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ABSTRACT
PASSIVE COMPLIANCE CONTROL OF REDUNDANT

SERIAL MANIPULATORS

Jacob J. Rice, M.S.

Marquette University, 2019

Current industrial robotic manipulators, and even state of the art robotic manipulators,
are slower and less reliable than humans at executing constrained manipulation tasks, tasks where
motion is constrained in some direction (e.g., opening a door, turning a crank, polishing a surface,
or assembling parts). Many constrained manipulation tasks are still performed by people because
robots do not have the manipulation ability to reliably interact with a stiff environment, for which
even small commanded position error yields very high contact forces in the constrained directions.
Contact forces can be regulated using compliance control, in which the multi-directional elastic
behavior (force-displacement relationship) of the end-effector is controlled along with its position.
Some state of the art manipulators can directly control the end-effector’s elastic behavior using
kinematic redundancy (when the robot has more than the necessary number of joints to realize a
desired end-effector position) and using variable stiffness actuators (actuators that adjust the
physical joint stiffness in real time). Although redundant manipulators with variable stiffness
actuators are capable of tracking a time-varying elastic behavior and position of the end-effector,
no prior work addresses how to control the robot actuators to do so. This work frames this passive
compliance control problem as a redundant inverse kinematics path planning problem extended to
include compliance. The problem is to find a joint manipulation path (a continuous sequence of
joint positions and joint compliances) to realize a task manipulation path (a continuous sequence
of end-effector positions and compliances). This work resolves the joint manipulation path at two
levels of quality: 1) instantaneously optimal and 2) globally optimal. An instantaneously optimal
path is generated by integrating the optimal joint velocity (according to an instantaneous cost
function) that yields the desired task velocity. A globally optimal path is obtained by deforming
an instantaneously generated path into one that minimizes a global cost function (integral of the
instantaneous cost function). This work shows the existence of multiple local minima of the global
cost function and provides an algorithm for finding the global minimum.
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CHAPTER 1

INTRODUCTION

Current industrial robotic manipulators, and even state of the art robotic manipulators,

are slower and less reliable than humans at executing constrained manipulation tasks, tasks where

motion is constrained in some direction (e.g., opening a door, turning a crank, polishing a surface,

or assembling parts). Many constrained manipulation tasks are dull, difficult, dirty, or dangerous,

but are still performed by people because robots do not have the manipulation ability to reliably

interact with a stiff environment, for which even small commanded position error yields very high

contact forces in the constrained directions. Some form of interaction control is required in order

to simultaneously regulate the robot end-effector’s motion and its interaction force for reliable and

safe execution of the task.

An early method of interaction control is hybrid force/position control [1] in which the

task is decoupled into orthogonal subspaces and each direction is either position controlled or force

controlled. However, the hybrid force/position approach does not work in general, as tasks cannot

be orthogonally decoupled [2]. Impedance control is an interaction control approach which is valid

for any physical system; currently, it is the predominant interaction control method. Almost every

state of the art interaction controller implements a form of impedance control. A description of

impedance control and its implementation is provided below.

1.1 Impedance Control

Impedance control, formalized in [3], is an approach for controlling the interaction

behavior between a manipulator and the environment. This control approach is firmly based on

modeling principles of physical systems, where the interaction behavior of a physical system

depends on its impedance. Impedance is the relationship between force and motion (displacement,

velocity, and acceleration). It characterizes how a manipulator accepts motion and returns force to

the environment1.

There are three types of impedance components: 1) stiffness which determines the force

returned by the manipulator due to displacement imparted by the environment, 2) damping which

1In admittance (inverse of impedance) control, the causality is reversed and the manipulator is seen to return a
motion due to force imparted by the environment.
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determines the force returned by the manipulator due to velocity imparted by the environment,

and 3) inertia which determines the force returned by the manipulator due to acceleration

imparted by the environment. For manipulation in a coordinate space greater than one dimension,

each impedance component is given by a matrix where each element (i,j) describes the

force/torque along/about coordinate i from the motion along/about coordinate j.

Impedance control adjusts the manipulator’s impedance components (stiffness, damping,

inertia) to produce a desirable force-motion relationship appropriate for the task. Impedance

control is commonly implemented in one of two coordinate spaces:

1. Joint Space: The desired impedance of the manipulator is expressed in terms of the

manipulator joints (i.e., the coordinates most convenient for commanding the manipulator

motion). Joint impedance control is used for purposes that do not require knowledge of a

desirable impedance in task coordinates, such as for collision safety [4] [5] or for mimicking

the measured joint impedance of a human demonstrator [6].

2. Task Space: The desired impedance of the manipulator’s end-effector is expressed in terms of

the task coordinates (i.e., the coordinates most convenient for describing the task motion).

The original description of impedance control implementation used task coordinates [7]. It is

very common to describe a desired impedance with respect to a Cartesian frame of reference

[8].

Because control of an impedance is ultimately implemented with joint actuators, which are

naturally described using joint coordinates, implementation in joint space has fewer challenges

than implementation in task space. Task space impedance control requires a mathematical

relationship between the joint space motion of the manipulator and the task space motion of the

end-effector. This relationship, in general, is not one-to-one. Redundant manipulators, for which

the number of joint coordinates is greater than the number of task coordinates, have an infinite

number of joint motions that yield the same task motion. The dimension of the null space (space

of joint motions that do not yield task motion) is equal to the degree of redundancy, calculated by

subtracting the number of task coordinates from the number of joint coordinates. In addition to

the task impedance, redundant manipulators require a null space impedance to prevent erratic null

space motion.

Although there are more challenges in implementing impedance control in task space

compared to joint space, it is more appropriate when the desired impedance is described in task
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coordinates. For constrained manipulation tasks, constraint directions are not easily described

using joint coordinates, but are easily described relative to a Cartesian frame of reference.

Currently, the most common method of implementing impedance control is using active

control with sensor feedback to impose any virtual joint impedance matrix [7]. The end-effector

motion is measured and the actuator torques are controlled, based on those measurements, to

emulate the response of a system with the desired impedance. A large body of work addresses

active impedance control for: rigid manipulators [7] [9], flexible joint manipulators [10], redundant

manipulators requiring null-space impedance [11] [12], and stable time-varying stiffness control [13].

A less established method of implementing impedance control is using kinematic and

actuator redundancy to directly control the physical task impedance matrix [7]. This method is

often called passive impedance control to distinguish it from active impedance control and because

the physical impedance matrix is passive (forces oppose direction of motion). Passive impedance

control is less common than active impedance control because it requires manipulators with more

complex hardware. However, many state of the art manipulators [14] [15] [16] [17] [18] are capable

of directly controlling impedance components, especially stiffness. Details on passive stiffness

control including its implementation and discussion on its advantages and limitations relative to

active control are provided below.

1.2 Passive Stiffness Control and Passive Compliance Control

In constrained manipulation tasks, stiffness is the most critical impedance component to

control. Because of uncertainty of the environment and limited actuator precision, there is always

discrepancy between the commanded end-effector position and the actual end-effector position.

Instead of penetrating the contact constraint surface, the commanded end-effector position is

displaced to the actual configuration on the constraint surface. The resulting contact force depends

on the net stiffness (force-displacement relationship) of the manipulator and environment. When

both are very stiff, which is typical in many manufacturing tasks, the contact forces are very high.

Passive stiffness control directly controls the end-effector’s physical stiffness to be

beneficial for the task. A lower stiffness in contact-constrained directions reduces the interaction

force due to position misalignments. A higher stiffness in unconstrained directions reduces

end-effector displacement due to force uncertainties in those directions (e.g., uncharacterized

friction or mechanical work). For manipulation tasks in which the constraint direction changes, a
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Figure 1.1: A redundant serial manipulator with elastic joints. If joint i is equipped with an SEA,
the kinematic joint position qpi is controlled by the actuator and qci is a fixed joint compliance
(inverse of stiffness). If joint i is equipped with a VSA, each joint has two actuators such that both
qpi and qci are independently adjustable.

time-varying task stiffness is beneficial.

1.2.1 Implementation

Two methods for directly controlling the task stiffness matrix [7] involve using: 1)

kinematic redundancy to adjust the kinematic joint configuration (i.e., spatial locations of the

joints) which adjusts the task impedance matrix without adjusting the joint impedance matrix, or

2) actuation redundancy to adjust the physical joint stiffness matrix (a property of the human

musculoskeletal system in co-contraction of antagonistic muscles).

A time varying task stiffness can be implemented passively (directly) using manipulators

with structures like the serial manipulator in Fig. 1.1 with elastic elements between consecutive

links at each joint. A manipulator of this type, has a diagonal joint stiffness matrix. Kinematically

redundant manipulators with fixed joint stiffness from series elastic actuators (SEAs) [14] [15] [16]

can control the task stiffness using Method 1. Non-redundant manipulations with real-time

adjustable joint stiffnesses, from variable stiffness actuators (VSAs), can control the task stiffness

using Method 2. Redundant manipulators with VSAs [17] [18] can use both methods.

A simple example of using these methods to adjust a particle planar elastic behavior

realized by a manipulator with three elastic joints is provided below. Figure 1.2a shows the elastic
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a. b. c.

Figure 1.2: Physically implemented task compliances of the end-effector: a) with the original
kinematic configuration and joint compliance values, b) then with an adjusted kinematic joint
configuration, c) then with an adjusted compliance value (third joint compliance increases by a
factor of 5). The dashed lines are compliance ellipses.

behavior as a task compliance ellipse (see Appendix A) showing the displacement characteristics of

the end-effector from a unit force. The elastic behavior can be adjusted using Method 1 by

changing the kinematic joint configuration without changing the joint elastic properties (illustrated

by Fig. 1.2a to 1.2b), using Method 2 by changing the joint elasitc properties (using variable

stiffness actuators), without changing the kinematic joint configuration (illustrated by Fig. 1.2b to

1.2c), or using Method 1 and Method 2 by changing the kinematic joint configuration and the

joint elastic properties (illustrated by Fig. 1.2a to 1.2c). In all illustrated cases, the end-effector

position is the same.

With passive stiffness control, each joint’s equilibrium position and joint stiffness are

independently controlled. This contrasts with active stiffness control, where the primary actuators

are controlled based on sensor feedback to emulate the desired stiffness at a commanded virtual

equilibrium point. As such, passive implementation of the desired task stiffness requires identifying

a set of joint positions and joint stiffnesses that realize that task stiffness at the desired

end-effector position.

The elastic behavior (force-displacement relationship) of the end-effector, described in

terms of stiffness or compliance (inverse of stiffness), is determined by the kinematic joint

configuration of the manipulator and each joint’s elastic property. For serial manipulators, the

mathematical expression (mapping) for the end-effector elastic behavior is easy to derive in terms

of compliance, where the compliance of the end-effector is the superposition of the task-compliance

resulting from each joint compliance, individually. The relationship between the elastic behavior of

the joints of a serial manipulator and the task elastic behavior of its end-effector is difficult to

derive in terms of stiffness. Whereas, the end-effector compliance is readily determined by the joint
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compliance through compliance addition. For this reason, this work uses passive compliance

control where the joint positions and joint compliances are controlled to realize a desired task

compliance at the desired end-effector position. Note, passive stiffness control and passive

compliance control are two different approaches to achieving the same overall behavior. They both

directly control the physical elastic properties of the manipulator, but they use different

descriptions of the elastic behavior.

1.2.2 Advantages and Disadvantages Relative to Active Control

The advantage of passive control over active control is that the manipulator responds

more robustly to force or displacement disturbances compared to active control. Active stiffness

control has a bandwidth limitation [19] where the manipulator control loop may not respond to

the environmental interaction fast enough to emulate the desired elastic behavior. Passive control

does not have this bandwidth limitation because it operates directly on the physical elastic

property without a control loop. A comparison [20] between passive and active stiffness control of

a 3R manipulator inserting a planar-rectangular block into a slot with a lead-in chamfer showed

that passive stiffness control typically performed the assembly task 8 times faster and experienced

smaller contact forces. A constant joint stiffness was used for the task.

A limitation of passive compliance control is the difficulty of its realization. As noted in

[21], it is easy to implement an arbitrary task compliance with a bandwidth-limited active control,

but difficult, if not impossible, to implement the desired compliance passively. As shown in [22]

[23] [24] [25] [26] [27], the manipulator’s ability to produce a desired end-effector passive

compliance strongly depends on its kinematic configuration. The set of realizable end-effector

compliances is extremely limited for a non-redundant manipulator that cannot adjust its kinematic

joint configuration. The set of implementable end-effector compliances is much larger for a

redundant manipulator, for which the manipulator can adjust its kinematic joint configuration

without affecting the end-effector’s position.

Another challenge associated with passive compliance control is that robots with elastic

joints experience deflection due to gravity. The commanded kinematic joint configuration of a

manipulator with non-compliant joints is different than the static equilibrium position of the same

manipulator with compliant joints. Gravity compensation is addressed [10] [28] using quasi-static

analysis to identify the actuator positions that yield the desired joint configuration at static

equilibrium.
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Although there are challenges in passive compliance control that are not present in active

control, the performance advantage is potentially very great. The more difficult challenge of

realizing the task position and compliance passively is surmounted using kinematic redundancy

with joints having controllable elastic behavior.

1.3 Problem Addressed

This work addresses passive compliance control of redundant serial manipulators with

real-time adjustable joint compliances for executing constrained manipulation in task space

without using active control. When damping and inertia are omitted from the dynamic model of

the system, manipulation can be treated as a time-indexed sequence of configurations in static

equilibrium. As such, a constrained manipulation task is described by a task manipulation path, a

continuous sequence of desired end-effector positions and compliances in task space. This work

addresses the problem of identifying a joint manipulation path, a continuous sequence of joint

positions and joint compliances that execute the task manipulation path. The joint positions and

compliances of the joint path must be feasible for which the manipulator hardware can attain.

Although kinematic redundancy increases the ability to attain the desired positions and

compliances of the task manipulation path, it complicates the problem of selecting the joint

manipulation path because the path is no longer unique. A feasible joint path is a path through

the feasible solution space given by the set of feasible joint positions and feasible joint compliances

that realize the task positions and task compliances of the task manipulation path. The feasible

solution space typically is not simply connected, it typically has a complex connection structure.

For some task manipulation paths, no feasible joint path exists. Because of redundancy, when a

path does exist, there is an infinite set of joint paths that can complete the task. Prior work that

address aspects of this problem are reviewed below.

1.3.1 Prior Work in Passive Stiffness/Compliance Control

Others have investigated the space of realizable end-effector stiffnesses by sampling the

kinematic joint positions and joint stiffnesses and calculating the end-effector stiffness. The space

of realizable stiffness is visualized using scatter plots [29] or “stiffablity maps” [30]. These

sampling approaches, however, do not provide information about the connectivity of the joint

positions and joint stiffnesses.
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Necessary and sufficient conditions for a manipulator to achieve a specified passive

compliance have been identified for a variety of manipulator types. The conditions and geometric

interpretations for 2 and 3 joint manipulators realizing a particle planar compliance have been

identified for revolute joints [22] and for a combination of revolute or prismatic joints [23]. The

conditions and the geometric interpretations have been identified for 3R [24], 4R [25], and 5R [26]

manipulators realizing a general planar compliance. The conditions and the geometric

interpretations have also been identified for 6R [27] manipulators realizing a general spatial

compliance. For each type of manipulator, the conditions on manipulator geometry are decoupled

from the conditions on the joint compliance values. Results apply to finding a single joint

configuration (position and compliance) at a single task instance. The connectivity of joint

configurations at a single task instance is not addressed, nor is the generation of a time indexed

joint path through the set of admissible joint configurations of all task instances.

The problem of selecting the passive joint compliances for redundant manipulators similar

to the type illustrated in Fig. 1.1 is addressed in [31][30] using optimization. The optimization

criterion minimizes the Frobenius norm of the difference between the desired task compliance and

the passive end-effector compliance. The optimization in [31] selects the passive joint compliance

without adjusting the kinematic joint configuration. The passive joint compliances attained by this

optimization are not guaranteed to realize the desired task compliance. To compensate, the elastic

behavior is supplemented with active stiffness control. In [30], a null space controller is used to

adjust the kinematic joint configuration based on a local optimization for improving the task

compliance. This approach adjusts the kinematic joint configuration without adjusting the passive

joint compliance. These approaches [31][30] used for resolving the passive joint compliance and

resolving the joint kinematics separately avoid using nonlinear constraints in the optimization, but

sacrifice optimal joint control.

A method of simultaneous resolution of passive joint stiffness and joint kinematics is

described in [32] without gravity compensation. The method tracks the change in task stiffness

with respect to time using a stiffness Jacobian matrix. Little attention, however, was given to

deriving the stiffness Jacobian. In [32], the stiffness Jacobian is approximated numerically using

finite differences of a function that maps joint stiffness to task stiffness. The stiffness mapping

function used in [32] is the inverse of the mapping commonly used in active stiffness control

[33][34] for selecting the joint stiffness matrix from a desired task stiffness matrix. This choice of

stiffness mapping, however, does not apply to redundant manipulators. For redundant
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Figure 1.3: Redundant inverse kinematic (RIK) solution space with instantaneously and globally
resolved joint paths. a) RIK solution space. b) Task path. Dashed lines are self-motion manifolds
corresponding the task instances (∗). Dotted lines are contour lines of the RIK solution space.
Solid lines with arrow sequences are instantaneously resolved joint paths. Solid with open circle
endpoints are globally resolved joint paths.

manipulators, the joint stiffness that implements the task stiffness is not unique and the stiffness

matrix inverse does not exist. The active-stiffness-resolution-expression of [33][34] will select a

joint stiffness matrix, likely one with off-diagonal terms, that cannot be implemented passively

with a manipulator like that in Fig. 1.1 even if a passive solution exists. This approach can be

used to generate a joint manipulation path for non-redundant manipulators. However, the set of

task manipulation paths that can be realized by non-redundant manipulators is very limited.

1.4 Approach

Resolving redundancy in the set of joint positions and joint compliances that realize a

desired task position and task compliance has not been addressed. However, resolving redundancy

in manipulator kinematics (no compliance) has been widely addressed. In the problem of finding a

path in the joint space to track a desired path in the task space, path planning occurs in the joint

subspace that contains the set of feasible joint configurations that yield end-effector configurations

on the task path. This work refers to this subspace as the feasible redundant inverse kinematic

(RIK) solution space. The RIK solution space of a single task instance is a set of self-motion

manifolds, each a continuously connected set of joint configurations that yield the same

end-effector configuration. The RIK solution space of a task path is sequence of self-motion

manifolds. Depending on the manipulator hardware, only a subset of the RIK solution space

configurations are feasible configurations. The shaded surface in Fig. 1.3a represents a feasible RIK

solution space of a task path in Fig. 1.3b. Each dashed line in Fig. 1.3a is a self-motion manifold

of a single task instance corresponding to a ∗ in Fig. 1.3b.
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Identifying joint configurations of the RIK solution space addresses the inverse kinematics

(IK) problem. Selecting a unique joint configuration at each task instance addresses the

redundancy resolution (RR) problem. The IK and RR problems are often resolved simultaneously

without identifying the feasible RIK solution space beforehand. The redundant inverse kinematic

(RIK) path planning problem can be resolved in real-time (i.e., the path is calculated as the

manipulator executes it) using instantaneous resolution methods by identifying the optimal joint

velocity for advancing the task. The RIK path planning problem can be optimally resolved off-line

(i.e., the path is calculated before the manipulator executes it) using global resolution methods by

identifying the joint path that minimizes a global cost function, a function of the entire joint path.

Differences between instantaneously and globally resolved paths are illustrated on the RIK

solution space in Fig. 1.3. Instantaneous resolution requires a starting joint configuration and

identifies the most direct joint motion to bring the joint path to the next self-motion manifold.

The joint motion is integrated over the entire task to generate the path. This process is roughly

illustrated by the sequence of arrows on paths a-c in Fig. 1.3. Although the instantaneously

generated path is instantaneously optimal, the instantaneous optimization may guide the path into

undesirable regions in the RIK solution space, e.g., path b must go around the hole and path c

travels into a region that cannot complete the task. A shorter path can be obtained using a global

resolution in which an initial joint path is deformed over the RIK solution space into a locally

optimal path such that any infinitesimal deformation yields a longer joint path. There can be

multiple locally optimal joint paths (e.g., paths d and e), especially when the RIK solution space is

not simply connected. Finding the globally optimal (best) joint path is difficult when many locally

optimal joint paths exist. No prior work addresses finding the globally optimal joint path in the

entire RIK solution space.

This work provides an algorithm that identifies the globally optimal joint path for RIK

problems with one degree of redundancy (or identifies if no solution exists). The algorithm does so

by compactly characterizing the connectivity of the RIK solution space using feasible subsets of

self-motion manifolds at bifurcation points. Bifurcation points are instances on the RIK solution

space where feasible subsets of self-motion manifolds (bifurcation branches) split or converge (e.g.,

each × in Fig. 1.3). The algorithm uses a novel instantaneous path planner and a novel global

resolution method with the bifurcation branches to efficiently and thoroughly search the entire

RIK solution space for the globally optimal joint path. This algorithm is, therefore, called the

bifurcation branch algorithm (bb-algorithm).
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This work frames the challenge of passive compliance control as an extension of the RIK

path planning problem to include compliance (RIK → RIKC). To extend the RIK problem, the

joint space of the manipulator and the task space of the end-effector are augmented to include

compliance coordinates. As such, the mapping from the joint space to the task space is augmented

to include compliance; and the Jacobian matrix (tangent space mapping) that maps a joint

velocity to a task velocity is also augmented to include compliance.

This work provides an instantaneous resolution approach for generating joint manipulation

paths in the combined (kinematic and compliance) joint space for RIKC problems with any degree

of redundancy. Redundancy is resolved by minimizing the norm of the actuator velocities (primary

and VSAs). The actuator positions are not the same as the joint positions; they have a separate

coordinate space. The actuator space is related to the joint space by a mapping function and

actuator velocities are related to joint velocities by an actuator Jacobian (tangent space mapping).

These mappings are used to compensate for deflection due to gravity and to resolve the

manipulation planning in the joint space. The joint path is then converted to an actuator path, a

sequence of actuator positions (both kinematic and compliance adjusting actuators). The actuator

paths are executed with tracking control to implement passive compliance control. This approach

is similar to the mathematical operations provided in [32]. However, the coordinate spaces are not

clearly articulated in [32] and the choice of mapping functions is different. Unlike the stiffness

mapping used in [32], the compliance mapping derived in this work does not require inverting the

kinematic Jacobian matrix and is, therefore, valid for redundant manipulators and is

computationally easier to evaluate. Additionally, the mappings in this work compensate for joint

deflection due to gravity, which is not addressed in [32].

This work provides a global resolution approach for finding the best joint manipulation

path (or identifies the non-existence of a joint path) for RIKC problems with one degree of

redundancy. The bb-algorithm is used with the RIKC framework to identify the best joint

manipulation path for passive compliance control. However, RIKC solution spaces are much more

complex than RIK solution spaces, having multiple disconnected self-motion subspaces resulting

from a greater number of self-motion manifolds and additional hardware limits from the VSAs.

This work identifies the self-motion manifolds of RIKC problems and provides algorithms for

identifying the bifurcation points and associated bifurcation branches.
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1.5 Overview

This work addresses a challenge related to passive compliance control of redundant serial

manipulators with adjustable joint compliances. The challenge is to determine a joint manipulation

path (sequence of joint positions and compliances) that yields end-effector configurations of a

desired task manipulation path (sequence of task positions and compliances). This challenge is

addressed by extending the redundant inverse kinematic (RIK) path planning problem to include

compliance (RIK → RIKC). This work provides an instantaneous resolution approach for RIKC

problems with any degree of redundancy. This work also provides a global resolution approach to

identify the best joint manipulation path for RIKC problems with one degree of redundancy.

Relevant background in the RIK path planning problem and its resolution using

instantaneous methods is provided in Chapter 2. Chapter 2 then provides the details for extending

the RIK problem to the RIKC problem, provides an instantaneous method of generating joint

manipulation paths, and demonstrates the manipulation planner for 3R-VSA and 5R-VSA planar

manipulators. Relevant background in the RIK path planning problem and its resolution using

global methods is provided in Chapter 3 along with technical background relating to characterizing

the RIK solution space. Chapter 3 also motivates, describes, and demonstrates the bifurcation

branch algorithm (bb-algorithm) that is used for identifying the globally optimal joint path for

RIK path planing problems with one degree of redundancy. Chapter 4 provides means of

identifying the bifurcation points and the associated bifurcation branches in RIKC solution spaces.

This information is used with the bb-algorithm and the RIKC framework to identify the globally

optimal (best) joint path in the RIKC solution space. Chapter 5 summarizes the contributions of

this work.
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CHAPTER 2

OPTIMAL INSTANTANEOUS RESOLUTION OF PASSIVE COMPLIANCE
CONTROL

Passive compliance control adjusts the robot end-effector’s position and physical

compliance in real-time to robustly execute constrained manipulation tasks. A redundant serial

manipulator with adjustable joint compliance, like that illustrated in Fig. 1.1, can independently

control its equilibrium joint positions and its joint compliances using its primary actuators and

variable stiffness actuators (VSAs). The challenge in passive compliance control of redundant

serial manipulators is identifying a joint manipulation path, a continuous sequence of joint

positions and joint compliances executing actuator commands that yield the desired task

manipulation path, a continuous sequence of desired task positions and task compliances. This

challenge is addressed here by extending the redundant inverse kinematic (RIK) path planning

problem to include compliance coordinates in joint and task configuration spaces.

