch stem diameter 
(Figure 2f). Overall, lianas had a lower number of axillary shoots per branch than trees (Figure 3a,b; Table 1, 
Models G and H) and displayed their leaves in fewer layers (Figure 3c,d; Table 1, Models I and J) and within a 
shallower crown than trees in both forests (Figure 3e,f). 
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Figure 3 Panels a and b: violin plots comparing the number (n.) of axillary shoots between branches of lianas 
(orange) and trees (green) in a dry (PNM, panel a) and a wet (BPSL, panel b) forest in Panama. Panels c, d, e and 
f: violin plots comparing the number (n.) of leaf layers (panels c and d) and crown depth (panels e and f) 
between liana and tree individuals for the same dry (PNM, left panels) and wet (BPSL, right panels) forest. The 
horizontal lines inside the violins indicate (from low to high) the 0.25, 0.5 and 0.75 quantiles. Note the different 
vertical axes 
 

4 DISCUSSION 
We compared canopy branches for their efficiency in leaf display and structure between lianas and trees in two 
lowland tropical forests. We expected that lianas would be more efficient in leaf display (more leaf area or mass 
per branch stem area or mass, respectively) because they are reported to have slenderer stems and cheaper leaf 
and stem organs (lower LMA and lower WD) than trees. Also, we expected that slenderer stems and stronger 
apical control allow lianas to maintain leaves in single layers on top of tree branches, whereas trees have thicker 
stems, more ramified branches and support leaves in more layers. We discuss our results in the light of these 
generic predictions on differences between lianas and trees in tropical forest canopies. Since these differences 
varied between forests, we speculate on the possible role of resource availability (rainfall, seasonality, solar 
radiation and soil fertility) in modifying liana–tree differences between forests. 

4.1 Lianas had more efficient leaf display in the dry forest, but not in the wet forest 
We hypothesized that lianas display leaves more efficiently than trees, and accordingly predicted that they carry 
more leaf area (or mass) for a given branch stem cross-sectional area (or stem mass). Also, we expected that 
lianas partially achieve more efficient leaf display by lower structural investment costs in leaves and stem, i.e. 
realized by a lower LMA, quicker leaf turnover (LLS) and lower WD than trees. Our hypothesis was supported for 
lianas in the dry forest, but not for lianas in the wet forest, particularly for large branch sizes. 

For the dry forest, lianas increase proportionally more leaf mass with increasing branch size and have a larger 
leaf area per branch stem cross-sectional area than trees (Figure 2a,c). These results are consistent with our 
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expectations. Available literature contrasting leaf mass to stem or whole plant mass between lianas and trees, 
however, show contrasting results. Early in ontogeny, many lianas are still in self-supporting phase and are 
expected to be similar to trees in terms of biomass allocation to different organs (Caballé, 1993; Putz, 1984). 
Supporting this idea, Cornelissen et al. (1996) reported that young lianas (and scramblers) do not differ with 
trees and shrubs in their leaf mass ratios (total leaf dry weight/total plant dry weight). Similar results were 
observed by During et al. (1994), Selaya et al. (2007), Gartner (1991) and Wyka et al. (2013), but not by Cai 
et al. (2007), who reported for Bauhinia species that young lianas have higher leaf mass ratios than trees, 
consistent with our observation for large sized branches in the dry forest canopy. 

Later in ontogeny, when lianas are climbing, they have a more flexible stem and favour investments in leaves 
while trees require larger investments in their stem for maintaining structural support (Putz, 1983, 1984; Rowe 
& Speck, 2005). In a review of the literature, Wyka et al. (2013) reported higher investments to leaf mass at the 
same above-ground plant mass in mature lianas compared to mature trees. By contrast, other studies observed 
that mature lianas and trees did not differ in the biomass invested between leaves and stem (Kaneko & 
Homma, 2006; Niklas, 1994; Smith-Martin et al., 2020); they argued that a thinner but longer stem in lianas than 
in trees offsets any life-form difference in biomass allocation between leaves and stem (Niklas, 1994; Smith-
Martin et al., 2020). In our study, the canopy branches were arguably partially in the transition from self-
supporting to host-supported and may gradually develop more leaf mass for a given stem mass with increasing 
size (Figure 2c; Table 1, Model C). The observed difference in leaf versus stem biomass investment with trees 
can be explained by two possible reasons: lianas had a consistent longer branch length for a given branch 
thickness—offsetting any life-form difference [as suggested by Niklas (1994) and Smith-Martin et al. (2020)]—
and seven out of the eight liana species had shorter leaf life spans—reducing the leaf mass. 

WD did not differ between lianas and trees (Figure 1b). Similar results have been observed for adult lianas and 
trees in Costa Rica (Werden et al., 2017) and in central Panama (Smith-Martin et al., 2019) as well as for canopy 
branches of lianas and trees in China (Zhang et al., 2019), but contrast with our expectation and with other 
studies that have shown that lianas have lower WD than trees (Chen et al., 2016; Dias et al., 2019; Zhu & 
Cao, 2009). Nevertheless, for seedlings, WD also tended to be similar between lianas and long-lived pioneer 
trees (Selaya & Anten, 2008). Consequently, a plausible explanation for the similar WD observed for lianas and 
trees is that the canopy branches were, at least partially, still in a self-support phase, most likely to reach other 
potential hosts. Overall, leaf mass to stem mass differences in canopy branches are relatively inferior due to 
multiple counteracting underlying factors between lianas and trees. 