First, this chapter reviews the RIK path planning problem and its resolution using the

weighted pseudoinverse method to identify the instantaneously optimal joint velocity for advancing

the task manipulation path. The weighted pseudoinverse method uses the task Jacobian matrix,

which maps a joint velocity to a task velocity, to resolve inverse kinematics; and uses a weighting

matrix to resolve redundancy according to a quadratic objective in the joint velocities.

Second, this chapter describes the augmentation of the joint and task coordinate spaces to

include compliance in the total configuration spaces. The augmentation of the mapping functions

used in resolving the inverse kinematics and compliance are also described. The compliance

mapping function for any serial manipulator is provided and the compliance Jacobian matrix is

derived.

Third, this chapter describes the weighing matrix used to select a joint velocity that

minimizes the norm of the full set of actuator velocities (i.e., primary and VSA motor velocities).

A distinction between the joint space and the actuator space (set of primary and VSA motor

position coordinates) is made to account for link deflection due to gravity and to account for the

nonlinear relationship between the VSA actuator position and the joint’s compliance. The

mapping function from the joint space to the actuator space is used to compensate for the link

deflection due to gravity. An actuator Jacobian that relates joint velocities to actuator velocities is

introduced. The actuator Jacobian defines the weighting matrix used in the weighted
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pseudoinverse to identify the joint velocities that minimize the norm of the actuator velocities.

Finally, this chapter explicitly shows how all these mappings are used in an instantaneous

resolution method to generate a continuous sequence of actuator commands for implementing

passive compliance control. The instantaneous RIKC resolution method is demonstrated for a

3R-VSA manipulator performing a particle planar compliance task and for a 5R-VSA manipulator

performing a particle planar compliance task and a general planar compliance task.

2.1 Review of Redundant Inverse Kinematics and Instantaneous Resolution

Consider a serial manipulator with n joint configuration coordinates where the

end-effector performs a motion task described by m coordinates. The number of task coordinates

depends on the type of manipulation; m = 2 for particle planar manipulation, m = 3 for general

planar manipulation, m = 6 for spatial manipulation. Figure 2.1 shows the spatial configuration of

a serial manipulator and the spacial configuration of its end-effector. The manipulator

configuration is determined by each joint position qi. The end-effector configuration is given by the

end-effector frame relative to the base frame.

The forward kinematic map f (q) : Q→ X is a nonlinear function that defines the

relationship between the manipulator’s configuration in joint space q ∈ Q (relative angles between

consecutive links) and the end-effector configuration in task space x ∈ X (position and orientation1

of the end-effector).

The relationship between the joint velocity q̇ and task velocity ẋ is linear:

ẋ = J(q)q̇, (2.1)

where J(q) = ∂f (q)/∂q, is the m× n task Jacobian evaluated at the current joint configuration q.

This Jacobian is also called the analytical Jacobian, which is different from the geometric

Jacobian2 J (q) for spatial manipulation [35], but they are the same for planar manipulation.

Consider a task path x (t) ∈ X, a continuous sequence of desired task configurations

corresponding to the desired motion of the manipulator’s end-effector. The task path is indexed by

normalized time t ∈ [0, 1]. The inverse kinematic (IK) path planning problem is to find a joint

1For spatial orientation there is not an obvious choice of minimal coordinates; common choices include [35] Euler
angles and roll, pitch, yaw angles.

2The geometric Jacobian defines the relationship: [v, ω]T = J (q)q̇, where v is the linear velocity of frame (x′, y′, z′)
relative to (x, y, z) and ω is the angular velocity of frame (xE, yE, zE) relative to (x′, y′, z′). The analytical Jaco-
bian and geometric Jacobian are related to each other by a transformation matrix that depends on the orientation
representation parameters (e.g., Euler angles).
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Figure 2.1: Joint configuration of a serial manipulator and the task configuration of its
end-effector. Coordinate frames: 1) (x, y, z) attached to the base, 2) (xE , yE , zE) attached to the
end-effector, 3) (x′, y′, z′) with its origin the same as the end-effector frame and its orientation the
same as the base frame.

path q(t) ∈ Q such that f (q(t)) = x (t) for all time t, where q(t) is a continuous set of joint

configurations. For redundant manipulators (n > m), there is an infinite number of solutions to

the IK problem. Choosing a unique joint path from the IK solution space is known as the

redundancy resolution (RR) problem. The IK and RR problems are resolved together

simultaneously using instantaneous optimization.

2.1.1 Instantaneous Resolution

A solution to the RIK path planning problem is generated using instantaneous resolution

[36] by integrating the optimal joint velocity (instantaneous joint motion):

q(t) = q0 +

∫ t=1

t=0

q̇∗(t) dt, (2.2)

where q0 ∈ Q | f (q0) = x (0) is an admissible initial joint configuration, and q̇∗(t) is the optimal

admissible joint velocity identified by solving the optimization problem:

min. Ginst(q, q̇)

s.t. J(q)q̇ = ẋ,
(2.3)

where q is the joint configuration at the current time-instance t and q̇ and ẋ are the joint and task

velocities, respectively. Satisfying the constraint function (the bottom expression in (2.3))

addresses the IK problem by ensuring the selected joint velocity realizes the necessary end-effector

velocity to advance the task. Minimizing the objective function (the top expression in (2.3))
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addresses the RR problem by selecting the best joint velocity that advances the task. The

objective function is commonly selected to be quadratic in joint velocity:

Ginst =
1

2
q̇TWq̇, (2.4)

where W is an n× n positive definite matrix of weighting values and the domain of the

optimization is the set of joint velocities that produce the required task velocity given by linear

constraints (2.1). The weighting matrix may be selected to minimize the norm of the joint

velocities, minimize the kinetic energy of the manipulator [36], minimize the distance from joint

limits [37], or some other criterion.

The unique joint velocity q̇∗ that minimizes (2.4) while satisfying (2.1) is readily identified

[36] using

q̇∗ = J†ẋ, (2.5)

where J† is the weighted pseudoinverse matrix of J ≡ J(q), calculated by

J† = W−1JT (JW−1JT )−1, (2.6)

when J is full-rank3 (rank(J) = m). The weighted pseudoinverse simultaneously addresses the IK

problem with J and addresses the RR problem with W.

If the selected optimization criterion is non-quadratic (e.g., maximizing the manipulability

index [40]), the optimal non-admissible joint velocity q̇N (that does not satisfy the task

constraints of the Jacobian) is identified from the gradient of the instantaneous objective function.

The closest admissible joint velocity (in the weighted least squares sense) solves

min. 1
2 (q̇− q̇N )TW(q̇− q̇N )

s.t. J(q)q̇ = ẋ,
(2.7)

where q̇N is the “preferred” joint velocity. The optimization objective (2.4) is equivalent to (2.7)

with q̇N = 0.

The joint unique velocity q̇∗ that solves (2.7) is readily identified [41] using:

3If J is not full-rank, the weighted pseudoinverse is evaluated using singular value decomposition [38][39].
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q̇∗ = J†ẋ + (I− J†J)q̇N, (2.8)

where I is the identity matrix. Equation 2.5 is equivalent to 2.8 with q̇N = 0.

2.1.2 Instantaneous Resolution Considering Hard Joint Limits

Most manipulators have fundamental limits where each joint variable is bounded by

q ∈ [qmin, qmax], elements of the joint configuration limits [qmin,qmax]. The instantaneously

resolved joint path, generated by integrating (2.8) (solution to (2.7)), may yield joint

configurations that violate the joint limits.

To prevent this, joint velocity is subject to the following inequality constraints:

qmin − q

∆t
≤ q̇ ≤ qmax − q

∆t
, (2.9)

where ∆t is the numerical integration step size and q is the current joint configuration of the

generated path. The optimal admissible joint velocity solves:

min. 1
2 (q̇− q̇N )TW(q̇− q̇N )

s.t. J(q)q̇ = ẋ

qmin−q
∆t ≤ q̇ ≤ qmax−q

∆t .

(2.10)

The joint velocity solving (2.10) with W = I is identified using the Saturation in the Null

Space (SNS) Algorithm [42]. There are three versions of the algorithm, a basic, optimal, and fast

version. The basic version is briefly described here.

The SNS algorithm first calculates q̇ using (2.8), then checks if inequality constraints (2.9)

are satisfied. If they are not, the most violated joint value, qi is saturated at its limiting value by

setting element i of q̇N to element i of the inequality constraint (2.9). Equation (2.8) is

re-calculated, replacing J† with J†SNS = (JS)#, where (·)# is the Moore-Penrose4 pseudoinverse

and S is the saturation matrix: an n× n diagonal matrix with element Sii = 1 for non-saturated

joints or Sii = 0 for saturated joints. This forces the non-saturated joints to compensate. The

process is repeated until either a feasible joint velocity is identified or until rank(JS) < m.

4The Moore-Penrose pseudoinverse is the weighted pseudoinverse with an identity weighting matrix.
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2.1.3 Summary

A joint path q(t) ∈ Q that satisfies a desired task path x (t) ∈ X is generated by

integrating the optimal admissible joint velocity identified using the weighted pseudoinverse. The

SNS algorithm is used to accommodate joint limits.

By augmenting the joint configuration coordinates and task configuration coordinates to

include compliance (inverse of stiffness), the weighted pseudoinverse based instantaneous RIK

resolution approach is extended below to track both a desired equilibrium task position and a

desired task compliance.

2.2 Compliance Extended Inverse Kinematics

To include compliance in the instantaneous inverse kinematics (IK) resolution approach,

the joint space Q and task space X are augmented to include joint compliance coordinates and

task compliance coordinates, respectively. The mapping function x = f (q) from the joint space to

the task space and the tangent space mapping ẋ = Jq̇ are augmented with additional mappings for

compliance. This section provides the details. To emphasize the distinction between the typical

kinematic and the augmented compliance coordinates and mappings, subscript (·)p indicates

kinematic coordinates or mappings and subscript (·)c indicates compliance coordinates or

mappings.

2.2.1 Compliance Augmented Joint Space

The class of manipulators considered in this work are serial manipulators with np revolute

joints where each joint has adjustable compliance (as depicted in Fig. 1.1). The kinematic joint

configuration is

qp = [qp1 , qp2 , . . . , qpnp
]T ,

where the coordinate qpi ∈ (−∞,∞) is the relative angle between link i and link (i− 1) (link 0 is

the ground). The kinematic joint configuration qp is the static equilibrium configuration of the

manipulator with respect to all known external loads such as those due to gravity. The kinematic

joint configuration is the actual position/orientation of the end-effector disturbances when no

disturbance acts on the manipulator (i.e., no commanded position error due to constrained

interaction).
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The passive compliance of each joint is independently controlled, therefore, the compliance

joint configuration is

qc = [qc1 , qc2 , . . . , qcnp
]T ,

where the coordinate qci ∈ (−∞,∞) is the compliance of joint i. Note, the joint compliance must

have a positive value to be realized; this issue is treated the same as joint limits (discussed in

Section 2.4). The joint compliance matrix Cq is an np × np diagonal matrix with qc as the

diagonal elements.

Because the kinematic joint configuration and the compliance joint configuration are

controlled independently, the total joint space configuration q ∈ Q of the manipulator is formed by

concatenating the kinematic and compliance joint configurations:

q =

qp

qc

 .
The total number of joint coordinates is n = 2np, when each joint compliance is adjustable.

2.2.2 Compliance Augmented Task Space

The task manipulation path for compliance control involves both kinematics and

compliance. The robot end-effector has a specific position/orientation given by the mp × 1 vector

xp, where mp is the number of task kinematic degrees of freedom. The end-effector elastic

behavior is described with respect to a coordinate frame attached to the end-effector with the

orientation of the base frame (e.g., (x′, y′, z′) in Fig. 2.1). The specific elastic behavior is given by

Cx, an mp ×mp positive definite, symmetric task compliance matrix.

Because Cx is symmetric, the task compliance is fully and uniquely described by the

upper triangular elements. Therefore, these elements are selected as the task compliance

coordinates of the task compliance configuration:

xc = sort4(Cx) , (2.11)

where sort4(·) is a sorting operation for arranging the upper triangular elements of Cx into an

mc × 1 vector based on element position in the matrix. The number of task compliance

coordinates is mc = 1
2mp(mp + 1).

The augmented task configuration x ∈ X is formed by concatenating the task kinematic

and task compliance configurations:
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x =

xp

xc

 .

2.2.3 Compliance Augmented Forward Maps

The augmented joint configuration q and augmented task configuration x are each a

concatenation of kinematic and compliance configurations. Because of this structure, the forward

mapping function f (q) is a concatenation of the forward kinematics and forward compliance

functions:

f (q) =

f p(q)

f c(q)

 ,
where the forward kinematic function f p gives the task kinematic configuration xp and the forward

compliance function f c gives the task compliance configuration, xc.

In the instantaneous compliance resolution approach, compliance and kinematics are

resolved simultaneously at the instantaneous (differential) level. Rather than finding the

appropriate joint compliance configuration for each task instance, the best infinitesimal change in

the joint configuration (kinematic and compliance) is identified to produce the desired infinitesimal

change in the task configuration (kinematic and compliance). The differential task requirements

are a set of linear constraints given by the task Jacobian matrix J = ∂f (q)/∂q.

Because the joint space and task space coordinates are concatenations of kinematic and

compliance coordinates, the partitioned form of the Jacobian matrix mapping a joint velocity to a

task velocity is

ẋp

ẋc

 =

∂f p(q)

∂qp

∂f p(q)

∂qc

∂f c(q)
∂qp

∂f c(q)
∂qc


q̇p

q̇c

 =

Jpp Jpc

Jcp Jcc


q̇p

q̇c

 . (2.12)

where Jc = [Jcp,Jcc] is the compliance Jacobian. The partition Jpp = ∂fp(q)/∂qp is the kinematic

Jacobian (analytical Jacobian in IK literature). The partition Jpc = ∂f p(q)/∂qc describes how the

end-effector task position changes with changes in the joint compliance variables. Because robot

kinematics do not depend on the joint compliance variables, Jpc = 0. The partition

Jcp = ∂fc(q)/∂qp describes how the end-effector task compliance changes with changes in the joint

kinematic variables. The partition Jcc = ∂fc(q)/∂qc describes how the end-effector task

compliance changes with changes in the joint compliance variables.
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In summary, the compliance augmented Jacobian for serial manipulators with variable

stiffness actuation (those like that illustrated in Fig. 1.1) is

J =

Jpp 0

Jcp Jcc

 , (2.13)

where each partition is described above.

2.2.4 Constructing the Compliance Jacobian

In this section, the compliance forward map and the compliance Jacobian are constructed

using the geometric Jacobian and the joint compliance matrix.

Serial manipulators with independently controlled elastic joints have a simple mapping

from the manipulator’s joint compliance matrix to its end-effector task compliance matrix. The

end-effector’s task compliance is the superposition of the task compliance contribution from each

joint and is given by [43]:

Cx =

np∑
i=1

qcitit
T
i , (2.14)

where qci is the compliance of joint i and ti is the twist associated with joint-i. Each twist is the

instantaneous kinematic motion of the end-effector due to the instantaneous kinematic motion of

that joint, (i.e., a column in the geometric Jacobian matrix). The task compliance of the

end-effector is compactly given by [43]:

Cx(q) = J ppCqJ
T
pp, (2.15)

where J pp is the mp × np geometric Jacobian matrix and Cq is the diagonal joint compliance

matrix with qc as the diagonal elements. The end-effector’s task compliance matrix Cx(q) is

symmetric and positive definite. Note that (2.15) does not require calculating the inverse Jacobian

matrix (a step needed in the mapping function described in [32]).

The forward compliance function as a configuration mapping is readily constructed by

sorting the upper triangular elements of Cx into a vector:

f c(q) = sort4
(
J ppCqJ

T
pp

)
. (2.16)
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The compliance Jacobian is Jc = ∂fc(q)/∂q and the variation in task compliance

configuration is δxc = Jcδq, where δq is a variation in the augmented joint configuration. The

compliance Jacobian, composed as a set of columns vectors is

Jc =

[
∂f c(q)

∂q1
,
∂f c(q)

∂q2
, . . . ,

∂f c(q)

∂qn

]
=

n∑
k=1

∂f c(q)

∂qk
, (2.17)

where ∂f c(q)
∂qk

is the kth column of Jc and qk is the kth joint space variable.

Consider the partial derivative of the task compliance function with respect to the kth

joint variable,

∂f c(q)

∂qk
=

∂

∂qk
sort4

(
J ppCqJ

T
pp

)
. (2.18)

Both the sorting operation and the partial derivative of a matrix with respect to a single

variable are element-by-element operations. Therefore, sorting may occur after taking the partial

derivative. Substituting (2.15) into (2.18) yields

∂f c(q)

∂qk
= sort4

(
∂Cx(q)

∂qk

)
(2.19)

.

Using the product rule, the partial derivative of (2.15) expands to

∂Cx(q)

∂qk
=


(
∂Jpp

∂qk

)
CqJ

T
pp + J ppCq

(
∂Jpp

∂qk

)T
1 ≤ k ≤ np

J pp

(
∂Cq

∂qk

)
J Tpp np + 1 ≤ k ≤ n

, (2.20)

where qk is a kinematic joint variable for 1 ≤ k ≤ np and a compliance joint variable for

np + 1 ≤ k ≤ n. This decomposition is similar to that used in the conservative congruence

transform [44] for finite deflection of a mechanism stiffness. This decomposition, however, is on

compliance and it includes an additional term that accounts for variation in the joint compliance.

Equation (2.20) may be separated into cases because Cq is independent of the kinematic variables

qp, and J pp is independent of the compliance variables qc.

The columns of the compliance Jacobian are constructed by substituting (2.20) into

(2.19), where (2.20) is readily calculated as ∂J pp/∂qk and ∂Cq/∂qk are evaluated

element-by-element. Evaluating the partial derivative of the geometric Jacobian with respect to
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each kinematic joint variable is described in [45]. The partial derivatives of the joint compliance

matrix components have a simple form given by

(
∂Cq

∂qk

)
ij

=


1 i = j = k − np

0 otherwise

. (2.21)

With these results, the compliance augmented Jacobian (total Jacobian) J is readily

calculated and used for instantaneously resolving the compliance extended inverse kinematics

problem using the weighted pseudoinverse method.

2.3 Compliance Extended Redundancy Resolution

When a solution to the compliance extended instantaneous IK problem exists, the solution

is not unique for redundant manipulators. There are many kinematic and compliance joint

motions that produce the desired kinematic and compliance task motion. Here, the redundancy is

resolved by minimizing the velocity norm of the actuators used to obtain the desired instantaneous

change in the kinematic and compliance configurations.

For traditional industrial manipulators with rigid joints, the joint coordinates (relative

angle between consecutive links) and the actuator coordinates (primary actuator positions) are the

same. This is not that case for manipulators with elastic joints; actuator coordinates form a

separate space Φ from the joint space Q. The actuator coordinates of serial manipulators with

variable stiffness actuators (VSAs) are separate from its joint coordinates for two reasons: 1)

externally applied loads displace the joint position from the no-load equilibrium position

commanded by the primary actuators, and 2) the VSA actuator position and the joint compliance

have different units and therefore separate configuration spaces. The differences between the

actuator coordinates and joint coordinates for both kinematics and compliance are illustrated in

Fig. 2.2.

In this section, a mapping function from joint space to actuator space for both kinematic

and compliance variables is described. A linear mapping from the joint tangent space to the

actuator tangent space (the actuator Jacobian) is also described. This actuator Jacobian is used in

the pseudoinverse weighting matrix for minimizing the actuator motion.
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2.3.1 Actuator Coordinates

As stated previously and illustrated in Fig. 1.1, manipulators having variable stiffness

actuators allow kinematic joint position and joint compliance to be independently controlled.

Although each joint coordinate value is independently controlled, it does not need to be controlled

by a single actuator. For instance, antagonistic tendons with non-linear stiffness elements [46]

control the joint position and joint compliance using two actuators. Moving both actuators in the

same direction changes the joint position; moving both actuators in opposite directions changes

the joint compliance. Many VSAs [47][48][49] have a dedicated joint compliance adjusting actuator

(VSA) that is fully responsible for the joint compliance (i.e., the joint compliance depends only on

the compliance actuator position), and a dedicated kinematic adjusting actuator (primary

actuator) for controlling the kinematic joint position. An example of a joint with separate

kinematic and compliance actuators is illustrated in Fig. 2.2. Each link i is connected to link

(i− 1) by a revolute joint. The kinematic actuator, attached to link (i− 1), drives an intermediate

body that is elastically coupled to link i. In Fig. 2.2, the spring illustrated is a simple elastic

coupling between two points. The compliance actuator illustrated in Fig. 2.2 adjusts the effective

joint compliance by controlling the orientation of the elastic element using a motor and ball-screw.

This section describes the actuator coordinates and actuator mappings for which each joint has

kinematic and compliance adjusting actuators (e.g., [47][48][49]).

The kinematic actuator configuration is given by

φp = [φp1 , φp2 , . . . , φpnp
]T ,

where the coordinate φpi is the kinematic actuator position of joint i. The compliance actuator

configuration is given by

φc = [φc1 , φc2 , . . . , φcnp
]T ,

where the coordinate φci is the compliance actuator position5 of joint i. The total actuator

configuration φ ∈ Φ is

φ =

φp
φc

 .
5The compliance actuator position φci in Fig. 2.2 is set to be on the rotary motor (as opposed to the translation

of the spring connection point) so that all actuator positions have consistent units.
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Figure 2.2: Actuator coordinates of joint i. The kinematic actuator position φpi is the no-load
joint position. External loads cause a joint displacement ∆i resulting in the static equilibrium
joint position qpi . The amount of displacement depends on the joint compliance qci that is
determined by the compliance actuator position φci .

There is a nonlinear function φ = h(q) that uniquely maps a joint configuration to an

actuator configuration. Because the compliance actuator coordinates are separate from the

kinematic coordinates, the actuator mapping function is partitioned as

h(q) =

hp(q)

hc(q)

 .
The kinematic actuator mapping function defines the relationship between the joint

configuration q and the kinematic actuator configuration φp. The compliance actuator mapping

hc defines the relationship between the joint configuration q and the compliance actuator position

φc. These mappings are described in detail below.

2.3.2 Kinematic Actuator Mapping

In the absence of external loads, kinematic joint positions and kinematic actuator

positions are the same. However, gravitational loads are normally present and may cause

significant joint deflection from the commanded position, i.e., φp − qp 6= 0. Commanded kinematic

joint positions may be compensated for known loads (e.g., gravity) such that the deflected joint

position is the desired position. At static equilibrium
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Kq[φp − qp] = g(qp), (2.22)

where Kq is the joint stiffness matrix and g(qp) is a vector of applied torques at the manipulator

joints. For gravitational loads, the torque at each joint from the load is a function of the joint

configuration determined by the link mass and moment arm.

When joint stiffness is independent of joint deflection, the kinematic actuator command

for gravity compensation is [10]

φp = qp + K−1
q g(qp). (2.23)

Because K−1
q = Cq = diag(qc), both qc and qp are used in the kinematic actuator

mapping function given by

hp(q) = qp + Cqg(qp), (2.24)

Unlike the gravity compensation method used in [10], because both motion and

compliance planning are resolved here in joint space, the problem of finding the inverse function

h−1
p is unnecessary.

2.3.3 Compliance Actuator Mapping

The torque experienced at each VSA may be described by τVSAi
(φci ,∆i), a nonlinear

function of the VSA actuator coordinate φci , and the link deflection ∆i = φpi − qpi . The shape of

the function is determined by the VSA design.

If the torque-deflection relationship is modeled as linear such that the stiffness does not

change significantly with link deflection ∆i, then the joint stiffness can be described by the

compliance actuator position alone: ki(φci).

For VSA designs in which the compliance property is independently controlled, when the

VSA has a strictly increasing (or decreasing) compliance profile: qci = 1/ki(φci), there exists an

inverse function hci such that

φci = hci(qci). (2.25)

An exponential [49] compliance versus actuation profile allows a VSA to attain a very

large range of elastic behaviors with only a small change in actuator position. The joint

compliance is given by
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qci = c0 exp(ξφci), (2.26)

where ξ and c0 are constants. The compliance actuator position, then, is given by

hci(qci) =
1

ξ
ln

(
qci
c0

)
. (2.27)

Because each VSA is independently controlled, the compliance actuator mapping function

is

hc(q) = [hc1(qc1), hc2(qc2), . . . , hcnp
(qcnp

)]T . (2.28)

2.3.4 Actuator Jacobian

Recall, that in our approach, joint motion is resolved by finding the minimum norm

actuator motion that realizes the desired task space motion and compliance adjustment. Below,

the pseudoinverse weighting matrix used in this redundancy resolution (RR) criterion is

constructed from the actuator Jacobian.

Assuming the mapping function h(q) is continuous and differentiable, the linear mapping

from the joint tangent space to the actuator tangent space is given by

φ̇ = Jφq̇, (2.29)

where Jφ = ∂h(q)/∂q is the actuator Jacobian matrix. The actuator Jacobian can be evaluated

column-by-column, taking the partial derivative on the actuator mapping function with respect to

each joint variable. If the actuator kinematic and compliance variables are independent, the

actuator Jacobian is partitioned as

Jφ =

∂hp(q)
∂qp

∂hp(q)
∂qc

∂hc(q)
∂qp

∂hc(q)
∂qc

 =

Jφpp
Jφpc

Jφcp Jφcc

 . (2.30)

Note that, for the VSAs considered, hc only uses compliance joint variables as inputs. As

such, the partition Jφcp
= 0. This contrasts with the task Jacobian where the diagonally opposite

component Jpc = 0.

The redundancy resolution criterion used to minimize the norm of the actuator velocities

is equivalent to minimizing the quadratic objective function:
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Ginst =
1

2
φ̇
T
φ̇. (2.31)

Substituting (2.29) into (2.31) yields

Glocal =
1

2
q̇TJTφJφq̇. (2.32)

Note that (2.32) and (2.4) have the same form. As such, the pseudoinverse weighting matrix is

selected to be

W(q) = JTφJφ. (2.33)

This selection of the weighting matrix minimizes the norm of the actuator velocity, while resolving

the inverse kinematics in joint tangent space.

The compliance extended weighted pseudoinverse is calculated by substituting (2.33) and

(2.13) into (2.6). This weighted pseudoinverse is used to solve the instantaneous compliance

extended RIK problem (RIKC problem). The procedure for integrating the instantaneous RIKC

solution for the whole (t = 0→ 1) task manipulation path is provided below.

2.4 Instantaneous Manipulation Planning Approach

Passive compliance control of redundant serial manipulators is implemented by executing

an actuator path containing the kinematic and compliance actuator positions for producing the

desired task manipulation path. In this section, a basic numerical procedure for generating the

actuation path is provided.

A summary of the weighted pseudoinverse RIK resolution approach is depicted in Fig. 2.3.

Three configuration spaces are relevant: 1) task space X, 2) joint space Q, and 3) actuator space

Φ. The desired task manipulation path x (t) ∈ X, including both position and compliance, is

provided as input to the procedure. The actuator path φ(t) ∈ Φ, needed for implementing passive

compliance control, is the output of the procedure.

If the manipulator were non-redundant, the actuator path could be directly calculated as

φ(t) = h(f −1(x (t))). For redundant manipulators considered here, a direct mapping f −1 : X→ Q

from the task space to joint space does not exist; J−1 does not exist either. However, an

admissible joint motion that produces the desired task motion is identified with the weighted

pseudoinverse J† which resolves redundancy by minimizing the actuator velocity norm. Joint space
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Figure 2.3: Instantaneous manipulation planning approach using the weighted pseudoinverse J†

at a single instant in time. User provided input is x (t) and procedure output is φ(t). Thick
straight arrows show the integration cycle to generate the joint path q(t). Solid straight arrows
show necessary calculations. Solid curved arrows represent mappings between spaces, whereas
dashed curved arrows with an × indicate non-existent mappings between spaces.

Q serves as an intermediary between task space and actuator space in which the inverse kinematics

(IK) and redundancy resolution (RR) problems are resolved at the differential level using the

weighted pseudoinverse.

The instantaneous manipulation planning approach uses the following steps:

1. Determine an admissible joint configuration q0 | f (q0) = x (t = 0), using an analytical

process [22] [23] [24][25] [26] [27] or search algorithm (denoted by A in Fig. 2.3).

2. Differentiate the task manipulation path with respect to normalized time to identify the

desired task motion ẋ (t).

3. Evaluate the compliance extended Jacobian J and the weighting matrix W = JTφJφ at the

current joint configuration. Evaluate the weighted pseudoinverse matrix J† using (2.6).

4. Identify the instantaneously optimal joint motion q̇(t) using (2.5).

5. Numerically integrate the joint motion using a small step size in t.

6. Determine the actuator path using the actuator mapping: φ(t) = h(q(t)).

The integration loop (Steps 2-5) repeats, drawing information from the task manipulation

path ẋ (t) each cycle until t = 1. Steps 2-5 describe the execution of (2.2) to generate the joint

manipulation path.
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The IK and RR problems are resolved in joint space rather than actuator space because

h−1 : Φ→ Q cannot be computed directly when gravitational loads are present; it may be

approximated, however, by iterative calculation [10]. Evaluating the Jacobian J−1
φ = ∂h−1(φ)/∂φ

is even more difficult. This difficulty prevents effective gravity compensation when the IK problem

is resolved in the actuator space. The joint motion and stiffness resolution method [32] resolves

the IK problem in the actuator space, but does not address gravity compensation (or redundant

kinematics as stated previously).

2.4.1 Additional Details

The basic instantaneous manipulation planning approach, shown in Fig. 2.3, may exhibit

drift in the task manipulation path due to the finite step size used in the integration. Drift may be

mitigated by using an adaptive time step, or by using the forward map f to evaluate task error

and correct the joint configuration using the Newton-Raphson method. The task error at each

time instance is evaluated as

xerr = (f (q)− x (t))T (f (q)− x (t)), (2.34)

where q is the current joint configuration at time t.

The algorithm presented in Fig. 2.3 does not address joint limits. Joint limits, however,

cannot be ignored for passive compliance control. Every joint must have a positive compliance

value regardless of the VSA design. The domain of qci is (−∞,∞) but the feasible subset is given

by qci ∈ [cmin, cmax], where 0 < cmin < cmax <∞ are the minimum and maximum compliances

afforded by the VSA. Although not presented in Fig. 2.3, joint limits are addressed using the SNS

algorithm [42], where redundancy is utilized to avoid joint limits only when the pseudoinverse

method would produce a limit-violating joint motion. The SNS algorithm is used between Steps 3

and 4. The SNS algorithm was modified to accommodate any positive definite weighting matrix

W, with this modification in J†SNS:

J†SNS = SW− 1
2 (JW− 1

2 S)#, (2.35)

where (·)# is the Moore-Penrose pseudoinverse and S is the saturation matrix (described in

Section 2.1.2).
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2.5 3R-VSA Manipulator Example

This section demonstrates the instantaneous manipulation planing approach for a 3R-VSA

manipulator performing a particle planar task. Complete descriptions of the manipulator and task

are provided. Details for constructing the compliance mapping function, compliance Jacobian, and

actuator mapping function are also provided. Two joint manipulation paths are generated using

different initial joint configurations.

Consider a 3R-VSA planar manipulator performing the particle planar constrained

manipulation task in Fig. 2.4. The manipulator has a total length (reach) of L and a total weight

of fg. The normalized link lengths are dimensionless proportions of the total length: l1 = 0.46,

l2 = 0.43, and l3 = 0.11, (anthropomorphic ratios [50]). The gravitational force experienced by

each link is expressed as proportions of the total weight fg. The weight of each link is proportional

to its length and its mass center is located at its geometric center as illustrated in Fig. 2.4.

The joint coordinates are given by

q = [qp1 , qp2 , qp3 , qc1 , qc2 , qc3 ]T .

The kinematic joint positions qp1 , qp2 , and qp3 are expressed in radians; qc1 , qc2 , and qc3 are joint

compliances normalized by fg. The normalized joint compliance matrix is

Cq =


qc1 0 0

0 qc2 0

0 0 qc3

 . (2.36)

The constrained manipulation task is to slide a block along a rigid surface and contact a

rigid wall. The block center is to follow the motion path given by

x p(t) =

0.3 + 0.4(t)

0.15

 , (2.37)

where, for normalized time, t = 0 at the start and t = 1 at the end of the task. The task path is

dimensionless, normalized by L.

Because the block is in contact with a horizontal rigid surface, the task compliance in the

vertical direction is high to limit the constraint force that may result from error in the commanded

vertical position of the task. In moving the block, friction is considered a disturbance impacting

the desired motion. The task compliance in the horizontal direction is low to limit the end-effector
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Figure 2.4: 3R-VSA manipulator and particle-planar task manipulation path. Four equally
spaced instants in time illustrate the continuous end-effector motion path x p(t) and the continuous
compliance manipulation path xc(t).

deflection from the planned path due to friction. The compliance in the horizontal direction

increases as the block approaches the wall to limit the interaction force from wall contact. In Fig.

2.4, the desired compliance ellipse (see Appendix A) is shown at four instants in time, where the

major and minor radii of the ellipse are eigenvalues of the task compliance matrix.

The time varying normalized task compliance matrix (task compliance normalized by

L/fg) is

Cx(t) =

 λ2

γ(t) 0

0 λ2

 , (2.38)

and the task configuration vector containing the upper triangular elements is

x c(t) =


λ2

γ(t)

0

λ2

 , (2.39)

where the larger eigenvalue is λ2 = 0.1 and γ = λ2/λ1 is the ellipse aspect ratio that transitions

from 10 to 1 according to the profile given by

γ(t) = 11− 10t. (2.40)
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The goal for implementing passive compliance control is to find an actuator path φ(t) that

executes the task manipulation path x (t) = [x p(t)
T ,x c(t)

T ]T . To do this, the compliance extended

RIK problem is instantaneously resolved to generate a joint path q(t).

As a first step in this process, the task forward mapping function f (q) and task Jacobian

J(q), needed in the compliance extended weighted pseudoinverse, are obtained below.

2.5.1 Mapping from Joint Space to Task Space

The task forward mapping functions are easily derived from the distal position of each link

relative to its joint position. Let pi = [pxi
, pyi ]

T be the position of link-i’s distal point (end-effector

or next joint) relative to joint-i’s position. For the manipulator in this case study:

pT1 = [l1 cos(qp1), l1 sin(qp1)]T (2.41a)

pT2 = [l2 cos(qp1 + qp2), l2 sin(qp1 + qp2)]T (2.41b)

pT3 = [l3 cos(qp1 + qp2 + qp3), l3 sin(qp1 + qp2 + qp3)]T (2.41c)

The forward kinematic mapping function is

f p(q) = p1 + p2 + p3. (2.42)

The kinematic Jacobian of this manipulator is found by taking the partial derivative of

(2.42) with respect to each kinematic joint coordinate. Because the forward kinematic function is

composed of sin and cos terms, ∂pxi/∂qk = −pyi and ∂pyi/∂qk = pxi , the resulting Jacobian is

Jpp =

0 −1

1 0

[(p1 + p2 + p3) (p2 + p3) p3

]
. (2.43)

This is also the geometric Jacobian (Jpp = J pp).

The forward compliance function f c(q) is readily obtained by substituting the kinematic

Jacobian matrix, (2.43), and the joint compliance matrix, (2.36), into (2.16).
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The compliance Jacobian matrix Jc is constructed one column at a time using (2.20)

substituted into (2.19). The partition Jcp is readily evaluated with the partial derivatives of the

kinematic Jacobian with respect to the kinematic joint variables:

∂Jpp
∂q1

=

[
− (p1 + p2 + p3) − (p2 + p3) −p3

]
, (2.44a)

∂Jpp
∂q2

=

[
− (p2 + p3) − (p2 + p3) −p3

]
, (2.44b)

∂Jpp
∂q3

=

[
−p3 −p3 −p3

]
. (2.44c)

Equations (2.44a-2.44c) are used in (2.20), for k = 1, 2, and 3 to construct the first three

columns of the compliance Jacobian, respectively. The last three columns, Jcc, are evaluated with

(2.21) and used in (2.20), for k = 4, 5, and 6.

The compliance augmented Jacobian relating augmented joint motion to augmented task

motion is sufficient for solving the instantaneous compliance extended inverse kinematics problem.

2.5.2 Mappings from Joint Space to Actuator Space

The actuator mapping and actuator Jacobian are defined below for gravity compensation

and for joint redundancy resolution according to the minimum norm actuator motion criterion.

From the joint configuration, the kinematic actuator mapping hp(q) is used to determine

the actuator configuration that yields the joint configuration at static equilibrium. At static

equilibrium, the external torques at each joint are balanced by the internal torque from the VSA

elastic element. The normalized external torque is given by

g(q) =


px1

2

(
px1

+
px1

2

) (
px1

+ px2
+

px3

2

)
0

px2

2

(
px2

+
px3

2

)
0 0

px3

2




0.46

0.43

0.11

 , (2.45)

where [0.46, 0.43, 0.11]T are the link weights normalized by fg. The kinematic actuator function

hp(q) is formed by substituting (2.45) and (2.36) into (2.24).

The VSAs of this example have an exponential compliance versus actuation profile like

that of [49]. The VSA actuation lower-limit φcmin
= 0 rad corresponds to the normalized joint

compliance lower-limit qcmin
= 0.001 and the VSA actuation upper-limit φcmax

= π/2 rad

corresponds to the normalized joint compliance upper-limit qcmax = 10. The compliance mapping
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function hci(qci) for each joint is given by (2.27). The constants ξ and c0 are uniquely determined

by the actuation and compliance limits, where ξ = 5.86 and c0 = 0.001.

The compliance mapping function is

hc(q) =

[
1

ξ
ln

(
qc1
c0

)
,

1

ξ
ln

(
qc2
c0

)
,

1

ξ
ln

(
qc3
c0

)]T
, (2.46)

when each joint is equipped with the same VSA.

The actuator Jacobian is calculated by Jφ = ∂h(q)/∂q and is evaluated one column at a

time similar to the task compliance Jacobian construction. The weighing matrix used in (2.6) is

W = JTφJφ. This weighing matrix resolves the redundancy by minimizing the norm of the actuator

motion.

2.5.3 Results

Instantaneously resolved joint paths using the weighted pseudoinverse are generated with

the numerical integration procedure presented in Section 2.4. An adaptive time step is used to

ensure that the task error (evaluated using 2.34 at each time step) associated with the numerical

integration is below a specified tolerance6 and that the numerically resolved joint motion

accurately follows the true instantaneously optimal path.

The first step in the procedure is to find an admissible initial joint configuration from the

initial task configuration using an analytical procedure (or search algorithm) denoted by A in Fig.

2.3. For the 3R manipulator considered here (described at the beginning of Section 2.5), the set of

admissible kinematic joint configurations is given by the analytical inverse kinematic solution of a

4-bar mechanism with the end-effector as a grounded joint at x (0). The orientation of the

end-effector, given by ψ = qp1 + qp2 + qp3 , is the self-motion parameter [51] that resolves the

kinematic joint configuration. There are two distinct kinematic self-motion manifolds

corresponding to the “elbow-up” pose and “elbow-down” pose, both are parametrized by ψ. The

results here consider the “elbow-up” pose. The joint compliance configuration is uniquely

determined by the desired task compliance and the kinematic joint configuration; formulas for the

joint compliance are presented in [22]. Therefore the admissible initial joint configuration is

completely defined by x (0) and ψ, where ψ defines the 1-dimensional set of admissible joint

configurations.

6xerr < 1 × 10−16 is used for all instantaneously resolved paths in this work.
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Consider two different initial joint configurations:

q0a
= [106◦,−149◦, 42.9◦, 0.187, 0.0676, 5.86]

T

which corresponds to the self motion parameter ψ0 = 0 rad, and

q0b
= [77.3◦,−121◦,−136◦, 0.111, 0.0840, 7.16]

T

which corresponds to the self motion parameter ψ0 = π rad.

From these starting configurations, the joint manipulation paths are generated by

integrating (2.2); the resulting paths are shown in Figs. 2.5 and 2.6. Figures 2.5a and 2.6a show

equally time-spaced snapshots of the manipulator performing the task, including the initial and

final task times. The color of each joint indicates the compliance actuator position φc for that

joint. Because joint 1 does not translate, its compliance actuator position is indicated by the

colored circles below the manipulator. Figures 2.5b and 2.6b show the continuous actuator

position profiles for the task.

The generated joint manipulation path strongly depends on the initial joint configuration.

Starting at q0a
, the manipulation path shown in Fig. 2.5a “pushes” the block to the wall, whereas

starting at q0b
, the manipulation path shown in Fig. 2.6a “pulls” the block to the wall. Both

actuator paths have smooth profiles and no compliance limits are encountered. The choice of a

exponential compliance versus actuation profile for the VSA behaves as a soft joint limit avoidance

criterion for the lower compliance limit, where greater actuator motion is required to produce a

change in compliance near the lower limit.

Figure 2.5a and 2.6a show the manipulator exactly tracking the task compliance when

there is no disturbance. Disturbance from uncharacterized friction would cause displacement of the

end-effector from the commanded task position. The joint configuration, would also be displaced,

yielding a slightly different task compliance because task compliance depends on joint kinematics.

Because the direction of undesirable forces is known for this task, the task compliance is designed

to be stiff in the direction of motion to keep the end-effector displacement small (as stated in this

example).

Small end-effector position error generally corresponds to small joint position error.

However, some joint configurations may result in a relatively large joint displacement for a small

end-effector displacement. Consider joint 3 at the beginning of the task in Fig. 2.5a, where friction

provides a “compressive load” on link 3. Because joint 3 has high compliance, a buckling
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Figure 2.5: 3R-VSA joint manipulation path, instantaneously generated starting at q0a
. a).

Stroboscopic image of the manipulator performing the task. The color of each joint indicates the
compliance actuator position. The compliance ellipse is shown at each snap-shot. b) Position
profiles of each joint’s kinematic and compliance actuator.

phenomenon may occur and cause significant joint deflection and therefore significant task

compliance error. The manipulation planning approach does not take this into account. However,

the buckling phenomenon is not present for the “pulling” scenario in Fig. 2.6.

2.6 5R-VSA Manipulator Example

This section demonstrates the instantaneous manipulation planning approach for a

5R-VSA manipulator. Two tasks are considered, a particle planar task, and a general planar task.

All joint paths are generated using the same starting joint configuration. Two joint paths are
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Figure 2.6: 3R-VSA joint manipulation path, instantaneously generated starting at q0b
. a).

Stroboscopic image of the manipulator performing the task. The color of each joint indicates the
compliance actuator position. The compliance ellipse is shown at each snap-shot. b) Position
profiles of each joint’s kinematic and compliance actuator.

generated for the general planar task using different redundancy resolution criteria.

Consider a 5R-VSA serial manipulator performing a task in the horizontal plane (no

gravity compensation required). The manipulator has a total length (reach) of L. The normalized

link lengths are dimensionless proportions of the total length: l1 = 0.4, l2 = 0.3, l3 = 0.15, l4 = 0.1,

and l5 = 0.05. The VSAs of this manipulator are the same used in Section 2.5. There are np = 5

kinematic joint coordinates, and nc = 5 compliance joint coordinates; the total number of joint

coordinates is n = 10. The total joint configuration is

q = [qp1 , qp2 , qp3 , qp4 , qp5 , qc1 , qc2 , qc3 , qc4 , qc5 ]T .
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Consider the linear transitioning task path:

x (t) = (1− t)x0 + txf (2.47)

where x0 is the end-effector kinematic and compliance configuration at t = 0, and xf is the

end-effector kinematic and compliance configuration at t = 1.

A particle planar task has mp = 2 kinematic task coordinates, mc = 3 compliance task

coordinates, and m = 5 total task coordinates; the degree of redundancy is r = n−m = 5. The

total task configuration is given by

x = [x, y, Cx11
, Cx12

, Cx22
]T ,

where (x, y) are the coordinates of the end-effector position relative to the base and the compliance

coordinates are elements of the 2× 2 compliance matrix:

Cx =

Cx11 Cx12

Cx12
Cx22

 . (2.48)

The particle planar task considered here has an initial configuration:

x0 = [0.1, 0, π/2, 0.1, 0, 0.1, 0, 0, 10]T

and a final configuration:

x1 = [0.5, 0, 0.05, 0, 0.05, π/2, 0, 0, 10]T .

A general planar task has mp = 3 kinematic task coordinates, mc = 6 compliance task

coordinates, and m = 9 total task coordinates; the degree of redundancy is r = n−m = 1. The

total task configuration is given by:

x = [x, y, Cx11
, Cx12

, Cx22
, ψ, Cx13

, Cx23
, Cx33

]T ,

where ψ is the orientation of the end-effector relative to the x-axis. The compliance coordinates

are elements of the 3× 3 compliance matrix:

Cx =


Cx11 Cx12 Cx13

Cx12 Cx22 Cx23

Cx13
Cx23

Cx33

 , (2.49)

where Cx33 is the rotational compliance.
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The general planar task considered here has initial and final configurations:

x0 = [0.1, 0, π/2, 0.1, 0, 0.1, 0, 0, 10]T

and

x1 = [0.5, 0, π/2, 0.05, 0, 0.05, 0, 0, 10]T ,

where there is no coupling between rotational and translational compliance.

Two redundancy resolution criteria are used. The first criterion is minimizing the actuator

velocity norm using the weighting matrix constructed from the actuator Jacobian. The second

criterion is minimizing the joint velocity norm using an identity weighting matrix. The second

criterion is used to show that instantaneous resolution methods need to account for joint limits

and that instantaneous resolution methods can fail to complete the task.

2.6.1 Results

An admissible initial configuration was found using the a mechanism construction

procedure [24] to find the unique 3R mechanism that realizes the 3 task compliance matrix. Two

more joints were added and the joint compliances were set to the lower limit. The

Newton-Raphson inverse kinematics method (extended to include compliance) was used to find the

nearby joint configuration that maintained the desired task position and compliance.

The initial joint configuration is: q0 = [qTp0 ,q
T
c0 ]T , where

qp0 = [62.7◦,−137◦,−46.0◦,−68.4◦,−82.7◦]T ,

and

qc0 = [4.85, 0.654, 0.337, 3.76, 0.396]T .

This joint configuration is used as the initial configuration for both the particle planar task and

the general planar task.

With q0 as the starting configuration, three joint manipulation paths are generated: 1) a

joint manipulation path satisfying the particle planar task using the minimum actuator velocity

norm criterion, 2) a joint manipulation path satisfying the general planar task using the minimum

actuator velocity norm criterion, and 3) a joint manipulation path satisfying the general planar

task using the minimum joint velocity norm criterion. The joint manipulation paths are shown in

Figs. 2.7, 2.8, and 2.9, respectively. Each figure show equally time-spaced snapshots of the

manipulator performing the task. The color of each joint indicates the compliance actuator
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position φc for that joint. The task compliance of of each task manipulation path is tracked

exactly. The realized particle planar compliance ellipse is shown at each instance. Rotational

compliance components are not illustrated, but were obtained for manipulation paths in Figs. 2.8,

and 2.9. Each figure also shows the continuous actuator position profiles for the task. The actuator

profiles are separated into different plots to better show actuator position change with time.

As discussed in the 3R-VSA manipulation paths, minimizing the actuator norm for an

exponential stiffness versus actuation relation behaves as a soft-joint limit criterion because greater

actuator motion is required to produce a change in compliance near the lower limit of the selected

VSA design. The joint manipulation paths in Figs. 2.7 and Fig. 2.8, generated using the minimum

actuator norm criterion, do not encounter joint limits. However, minimizing the joint velocity

norm does not demonstrate the soft-joint limit avoidance behavior. The joint manipulation path in

Fig. 2.9 encounters a joint limit at t = 0.037 where joint-3’s compliance reaches its minimum value.

At this point, the SNS algorithm [52] uses redundancy to remain inside the joint limits instead of

just minimizing the joint velocity norm. At time t = 0.570, the optimal joint velocity moves the

joint configuration away from the saturation limit.

The joint manipulation path Fig. 2.9 terminates prematurely at time t = 0.659, at which

point there is no admissible joint motion that advances the task. Figure 2.10 shows the condition

number of the total Jacobian matrix over the joint manipulation path. The rapid increase in the

condition number indicates that the total Jacobian matrix approaches a singularity. Although, the

deired task manipulation path can be realized (e.g., Fig. 2.8), the path started in Fig. 2.9 fails

because the minimum joint velocity norm criterion guided the instantaneously generated joint path

into a problematic region in the RIKC solution space.
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Figure 2.7: 5R-VSA joint manipulation path satisfying a particle planar task (r = 5),
instantaneously generated using the minimum actuator velocity norm criterion. a). Stroboscopic
image of the manipulator performing the task. The color of each joint indicates the compliance
actuator position. The translational compliance ellipse is shown at each snap-shot. b) and c)
Position profiles of each joint’s kinematic and compliance actuator.
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Figure 2.8: 5R-VSA joint manipulation path satisfying a general planar task (r = 1),
instantaneously generated using the minimum actuator velocity norm criterion. a). Stroboscopic
image of the manipulator performing the task. The color of each joint indicates the compliance
actuator position. The translational compliance ellipse is shown at each snap-shot. b) and c)
Position profiles of each joint’s kinematic and compliance actuator.
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Figure 2.9: 5R-VSA joint manipulation path satisfying a general planar task (r = 1),
instantaneously generated using the minimum joint velocity norm criterion. a). Stroboscopic
image of the manipulator performing the task. The color of each joint indicates the compliance
actuator position. The translational compliance ellipse is shown at each snap-shot. b) and c)
Position profiles of each joint’s kinematic and compliance actuator.
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Figure 2.10: Condition number of the total Jacobian over joint task manipulation path in Fig. 2.9.
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2.7 Chapter Summary

Passive compliance control is a strategy for regulating the contact forces present in

constrained manipulation tasks. Here, a desired task manipulation path consisting of desired robot

end-effector positions and end-effector compliances is implemented directly (without active control

using sensor feedback) using redundant serial manipulators with real-time adjustable joint

compliance. Actuator velocities were minimized to find the appropriate joint positions and joint

compliances for implementing the task manipulation path.