Our observation that lianas had a larger leaf area per branch stem cross-sectional area in the dry forest is in 
agreement with studies on young and mature individuals (Bullock, 1990; Cai et al., 2007; Cornelissen et al., 1996; 
Ewers et al., 1991; Putz, 1983; Selaya et al., 2007; Tyree, 2003; Zhu & Cao, 2009) as well as for canopy terminal 
twigs (Kazda et al., 2009). Larger leaf areas per biomass investment in lianas than in trees are also reflected in 
the forest structure. Relative to trees, the contribution of lianas to total above-ground biomass is small (5%–
10%; Schnitzer et al., 2011), but they account for as much as 40% of forest leaf area and leaf productivity 
(Hegarty & Caballé, 1991; Phillips et al., 2002; Schnitzer & Bongers, 2002). These differences between lianas and 
trees in the dry forest are consistent with a lower LMA commonly observed for lianas (Asner & Martin, 2012; 
Wyka et al., 2013), which was in our case also consistent with a higher leaf area per branch stem area in lianas 
compared to trees. 

Lower LMA in lianas than in trees favours the development of larger leaf areas per unit biomass. Nevertheless, 
these differences between lianas and trees may not be intrinsically associated with life-form, but with life 
history strategy relating to shade tolerance. For instance, Cai et al. (2007) reported that the shade-tolerant liana 
species used in their study had similar leaf area ratios (leaf area per above-ground mass) than trees and that 
both, the shade-tolerant liana species and trees, had lower leaf area ratios than the light-demanding liana 



species. Likewise, Selaya et al. (2007) reported that seedlings of lianas and long-lived pioneer trees had similar 
values for leaf area ratios but higher values than the short-lived pioneers. In both studies, individuals with higher 
leaf area ratios had higher specific leaf areas (SLA, cm2/g; the inverse of LMA), suggesting that differences in leaf 
areas per stem or whole plant investment are determined by LMA, or the costs of producing leaves, rather than 
life-form alone (Cai et al., 2007; Selaya et al., 2007), as also observed in this study. 

For the wet forest, liana branches displayed more leaf area than tree branches at small branch sizes, as we 
expected and also observed in other studies (Bullock, 1990; Cai et al., 2007; Cornelissen et al., 1996; Ewers 
et al., 1991; Kazda et al., 2009; Putz, 1983; Selaya et al., 2007; Tyree, 2003; Zhu & Cao, 2009), but a higher leaf 
area in liana branches than in tree branches was not maintained with increasing branch size (Figure 2b). 
Probably, larger leaf areas in small liana branches may benefit lianas with (early) fast growth rates and high 
carbon gains (Poorter & Remkes, 1990) required to rapidly reach adequate positions in the forest canopy. With 
increasing branch size, the high similarity in LMA and LLS between lianas and trees may obscure any differences 
in leaf area display and is also consistent with the lack of differences in leaf mass versus stem mass investment 
observed in branches of both lianas and trees. Our results indicate that similar LMA and LLS between lianas and 
trees in the wet forest may obscure differences in biomass allocation patterns at the branch level since leaf mass 
may consistently increase with longevity in the branches of both life-forms (Ichihashi & Tateno, 2015; Reich 
et al., 1991). There are few examples in the literature that also no dot show differences in LMA between lianas 
and trees (Cai & Bongers, 2007; Castellanos et al., 1989). 

4.2 Lianas had a more efficient branch architecture for canopy colonization 
We expected that lianas would produce longer branches per unit stem diameter and that branches of lianas are 
under stronger apical dominance than tree branches. These differences between lianas and trees may result in 
rapid stem elongation of slender branches, favouring a more horizontal spread of their crown and higher 
potential for canopy colonization when hosts are available and intervening distances are short. We indeed found 
evidence for a lower number of axillary shoots in liana branches than in tree branches suggesting that lianas are 
under stronger apical dominance than trees in both forest sites. By reducing lateral branches, the terminal 
branches with strong apical dominance may reduce the probability of self-shading and thus limit the existence of 
lower leaf layers in lianas than in trees. Less self-shading is consistent with our observations of the number of 
leaf layer within the crown: lianas supported leaves in a shallow single layer and can thus avoid steep light 
gradients and shading within their crowns. This result may refer to several individual crowns, since lianas often 
have multiple crowns at different canopy locations and, in some cases, even connected to different rooting 
points (Caballé, 1993; Cox et al., 2019; Penalosa, 1984). Trees, however, typically have leaves organized in a 
single multi-layered tree crown (Figure 3c,d), which is characterized by steep light gradients and by shading 
within lower crown parts (e.g. Horn, 1971; Sterck & Bongers, 2001; Sterck & Schieving, 2007). 