Joint manipulation paths that produce the desired time-varying end-effector position and

complinace were obtained by extending a standard redundant inverse kinematics (RIK)

instantaneous resolution approach to include compliance (RIKC). Joint compliances were resolved

simultaneously with the joint kinematics at the velocity level using the weighted pseudoinverse of

the total Jacobian matrix (includes the kinematic Jacobian and the compliance Jacobian).

Redundancy was resolved using the minimum norm actuator motion criterion, where the actuator

coordinates include kinematic actuators and compliance actuators. Gravity compensation and

joint limits were also addressed.

The instantaneous RIKC resolution method applies to any number of degrees of

redundancy. Instantaneously generated joint paths depend on the initial joint configuration, the

selected optimization criterion, and the presence of joint limits. Instantaneously generated joint

paths can be generated in real-time, but may fail to find a complete solution to the RIKC path

planning problem even when a solution exists.
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CHAPTER 3

OPTIMAL GLOBAL RESOLUTION OF THE REDUNDANT INVERSE
KINEMATIC PATH PLANNING PROBLEM WITH ONE DEGREE OF

REDUNDANCY

The redundant inverse kinematic and compliance (RIKC) framework presented in Chapter

2 used an instantaneous (velocity-based) resolution method to identify joint manipulation paths for

executing passive compliance control. The same framework can also be used with global resolution

methods for identifying an optimal joint manipulation path for passive compliance control. Current

global resolution methods do not identify the best joint path over the entire space of admissible

joint paths, but only within a neighborhood of admissible joint paths. This limitation is not widely

known. This chapter first describes the full scope of the optimal redundant inverse kinematic

(RIK) path planning problem and the relevant prior work. The remainder of the chapter describes

and demonstrates a new algorithm that identifies the globally optimal (best) joint path for RIK

path planning problems with one degree of redundancy. Because this is a contribution to the state

of the art in the RIK (kinematics only) path planning problem, compliance is not discussed here.

3.1 Introduction

Global resolution of the RIK path planning problem has been studied since the 1980’s [53]

[54] [55] [56] [57] [58]. Unfortunately, the terms used to describe the method of RIK resolution

conflict with terms used to describe conventional optimization. Prior work on finding “globally

optimal paths” present global resolution methods for finding a local minimum of the global cost

function. These methods, in general, do not yield the global minimum. The existence of multiple

locally optimal paths for the RIK path planning problem has been demonstrated in case studies

[56], in which multiple locally optimal paths are shown to exist in different homotopy classes. Joint

paths in different homotopy classes cannot be continuously deformed into each other without

violating the task path or the boundary conditions. The existence of multiple homotopy classes

complicates the problem of identifying the joint path that globally minimizes the global cost

function.
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Figure 3.1: An RIK solution space with two complete homotopy classes separated by a single
hole. Solid lines with circle endpoints are joint paths, dashed lines are self-motion paths, and
dotted lines are contours showing surface topography.

3.1.1 Optimal Paths and Homotopy Classes

Locally optimal joint paths depend on the feasible RIK solution space and the selected

boundary conditions. The RIK solution space is the set of joint configurations with end-effector

configurations on the task path. The RIK solution space is represented as a time-indexed sequence

of self-motion manifolds [51], which are sets (or groups of sets) of connected joint configurations

that yield the same end-effector configuration. The feasible RIK solution space is the subset of

realizable joint configurations that are within the hardware limits of the manipulator. A feasible

RIK solution space for r = 1 is illustrated by the shaded surface in Fig. 3.1a, where dotted contour

lines show the surface topography, dashed lines are feasible subsets of self-motion manifolds at

various task instances, and solid lines with circle endpoints are alternative joint paths.

The joint path endpoints must be on the self-motion manifolds of the task path endpoints,

regardless of the boundary conditions. For fixed boundary conditions, the endpoint joint

configurations are user selected based on some other criterion and the optimization is constrained

by them. For free (unconstrained) boundary conditions, the endpoint joint configurations are

determined by the optimization. In general, locally optimal paths with free boundary conditions

have lower global cost values than those with fixed boundary conditions. Paths a-f in Fig. 3.1a are

paths that locally minimize the global cost function (corresponding to the length of the joint path),

whereas path g is not locally optimal and path h is not a complete solution. The paths with free

boundary conditions (a-c) are typically shorter than those with fixed boundary conditions (d-f).

The number of locally optimal joint paths depends on the connectivity of the RIK solution

space and on its nonlinearities with respect to the global cost function.
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The connection structure of the feasible RIK solution space can be complex. A connected

subset of RIK solutions of a single task instance, as the task progresses, may 1) split (bifurcate)

into two disjoint subsets or 2) may vanish entirely (prematurely terminate). Bifurcation or

premature termination occurs in the RIK solution (feasible and infeasible) space at hyperbolic or

saturation singularities [59], respectively. A singularity is a joint configuration for which arbitrary

task motion is not possible. A hyperbolic singularity corresponds to saddle point in the RIK

solution surface where self-motion manifolds split or converge at the singularity. A saturation

singularity occurs at workspace boundaries, and is associated with self-motion manifolds reducing

to a point before vanishing. Bifurcation and premature termination in the feasible RIK solution

space is often associated with joint limits. The simple feasible RIK solution space in Fig. 3.1 shows

bifurcation points (×) where feasible self-motion subsets split or converge. It also shows a

premature termination point (⊗), where a feasible self-motion subset vanishes as the task

progresses.

The connectivity of the RIK solution space impacts the connectivity of the infinite set of

solution paths. The infinite set of possible joint paths is a collection of homotopy classes. The

number of homotopy classes increases with the number of bifurcations. As a progressing joint path

approaches a bifurcation point (e.g., × in Fig. 3.1) it must take one of two “branches” (each side of

the saddle or hole). Joint paths that take different branches cannot be continuously deformed into

each other. They are in different homotopy classes. For example, the paths on either side of the

hole in Fig. 3.1 cannot be deformed into each other without leaving the shaded surface.

When a large number of homotopy classes exist, it is highly unlikely that the globally

optimal path will be found without a multi-search strategy. Moreover, the obtained joint path may

not be the best path even in its own homotopy class.

Each homotopy class may have multiple locally optimal paths due to cost function

nonlinearities in the RIK solution space. This is illustrated in Fig. 3.1, where the hill in the surface

induces locally optimal paths on opposite sides of the hill. Unlike the paths separated by the hole,

joint paths on either side of the hill (e.g., paths a and b in Fig. 3.1) can be deformed into each

other along the feasible self-motion subsets.

Three levels of “optimal paths” are described in this chapter and illustrated by the joint

paths in Fig. 3.1:

1. A locally optimal path minimizes the global cost function such that any infinitesimal

deformation of the path yields a higher global cost value. It is the best path in a
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neighborhood of paths (e.g., paths a-c for free boundary conditions and paths d-f for fixed

boundary conditions).

2. A homotopy optimal path is the locally optimal path with the lowest global cost of all locally

optimal paths in its homotopy class. It is the best path in its homotopy class (e.g., paths a

and c for free boundary conditions and paths e and f for fixed boundary conditions).

3. A globally optimal path is the homotopy optimal path with the lowest global cost of all

homotopy optimal paths. It it the best path in the entire optimization domain (e.g., path c

for free boundary conditions and path f for fixed boundary conditions).

Prior work in RIK path planning has not identified systematic procedures for identifying

the best path when multiple homotopy classes exist or when multiple locally optimal paths exist in

a homotopy class.

3.1.2 Prior Work in Global Resolution

Global resolution of the RIK path planning problem is usually framed as an optimal

control problem which may be solved “indirectly” [53] [55] [56], “directly” [57] [58], or using

dynamic programming [60]. Dynamic programming requires a fixed boundary condition and

converges to the constrained globally optimal path, which is sub-optimal compared to the globally

optimal path with free boundary conditions.

The optimal control problem, for any type of boundary condition, is solved “indirectly” by

seeking to satisfy necessary conditions for optimality given by Pontryagin’s maximum principle

[53] or the Euler-Lagrange equation [55] [56]. If the optimal joint path does not encounter a joint

limit, it is the solution to a two-point-boundary-value problem. Shooting methods are frequently

used to solve these problems, but often suffer from numerical instability when the Euler-Lagrange

equation is stiff [61].

A more robust way to solve the optimal control problem, for any type of boundary

condition, is to solve it “directly” using nonlinear programming [62] where the joint path is

represented by a finite number of parameters (e.g., approximating the joint path with a spline

curve with a finite number of nodes [58]). The joint path is iteratively improved by descending the

gradient of the cost function with respect to the path parameters. This solution method requires

an initial joint path and iteratively deforms the path over the RIK solution space into a locally

optimal joint path.
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None of these approaches first identifies the set of homotopy classes in which the globally

optimal path may exist.

3.1.3 Prior Work in Homotopy Class Identification

Most work in homotopy class identification has addressed tasks without path constraints

[63] [64]. The set of homotopy classes can be described using a roadmap, a graph with nodes

corresponding to manipulator configurations and edges corresponding to feasible joint paths

generated with an instantaneous path planner (often referred to as a local path planner). The

discrete representation of a joint path is given by a route, a sequence of edges connecting nodes,

where the start and terminal nodes are configurations corresponding to the start and end of the

task. A discrete homotopy relation is used in [63] to simplify a roadmap such that each route

corresponds to a joint path in a different homotopy class.

Roadmap nodes are commonly generated by randomly sampling the joint space [65].

These nodes, in general, do not satisfy the task path constraints, but nearby configurations on the

task path can be found using Jacobian-based inverse kinematic methods [66] [67], or using

rapidly-exploring-random-trees (RRTs) [68] [67] [69] [70]. Note, RRTs use a local planner to build

the roadmap outward from existing nodes, whereas traditional roadmaps use an instantaneous

planner to find edges between existing nodes. The instantaneous planner is usually a linear motion

in the joint space that lifts off the nonlinear RIK solution surface resulting in task error between

the nodes. Therefore, the nodes must be close together to limit task error.

3.1.4 Approach

This chapter presents a 5-step algorithm for finding the globally optimal joint path

satisfying a specified task path for manipulation with one degree of redundancy. The process

involves: 1) decomposing the task into a set of sub-tasks, 2) finding multiple sub-optimal paths for

each sub-task, 3) deforming these sub-optimal paths into multiple locally optimal solutions of the

sub-tasks, 4) strategically concatenating sub-task solutions to obtain sub-optimal complete

solutions, and 5) deforming these sub-optimal complete solutions into locally optimal complete

solutions. The algorithm yields a set of many locally optimal paths that are continuous, smooth,

and satisfy the equality constraints of the task path. The locally optimal path within this set

having the lowest global cost is very likely, but is not guaranteed, to be the globally optimal path.



52

The algorithm first decomposes the task into sub-tasks by dividing the complete task path

at instances when feasible self-motion paths bifurcate (split or converge) or prematurely terminate.

Each sub-task RIK solution space has a relatively simple connection structure and is bounded by:

1) self-motion paths associated with the bifurcation points, 2) self-motion paths associated with

the complete task endpoints, or 3) premature termination points. The connectivity of these

sub-task RIK solution spaces is characterized by a new directed graph called the bifurcation

branch roadmap (bb-roadmap). Each node of the bb-roadmap is a self-motion path of a sub-task

endpoint (a self-motion path of either a bifurcation point or a complete task endpoint) or a

premature termination point. Each edge of the bb-roadmap is a sub-task homotopy class (a

homotopy class of joint paths that satisfy the sub-task). The number of sub-task homotopy classes

in a single sub-task depends on whether the self-motion paths are open paths, or if they are closed

manifolds (loops). For RIK solution spaces with open self-motion paths (e.g., Fig. 3.2a), there is

only one sub-task homotopy class per sub-task and only one edge connecting the associated nodes

(as in Fig. 3.2b). RIK solution spaces with closed self-motion manifolds, however, may have

multiple sub-task homotopy classes per sub-task. Each route through the bb-roadmap (sequence of

edges connecting endpoint nodes) corresponds to a (complete task) homotopy class and every

relevant homotopy class has a corresponding route. If there is no complete route though the

bb-roadmap, there is no solution to the RIK path planning problem (no feasible joint path satisfies

the complete task path).

The remaining steps of the algorithm alternate between using a path planner based on

instantaneous RIK resolution to obtain sub-optimal paths within desired sub-task homotopy

classes and using a “direct” global RIK resolution method to deform the sub-optimal paths into

locally optimal paths. The final step, in which complete paths are deformed into locally optimal

paths, requires the most computation time, especially when there are many homotopy classes to

investigate. The bifurcation branch algorithm uses an upper/lower bound method to eliminate a

large number of homotopy classes that cannot contain the globally optimal path. For problems

with many bifurcation points, the set of homotopy classes considered in the final step is reduced by

a factor of 100 or more.

3.1.5 Chapter overview

This chapter presents an algorithm called the bifurcation branch algorithm (bb-algorithm)

for identifying the globally optimal path for the optimal RIK path planning problem involving
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Figure 3.2: An RIK solution space and the bifurcation branch roadmap (bb-roadmap)
characterizing its connection structure. a) RIK solution surface with self-motion in the horizontal
direction and task progress in the vertical direction. b) Corresponding bifurcation branch
roadmap. Each self-motion path of a complete task endpoint correspond to endpoint bb-nodes
(white circles). Each self-motion path touching a bifurcation point (×) is split into two separate
paths (dashed and dashed-dotted lines). These paths correspond to bifurcation branch bb-nodes
(black circles). Premature termination points (⊗) are also used as bb-nodes. Homotopy classes of
joint paths connecting sub-task endpoint self-motions correspond to directed edges (arrows).

multiple homotopy classes. Section 3.2 reviews relevant background of the RIK path planning

problem. Section 3.3 describes the five steps of the bb-algorithm in greater detail. Section 3.4

describes the bifurcation branch roadmap (bb-roadmap) and identifies the homotopy classes for

different RIK solution space structures with closed self-motion manifolds (no joint limits). Section

3.5 describes the instantaneous path planner used to generate sub-optimal joint paths in each

homotopy class. Section 3.6 describes the procedure used to deform sub-optimal joint paths into

locally optimal paths. Section 3.7 demonstrates the algorithm for a case study in which the

number of homotopy classes is very high and the globally optimal path cannot be found using

traditional methods. Section 3.8 summarizes the results.

3.2 Technical Background

This section reviews the technical background and terminology associated with the

optimal redundant inverse kinematic (RIK) path planning problem.

3.2.1 Terminology

Path - A path in a topological space A is a continuous map a(ρ) : I→ A, where I is the unit

interval [0, 1], ρ ∈ I is the indexing parameter, a(0) is the start point, and a(1) is the terminal
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point.

Three types of paths are used in this paper:

1. a task path x (t) : I→ X,

2. a joint path q(t) : I→ Q, and

3. a self-motion path q(ψ) : I→ Q.

Task paths and joint paths are both parameterized by normalized time t denoting task

progress, but are in different topological spaces; X is the m-dimensional task space and Q is the

n-dimensional joint space. Joint paths and self-motion paths are in the same topological space Q,

but are parameterized differently. A self-motion path corresponds to a connected set of joint

configurations yielding the same end-effector configuration in task space. The self-motion

parameter ψ is orthogonal to t.

Path homotopy - A path-homotopy is a continuous mapping H(t, ψ) : I × I→ Q, such that

H(t, 0) = q0(t) and H(t, 1) = q1(t), where q0(t), q1(t) : I → Q are arbitrary paths with the same

endpoints1. A path homotopy describes the deformation of the joint path along self-motion paths.

Homotopy Class (of a joint path) - The homotopy class of a joint path q(t) is the set of all joint

paths for which a path homotopy to q(t) exists.

3.2.2 Optimal Redundant Inverse Kinematic Path Planning Problem

Recall from Chapter 2, the forward mapping function f (q) : Q→ X defined the

relationship between the joint configuration q ∈ Q of the manipulator and the task configuration

x ∈ X of its end-effector. For redundant manipulators (n > m) the mapping is not one-to-one and

the RIK path planning problem does not have a unique solution. An admissible joint path can be

obtained using instantaneous resolution (Ch. 2). The optimal redundant inverse kinematic path

planning problem is to find the unique2 best joint path, solving:

min. Gglobal(q(t))

s.t. f (q(t)) = x (t)

qmin ≤ q(t) ≤ qmax,

(3.1)

1The definition of path homotopy extends to paths with “free” endpoints as long as the “free” endpoint is path-
connected to the original endpoint. In this context, free endpoints are path connected along self-motion paths.

2In RIK path planning problems with symmetry, two or more joint paths may “tie” for best path.
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with optional boundary conditions, where qmin and qmax are lower and upper limits of the joint

coordinates, and Gglobal(q(t)) is the global cost function.

A common choice for the global cost function is the integral of an instantaneous cost

function:

Gglobal(q(t)) =

∫ t=1

t=0

Ginst(q(t), q̇(t)) dt. (3.2)

Higher order differential terms (e.g., q̈) are not considered in this work.

A common choice of boundary conditions are “fixed” boundary conditions:

q(0) = q0 and q(1) = qf

in which the initial and final joint configurations are specified joint configurations q0 and qf ,

respectively. If the task path is cyclic, it is common to use periodic boundary conditions:

q(1) = q(0) and q̇(1) = q̇(0)

in which the initial and final joint configurations are the same and the initial and final joint

velocities are the same. Using “free” boundary conditions communicates that the optimization

(3.1) is not constrained by boundary conditions and the optimization is “free” to select the

endpoint joint configurations.

A locally optimal joint path can be found using “direct” methods by deforming an initial

joint path (a required input). An initial joint path can be obtained using instantaneous RIK

resolution. The number of locally optimal joint paths obtained using global resolution depends on

the RIK solution space structure.

3.2.3 RIK Solution Space Structure

The domain of the optimization is the feasible RIK solution space, where the RIK solution

space is a sequence of sets of self-motion manifolds for every x ∈ x (t) [51] given by

f −1(x) =

ns⋃
i

Mi(ψ) (3.3)

where ns is the number of disjoint self-motion manifolds Mi(ψ), and ψ is a set of self-motion

parameters ψ = {ψ1, ψ2, . . . , ψr} (r is the degree of redundancy). For RIK problems with one

degree of redundancy (r = n−m = 1), each self-motion manifold is a 1-dimensional path q i(ψ).
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The portions of the self-motion paths within the joint limits are feasible self-motion paths. The

feasible RIK solution space is the collection of all feasible self-motion paths at each instance in

time.

Technically, the manifold description of the preimage (3.3) is only valid for regular values,

not critical values or coregular values [51], where

• a regular value is a task configuration x for which its preimage does not contain a singularity.

• a singularity is a joint configuration qs for which the Jacobian matrix is rank deficient, i.e.,

rank(J(qs)) < m,

• a critical value is a task configuration xs for which its preimage is a singularity, i.e.,

f −1(xs) = qs, and

• a coregular value is a task configuration xcr for which its preimage contains both singular

and non-singular joint configurations. For r = 1, the preimage of a coregular value is a

collection of coregular self-motion paths, but not manifolds.

The connectivity of self-motion manifolds of different task points is investigated in [51] by

identifying homotopy classes of self-motion manifolds (as opposed to a homotopy class of joint

paths)3. The workspace of the manipulator is divided into W -sheets, such that the self-motion

manifolds of all task configurations within a W -sheet are in the same homotopy class (i.e., the

self-motion manifolds can be continuously deformed into each other). Each W -sheet is a connected

set of task configurations bounded by critical or coregular values. Critical values xs exist at the

workspace boundaries, whereas coregular values xc exist at the interface between neighboring

W -sheets. The RIK path planning problem is much simpler when the task is inside a single

W -sheet for which the number of homotopy classes of joint paths (joint limits aside) is equal to the

number of self-motion manifolds of the W -sheet. For task paths that cross coregular values, the

self-motion manifolds do not deform continuously over the task, but bifurcate, resulting in a more

complicated RIK solution space structure with multiple locally optimal paths.

3.3 Bifurcation Branch Algorithm

The existence of many locally optimal solutions to the RIK path planning problem greatly

increases the difficulty of obtaining the globally optimal path. This section describes the

3A path homotopy of joint paths describes a continuous deformation of a joint path over self-motion paths. A
path homotopy of self-motion paths describes a continuous deformation of a self-motion path over a task path.
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Figure 3.3: The states of the bifurcation branch algorithm. States are shown on a simplified
abstract RIK solution space, after each step. The steps are: 1) generate the bb-roadmap, 2)
generate a configuration roadmap of initial joint paths. 3) deform initial paths of sub-tasks into
locally optimal paths with free boundary conditions, 4) join locally optimal paths together into a
refined configuration roadmap, and 5) deform the complete initial paths into locally optimal paths.

bifurcation branch algorithm (bb-algorithm) that overcomes this difficulty for RIK problems with

one degree of redundancy.

The algorithm is referred to as the bifurcation branch algorithm because it strategically

uses the self-motion paths (branches) associated with the bifurcation points to effectively search

the RIK solution space. The algorithm finds the globally optimal path using 5 steps. The steps are

illustrated in Fig. 3.3 on a simple RIK solution space with open feasible self-motion paths in the

horizontal direction and task progress in the vertical direction.

Step 1: Decompose the task into sub-tasks by dividing the task path at instances when

feasible self-motion paths bifurcate (split or converge) or vanish. Points of bifurcation and

vanishing associated with singularities are quickly identified numerically using known the

geometric conditions of the singularities. Points of bifurcation and vanishing associated with joint

limits are quickly identified numerically using a boundary edge path planner (described in Chapter

4.) Each sub-task path has endpoints that correspond to either a bifurcation point, or a task

endpoint, or a premature termination point (not present in Fig. 3.3). The feasible RIK solution

space of each sub-task is separated into regions covered by a single homotopy class and bounded at

the sub-task endpoints by a feasible self-motion path (horizontal dashed or dashed-dotted lines in

Fig. 3.3a). Each self-motion path is the largest possible, non-overlapping, feasible self-motion path

that does not cross a bifurcation point. The endpoints (bounds) of each feasible self-motion path is

either a bifurcation point or a joint configuration at the edge of the feasible subspace of the
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self-motion manifold. If the sub-task endpoint corresponds to a premature termination point, the

feasible self-motion “path” is a single joint configuration that is the premature termination point.

The complete feasible RIK solution space is the union of the sub-task solution spaces. The

connection structure is characterized by a new directed graph called the bifurcation branch

roadmap (bb-roadmap). Figure 3.3a is a projection of the bb-roadmap onto the solution surface.

Roadmap nodes are shown as self-motion horizontal lines. Directed edges are shown as double

lined arrows pointing in the direction of forward task progress.

The bb-roadmap is constructed by identifying each bifurcation point and premature

termination point and identifying the number and structure of self-motion manifolds (and of the

feasible self-motion paths on them) before and after each of these points. The structure of a

1-dimensional self-motion manifold is either open or closed. The number and structure of

self-motion manifolds before and after each bifurcation point provides critical information about

how the bifurcation impacts the number of homotopy classes of joint paths. Section 3.4 provides

this process for RIK solution spaces with one or two closed self-motion manifolds at each regular

value task instance. The task instances of bifurcations and premature termination associated with

singularities are quickly and deterministically identified using known geometric conditions for

kinematic singularities and coregular values of the manipulator. Continuous self-motion paths

associated with each bb-node are generated with a self-motion path planner.

If a complete route through the bb-roadmap (a sequence of edges connecting a task start

node to a task end node) does not exist, then there is no solution to the RIK path planning

problem. If there is one or more complete routes, the globally optimal joint path solving the RIK

problem is identified using the following steps.

Step 2: Generate sub-optimal joint paths for each sub-task homotopy class using

instantaneous RIK resolution. Conventional instantaneous resolution does not control the terminal

endpoint joint configuration and therefore cannot control the homotopy class of the joint path.

The bb-algorithm uses a new instantaneous path planner that bi-directionally generates a joint

path between two specified endpoint joint configurations. The endpoint joint configurations are

sampled from the self-motion paths of the associated bb-nodes. Complete homotopy classes cannot

include sub-task homotopy classes associated with premature termination. Therefore, bb-nodes

that are premature termination points or bb-nodes connected to a premature termination point by

an edge are not relevant. The result of Step 2 is a configuration roadmap superimposed on the

bb-roadmap, where each node is now a specific joint configuration and each edge is a specific joint
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path connecting two configuration nodes. The path that joins the specific configurations is

generated using a modified instantaneous RIK resolution approach.

Because each sub-task homotopy class can have multiple locally optimal paths, multiple

sub-optimal paths are generated by connecting different combinations of sampled node

configurations. Figure 3.3b shows each bb-node with two sampled configurations (solid circles),

and four initial joint paths (solid lines) in each sub-task homotopy class. Actual implementation

uses three or more sampled joint configurations, equally spaced over the self-motion path, with two

of the samples very close to the self-motion path bounds (i.e., near feasible limits or near

bifurcation points).

Step 3: Deform the sub-optimal joint paths in each relevant sub-task homotopy class

(obtained in Step 2) into locally optimal joint paths with free boundary conditions (solid lines with

open circle endpoints in Fig. 3.3c). Because the RIK solution subspace corresponding to the

sub-task homotopy class has relatively simple structure, with enough sampled points in Step 2, it

is very likely that all the locally optimal joint paths of sub-tasks are found. The best path among

all locally optimal paths in the same sub-task homotopy class is the sub-task homotopy optimal

path. However, all of these locally optimal paths are important because they capture different

regions of the RIK solution space of lower global cost. The globally optimal path of the complete

task path will likely pass near some of these regions. This step is important for effectively

searching the RIK solution space.

The locally optimal paths of adjoining sub-task homotopy classes do not have the same

endpoint configurations and therefore cannot be combined into a continuous joint path, as shown

by the discontinuous network of paths in Fig. 3.3c. A lower bound cost for the homotopy optimal

path of each (complete task) homotopy class is obtained by summing the costs of the

corresponding sequence of sub-task homotopy optimal paths.

Step 4: Generate a refined configuration roadmap that uses the locally optimal paths of

sub-task homotopy classes as edges. The locally optimal paths of every other sub-task homotopy

class in the sequence of sub-tasks are joined together using instantaneous path planning as shown

by the dashed lines in Fig. 3.3d. The result is a refined configuration roadmap, in which each

route through the roadmap is continuous, smooth, and satisfies the task constraints (equality and

inequality constraints in (3.1)).

Step 5: Deform the sub-optimal joint paths of the refined configuration roadmap routes

into locally optimal complete joint paths. The best of these paths is deemed to be the globally
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optimal joint path. Starting with the joint path from Step 4 with the lowest cost, this joint path is

deformed into a locally optimal joint path. The cost of this locally optimal path is then used as an

upper bound cost for the globally optimal path. Any homotopy class with a lower bound cost

greater than the upper bound cost cannot contain the globally optimal path and is removed from

the set of homotopy classes considered in this step. Only paths in promising homotopy classes are

deformed into locally optimal paths. For tasks with many bifurcations, the set of promising

homotopy classes considered is reduced by a factor of 100 or more, saving computation time

associated with the path deformation procedure.

A “direct” optimal control method (based on nonlinear programming) is used to deform

each sub-optimal complete path into a locally optimal complete path. The bb-algorithm uses a

new “direct” method that reformulates the global resolution problem (3.1) into a reduced-order

problem using self-motion paths. The modified direct method used in the bb-algorithm ensures the

path deformation reliably converges to a locally optimal path within the same homotopy class and

does not “jump” to a different homotopy class, which is of great concern, especially for

sub-optimal paths passing near bifurcation points.

3.4 Bifurcation Branch Roadmap

Characterization of the manipulator’s self-motion manifolds at all points on the task path

precedes the construction of the bifurcation branch roadmap. The bb-roadmap for open

self-motion manifolds with bifurcations caused by joint limits (like the RIK case illustrated in Fig.

3.2) has a relatively simple structure.

This section presents the more complex bb-roadmaps associated with manipulators with

different numbers of closed self-motion manifolds (one or two depending on the task

configuration). The bb-roadmaps presented here identify the more complex bifurcation structure

caused by singularities at coregular values as opposed to those caused by joint limits. The impact

of the coregular values on the RIK solution space structure is illustrated as well as their impact on

the number of homotopy classes. The impact of crossing a single coregular value is quite different

from crossing two coregular values. A method for quickly constructing the bb-roadmap of a

general task that crosses many coregular values is introduced.
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Figure 3.4: RIK solution space of a task path crossing a coregular value at time tc. Solid paths
are self-motion manifolds at different time instances. The coregular self-motion path intersects
itself at the singularity; it is separated into a dashed line path qa(ψ) and dashed-dotted line path
qb(ψ). The 2 heavier solid lines with an arrows are joint paths qa(t) and qb(t); they cannot be
continuously deformed over the surface into each other.

3.4.1 Tasks Crossing a Single Coregular Value

Consider a task path crossing a single coregular value, starting at a task configuration

with one self-motion manifold, qS(ψ), and terminating at a task configuration with two

self-motion manifolds, qTa
(ψ) and qTb

(ψ). The RIK solution surface of the task is illustrated in

Fig. 3.4, where each solid line corresponds to a self-motion manifold (a connected set of joint

configurations that yield the desired end-effector position at a specified time). As the task

progresses, the self-motion manifold experiences a structural change at time tc when the task path

crosses the coregular value. The solution space structural change is due to a coregular self-motion

path that is self-intersecting, shown by the dashed and dashed-dotted lines forming a figure-eight.

The intersection point is a kinematic singularity, at which the Jacobian matrix is rank deficient

and the dimension of the null space increases.

A singularity associated with a coregular value has hyperbolic characteristics [59]

corresponding to a saddle point in the RIK solution space, as illustrated by the × in the center of

Fig. 3.4. Joint paths qa(t) and qb(t) are on different sides of the saddle. Joint path qa(t) cannot

be continuously deformed along the self-motion manifolds into qb(t). As such, qa(t) and qb(t) are

in different homotopy classes.
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Figure 3.5: Bifurcation branch roadmap of a task path crossing a single coregular value. a) The
roadmap of a task starting with 1 self-motion manifold and terminating with 2 self-motion
manifolds. b) The roadmap of a task starting with 2 self-motion manifolds and terminating with 1
self-motion manifold.

Because joint paths cannot be deformed across a singularity, the coregular self-motion

path is treated as two distinct open paths, qa(ψ) and qb(ψ), with endpoints adjacent to (but not

including) the singularity. Feasible self-motion paths that are adjacent to each other at the

bifurcation point are called bifurcation branches. The homotopy class of qa(t) and qb(t) directly

depends on which of the two bifurcation branches (dashed or dashed-dotted lines in Fig. 3.4) is

crossed. This bifurcation is captured in the bifurcation branch roadmap, where qa(ψ) and qb(ψ)

are associated with bifurcation nodes.

The bb-roadmap of the RIK solution space of Fig. 3.4 is given by Fig. 3.5a, where white

nodes correspond to regular self-motion paths at task endpoints, black nodes correspond to

coregular bifurcation branches, and directed edges (arrows) correspond to sub-task homotopy

classes connecting the nodes. Figure 3.5a corresponds to a single self-motion manifold bifurcating

into two self-motion manifolds, whereas Fig. 3.5b corresponds to two self-motion manifolds

converging into one self-motion manifold (such as the task of Fig. 3.4 with time reversed). There

are two routes4 that traverse the roadmap in Fig. 3.5a: 1) [S, a, Ta] and 2) [S, b, Tb], and two routes

that traverse the roadmap in Fig. 3.5b: 1) [Sa, a, T ] and 2) [Sb, b, T ].

As a general task progresses, the self-motion manifolds alternate between splitting and

joining at coregular values. Given the open manifolds of Fig. 3.3, one might assume that the

number of homotopy classes, as the task progresses, doubles only at coregular values which split

the self-motion manifolds. This assumption is not valid for closed self-motion manifolds as shown

below.

3.4.2 Tasks Crossing Two Coregular Values

For a task path crossing two coregular values, consider the solution space between (and

including) the coregular values. The task path passes through a single W -sheet. As such, the

4Routes can also be represented as a sequence of nodes (as opposed to a sequence of edges) when there is only
one homotopy class of joint paths between nodes.



63

h = 0

h = 1

h = -1

aS

bS

aT

bT

A+

B+

B-

A-

a. b.

S
� ( ) � 

b

T
� ( ) � 

b

S
� ( ) � 

a

T
� ( ) � 

a

�
A(�) 

�
B(�) 

+

+

+

Figure 3.6: Structure of the RIK solution space for a task within a W -sheet with two self-motion
manifolds. a) The RIK solution surface, two cylinders with “pinched” ends. Dashed and
dash-dotted lines represent coregular self-motion paths and singularity connection paths used as
roadmap nodes. b) Roadmap where black nodes are coregular self-motion paths of the bifurcation
branches and gray nodes are crossings of a singularity connection path. Each route identifies a
unique homotopy class.

self-motion manifolds of the interior task points are closed paths, homotopic to each other, but

they are not homotopic to the coregular self-motion paths that are open paths. The structure of

the RIK solution space for the task depends on the number of self-motion manifolds of task

configurations inside the W -sheet. The bifurcation branch roadmap for W -sheets with two

self-motion manifolds (Case RC2) is simpler than that for one (Case RC1) and is presented first.

Case RC2

For a task path through a W -sheet with 2 self-motion manifolds, the RIK solution space

has the structure of Fig. 3.6a with two disjoint cylinders, each with “pinched” ends, joining only at

the pinch points. The pinching effect is illustrated in the bottom cylinder by the three self-motion

manifolds (solid closed curves, but dotted when the curve is hidden behind another surface). As a

self-motion manifold approaches a coregular self-motion path, the smooth curve is “pinched” to

have a sharp corner at the singularity.

Consider a joint path starting in coregular self-motion branch qSa
(ψ). The joint path

necessarily terminates in the coregular self-motion path qTa
(ψ). The joint path may travel along

the cylinder “directly” or by “wrapping around” the cylinder clockwise or counter-clockwise, as

illustrated by the solid/dotted lines with arrows at the terminal endpoint in Fig. 3.6a. These paths

are homotopically distinct because they cannot be continuously deformed into each other due to

the sharp corner at the singularity.
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The homotopy class of a joint path can be identified using the following method:

1. Identify a singularity connection path, a path over the RIK solution space that connects the

singularities at each end of the task. For some cases, a path may be obtained from the

inverse kinematic solution of an equivalent non-redundant mechanism with two twists

(columns of the Jacobian matrix) constrained to be linearly dependent.

2. Assign a positive and negative direction for crossing the singularity connection path.

3. Identify all instances at which the joint path crosses the singularity connection path, keeping

track of the crossing direction. (This information may be identified using root finding.)

4. Beginning with h = 0, for each crossing of the singularity connection path; h = h+ 1 for a

positive crossing, or h = h− 1 for a negative crossing. The net-value of h, along with start

and terminal coregular bifurcation branches, identifies the homotopy class of the joint path.

The h value of each path along the top cylinder is shown in Fig. 3.6a.

The RIK solution space of Fig. 3.6a has two singularity connection paths qA(t) and qB(t),

one on each cylinder. The self-motion path on the lower cylinder with the arrow shows the

assigned positive direction for crossing qB(t).

The roadmap5 in Fig. 3.6b completely captures the homotopy classes for this case. Gray

nodes indicate the direction in which a singularity connection path is crossed. The node letter (A,

B) identifies which path and the superscript sign (+, −) identifies the crossing direction. Cycles in

the roadmap identify joint paths with self-motion cycles. For example, the route containing one

cycle: [Sa, A
+, A+, Ta], corresponds to a path with hA = 2 that makes at least one full self-motion

cycle, but less than two self-motion cycles.

Because it is extremely unlikely that the globally optimal path for any fixed endpoint

combination would contain a full self-motion cycle, the bb-algorithm uses a simplified roadmap

without gray nodes associated with self-motion cycles. The bb-roadmap of this case is shown in

Fig. 3.8e, where each edge corresponds to a homotopy class without a self-motion cycle. There are

6 different homotopy classes, 3 for each starting node. Each bb-edge number in Fig. 3.8e has a

corresponding node sequence (summarized in Table 3.1).

Case RC1

For a task path through a W -sheet with a single self-motion manifold, the RIK solution

space has the structure of Fig. 3.7a (one cylinder with “pinched” ends). The pinching effect is

5This roadmap is a bb-roadmap prior to its simplification. It identifies all homotopy classes, including those with
full-cycle self-motions.
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Table 3.1: Homotopy Classes of RC2

Edge in Fig. 3.8e Node Sequence in Fig. 3.6b

1 Sa, Ta

2 Sa, A+, Ta

3 Sa, A−, Ta

4 Sb, Tb

5 Sb, B
+, Tb

6 Sb, B
−, Tb

a. b.
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Figure 3.7: Structure of the RIK solution space for a task within a W -sheet with one self-motion
manifold. a) The RIK solution surface, a cylinder with “pinched” ends. b) Roadmap where black
nodes are coregular self-motion paths and gray nodes are crossings of a singularity connection
path. Each route identifies a unique homotopy class.

illustrated by the three self-motion manifolds (solid/dotted closed curves). As a self-motion

manifold approaches a coregular self-motion path, the manifold becomes pinched and eventually

two opposite points on the manifold join.

Unlike the previous case in which two singularity connection paths existed in separate RIK

solution surfaces, this case has two singularity connection paths (qA(t) and qB(t)) on the same

RIK solution surface.

Consider a joint path starting in a given coregular self-motion branch, qSa
(ψ). As in the

previous case, a “direct” joint path to qTa
(ψ) exists (h = 0) . Unlike the previous case, the joint

path here may also travel to the other coregular self-motion branch, qTb
(ψ) by crossing singularity

connection path qA(t) or qB(t), as illustrated in the example paths in Fig. 3.7a.
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Table 3.2: Homotopy Classes of RC1

Edge in Fig. 3.8f Node Sequence in Fig. 3.7b

1 Sa, Ta

2 Sa, A+, B+, Ta

3 Sa, B−, A−, Ta

4 Sa, A+, Tb

5 Sa, B−, Tb

6 Sb, Tb

7 Sb, A
−, B−, Tb

8 Sb, B
+, A+, Tb

9 Sb, A
−, Ta

10 Sb, B
+, Ta

The roadmap in Fig. 3.7b completely captures the homotopy classes for this case.

Removing the self-motion cycles yields the bb-roadmap of this case, shown in Fig. 3.8f, where each

edge corresponds to a unique homotopy class. There are 10 different homotopy classes, 5 for each

starting node. Each bb-edge number in Fig. 3.8f has a corresponding node sequence (summarized

in Table 3.2).

3.4.3 General Tasks

Consider a general task path that crosses multiple coregular values. The task is divided at

the coregular values into a series of sub-task paths.

The bifurcation branch roadmap of a general task is a concatenation of the sub-task

bb-roadmaps shown in Fig. 3.8. Each sub-task roadmap is labeled RSw , RTw , or RCw , where w is

the number of distinct self-motion manifolds of the W -sheet containing the sub-task path, the

superscripts S, T , and C correspond to start, terminal, and coregular endpoints, respectively.

The sub-task bb-roadmaps are always combined at the coregular self-motion nodes. For

example, the simple bb-roadmap in Fig. 3.5a is constructed by combining RS1 (Fig. 3.8a) and RT2

(Fig. 3.8b). For a general task, the sub-task roadmaps alternate between w = 1 and w = 2. If the

task has free boundary conditions, the first sub-task roadmap is RSw and the last sub-task

roadmap is RTw . If the task has periodic boundary conditions, for path planning purposes, the

start point can be selected to be at a coregular value such that every sub-task roadmap is RCw .

The number of homotopy classes for a general task path is given by the number of

admissible routes through the bb-roadmap. For cyclic tasks, when periodic boundary conditions
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Figure 3.8: Bifurcation branch roadmaps of sub-tasks bounded by coregular values or a complete
task endpoint. a-d) Sub-task bb-roadmaps with regular self-motion manifolds of a task endpoint.
e-f) Sub-task bb-roadmaps with coregular self-motion paths at both endpoints.

are required, the start and terminal joint configuration must be in the same coregular self-motion

branch. For free boundary conditions, there is no constraint on the start or terminal self-motion

node, and because the bb-roadmap is symmetric, the number of homotopy classes is

NH = 2

K−1∏
k=2

Nh(Rk), (3.4)

where K is the number of sub-tasks in a complete task sequence, and Nh(Rk) is the number of

homotopy classes per start node in the kth sub-task. For the sub-task roadmaps for closed

manifolds considered above, Nh = 3 for RC2 , and Nh = 5 for RC1 . The number of homotopy

classes is independent of the type of sub-task roadmaps for k = 1 and k = K. The total number of

homotopy classes increases rapidly as the number of coregular value crossings increases.

3.4.4 Generating Node Descriptions

Nodes of the bb-roadmap correspond to continuous self-motion paths. These paths must

be mathematically defined so that representative samples of joint configurations can be obtained.

Some redundant robots have analytical expressions for identifying self-motion paths of

bb-nodes. However, most robot structures do not have an analytical self-motion parameter that is

valid over the entire workspace of the robot [71]. For this reason a “natural” parametrization

corresponding to arc length on the joint configuration manifold is used to define the self-motion

path.

The self-motion path q(ψ) for a closed manifold is numerically generated starting from an

initial joint configuration q = q0 at ψ = 0. The instantaneous direction of the self-motion path at
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a joint configuration is identified by the null space of the Jacobian matrix, which is a vector for

RIK problems with r = 1 and when the joint configuration in non-singular. A finite joint motion

along the null space is identified using:

∆qN = W−1/2n̂∆ψd, (3.5)

where n̂ is the unit null space vector of the Jacobian matrix of the current joint configuration q

and ∆ψd is the desired arc length step size. (Because the positive definite weighing matrix W is

used to identify the weighted norm squared, the square root of W is used to identify a joint motion

weighted norm with a magnitude equal to the arc length step size.)

A new joint configuration q′ ≈ q + ∆qN is refined using the Newton-Raphson method to

eliminate task error. The arc length distance traveled in that step is estimated using

∆ψ =
√

∆qTW∆q, (3.6)

where ∆q = q′ − q. For small arc length step sizes ∆ψd ≈ ∆ψ.

The new joint configuration q′ at ψ + ∆ψ is saved in a self-motion sequence. The current

joint configuration is updated q′ → q and the process repeats until a termination criterion is

reached. Four useful criteria are: 1) when a joint limit is encountered, 2) when a singularity is

encountered, 3) when the initial joint configuration is encountered again, 4) or when a maximum

arc length is traveled. The first three criteria are identified using the distance estimate (3.6), where

∆q is the difference between the current joint configuration of the self-motion path and the nearest

joint configuration or interest, i.e., 1) nearest joint configuration with a saturated limit, 2) nearest

singular joint configuration, or 3) initial joint configuration q0. Criterion 1 is relevant if joint limits

are present; Criterion 2 is relevant if the task configuration is a coregular value; Criterion 3 is

relevant for closed self-motion manifolds; and Criterion 4 is used to prevent infinite path

generation of an open unbounded self-motion manifold.

The self-motion path, numerically generated as a sequence of configurations, is converted

into a continuous path using a cubic spline fit.

For coregular self-motion paths, the singularity configuration, identified by a known

geometric condition, is used as the initial point. However, (3.5) is not valid at the singularity,

because the null space of the Jacobian is not a vector. The two directions for feasible finite

self-motion must be identified using another method such as that presented in [72] or using an

analytical parametrization. Once two nearby configurations are identified by taking a small step in
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the identified directions, the coregular self-motion paths can be generated using the method

described above. Two paths are generated (e.g., qa(ψ) and qb(ψ) in Fig. 3.4), each path returns to

the singularity.

3.4.5 Roadmap Construction Discussion

The bifurcation branch roadmap (bb-roadmap) depends on global characteristics of the

manipulator, namely, the characterization of the self-motion manifold and the conditions for

kinematic singularities and coregular values. When this information is available, the bb-roadmap

of a general task path is easily constructed for RIK problems without joint limits.

The only analysis required for constructing the bb-roadmap for a general task is

identifying the number of coregular values and the number of self-motion manifolds of task points

between them. The coregular values can be identified numerically by finding the roots of geometric

conditions associated with the coregular values (see example in Section 3.7). The number of

complete homotopy classes is immediately identified as the number of complete routes through the

bb-roadmap.

When the conditions for coregular values are known, the time instances of the coregular

values along the task path are identified using root finding. The self-motion paths of the bb-nodes

at these task instances, along with the task endpoints, are generated using the self-motion path

generation method described above.

3.5 Bi-directional Instantaneous Path Planner

This section introduces a new instantaneous path planner used in the bifurcation branch

algorithm in two different steps. It is used first in Step 2 to generate a path from a sampled

configuration on one bb-node to a sampled configuration on an adjoining bb-node. The

instantaneous planner ensures that the generated path is in the appropriate sub-task homotopy

class.

The instantaneous path planner is again used in Step 4 in alternating sub-tasks to connect

the terminal endpoint of one locally optimal path to the starting endpoint of another locally

optimal path. The instantaneous path planner ensures that the concatenation of instantaneously

generated paths with locally optimal paths yields a complete joint path that is continuous and

satisfies the task constraints.
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3.5.1 Path Calculation

Recall from Chapter 2, an instantaneously resolved joint path is generated by

q(t) = q0 +

∫ t=1

t=0

q̇(t) dt, (3.7)

where q0 is the starting joint configuration and q̇(t) is the joint velocity at task time t. The joint

velocity is instantaneously resolved to satisfy the task path x (t) using

q̇(t) = J†(q(t))ẋ (t) + P(q)q̇N , (3.8)

where q̇(t) is the optimal admissible joint velocity for the current joint configuration q(t), J† (a

function of the current joint configuration) is the weighted pseudoinverse of the Jacobian matrix,

and P = (I− J†J) is a matrix that projects the “preferred” joint velocity q̇N into the null space of

the Jacobian matrix. The Saturation in the Null Space (SNS) algorithm is used to accommodate

inequality constraints associated with joint limits (see Chapter 2).

The bb-algorithm uses an instantaneous path planner that bi-directionally integrates (3.8),

in which a non-zero “preferred” joint motion q̇N is used and continuously updated to guide the

generated joint paths to meet.

Consider the desired endpoint joint configurations qA and qB at times tA and tB ,

respectively. The bi-directional planner simultaneously generates a forward-growing joint path

qa(τ) starting at qa(0) = qA and a backward-growing a joint path qb(τ) starting at qb(0) = qB by

integrating

q̇a(τ)

q̇b(τ)

 =

 J†(qa)ẋ (τ + tA) + s(τ)P(qa)q̇N

J†(qb)(−ẋ (tB − τ))− s(τ)P(qb)q̇N

 (3.9)

over τ ∈ [0, (tA + tB)/2] where, s(τ) is a monotonic scaling function that ranges from 0 to 1 over τ .

The preferred joint motion q̇N is a direct motion in the joint space from path qa(τ)’s current

terminal point qa to path qb(τ)’s current terminal point qb given by

q̇N =
qb − qa

(tB − tA)− 2τ
. (3.10)

The scaling function s(τ) is used to cause the paths to meet. At the start of paths qa(τ)

and qb(τ), the instantaneous joint motion minimizes the weighted joint velocity norm. By the end



71

of the path generation, the joint motion is selected to go directly to the updated terminal point of

the other path to connect the paths.

The resulting joint path is

qa→b(t) =


qa(t− tA), for tA ≤ t ≤ tA+tB

2

qb(tB − t), for tA+tB
2 < t ≤ tB .

(3.11)

The joint path is continuous if the terminal points of qa(τ) and qb(τ) are identical. The

joint paths smoothly connect when s(τ) approaches 1 with a slope of zero. For instance, s(τ) may

be a cubic-spline with slopes clamped at zero.

For RIK solution spaces with open feasible self-motion paths, each sub-task has a single

sub-task homotopy class that is a simply connected space. Because the bi-directionally generated

paths qa(τ) and qb(τ) are in a simply connected subspace, they are guaranteed to meet.

3.5.2 Challenges for Closed Self-Motion Manifolds

For RIK solution spaces with closed feasible self-motion paths, the bi-directionally

generated paths qa(τ) and qb(τ) generated over a sub-task can fail to meet by terminating at

opposite ends of the mid-task self-motion manifold. Failure of the paths to meet occurs under rare

conditions when there is symmetry in the RIK solution space and in the starting joint

configurations. In practice, the paths almost always meet. However, because there are multiple

sub-task homotopy classes for each sub-task, the sub-task homotopy class in which the generated

path exists is not directly controlled.

The sub-task homotopy class of the generated joint path is identified based on the net

crossings of the relevant singularity connection path(s). This information can be obtained using

root finding when the singularity connection path is generated with the inverse kinematic solution

of an equivalent non-redundant mechanism with two twists (columns of the Jacobian matrix)

constrained to be linearly dependent.