For the dry forest, we also found evidence for consistently longer and slenderer (Figure 2e) branches in lianas 
than in trees. Longer branches per unit stem diameter and stronger apical dominance may favour lianas over 
trees in light acquisition since it allows them to rapidly colonize the forest canopy. Consistently longer branches 
in lianas than in trees at all branch sizes also suggest that lianas in the dry forest may be under consistent 
pressure to colonize and monopolize light interception on the forest canopy. In contrast, liana branches in the 
wet forest were longer than those of trees at smaller branch diameters but this difference disappeared with 
larger branch diameters (Figure 2f), similar to the observed changes in supported leaf area with increasing 
branch size for the same set of liana and tree branches (Figure 2b). An early exploration of the forest canopy and 
early canopy colonization via longer and slender branches may provide lianas in the wet forest with an initial 
advantage, which coupled to the early development of larger leaf areas also observed for the same set of liana 
branches, could be translated into higher growth rates and carbon accumulation required to rapidly reach 
adequate positions in the forest canopy. Moreover, although liana branches in the wet forest were not longer 



than tree branches with increasing branch diameters, lianas also produced fewer leaf layers than trees, and they 
positioned those leaves at a greater height than trees (Figure 3d), which was in line with our prediction. 

4.3 Forest differences explained from resource availability 
What could be the reason for the inconsistent branch differences between lianas and trees in the wet versus dry 
forest? We speculate that forest differences in resource availability are the potential cause. The dry forest has 
lower precipitation and stronger seasonality in rainfall and associated solar radiation than the wet forest (Condit 
et al., 2000; see Appendix S1). The dry forest has a larger proportion of dry-season deciduous species with high 
foliar nutrient concentrations and faster soil nutrient cycling than the wet forest (Santiago & Mulkey, 2005; 
Santiago et al., 2005). For the wet forest, plants favour tissues with more conservative values and longer 
longevities (Aerts & Chapin, 2000), most likely as a consequence of low resource availability (i.e. less light and 
lower soil fertility) and/or higher risks for pathogen/pest pressures, than plants in the dry forest (Coley 
et al., 1985; Kitajima & Poorter, 2010; Santiago & Mulkey, 2005). 

The observation that lianas in the dry forest have lower LMA (Figure 1a) and lower, but phylogenetically 
dependent, LLS (for seven out of the eight species, Figure 1c) than trees suggests that lianas produce cheaper 
leaves, which is consistent with other studies at the same site (Sánchez-Azofeifa et al., 2009) and in other 
regions (Asner & Martin, 2012; Cai et al., 2009; Kazda & Salzer, 2000; Wyka et al., 2013; Zhu & Cao, 2010). Large 
investments in total leaf area are strongly associated with increases in relative growth rates (Poorter & 
Remkes, 1990) and thus, the capacity of lianas in the dry forest to develop larger leaf areas per biomass 
investment than trees is consistent with observations of higher relative growth rates in lianas than in trees in 
other forest sites (Mooney & Gartner, 1991; Paul & Yavitt, 2011; Schnitzer, 2005; Schnitzer & van der 
Heijden, 2019; Teramura et al., 1991). 

Contrasting with the dry forest but consistent with a relatively low number of studies (Asner & Martin, 2015; Cai 
& Bongers, 2007; Castellanos et al., 1989), similar LMA (Figure 1a) and LLS (Figure 1c) between lianas and trees 
in the wet forest suggest that both life-forms have similar structural investments at the leaf level for this forest. 
Although liana and tree branches in the wet forest do not differ in leaf display efficiency and despite having 
relatively similar branch structures, particularly with increasing branch size, lianas at the whole plant level may 
still develop larger leaf areas per unit biomass investment than trees since canopy growth in lianas is not 
structurally constrained as is in trees (Caballé, 1993; Cox et al., 2019; Penalosa, 1984). Low structural constraints 
may favour entire liana individuals with large leaf areas, but the advantage of having large leaf areas—i.e. high 
growth rates and carbon gain (Poorter & Remkes, 1990)—may be offset by the high costs of constructing and 
maintaining long-lived leaves (Kikuzawa, 1991, 1995; Reich et al., 1998). 

5 CONCLUSIONS 
Our study shows that canopy branches differed more consistently between lianas and trees under drier 
conditions than under wetter conditions. Lianas more effectively explore the forest canopy than trees under 
drier conditions: this efficiency was attributed to a lower LMA, stronger apical dominance and slenderer stems, 
but not by differential biomass distribution between leaves and stem within branches. Under wetter conditions, 
lianas were less efficient in leaf display and branch slenderness, and they even tended to have a lower leaf area 
than trees at large branch sizes. Nevertheless, lianas carried their leaves in shallow, single layers in both forest 
sites, implying that they monopolize high-light spots in the canopy, whereas trees had leaves organized in 
deeper crowns with multiple tree layers. Since our study was limited to two forest canopies only, we call for 
studies that replicate more forests to test the idea that branch allometry thus contributes to the higher success 
of lianas over trees with reduced rainfall and increasing drought seasonality across tropical forests. 
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