A single use of the bi-directional path planner between two fixed points generally finds the

“direct” path through the RIK solution space between coregular values. However, finding paths

that cross a singularity connection path, may require additional control. To control which

singularity connection path is crossed, an intermediate point is selected on the relevant singularity

connection path and two paths are generated (start to intermediate and intermediate to terminal)

and pieced together.
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3.5.3 Piecewise Construction of Complete Initial Paths

A complete initial joint path through the RIK solution space is constructed by piecing

together instantaneously generated paths or locally optimal paths (of sub-tasks) associated with

the route edges of the configuration roadmap produced in Step 4 of the bb-algorithm. Locally

optimal paths are used from every other sub-task homtopy class starting from either the first

sub-task homotopy class or from the second sub-task homotopy class. The decision on the starting

sub-task is made such that the greatest number of locally optimal paths are used.

Consider a route with four sequentially connected sub-task homotopy classes A, B, C and

D, each in a different adjoining sub-task. Let A and C be the sub-task homotopy classes with the

greatest number of locally optimal paths. The bidirectional instantaneous path planner is used to

generate a path qB(t) ∈ B to connect the terminal point of a locally optimal path qA(t) ∈ A to

the starting point of a locally optimal path qC(t) ∈ C. The piecewise concatenated joint path

qABC(t) = [qA(t), qB(t), qC(t)] is continuous.

Depending on the selected boundary conditions, a joint path qD(t) ∈ D generated by

using either the normal (single-direction integration) instantaneous resolution approach or by

using the bi-directional path planner. If the RIK problem has free boundary conditions, path

qD(t) is generated using normal instantaneous resolution, starting at the terminal point of qC(t).

The terminal point of qD(t) is determined by the instantaneous optimization criterion. If the RIK

problem has fixed boundary conditions, qD(t) is generated using the bi-directional path planner to

connect the terminal point of qC(t) to the fixed endpoint configuration. If the RIK problem has

periodic boundary conditions, qD(t) is generated using the bi-directional path planner to connect

the terminal point of qC(t) to the starting point point of qA(t).

The concatenated joint path qABCD(t) = [qA(t), qB(t), qC(t), qD(t)] is a continuous joint

path that exactly satisfies the complete task path and satisfies the selected boundary conditions.

Additional joint paths in the same complete task homotopy class are obtained by connecting

different combinations of locally optimal paths qA(t) ∈ A and qC(t) ∈ C. These paths are then

deformed into a locally optimal joint paths using a path deformation procedure.

3.6 Path Deformation Procedure

This section describes the procedure used for deforming a sub-optimal joint path into a

locally optimal joint path. Although the procedure is restricted to problems with one degree of
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Figure 3.9: Joint path deformation on an RIK solution surface. The initial joint path (thick
dashed line) is discretized (large dots). The configurations (dots) are moved along the self-motion
paths (thin solid lines), and the deformed path (thick solid line) is approximated with a cubic
spline through the large dots.

redundancy, it reliably converges to a locally optimal joint path even if a very high degree of

deformation is required. The procedure also ensures that the joint path will remain in the same

homotopy class. The method is applicable for fixed, free, and periodic boundary conditions.

Given an initial joint path q0(t) for the task path x (t), a locally optimal path is found

using the following steps:

1. Discretize the initial joint path into a set of k configurations with corresponding time indicies:

q0(t)→


q01

q02
. . . q0k

t1 t2 . . . tk.

 (3.12)

This set of joint configurations should include joint configurations associated with the

bb-nodes: the joint configurations at task endpoints and the joint configurations intersecting

any bifurcation branches. Additional joint configurations between bb-nodes are included to

accurately approximate the task path.

2. For each joint configuration q0i
, (i ∈ [1, 2, . . . , k]), generate a self-motion path

q i(ψi) | f (q i(ψi)) = x (ti), q0i
∈ q i(ψi), where ψi ∈ [ψimin

, ψimax
] is a bounded self-motion

parameter. Bounds ψimin and ψimax are determined by the joint limits, bifurcation points, or

a prescribed value. The self-motion paths are generated by integrating (3.5).

3. Select the optimization parameters as positions on the bounded self-motion paths

ui ∈ [ψimin , ψimax ]. Every self-motion path parameter (i 6= 1, k), is an independent

optimization parameter ψi → ui. If the task endpoint (i = 1, k) has a free boundary
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condition, then ψi → ui. If the boundary condition is fixed, ψi is a fixed value (e.g., ψi = 0).

If the boundary conditions are periodic, then ψ1 → u1 and ψk = u1.

4. Use nonlinear programming (NLP), such as an interior-point algorithm, to solve:

min. Gglobal(q(u, t))

s.t. umin ≤ u ≤ umax,

(3.13)

where q(u, t) is a joint motion path expressed as a cubic-spline with k nodes defined by u

(the set of optimization parameters). For periodic boundary conditions, the start and

terminal slopes of the joint path spline are constrained to be the same to enforce continuity

in the joint velocities.

The novelty in this modified direct approach is the use of self-motion paths rather than

using equality constraints in the optimization to ensure the joint path tracks the task path. This

approach also reduces the number of dimensions needed to specify the joint configurations and

allows for large, nonlinear deformation of the path in each iteration of the NLP solver. Because

self-motion paths of bifurcation branches are used, the NLP solver can deform the path arbitrarily

close to a bifurcation point (e.g., singularity) without crossing it. Also, because the self-motion

paths are parameterized by arc length on the joint configuration manifold, the objective function is

not highly sensitive to changes in the optimization parameters. The algorithm is therefore both

fast and reliable and it is incapable of “jumping” to a different homotopy class (provided that the

path is approximated with a sufficient number of nodes).

The self-motion paths generated in Step 2 of the path deformation procedure are generated

bi-directionally outward from the initial joint configuration q0i
. One step of the self-motion path

generation is illustrated at q01
in Fig. 3.9. Starting at the base-point, there is a “positive” motion

direction given by n̂ and a “negative” motion direction given by −n̂. The self-motion sampled

configurations are generated in both directions until bounds are reached at ψimax and ψimin .

To reduce computation time in the generation of the self-motion paths, a maximum arc

length s along the self-motion manifold is specified such that ψimax
≤ s and ψimin

≥ −s. If the

NLP solver converges to a joint path that does not touch a self-motion bound at s or −s, the

resulting path is locally optimal. If the NLP solver converges to a path that touches a prescribed

self-motion bound at s or −s, the resulting path is used as an initial path and Steps 1-4 are

repeated until a locally optimal path is reached.
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The equality constraints of the task path are accounted for by the self-motion paths.

These constraints are satisfied at the discrete points, but not between them. The actual task error

of a joint path is evaluated using

xerr =

∫ t=1

t=0

(x (t)− f (q(u, t))
T

(x (t)− f (q(u, t))dt, (3.14)

where the numerical integration uses a mesh at least 20 times more dense than the joint path

discretization. If the task error exceeds a specified threshold value, more nodes are added to u,

those self-motion paths are evaluated, and the interior-point algorithm is restarted.

3.7 Case Study

This section demonstrates the bifurcation branch algorithm (bb-algorithm) for finding the

globally optimal joint path for a 3R manipulator executing particle planar task paths. Joint limits

are not present in this example. First, the self-motion and singularity characteristics are described

to show that the sub-task roadmaps presented in Section 3.4 are valid for any task path in the

manipulator’s workspace. Next, the RIK solution spaces of three simple tasks are presented. These

tasks have solution space structures like those in Figs. 3.4, 3.6, and 3.7. Lastly, a complex task

path is presented for which there is a very high number of homotopy classes and the globally

optimal path found using the bb-algorithm is not found using traditional methods.

3.7.1 Manipulator

Consider the 3R planar manipulator depicted in Fig. 3.10 performing particle planar tasks.

The normalized link lengths (dimensionless proportions of its total length L) are l1 = 0.4, l2 = 0.3,

and l3 = 0.26, the same proportions used in [56]. The manipulator configuration is described by

q = [q1, q2, q3]T as illustrated in Fig. 3.10.

Each joint motion q̇i is controlled by an actuator motion φ̇i related by a transmission

ratio: φ̇i = ρiq̇i. Consider identical actuators for each joint, but with different transmission ratios,

ρ1 = l1 + l2 + l3, ρ2 = l2 + l3, ρ3 = l3, each based on the total link length beyond the joint. The

instantaneous cost function for minimizing the actuator velocity norm is 1
2‖φ̇‖

2 = 1
2 q̇TWq̇, where
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Figure 3.10: A 3R manipulator configuration in its workspace. The workspace is divided into
W -sheets bounded by coregular values. Task points in W -sheets 2 and 4 have a single self-motion
manifold, while task points in W -sheets 1 and 3 have two disjoint self-motion manifolds.

W =


ρ2

1 0 0

0 ρ2
2 0

0 0 ρ2
3

 . (3.15)

The global cost function is

Gglobal(q(t)) =

∫ t=1

t=0

1

2
q̇(t)TWq̇(t) dt. (3.16)

The 3R manipulator configuration is singular if all three links are aligned. The

singularities internal to the workspace have joint configurations at q = [q1, π, 0]T , q = [q1, π, π]T ,

and q = [q1, 0, π]T , with any value for q1. These singular cases yield end-effector configurations

(coregular values) at distances d1 = |l1 − l2 − l3|, d2 = |l1 − l2 + l3|, and d3 = |l1 + l2 − l3| from

the base. The set of coregular values bounding the W -sheets are identified by the dashed rings in

Fig. 3.10.

W -sheet 1 has two closed self-motion manifolds corresponding to the kinematics of a

double-crank 4-bar mechanism with “elbow-up” and “elbow-down” poses. W -sheet 3 has two
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closed self-motion manifolds corresponding to the kinematics a crank-rocker 4-bar mechanism with

“elbow-up” and “elbow-down” poses. W -sheet 2 and W -sheet 4 each have one closed self-motion

manifold that corresponds to the kinematics of a 4-bar mechanism that cannot be fully driven by a

single input link.

Each W -sheet is bounded by a W -sheet with a different number of self-motion manifolds.

As such, for an arbitrary task path in the workspace, all regular task configurations have either

one or two closed self-motion manifolds, and the number changes whenever a coregular value is

crossed. The sub-task bifurcation branch roadmaps for closed self-motion manifolds presented in

Section 3.4 are used in this case study.

3.7.2 Relatively Simple Tasks

Tasks 1, 2, and 3, shown in Fig. 3.10, were selected to show important features of the

bb-algorithm and to illustrate real RIK solution spaces having the structural characteristics

described in Section 3.4. Task 1 has a bifurcation singularity with a saddle point easily visible on

its RIK solution space (the same structure as Figs. 3.4). Task 2 has the same RIK structure as

Fig. 3.6 and has multiple locally optimal joint paths (and multiple within the same homotopy

class), all of which are found by the bb-algorithm. Task 3 has the same RIK structure as Fig. 3.7

and is used to show multiple sub-optimal joint paths in different homotopy classes, each generated

using the bi-directional instantaneous path planner.

Task 1

Task 1 in Fig. 3.10 crosses a single coregular value. It starts at a task instance with one

self-motion manifold qS(ψ) and ends at a task instance with two self-motion manifolds qTa
(ψ), and

qTb
(ψ). The RIK solution space is shown as a sequence of self-motion manifolds in Fig. 3.11, where

Fig. 3.11a is a top view, and Fig. 3.11b is a trimetric view. The top view looks like the structure

in Fig. 3.4, in which the coregular self-motion (bold curve) is self-intersecting. The self-motion

paths at time values after the coregular value, are pairs of “elbow-up”and “elbow-down”

manifolds. These self-motion paths do not look like closed curves in Fig. 3.11b, but they are closed

because when the manipulator performs a self-motion cycle, it returns to the same configuration

after traveling 2π over q3. The self-motion paths at time values before the coregular value are

closed curves in Fig. 3.11b and are only shown for a single instance, though there are multiple

instances separated by 2π over each joint coordinate qi. For task paths crossing multiple coregular
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Figure 3.11: The RIK solution space of Task 1 shown as a sequence of self-motion paths. a)
topview. b) trimetric view. Thin curves are regular self-motion paths. Thick curves are coregular
self-motion paths.

values, it is important to account for equivalent self-motion manifolds separated by 2π over qi.

Task 2

Task 2 in Fig. 3.10 crosses two coregular values and there are two disjoint self-motion

manifolds for task points between the coregular values. The portion of the task between the

coregular values has an RIK solution space with the same structure as that shown in Fig. 3.6 (if

the “cylinders” in Fig. 3.6 were cut at the singularity connection paths and unrolled). Task 2,

however, extends beyond the coregular values to better show different homotopy classes.

The RIK solution space of Task 2 is shown in Fig. 3.12. A joint path starting in the single

self-motion manifold qS(ψ) can either pass through coregular self-motion q1a
(ψ) or q1b

(ψ). A

joint path passing through q1a
(ψ), must also pass through q2a

(ψ) traveling through the

“elbow-up” RIK solution space. The dashed and dashed-dotted lines in Fig. 3.12 are the

singularity connection paths obtained from reduced inverse kinematics constraining q3 = π to

make twists 2 and 3 linearly dependent. There are two inverse kinematic solutions; one solution

traces the singularity connection path on the “elbow-up” solution space and the other solution

traces the singularity connection path on the “elbow-down” solution space. Both singularity

connection paths are shown in two instances, separated by a difference of 2π in q3.
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Figure 3.12: The RIK solution space of Task 2. The shaded regions are disconnected solution
spaces for the sub-task between the coregular values. Thin curves are regular self-motion paths.
Thick curves are coregular self-motion paths or locally optimal joint paths depending on the label.
Dashed and dashed-dotted lines are singularity connection paths.

Four locally optimal paths (qa(t), qb(t), qc(t), qd(t)) are shown on the RIK solution

surface in Fig. 3.12. These paths were obtained using the bb-algorithm. Two of these paths, qb(t),

and qc(t), do not cross the singularity connection path and are in the same homotopy class. It is

easily seen that each task point in qb(t) can be deformed along the self-motions into qc(t). Paths

qa(t) and qd(t) cross the singularity connection path in different directions; qa(t) crosses the

singularity connection path with an increasing q3 value, whereas qd(t) crosses the singularity

connection path with a decreasing q3 value. Although qa(t), qb(t), and qd(t) terminate in the

same self-motion manifold qT (ψ), they terminate in manifolds separated by 2π in q3. These paths

cannot be continuously deformed into each other.

Task 3

Task 3 in Fig. 3.10 has task endpoints at coregular values, all other task configurations are

inside W -sheet 4 and have a single self-motion manifold. The RIK solution space for this task is

illustrated in Fig. 3.13 and has the same general structure as that of Fig. 3.7. Smooth joint paths
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Figure 3.13: The RIK solution space of Task 3. Thin curves are regular self-motion paths. Thick
curves are coregular self-motion paths or joint paths. Dashed and dashed-dotted lines are
singularity connection paths.

qa(t), qb(t), and qc(t) are generated using the bi-directional path planner, each starting from a

joint configuration at the midpoint of the coregular self-motion path. Each of these paths has the

same starting configuration and the same initial joint motion, but each tangentially diverges into a

different homotopy class.

Path qa(t) is a “direct path” connecting q1a
(ψ) to q2a

(ψ) it does not cross a singularity

connection path. The dashed and dashed-dotted lines in Fig. 3.13 are the two singularity

connection paths corresponding to reduced inverse kinematic solutions, where link 1 is oriented to

point to the end-effector location (twists 1 and 3 are linearly dependent). There are two inverse

kinematic solution cases corresponding to “wrist-up” and “wrist-down” cases of the two distal

links. Paths qb(t) and qc(t) connect q1a
(ψ) to q2b

(ψ), but are in separate homotopy classes

because they travel different directions around the solution surface, crossing different singularity

connection paths.

Because of the symmetry of the solution space, attempting to bi-directionally generate a

path between the midpoints of q1a
(ψ) and q2b

(ψ) yields bi-directionally generated paths that fail
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to meet, terminating at opposite ends of the same self-motion manifold. An intermediate point on

the singularity connection path is used with the bi-directional path planner to control which way

the joint path goes around the solution space.

3.7.3 General Task

Here the best locally optimal joint paths found by using the bifurcation branch algorithm

(bb-algorithm) are compared to the best path found using a traditional multi-start method.

The multi-start method generates sub-optimal joint paths by integrating (3.8) with

q̇N = 0 from multiple equally spaced admissible joint configurations at the task start point. These

sub-optimal paths are then deformed into locally optimal paths.

Consider a complex task with free boundary conditions and the path shown in Fig. 3.14

(defined by a cubic-spline) that crosses 12 coregular values. The bifurcation branch roadmap is

constructed by linking 13 sub-task roadmaps (of Fig. 3.8) in the following order:

RS1
1 , RC2

2 , RC1
3 , RC2

4 , RC1
5 , RC2

6 , RC1
7 ,

RC2
8 , RC1

9 , RC2
10 , R

C1
11 , R

C2
12 , R

T1
13

The total number of homotopy classes (without self-motion cycles in a single W -sheet),

calculated using (3.4), is 4,556,250. The number of promising homotopy classes is reduced to 5,626

using the upper/lower bound method described in Sec. 3.3. Each initial joint path in the

promising homotopy classes was deformed into a locally optimal path. The best of these, identified

as the globally optimal path, has a cost value of 40.0 (evaluated using (3.16)).

Figure 3.14a shows snapshots of the manipulator tracking the best joint path found using

the bifurcation branch algorithm. To avoid image clutter, the top image only shows the first half of

the task and the bottom image only shows the second half of the task.

A multi-start method was used to generate 1,000 velocity-based (instantaneous)

sub-optimal paths starting from equally spaced configurations on the starting self-motion

manifold. The costs of the initial paths ranged from 57.3 to 140.7. Each path was deformed into a

locally optimal joint path using the path deformation procedure described in Section 3.6 (using

k > 50 sampled configurations to define the cubic spline of the joint path and using a task error

threshold of 10−9). With these inputs/tolerances, the path deformation procedure took about 250

times more computation time than the instantaneous path planner. The set of 1000 sub-optimal
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Figure 3.14: Stroboscopic image of the manipulator performing the best joint paths found using:
a) bb-algorithm, and b) multi-start method (11th best path found by the bb-algorithm). The top
images show manipulation of the first half of the task, the bottom images show manipulation of
the second half of the task.

paths converged to a set of 7 unique locally optimal paths, each in a different homotopy class. The

cost values of these locally optimal paths ranged from 44.7 to 67.6. The best path of these paths is

shown in Fig. 3.14b. It is the same as the 11th best path found by the bifurcation branch

algorithm. The bb-algorithm found 10 unique locally optimal paths that have lower cost values

than the best path obtained from a rigorous multi-start method. The bb-algorithm took about 6

times longer than the multi-start method and found a joint path 10 percent better. Even with a

very large number of seeds (starting configurations), the multi-start method failed to identify the

globally optimal path.

The cost rates of the best paths found using the two methods are shown in Fig. 3.15. The

best path (found by the bb-algorithm) requires that the manipulator switch from an “elbow-up”

pose to an “elbow-down” pose over sub-task 7 (RC1
7 ) in W -sheet 4. However, crossing from q6a

(ψ)

to q7b
(ψ) requires more joint motion as indicated by the higher cost rates in the middle of the

tasks relative to the 11th best path, which remains in the “elbow-up” configuration. Although, the
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Figure 3.15: Cost Rates of the best joint paths found by the bifurcation branch algorithm and the
multi-start method (11th best path found by the bifurcation branch algorithm).

multi-start optimal path has lower cost rates during the middle of the task (0.22 < t < 0.66), it has

higher cost rates at time greater than 0.66. The higher global cost value is reflected in Fig. 3.14,

which shows greater joint motion for the multi-start optimal path during the second half of the

task.

Paths generated using instantaneous optimization cannot find the homotopy class of the

globally optimal path because they are unable to make local sacrifices to reap better returns later

in the task.

3.8 Chapter Summary

This chapter presented an algorithm more capable than traditional methods for finding

the globally optimal path of a redundant manipulator performing a task with a defined path. The

globally optimal path is found using a custom “direct” method for solving optimal control

problems. To find the globally optimal path, the direct solver must be initialized with a

sub-optimal joint path in the same homotopy class as the globally optimal path. The homotopy

class of the globally optimal joint path, however, can be extremely difficult to find without

high-level knowledge of the solution space. The bifurcation branch algorithm identifies all

homotopy classes for a task using high-level knowledge of the solution space, generates sub-optimal

joint paths in each homotopy class, and deforms them into locally optimal paths. The set of

possible homotopy classes in tasks with multiple bifurcations is reduced to a much smaller set of

promising homotopy classes that are evaluated in detail.
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CHAPTER 4

OPTIMAL GLOBAL RESOLUTION OF PASSIVE COMPLIANCE CONTROL
WITH ONE DEGREE OF REDUNDANCY

This chapter addresses finding the optimal sequence of actuator commands for redundant

serial manipulators with variable stiffness actuators (like that in Fig. 4.1) capable of passive

compliance control. The compliance extended redundant inverse kinematic (RIKC) framework

presented in Chapter 2 is combined with the bifurcation branch algorithm presented in Chapter 3

to identify the globally optimal joint path for manipulation with one degree of redundancy in the

combined kinematic and compliance RIKC solution space.

4.1 Introduction

The bifurcation branch algorithm efficiently searches the entire feasible RIK(C) solution

space (set of realizable joint configurations yielding end-effector configurations on the task path)

using the bifurcation branch roadmap (bb-roadmap). The bb-roadmap is briefly reviewed below,

the challenges of constructing the bb-roadmap for RIKC problems are discussed, and a chapter

overview is provided.

� 

� 

� 

��1  

��2  

��1  

��2  

��3  

��3  

Figure 4.1: Planar serial manipulator with variable stiffness actuators (VSAs). For each joint i,
the primary actuator controls the kinematic joint position qpi and the VSA controls the joint
compliance qci .
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4.1.1 Bifurcation Branch Roadmap

The bifurcation branch roadmap (bb-roadmap) is a directed graph that compactly

characterizes the connectivity of the RIK(C) solution space. Each node of the bb-roadmap is a

feasible self-motion path of either a task endpoint, a bifurcation point, or a premature termination

point. Each edge of the bb-roadmap is a homotopy class1 of joint paths that satisfy the portion of

the task path between the nodes. Each route (sequence of edges connecting a task start node to a

task terminal node) corresponds to a different homotopy class of joint paths solving the RIK(C)

path planning problem.

The bifurcation branch roadmap depends on the number and structure of the self-motion

manifolds (connected sets of joint configurations yielding the same task configuration), and

depends on joint limits. Figure 4.2a shows an example RIK solution space where a single closed

self-motion manifold (each thin solid line is a self-motion) splits into two disjoint closed self-motion

manifolds at the singularity (×). When joint limits are present, the feasible RIK solution space is

truncated such that each self-motion manifold has 0, 1, or multiple feasible self-motion paths

(connected subsets of joint configurations attainable by the manipulator hardware). The simple

feasible RIK solution space in Fig. 4.2b shows bifurcation points (×) where feasible self-motion

paths (shaded vertical cross-sections) split or converge. It also shows a premature termination

point (⊗), where a feasible self-motion path vanishes as time progresses. The corresponding

bb-roadmaps of Figs. 4.2a and 4.2b are shown in Figs. 4.3a and 4.3b, respectively.

The bifurcation branch roadmap construction process presented in Chapter 3 for a class of

RIK path planning problems with closed self-motion manifolds, is not adequate for RIKC path

planning problems. This chapter provides means of constructing bb-roadmaps for RIKC path

planning problems with joint limits.

4.1.2 Characterizing the Connectivity of RIKC Solution Spaces

The RIKC path planning problem has a more complex solution space than the RIK

problem. The joint configuration subspace for compliance has a dramatically different structure

than that for kinematics. Each kinematic joint variable with a revolute joint has a closed manifold

(a full joint rotation returns the link to the same configuration); whereas, each compliance joint

variable has an open manifold. The total joint configuration manifold combines these different

manifold structures. Self-motion manifolds are sub-manifolds in the total joint configuration

1Joint paths that cannot be deformed into each other are in different homotopy classes.
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Figure 4.2: Bifurcations in feasible RIK solution spaces for one degree of redundancy. Each × is a
bifurcation point, each ⊗ is a premature termination point. Dashed and dashed-dotted lines are
feasible self-motion paths on one side of the bifurcation point or self-motion paths of task
endpoints. Solid lines with arrow endpoints are joint paths in different homotopy classes. a)
Bifurcation from a singularity on an RIK solution space with closed self-motion manifolds. b)
Bifurcations and premature termination from joint limits on an RIK solution space with open
self-motion manifolds.
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Figure 4.3: Bifurcation branch roadmaps (bb-roadmaps) corresponding to RIK solution spaces in
Fig. 4.2. White nodes correspond to the feasible self-motion paths of task endpoints, pairs of black
nodes correspond to the feasible self-motion paths on either side of a singularity bifurcation point,
pairs of gray nodes correspond to the feasible self-motion paths on either side of a joint limit
bifurcation point, and ⊗ corresponds to a premature termination point.

manifold. The number and structure2 of self-motion manifolds (sub-manifolds in the total

combined configuration space) are different from the number and structure of kinematic

self-motion manifolds. The number of bifurcations from singularities is different too. Additionally,

each VSA has hardware limits (a finite range of joint compliances) that remove many joint

configurations from the feasible RIKC solution space, possibly adding more joint limit bifurcation

points and premature termination points.

The challenges associated with developing the bb-roadmap in the combined solution space

are: 1) identifying the number and structure of self-motion manifolds and the feasible self-motion

paths on them, 2) identifying bifurcation nodes associated with singularities, 3) identifying

bifurcation nodes associated with joint limits, and 4) identifying edges connecting nodes. The first

challenge relates directly to identifying endpoint nodes, but also relates to identifying edges as this

2The “structure” of a 1-dimensional self-motion manifold is either open or closed.
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information is important for understanding the bifurcation structure and its impact on homotopy

classes.

The number of self-motion manifolds impacts the number of endpoint nodes in the

bb-roadmap (white nodes). The structure of the self-motion manifolds impacts the number of

edges connecting nodes. This information has been identified for the kinematic self-motion

manifolds of many types of manipulators (e.g., [51] [73] [74]). However, the number and the

structure of self-motion manifolds in the combined kinematic and compliance configuration space

has not been identified for any type of manipulator. This chapter identifies this information by

combining kinematic self-motion manifolds with compliance realization conditions (e.g., [22] [23]

[24] [25] [26] [27]).

The identification of singular joint configurations (and their corresponding end-effector

configurations) is necessary for finding the bifurcation branches of singularities (black nodes). In

RIK problems, these features are identified using known geometric conditions for singularities (and

for the task instances at which they occur). However, the geometric conditions for singularities

and their task instances in the combined kinematic and compliance configuration (RIKC) spaces

are not known for any type of manipulator. This chapter identifies this information using

compliance realization conditions (e.g., [22] [23] [24] [25] [27]) for simpler manipulators that can

achieve the same elastic behavior as the redundant manipulator.

The identification of bifurcations from joint limits is necessary for identifying joint limit

bifurcation branches (gray nodes in Fig. 4.3). Chapter 3 did not address identifying joint limit

bifurcation points. Because joint compliances are always lower and upper bounded, joint limits

must be accounted for in the compliance subspace. Joint limit bifurcation points are identified

here for differentiable task manipulation paths by tracking the boundary edges of the RIK(C)

solution space using an instantaneous path planner based on a modified Saturation in the Null

Space (SNS) algorithm [42]. The boundary edge path planner terminates at: 1) a task endpoint, 2)

a premature termination point, or 3) a joint limit bifurcation point. The boundary edge path

planner can be used in both RIK and RIKC path planning problems.

In addition to describing new procedures for identifying roadmap nodes, new procedures

are also developed for identifying roadmap edges. The methods described in Chapter 3 for

identifying edges of the bb-roadmap are limited to RIK problems with 1 or 2 closed self-motion

manifolds at each task instance. New methods of identifying edges are needed to address the

greater number of disjoint self-motion manifolds in RIKC problems. This chapter presents an
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algorithm for constructing the bb-roadmap edges for RIK(C) problems with any number of open

self-motion manifolds and with bifurcations from both singularities and joint limits.

4.1.3 Chapter Overview

This chapter provides means of constructing the bifurcation branch roadmap

(bb-roadmap) that identifies the connectivity of the solution space for RIKC path planning with

one degree of redundancy. Strategies for identifying the number and the structure of self-motion

manifolds, and their bifurcations from singularities and their bifurcations from joint limits are

described. These strategies are used to generate the nodes of the bb-roadmap. Strategies for

identifying the edges of the bb-roadmap are also provided.

Section 4.2 provides means of identifying the number and the structure of self-motion

manifolds in the total joint space (kinematic and compliance coordinates). Section 4.3 describes

procedures for identifying self-motion bifurcations from singularities in the total joint space.

Section 4.4 provides a method of quickly identifying bifurcation points that result from joint limits.

Section 4.5 describes a new algorithm for generating the bb-roadmap for manipulation with open

self-motion manifolds and with bifurcations from both singularities and joint limits. Section 4.6

demonstrates the procedures and provides the results of a case study in which a 3R-VSA

manipulator is used to turn a crank despite geometric uncertainties. Section 4.7 provides a brief

summary and conclusion.

4.2 RIKC Self-Motion Manifolds

As stated previously, the main challenge in passive compliance control is to solve the

redundant inverse kinematics and compliance (RIKC) path planning problem. There are multiple

ways for a joint path to traverse the RIKC solution space’s complicated connection structure.

Characterizing the connectivity of the RIKC solution space is important for identifying the

globally optimal joint path for passive compliance control.

The first aspect in characterizing the connectivity of the RIKC solution space is to identify

the number and structure of the self-motion manifolds of regular task points on the task

manipulation path. This information relates directly to generating the bb-roadmap nodes at the

task endpoints (white start and terminal nodes). This section describes a strategy for identifying

the number and structure of self-motion manifolds for RIKC problems with one degree of
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redundancy. Each disjoint self-motion manifold is distinguished using an identification number

that is assigned based on a potential homotopy class. The self-motion manifold identification

numbers are later used to identify bb-roadmap edges. The strategy is first described in general,

then the concepts are demonstrated for a 3R-VSA manipulator like that in Fig. 4.1.

4.2.1 General Strategy

Because the compliance mapping depends on the kinematic joint configuration, but the

kinematic mapping is independent of the joint compliance configuration, the kinematic self-motion

manifolds are identified first. Although the kinematic joint configurations are connected on each

kinematic self-motion manifold, the total joint configurations in the combined joint space are not

continuously connected in the compliance subspace. The kinematic self-motion manifolds are

divided into regions where the compliance configurations are connected.

Consider a total task configuration on the task manipulation path:

x ∈ x (t) =

xp ∈ x p(t)

xc ∈ x c(t)

 .
The preimage of the kinematic task configuration is

f −1
p (xp) =

ns⋃
i=1

Mpi(ψ) (4.1)

where ns is the number of disjoint kinematic self-motion manifoldsMpi(ψ). If available, analytical

descriptions of the kinematic self-motion manifolds are used. Otherwise, numerical descriptions of

the kinematic self-motion manifolds are used (e.g., parameterized by arc length using (3.5)).

The preimage of the compliance task configuration given the kinematic joint configuration,

f −1
c (xc) | qp ∈Mpi(ψ), (4.2)

is unique for many manipulation cases ([22] [23] [25] [26]). The joint compliance values for these

cases are readily identified by joint compliance synthesis formulas related to the compliance

realization conditions. For manipulation cases with equality constraints in its compliance

realization conditions, the equality constraints are used to identify a one-dimensional sub-manifold

(path) qpi(ψ) of the kinematic self-motion manifold.
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The joint synthesis formulas provided in [22], [23], [25], [26], evaluated over ψ, have

discontinuities when any two twists align. The twists of any two joints (say joint i and joint j)

align when

tj = αti, (4.3)

where α is a scalar.

Because of the discontinuity, the total joint configurations are not continuously connected

over the kinematic self-motion manifold. Instead, each set of continuously connected joint

configurations on either side of the discontinuity is an open self-motion manifold. The number of

self-motion manifolds for the task configuration x = [xTp ,x
T
c ]T depends on the number of kinematic

self-motion manifolds of xp and on the number of twist alignment cases over each kinematic

self-motion manifold. The bounding twist alignment cases of each self-motion manifold and the

associated kinematic self-motion manifold determine the identification number.

The number of feasible self-motion paths (the connected subsets of feasible joint

configurations on the self-motion manifolds) may be different. Each self-motion manifold may have

0, 1, or multiple disjoint feasible self-motion paths. The feasible self-motion manifolds are

identified using a one dimensional search over each self-motion manifold, checking if the joint

configuration is feasible. Bounds (endpoints) of the feasible self-motion paths are joint

configurations with a joint variable saturated at its limit. The feasible self-motion paths at the

task endpoints are used as end-point nodes in the bb-roadmap.

This strategy of identifying self-motion manifolds is illustrated below for a 3R-VSA

manipulator capable of performing a task in which the end-effector follows a desired path in both

position and compliance.

4.2.2 3R-VSA Manipulator

Consider any end-effector position inside a single kinematic W -sheet for which the distal

link of the manipulator can fully rotate without changing the end-effector position. The kinematic

self-motion manifolds are characterized by the analytical formulas of a four-bar Grashof

mechanism, parameterized by the end-effector orientation ψ = qp1 + qp2 + qp3 . There are two

disjoint kinematic self-motion manifolds corresponding to the “elbow-up” and “elbow-down”

solutions. Each of these kinematic self-motion manifolds is a closed manifold, where a manipulator
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performing a self-motion returns to it’s original kinematic configuration after a full rotation of the

end-effector.

Given the kinematic joint configuration (parameterized by ψ and the elbow pose, i.e.,

“up” or “down”), the joint compliance configuration is resolved by the joint compliance synthesis

equations provided in [22]. Because the joint compliance synthesis equations yield a unique joint

compliance configuration (for all regular task configurations in which two twists do not align), the

kinematic self-motion parameter ψ is suitable as the self-motion parameter that resolves both

kinematics and compliance.

Although the joint compliance configurations are unique for each kinematic configuration,

the joint compliance configurations are not continuously connected over the kinematic self-motion

manifolds. The joint compliance synthesis formulas [22] yield undefined joint compliance values at

twist alignment cases.

There are four relevant twist alignment cases:

a+ : t2||t3 and α > 0,

b+ : t1||t3 and α > 0,

a− : t2||t3 and α < 0,

b− : t1||t3 and α < 0.

Each kinematic self-motion manifold (“elbow-up” and “elbow-down”) has kinematic configurations

corresponding to these twist alignment cases. The four kinematic configurations for the

“elbow-up” manifold are shown in Fig. 4.4a. The self-motion parameter value ψ∗ for each twist

alignment case (ψ∗ = ψa+ , ψb+ , ψa− , or ψb−) is shown in Fig. 4.4b.

The joint compliances associated with the aligned twists, approach ±∞ as ψ approaches

ψ∗ from the left, and approach ∓∞ as ψ approaches ψ∗ from the right. Because the compliance

values diverge, the self-motion manifold is open. Therefore, the preimage of a regular task

configuration is composed of eight open self-motion manifolds:

f −1(x) =

8⋃
i=1

q i(ψ), (4.4)

where q i(ψ), i = 1 to 4 is a self-motion manifold in the elbow-up pose (shown in Fig. 4.4b) and

q i(ψ), i = 5 to 8 is a self-motion manifold in the elbow-down pose. Each subscript value is the

self-motion manifold identification number corresponding to a unique set of bounding twist
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Figure 4.4: Twist alignment cases of the elbow-up self-motion manifold. a) Kinematic
configurations of the twist alignment cases in order of darkest to lightest: a+, b+, a−, b−. b.)
Elbow-up self-motion manifolds: q i(ψ), i = 1-4 separated by kinematic self-motion parameter
values: ψa+ , ψb+ , ψa− , ψb− .

alignment cases and elbow pose. Note, the number and type of twist alignment cases is different

for task configurations in W -sheets for which the end-effector cannot make a full rotation.

Although each self-motion manifold is unbounded in joint space, the manifold is fully

captured by the bounded kinematic self-motion parameter ψ ∈ (ψa± , ψb±). Each self-motion

manifold is unbounded in that each joint compliance may range between ±∞. However, the

compliance of each joint-i has practical limits qci ∈ [qcimin
, qcimax

], qcimin
≥ 0. Therefore, the

feasible regions on self-motion manifolds are necessarily bounded by joint configurations with a

joint compliance saturated at its limit.

4.3 Bifurcations from Singularities

To characterize the connectivity of the RIKC solution space, bifurcation nodes associated

with singularities must be identified. This involves 1) identifying the task instances at which they

occur, i.e., coregular values, 2) identifying the coregular self-motion paths at the coregular values,

3) identifying the singularity and splitting each coregular self-motion path into separate

“branches”, on either side of the singularity.

This section first describes the bifurcation structure of the self-motion manifolds presented

in Section 4.2 and describes its relationship to homotopy classes of joint paths. The details for

identifying each coregular value and its corresponding coregular self-motion paths and singularity

are then provided.
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4.3.1 Bifurcation Structure

For RIKC problems addressed here, the disjoint self-motion manifolds are open manifolds,

each bounded by kinematic configurations associated with a twist alignment. Consider self-motion

manifolds q i(ψ) and q j(ψ) that are bounded by different pairs of twist alignment cases, but with a

shared case (e.g., q1(ψ) and q2(ψ) in Fig. 4.4b). As the task progresses, these disjoint self-motion

manifolds converge/split at a coregular value. The bifurcation structure, associated with two

independent open coregular self-motion paths, is illustrated by the RIKC solution space3 shown in

Fig. 4.5a. The bifurcation branch roadmap for this structure is shown in Fig. 4.5b. In the RIKC

solution space, all self-motion manifolds (solid lines) to the left of the dashed-dotted plane

correspond to self-motion manifolds q i(ψ), and those to the right correspond to q j(ψ), where i and

j denote the identification numbers. Two independent open coregular self-motion paths exist, one

with kinematic self-motion (dashed line) and one without kinematic self-motion (dashed-dotted

line). The intersection point of these coregular self-motion paths is the singularity (×). Each

coregular self-motion path is separated into two paths at the singularity; these are bifurcation

branches (black nodes) in the bb-roadmap. This bifurcation structure has four branches per

singularity, whereas the structure associated with closed manifolds in Fig. 4.2a has two branches

per singularity.

Figure 4.5a shows four joint paths (solid lines with arrow endpoints). Two paths start at a

regular self-motion manifold q i(ψ) (left of plane), and two paths start at a regular self-motion

manifold q j(ψ) (right of plane). The manipulator’s joint configuration can switch from being in a

self-motion manifold q i(ψ) to q j(ψ) (or q j(ψ) to q i(ψ)) only if the joint path crosses the vertical

dashed-dotted line corresponding to a coregular self-motion path for which there is no kinematic

motion. Each of the joint paths shown has a different combination of start and terminal self-motion

manifold identification numbers and is in a different homotopy class. For each case, the homotopy

class of the joint path is identified by the coregular self-motion branch that the path crosses.

4.3.2 Identifying Coregular Values

The strategy for identifying coregular values is based on investigating twist alignment

cases and the compliance realization conditions for a simpler manipulator with fewer joints.

The task compliance of a serial manipulator with np compliant joints is given by

3Figure 4.5 shows the RIKC solution space of the self-motion manifolds with the shared twist alignment case; the
other self-motion manifolds have their own non-bifurcating RIKC solution regions (not shown).



94

�

+

i
�( ) � j

� ( ) � 

     singularity 
bifurcation point   

a. b.

2
� ( ) �

3
� ( ) �

4
� ( ) �

1
� ( ) �

j
� ( ) � 

i
�( ) � 

1
2
3
4

�

� 

� *

Figure 4.5: RIKC singularity bifurcation structure. a) RIKC solution space near a bifurcation
point associated with a singularity. Solid lines are regular self-motion manifolds, dashed and
dashed-dotted lines are coregular self-motion paths, and their intersection (×) is the bifurcation
point. Joint paths (solid lines with arrow endpoints) are in different homotopy classes. b) Rotated
top view of Fig. 4.5a such that kinematic self-motion is in the vertical direction and time t is in the
horizontal direction. The corresponding bb-roadmap is superimposed on the surface. Each joint
path qk(t) crosses a different bifurcation branch associated with a numbered black node.

Cx = qcitit
T
i + qcjtjt

T
j + qcktkt

T
k + · · ·+ qcztzt

T
z , (4.5)

where i, j, k, · · · z are joints 1, 2, 3, · · · , np in no particular order.

If twists i and j align, (4.3) is substituted into (4.5), yielding

Cx = (qci + α2qcj)tit
T
i + qcktkt

T
k + · · ·+ qcztzt

T
z , (4.6)

where tk · · · tz are the independent twists and

qcc = (qci + α2qcj ) (4.7)

is the combined compliance of joints i and j as seen from the twist associated with joint-i.

The task compliance expressed in (4.6) can be realized by a simpler manipulator with one

less joint. The simpler manipulator has separate, more limiting, compliance realization conditions.

Similar procedures are used if more than two joints align.

The twist alignment cases that can realize a task configuration on the task manipulation

path are identified by searching (with root finding or optimization) for instances that satisfy the

compliance realization conditions of the simpler manipulator over the task manipulation path x (t).
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Figure 4.6: Twist alignments. a) 3R-VSA manipulator at twist alignment case b−. b) 2R-VSA
manipulator capable of achieving the same particle elastic behavior.

The compliance realization conditions are evaluated using the inverse kinematic solutions of each

twist alignment case of the redundant manipulator. Each case may have 0, 1, or multiple task

instances for which the compliance realization conditions are satisfied.

The steps used in identifying the coregular values of the 3R manipulator performing a

particle planar task in the kinematic dexterous workspace are described below.

3R-VSA Manipulator

The particle-planar task compliance of a 3R-VSA manipulator end-effector is given by

(4.5) where i, j, and k are joints 1, 2, and 3 in no particular order.

For a singularity to occur, two twists must align and the third twist must satisfy an

additional requirement. Each singularity case must satisfy (4.6) and must satisfy a 2R compliance

realization condition. For example, the 3R manipulator with an elbow-up pose and twist alignment

case b− in Fig. 4.6a has the same compliant behavior as the 2R manipulator in Fig. 4.6b.

According to the compliance realization condition in [22], the 2R-VSA manipulator can

achieve a specified task compliance Cx if and only if

rTi Cxrk = 0. (4.8)

The calculated joint compliances qcc and qck for the 2R realization are unique [22]. The

compliance values for the 3R manipulator at this kinematic configuration are not unique. At these

configurations a self-motion path exists in the compliance subspace.

The coregular values on the task manipulation paths are readily obtained by finding the

roots of (4.8) over x (t) where ri and rk are defined by the unique inverse kinematic solutions of

the twist alignment cases.
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4.3.3 Coregular Self-Motion without Kinematic Motion

At each coregular value, there exists a normal self-motion path q(ψ) (described in Section

4.2) with motion in the combined kinematic and compliance space and there exists another

self-motion path q(ψc) for which there is no kinematic self-motion. These paths are coregular

self-motion paths intersecting at the bifurcation singularity. Coregular self-motion paths exist

when a twist alignment occurs (4.3) and the compliance realization conditions of the effective

simpler manipulator (e.g., condition (4.8) for the 2R manipulator) are satisfied.

For the case of two aligned joints, joint compliances of the aligned joints, qci and qcj can

linearly trade-off their value while keeping qcc constant. Let ψc ∈ (−∞,∞) be the compliance

self-motion parameter that resolves this trade-off:

qci = ψcqcc (4.9)

and

qcj =
(1− ψc)
α2

qcc . (4.10)

The self-motion path q(ψc) is defined by the task configuration x, the twist alignment

case, and ψc. The compliances of the aligned twists qci , qcj are resolved by ψc using (4.9) and

(4.10). The self-motion path q(ψc) is linear in joint space.

The bounds of the self-motion parameter ψc are identified by substituting joint limits into

(4.9-4.10). The self motion parameter bounds due to the compliance limits of joint-i and joint-j are

[
ψcimin

, ψcimax

]
=

[
qcimin

qcc
,
qcimax

qcc

]
(4.11)

and

[
ψcjmin

, ψcjmax

]
=

[
1− α2 qcjmax

qcc
, 1− α2

qcjmin

qcc

]
, (4.12)

respectively.

The bounds of the feasible self-motion path is given by

[ψcmin
, ψcmax

] =
[
max(ψcimin

, ψcjmin
),min(ψcimax

, ψcjmax
)
]
. (4.13)

A feasible self-motion path exists if ψcmin
< ψcmax

, and if the other joint coordinate values

(qp, qk, . . . , qz) are all feasible. Similar results are obtained when more than two joints align.
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4.3.4 Identifying the Singularity

The coregular self-motion q(ψ) intersects q(ψc) at ψ∗ when (4.3) is satisfied. The

compliance configuration, normally resolved over ψ by the compliance synthesis formulas are not

valid at the twist alignment case. They are, however, valid at ψ values a small step to either side

of ψ∗. The compliance configurations resolved on either side of ψ∗ are used to approximate the

intersecting joint configuration on q(ψc). The singular configuration is then identified by

maximizing the condition number of the total Jacobian matrix over ψc. The singularity may or

may not be a feasible joint configuration. If, the singularity is not a feasible joint configuration the

bifurcation does not occur at the coregular value. Instead, the bifurcation results from a joint limit

at a task time before (or after) the coregular value.

4.4 Bifurcations from Joint Limits

To characterize the connectivity of the RIKC solution space, bifurcation nodes associated

with joint limits must be identified. This section describes a method to quickly identify bifurcation

points (and premature termination points) resulting from joint limits in RIK and RIKC solution

spaces with one degree of redundancy. The method involves using a boundary edge path planner, an

instantaneous path planner that tracks the a boundary edge of the feasible RIK(C) solution space.

The boundaries of the feasible RIK(C) solution space result from truncation by a joint

limit, as illustrated in Fig. 4.7a, by the joint-limit hyperplane (dashed-dotted plane) truncating the

self-motion manifolds (solid lines). Figure 4.7b illustrates conceptually4 a feasible RIKC solution

space with several truncated regions, and the bifurcation (×) at t1 corresponds the bifurcation in

Fig. 4.7a. Each continuous and smooth boundary edge (edge of the shaded region that is not a

dotted line) of the feasible RIK(C) solution space corresponds to saturation of a single joint

variable. Each path (thick solid line with arrows) tracking the boundary edge of the feasible

solution space is generated from a starting configuration (circle dot) forward and backward in time

(arrows indicate the direction of path generation). The starting configurations are boundary

configurations of previously identified feasible self-motion paths (dotted lines). Each velocity-based

generated path is generated forward in time until t = 1 (or backward in time until t = 0), or until

the path can no longer be generated without leaving the boundary edge. If the path cannot be

4The illustrated surface is an abstract representation of the RIKC solution space, a 2-dimensional subspace of
a much higher dimensional space (e.g., the 6 dimensional space of the 3R-VSA manipulator; 3 kinematic and 3
compliant). The 2-dimensional subspace is minimally parameterized using self-motion and time.
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Figure 4.7: Boundary edges from joint limits. a) Joint limit hyperplane truncating the RIK(C)
solution space (shaded surface is the feasible region). b) An RIK(C) solution space with several
truncated regions. Thick solid lines are instantaneously generated paths starting from boundary
configurations (circles) of previously identified self-motion paths (dotted lines)

generated further, the final joint configuration of the path is either a bifurcation point (×) or a

premature termination point (⊗). The boundary edge path planner and the selection of starting

points are described below.

4.4.1 Boundary Edge Path Planner

The boundary edge path planner is based on instantaneous RIK(C) resolution using the

SNS algorithm (reviewed in Chapter 2).

Recall from Chapter 2, a joint path is generated by integrating

q̇(t) = J†ẋ (t) + (I− J†J)q̇N, (4.14)

where x (t) is the task manipulation path, J† is the weighted pseudoinverse, I is the identity

matrix, and q̇N is the preferred joint velocity. To accommodate joint limits, J† is replaced by

J†SNS = SW− 1
2 (JW− 1

2 S)#, (4.15)

where (·)# denotes the Moore-Penrose pseudoinverse, W is the selected weighting matrix, and S is

the diagonal saturation matrix with elements equal to 1 for active joints and 0 for inactive joints.

A joint path along the boundary edge is generated using the SNS algorithm with

pre-saturation. Normal implementation of the SNS algorithm initializes with all joints

non-saturated (S = I). For boundary tracking, the joint path starts at a boundary configuration

where joint variable i is saturated. Joint variable i is locked at its boundary value by initializing S
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with Sii = 0 and setting the ith value of q̇N to zero. The boundary path is then generated by

integrating (4.14) with J† replaced by (4.15).

When the task path x (t) is continuous and differentiable, the boundary edge path planner

terminates at the task endpoint, or terminates prematurely. The condition for premature

termination is that the rank of the saturated Jacobian matrix is smaller than the dimension of the

task, i.e., rank(JS) < m. This occurs in the following two cases:

1. If rank(S) < m, the termination point is the intersection point of two RIKC boundary edges.

2. If rank(S) = m, the termination point is a joint limit tangent point where a self-motion

manifold tangentially encounters a boundary edge path.

Case 1 always corresponds to a premature termination point. Case 2 corresponds to either

a bifurcation point or a premature termination point.

If the boundary edge path planner terminates at a time other than the task start or task

end, the terminal point qf is either a premature termination point or a joint limit bifurcation

point. If qf has two saturated joint variables, then rank(S) < m and qf is a premature

termination point. If qf has only one saturated joint variable, and a joint path can be generated

beyond tf (starting from the joint configuration generated just before qf ) by unlocking the

saturated joint, then qf is a bifurcation point.

4.4.2 Boundary Edge Start Points

The initial joint configuration for each generated boundary edge path is selected from the

previously identified feasible self-motion paths of task endpoints (which were identified when

generating endpoint nodes, Sec. 4.2), and of coregular values (which were identified when searching

for singularities, Sec. 4.3).

Let S and T be sets of feasible self-motion paths of the task start point and task terminal

point, respectively. For each boundary configuration of each feasible self-motion path in S, a

boundary tracking joint path is generated forward in time (until t = 1). For each boundary

configuration of each feasible self-motion path in T , a boundary tracking joint path is generated

backward in time (until t = 0). In Fig. 4.7b, S and T each have a single feasible self-motion path

at t = 0 and t = 1, respectively. The boundary edge joint path generated from the lower boundary

configuration in S terminates at ⊗. The boundary edge joint path generated from the lower

boundary configuration in T terminates at × at t4. A boundary tracking joint path generated

from the upper configuration in S terminates at the upper configuration in T .
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Consider the bifurcation points × at t1 and t3 associated with the “hole” (closed path

associated with the saturation of a single joint) in Fig. 4.7b. To find them with the boundary edge

path planer, a starting configuration on a feasible self-motion at some time t2 between the

bifurcation points of the “hole” must be identified. For the RIKC problems, “holes” span coregular

values for which the feasible coregular self-motion paths (identified in Sec. 4.3) are between joint

limit bifurcation points. Let C be the set of feasible coregular self-motion paths. For each

boundary configuration of each feasible self-motion path in C, a boundary edge path is generated

forward in time and backward in time. Boundary tracking paths starting from the top and bottom

configuration at t2 in Fig. 4.7b (points a and b) terminate at boundary configurations in S and T .

Boundary tracking paths starting from the remaining boundary configurations at t2 (points c and

d) terminate at × at t1 for backward generated paths and terminate at × at t3 for forward

generated paths (not seen in Fig. 4.7a).

For all boundary tracking paths generated from the boundary configurations in S, T , and

C, the path’s termination case is checked, using the methods described in Sec. 4.4.1, to determine

if the endpoint corresponds to a task endpoint, premature termination point, or joint limit

bifurcation point. Multiple boundary edge paths may have the same terminal configuration. The

set of unique premature termination points is identified and the set of unique joint limit

bifurcation points is identified. For each joint limit bifurcation point, the feasible self-motion path

touching the bifurcation point is generated. These self-motion paths are split into two branches

(e.g., dashed and dashed-dotted lines in Fig. 4.7) and are used as nodes in the bb-roadmap.

4.5 Bifurcation Branch Roadmap Construction

The final step in characterizing the connectivity of the RIKC solution space is

constructing the bifurcation branch roadmap (bb-roadmap). Means of identifying the nodes

(feasible self-motion paths) were described in Section 4.2-4.4. Additional node characteristics are

described below. The remaining challenge in constructing the bb-roadmap is identifying edges that

correspond to homotopy classes of joint paths connecting feasible self-motion paths of nodes. This

section describes a fast method to identify the bb-roadmap edges using the self-motion manifold

identification numbers. The self-motion manifold identification numbers are assigned in a

consistent manner for the entire RIKC solution space (described in Section 4.2).
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4.5.1 Roadmap Node Characteristics

The nodes of the bifurcation branch roadmap are either feasible self-motion paths of task

endpoints or bifurcation branches, i.e., each a feasible self-motion path on one side of a bifurcation

point. There are subtle differences in the characteristics of the self-motion paths introduced in this

paper. These differences are reviewed below using examples illustrated in Figs. 4.5a and 4.7a.

• A self-motion path is a path in the RIKC solution space for which the end-effector

configuration does not change. Feasibility is not considered.

• A coregular self-motion path is a self-motion path at a coregular value (e.g., dashed and

dashed-dotted lines in Fig. 4.5a and thin and thick dotted lines at t = t2 in Fig. 4.7a).

• A regular self-motion path is a self-motion path at a regular value (e.g., thin solid lines).

• A feasible self-motion path is a (regular or coregular) self-motion path in the feasible RIKC

solution space (paths completely on the shaded (feasible) surface). For example, the feasible

coregular self-motion paths in Figs. 4.5a and 4.7a are the dashed and dashed-dotted lines in

Fig. 4.5a and thick dotted lines in Fig. 4.7a.

• A bifurcation branch is a portion of a feasible (regular or coregular) self-motion path

adjacent to a bifurcation point. A singularity bifurcation point has coregular bifurcation

branches (e.g., the portions of the dashed and dashed-dotted lines left, right, above, and

below the × in Fig. 4.5a). A joint limit bifurcation point has regular bifurcation branches

(e.g., the dashed and dashed-dotted lines to either side the × in Fig. 4.7a).

The feasible self-motion paths in S and T correspond to endpoint nodes (white nodes in

Fig. 4.3) of the bb-roadmap. Let Bcr be the set of coregular bifurcation branches identified in

Section 4.3, these correspond to singularity bifurcation nodes (black nodes) of the bb-roadmap.

Let Br be the set of regular bifurcation branches identified in Section 4.4; these correspond to joint

limit bifurcation nodes (gray nodes) of the bb-roadmap. Let P be the set of premature

termination points identified in Section 4.4; these correspond to premature termination nodes (⊗

nodes) in the bb-roadmap.

The feasible self-motion paths in S, T ,Bcr,Br,P are sorted by time into the set of all

nodes of the bifurcation branch roadmap N . There are multiple nodes with the same time value

(two at each joint limit bifurcation point, four at each singularity bifurcation point).

Additional nodes are used in edge generation. When a joint limit bifurcation occurs, the

bifurcation branches are not the nearby feasible coregular self-motion paths (e.g., the thick dotted
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lines in Fig. 4.7a). These coregular self-motion paths are needed, however, for edge identification.

Let Cf be the set of feasible coregular self-motion paths (that are not bifurcation branches) that

are needed for identifying roadmap edges.

4.5.2 Roadmap Edges

Because the RIKC solution space consists of open self-motion manifolds, there is exactly

one homotopy class of joint paths connecting two nodes (not the case for closed self-motion

manifolds in Chapter 3). A brute-force approach for identifying the edges is to attempt to generate

a joint path between every two node combination. This would involve using the bi-directional

instantaneous path planner (3.9) and checking if the generated joint path crosses the self-motion

paths of any other nodes.

The edges of the bb-roadmap can be determined much faster by investigating the

connectivity of the self-motion manifolds using the self-motion manifold identification numbers and

the bifurcation structure. Consider first, an RIKC problem without joint limits. An edge between

nodes A and B exists if a self-motion path q+(ψ) immediately following a node A ∈ N deforms

continuously along the feasible RIKC solution space until it reaches a self-motion path q−(ψ)

immediately preceding a later node B ∈ N (a later bifurcation node or task endpoint node).

Given node A at time tA, node B is selected from a subset of N based on the following: 1)

tB > tA and 2) Idnum(q−B(ψ)) = Idnum(q+
A(ψ)), where Idnum(·) is the identification number. Edges

are generated to the nearest nodes (in time) in this subset.

This roadmap construction process is illustrated in Fig. 4.8 for a simple case without joint

limits. Figure 4.8a shows a simplified representation of an RIKC solution space with 4 self-motion

manifolds (identification numbers 1-4) at each time instance. The four manifolds are separated by

4 twist alignment cases (dashed lines) on a closed kinematic self-motion manifold5 parameterized

by ψ. The space contains 3 bifurcations from singularities at coregular values, each with a

structure like that shown in Fig. 4.5. The bb-roadmap of the RIKC solution space near each

singularity is overlayed on the surface to indicate the connectivity. The bifurcation branches (black

nodes) of each singularity are in sets of four. Each of the four branches has self-motion manifolds

[q−(ψ), q+(ψ)] with a unique combination of self-motion manifold identification numbers

(indicated by the white numbered nodes with dashed edges). The bb-roadmap of this RIKC

solution space is given in Fig. 4.8b.

5The closed kinematic self-motion manifolds are “cut and unrolled” into a flat surface in Fig. 4.8a
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Figure 4.8: RIKC bifurcation branch roadmap construction. a) Simplified representation of the
RIKC solution space parameterized by t on the horizontal axis and the kinematic self-motion
parameter ψ on the vertical axis. b) Bifurcation branch roadmap.

The roadmap construction process is slightly modified when joint limits exist. Joint limit

bifurcations cause multiple disjoint self-motion paths to exist in the same self-motion manifold.

Although the feasible self-motion paths are no longer complete manifolds, they are assigned the

same identification number as the manifolds they are in. An identification number reassignment

procedure is used to distinguish disjoint feasible self-motion paths in the same manifold. Also,

because of joint limit bifurcations, some feasible coregular self-motion paths are not in N , but are

in Cf . These coregular self-motion paths must be considered because a continuously deforming

feasible self-motion path that crosses a feasible coregular self-motion path without kinematic

self-motion (vertical dotted line in Fig. 4.7a) changes from one self-motion identification number to

another by crossing the twist alignment case.

Reassignment of the identification number is only required for joint limit bifurcation

branches (nodes in Br) and for the feasible self-motion paths they deform into. If the bifurcation

(splitting) occurs as time progresses forward, the q+(ψ) self-motion identification number is

reassigned a unique number k. Each of these feasible self-motion paths (say of Node A ∈ N )

continuously deforms into a feasible self motion path of a node B ∈ {N , Cf} Node B is identified

using the boundary edge path planner. The self-motion identification number of q−(t) of B is

reassigned as k. A similar process is used when the bifurcation occurs as time progresses backward.

The edge generation methodology is summarized in the following algorithmic procedure.

For each node in N and not in T , roadmap edges are identified using the following steps:

1. Denote the selected node as I, its task time tI, and its forward self-motion q+
i (ψ), where i is

its self-motion identification number.
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2. Identify all the nodes in N and Cf with time t > tI each having a backward self-motion

q−j (ψ) | j = i.

3. From the set in Step 2, identify those with the smallest time t > tI (there can be multiple).

Let tCf > tI be the smallest time of the relevant nodes in Cf ; and let tN > tI be the smallest

time of the relevant nodes in N .

4. If tCf < tN , a coregular self-motion exists between the edge nodes. Because a twist alignment

case can be crossed at tCf , the forward self-motion q+
i (ψ) identification number i is changed

to that of the node associated with tCf , tI is updated to tCf , and Steps 2-3 are repeated.

5. If tN < tCf (or if there are no relevant nodes in Cf from Step 2), there is an edge from I to

each of the relevant nodes in N with the time value tN .

The resulting directed graph fully captures the connectivity of the RIK solution space.

This combined kinematic and compliance solution space bb-roadmap is used together with the

bifurcation branch algorithm to identify the globally optimal solution to the RIKC path planning

problem.

4.6 Case Study

This section demonstrates the algorithm for generating the bifurcation branch roadmap

and obtaining the globally optimal joint path for a 3R-VSA planar manipulator. Two different

task manipulation paths are considered. The kinematic motion path is the same in each; only the

task compliance is different. Although the tasks are relatively simple, the connection structure of

the two RIKC solution spaces are relatively complex and quite different from each other.

4.6.1 Manipulator and Task Description

Consider the 3R-VSA manipulator and particle planar compliance task illustrated in Fig.

4.9. The link lengths, normalized by the reach of the manipulator L, are: l1 = 0.46, l2 = 0.43, and

l3 = 0.11 (anthropomorphic ratios [50]). The kinematic joint positions qp1 , qp2 , and qp3 are

expressed in radians; the joint compliances qc1 , qc2 , and qc3 are normalized by (fgL)−1 where fg is

the weight of the manipulator.

For 3R-VSA manipulators performing particle-planar compliance tasks, the total joint

configuration is

q = [qp1 , qp2 , qp3 , qc1 , qc2 , qc3 ]T ,
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Figure 4.9: 3R-VSA manipulator performing a crank-turning task with an unknown work load.
Five equally spaced instants in time illustrate the continuous end-effector path x p(t) and the
continuous compliance path xc(t).

and the total task configuration is

x = [x, y, Cx11 , Cx12 , Cx22 ]T .

The constrained manipulation task is to turn a crank. The end-effector motion path is

given by

x p(t) =

0.5 + 0.2 cos(2πt)

0.2 sin(2πt)

 , (4.16)

where, for normalized time, t = 0 at the start and t = 1 at the end of the task. The task motion

path is dimensionless, normalized by L.

Because the crank handle has a fixed radial distance from the crank center, the task

compliance in the direction along the crank arm is high to limit the constraint force that may

result from error in the commanded relative position of the end-effector. The task compliance in

the direction of crank motion is low to limit the end-effector deflection from the planned path due

to the crank work-load. In Fig. 4.9, the desired compliance ellipse (see Appendix A) is shown at

five instants in time, where the major and minor radii of the ellipse are eigenvalues of the task

compliance matrix.
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The normalized task compliance path (task compliance normalized by Lf−1
g ) in matrix

form is

Cx(t) = U

 λ2

γ(t) 0

0 λ2

UT (4.17)

where U = [u1,u2] are the normalized eigenvectors, λ2 = 0.1 is the larger eigenvalue and γ = λ2/λ1

is the ellipse aspect ratio. The eigenvalues are constant in each task, but the eigenvectors change

so that the orientation of the larger compliance eigenvector is always along the crank arm:

U =

− sin(2πt) cos(2πt)

cos(2πt) sin(2πt)

 . (4.18)

Each joint compliance is controlled using a VSA with an exponential compliance versus

actuation profile. The feasible compliance range is qci ∈ [0.001, 10] corresponding to the actuator

limits φi ∈ [0, π/2]. The VSA actuator position is related to the joint compliance by:

φci = 1
ξ ln(qci/c0), where ξ = 5.86 and c0 = 0.001. The total actuator configuration is

φ = [φTp , φc1 , φc2 , φc3 ]T , where φp is a 3-vector of primary motion positions. The manipulator is

oriented in the horizontal plane where gravity does not affect the equilibrium joint position such

that φp = qp.

The globally optimal path is the one that minimizes the actuator velocities, i.e., minimizes

Gglobal =

∫
1

2
q̇(t)TW(q(t))q̇(t)dt, (4.19)

where W(·) is a joint configuration dependent weighing matrix, selected such that ‖φ̇‖2 = q̇TWq̇:

W(q) = diag

([
1, 1, 1,

(
1

ξqc1

)2

,

(
1

ξqc2

)2

,

(
1

ξqc3

)2
])

, (4.20)

where diag(·) sorts the vector elements into the diagonal elements of a diagonal matrix and 1/(ξqci)

is the sensitivity of the VSA actuator position to variation in the compliance value of joint i.

4.6.2 Results

Results of the “elbow-up” poses are shown for two aspect ratios: γ = 2 and γ = 10. The

bb-roadmaps for these tasks are shown in Fig. 4.10a and Fig. 4.11a, respectively. The routes

through the bb-roadmaps identify the different joint path homotopy classes. For Task γ = 2, there

are 9 routes that complete the task, of which, 5 are cyclic (listed in Table 4.1). For Task γ = 10,

there are 120 routes that complete the task, of which, 30 are cyclic.
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Table 4.1: Cyclic Homotopy Classes for Crank Task γ = 2

Cyclic Homotopy Class Node Sequence in Fig. 4.10a

1 Sa, 3, 7, Ta

2 Sa, 4, 9, Ta

3 Sb, 1, 5, 8, 11, Tb

4 Sb, 1, 6, 10, 11, Tb

5 Sb, 2, 12, Tb

If the crank needs to be turned a number of times, periodic boundary conditions are used.

For Task γ = 2, the upper/lower bound culling method of the bb-algorithm identified that only

Homotopy Class 1 could contain the globally optimal cyclic joint path. However, for comparison

purposes, all cyclic homotopy classes are presented for this task. Some homotopy classes had two

locally optimal cyclic joint paths.

For Task γ = 10, the upper/lower bound culling method reduced the set of promising

homotopy classes to four. Each homotopy class had a single locally optimal cyclic path.

The locally optimal cyclic paths found using the bb-algorithm are shown on the RIKC

solution surfaces in Figs. 4.10b and 4.11b as thick solid lines. The cost value of each path,

evaluated with (4.19), is shown in the figures. The globally optimal path cost values were 7.90 for

Task γ = 2 and 32.23 for Task γ = 10. The actual RIKC solution space is a hyper surface in the

6-dimensional joint space. The surfaces in Figs. 4.10b and 4.11b are close representations of the

hyper surface unrolled onto a 2-D plane, where normalized time (task progress) is on the

horizontal axis and the kinematic self-motion parameter is on the vertical axis. The closed

kinematic self-motion manifolds are “cut and unrolled” at the horizontal dashed lines. The curved

dashed lines are the kinematic solutions of the twist alignment cases, qa+(t), qb+(t), qa−(t), and

qb−(t), that separate the four (total configuration) self-motion manifolds.

The rasterized colored surface corresponds to feasible joint configurations, where the color

of each point on the surface is given by RGB coordinate values corresponding to the compliance

actuator configuration: φc = [φc1 , φc2 , φc3 ]T normalized by the actuation limits. Both surfaces

have an overall blue hue indicating that the third joint is generally the most compliant.

Black circle markers on the simplified solution space correspond to bifurcation points from

singularities. Gray circle markers on the surface correspond to bifurcation points from joint limits.

Black triangle markers indicate the locations of feasible coregular self-motion paths q(ψc) in the



108

qa (t)-

qb (t)-

qb (t)+

         cost: 10.31q5(t)
qa (t)+

         cost: 71.08q3 (t)

         cost: 10.78q4 (t)
a q4 (t)

b
         cost: 11.28

q2 (t)
a

         cost: 12.98 q2 (t)
b

         cost: 13.66 q1 (t)
a         cost: 7.90 q1 (t)

b
         cost: 13.65

qa (t)+

aS

bS
2

1

4

3

5

6

8

7

9

10

12

11

Ta

Tb

a.

b. Task Progress - t

S
el

f-
M

ot
io

n 
- 

   
 (

de
g)

 

Figure 4.10: RIKC solution space connection structure for crank task γ = 2. a) Bifurcation
branch roadmap. b) Sampled surface parameterized by t on the horizontal axis and the kinematic
self-motion parameter ψ on the vertical axis.

compliance subspace that do not contain the singularity. Coregular paths in the compliance

subspace are not visible on the plotted surface (which is parameterized by the kinematic

self-motion parameter), but they can be imagined as lines going into or coming out of the page at

the black circle and triangle marker locations. In some instances, the triangle markers are very

close to (and are obscured by) gray circle markers. Vertical dotted lines are self-motion paths q(ψ)

associated with bifurcation branches of the bb-roadmap. Each joint limit bifurcation point has two

bifurcation branches. Each singularity bifurcation point has four bifurcation branches. Again, the

two branches of q(ψc) are not visible on the plotted surface.

Although the two tasks are the same except for the compliance in the direction of crank’s

motion, the bb-roadmaps and the globally optimal cyclic joint paths are significantly different.
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Figure 4.11: RIKC solution space connection structure for crank task γ = 10. a) Bifurcation
branch roadmap. b) Sampled surface parameterized by t on the horizontal axis and the kinematic
self-motion parameter ψ on the vertical axis.

4.7 Chapter Summary

This chapter provided a method for identifying the RIKC solution space connection

structure (recorded in the bifurcation branch roadmap), for manipulation with one degree of

redundancy. Methods for identifying the number and the structure of each self-motion manifold in

the combined kinematic and compliance joint space were provided as well as methods to identify

bifurcations from singularities and from joint limits. The bifurcation branch roadmap is used in

the bifurcation branch algorithm to identify the globally optimal path in the combined kinematic

and compliance joint space to achieve the optimal sequence of joint configurations for passive



110

compliance control. The structure of the compliance-extended redundant inverse kinematic

(RIKC) solution space is determined by the manipulator structure and the task. Procedures were

demonstrated and results were presented for a 3R-VSA manipulator performing particle-planar

compliance tasks.
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CHAPTER 5

SUMMARY AND CONTRIBUTIONS

A robotic manipulator performing a constrained manipulation task may experience very

high contact forces due to positioning errors. This work proposes passive stiffness/compliance

control (a subset of impedance control) as an approach for simultaneously regulating the

end-effector’s contact forces and desired motion. In passive compliance control, the end-effector’s

multi-directional elastic behavior, described by its compliance (inverse of stiffness) is directly

adjusted by utilizing kinematic redundancy to change the joint positions and variable stiffness

actuation to change the joint compliances. The main difficulty of passive compliance control is in

finding an appropriate sequence of joint positions and joint compliances that realize a desired

sequence of end-effector positions and compliances. A list of this work’s contributions related to

this problem is provided below.

• The time-varying passive compliance control problem was framed as an extension of the

redundant inverse kinematic (RIK) path planning problem to include compliance in the joint

and task configuration spaces (RIK → RIKC). Aspects of this result include:

– The total joint configuration space consisting of joint kinematic positions and joint

compliances was defined.

– The total task configuration space consisting of task position/orientation coordinates

and task compliance coordinates was defined where the upper triangular elements of the

task compliance matrix were identified as the minimum set of task compliance

coordinates.

– The forward compliance mapping for any serial manipulator with adjustable joint

compliances was identified.

– The compliance Jacobian relating infinitesimal changes in joint configuration to

infinitesimal changes in the task compliance configuration was derived for any serial

manipulation with adjustable joint compliance.

• A manipulation planning procedure using the weighted pseudoinverse and the Saturation in

the Null Space (SNS) algorithm was used to instantaneously resolve the RIKC path planning

problem.

• Redundancy resolution and gravity compensation were addressed using a separate

configuration space for actuator positions. Aspects related to this include:
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– An actuator mapping function from the joint space to the actuator space was used to

address gravity compensation.

– The actuator mapping function for any serial manipulator with compliance actuators

(for which each joint compliance depends only on the position of a single actuator) was

provided.

– The actuator Jacobian relating infinitesimal changes in joint configuration to

infinitesimal changes in the actuator configuration was defined.

– A weighting matrix constructed from the actuator Jacobian was used in the weighted

pseudoinverse to resolve redundancy in the joint motion by minimizing the norm of the

actuator motion.

• A new algorithm called the bifurcation branch algorithm (bb-algorithm) was developed for

identifying the best solution to RIK and RIKC path planning problems with one degree of

redundancy. The algorithm involves 1) characterizing the connectivity of the RIK(C)

solution space such that all homotopy classes of solutions are identified, 2) generating

sub-optimal solutions in each homotopy class using a novel instantaneous path planner, and

3) deforming sub-optimal solution into locally optimal solutions using a novel path

deformation procedure. Aspects of this include:

– A new directed graph called the bifurcation branch roadmap (bb-roadmap) was

developed for strategically characterizing the connectivity of the RIK(C) solution space

such that each homotopy class of joint paths solving the RIK(C) problem is identified.

Each node of the bb-roadmap corresponds to a feasible self-motion path. Each edge of

the bb-roadmap corresponds to a homotopy class of joint paths connecting two nodes.

– Algorithmic procedures for generating the bb-roadmap were developed for two classes of

RIK(C) problems: 1) RIK problems with either one or two closed feasible self-motion

paths, 2) RIK(C) problems with any number of open feasible self-motion paths.

– An upper/lower bound method was developed to eliminate from further considerations

those homotopy classes having optimal paths with high cost function values. This

significantly reduces the number of homotopy classes evaluated in the most

computationally demanding stage of the bb-algorithm.

– A novel bi-directional instantaneous path planner was developed to quickly generate

continuous joint paths between specified joint configurations. A forward progressing



113

joint path from one staring configuration and a backward progressing joint path starting

at the other joint configuration are simultaneously generated in which the instantaneous

optimization criteria is updated to guide the paths to meet. If no joint limit is

encountered, the continuous joint path is smooth.

– A novel “direct” optimal control solver (i.e., using nonlinear programming) was

developed for deforming a sub-optimal joint path into a locally optimal joint path. The

novelty of the path deformation procedure is in using self-motion paths to simplify the

nonlinear programming problem by: 1) reducing the order of problem, 2) eliminating

the need for equality constraints in the optimization, 3) and reducing the sensitivity of

the objective function to changes in the optimization parameters.

– A self-motion path planner was provided.

– A novel method of identifying joint limit bifurcation points using a boundary edge path

planner was developed.

– A boundary edge path planner was provided.

– A method of locating singularity bifurcations using root finding was described.

– The number and structure of self-motion manifolds of RIKC problems were identified.

The corresponding self-motion paths were give parameterized descriptions.
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APPENDIX A

COMPLIANCE ELLIPSE

A particle planar compliance like that realized by the springs in Fig. A.1a has an elastic

behavior given by

∆x = Cxf, (A.1)

where Cx is the 2× 2 compliance matrix, ∆x is the displacement of the particle from the

equilibrium position, and f is an external force applied to the particle (illustrated in Fig. A.1a).

The compliance ellipse in this work is a particle’s displacement-image from the unit force

(f | fT f = 1) applied in all directions. The directions of minimum and maximum displacement are

along the eigenvectors u1 and u2, respectively (shown in Fig. A.1b). The magnitudes of the

minimum and maximum displacement are given by the eigenvalues λ1 and λ2, respectively.

f

compliance
ellipse

�2 
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a. b.

Figure A.1: Compliance ellipse: planar displacement image of a particle from a unit force f. a)
The elastic behavior realized by simple springs (the more transparent particle shows the
equilibrium position). b) The minor and major radii are the eigenvalues of the compliance matrix:
λ1 and λ2, respectively. The orientation of the ellipse is given by the minor and major eigenvectors
of the compliance matrix: u1 and u2, respectively.
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