
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Dissertations (1934 -) Dissertations, Theses, and Professional 
Projects 

Automating the Analysis of Uncertainties in Multi-Body Dynamic Automating the Analysis of Uncertainties in Multi-Body Dynamic 

Systems Using Polynomial Chaos Theory Systems Using Polynomial Chaos Theory 

Paul Ryan 
Marquette University 

Follow this and additional works at: https://epublications.marquette.edu/dissertations_mu 

 Part of the Engineering Commons 

Recommended Citation Recommended Citation 
Ryan, Paul, "Automating the Analysis of Uncertainties in Multi-Body Dynamic Systems Using Polynomial 
Chaos Theory" (2018). Dissertations (1934 -). 835. 
https://epublications.marquette.edu/dissertations_mu/835 

https://epublications.marquette.edu/
https://epublications.marquette.edu/dissertations_mu
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/dissertations_mu?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/dissertations_mu/835?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F835&utm_medium=PDF&utm_campaign=PDFCoverPages


AUTOMATING THE ANALYSIS OF UNCERTAINTIES IN MULTI-BODY DYNAMIC
SYSTEMS USING POLYNOMIAL CHAOS THEORY

by

Paul Ryan, M.S.

A Dissertation Submitted to the Faculty of the
Graduate School, Marquette University,

in Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy

Milwaukee, Wisconsin

December 2018



ABSTRACT
AUTOMATING THE ANALYSIS OF UNCERTAINTIES IN MULTI-BODY DYNAMIC

SYSTEMS USING POLYNOMIAL CHAOS THEORY

Paul Ryan, M.S.

Marquette University, 2018

Variation occurs in many multi-body dynamic (MBD) systems in the geometry,
mass, or forces. This variation creates uncertainty in the responses of an MBD system.
Understanding how MBD systems respond to the variation is imperative for the design of
a robust system. However, the simulation of how variation propagates into the solution is
complicated as most MBD systems cannot be simplified into to a system of ordinary
differential equations (ODE). This dissertation derives and automates the uncertainty
analysis of an MBD system with variation. The first step to automating the solution is to
create a robust algorithm based on the Constrained Lagrangian formulation for deriving
the equations of motion. Using the Constrained Lagrangian algorithm as a starting point,
the new process presented uses polynomial chaos theory (PCT) to embed the stochastic
parameters into the equations of motion. To accomplish this, the concept of Variational
Work is derived and implemented in the solution. Variational Work applies PCT to the
energy terms and Principle of Virtual Work of the Constrained Lagrangian rather than
applying PCT on the equations of motion. Using an automated process for applying PCT
to an MBD system, four example problems are solved. Each of these problems is
compared to a Monte Carlo analysis using the deterministic automation process. Three of
the examples are non-textbook based problems, which show limitations in the application
of PCT to an MBD system. The limitations and the possible solutions to overcoming them
are discussed.



i

ACKNOWLEDGMENTS

Paul Ryan, M.S.

I would like to express my appreciation and thanks to my entire committee for
providing guidance throughout my research and for challenging me when I needed
challenging. Special thanks to my advisor, Dr. Philip Voglewede, for his support, his
advice, and especially his help in finding solutions where I was certain there were none to
be found.

Thank you to my former colleagues, Dr. Sree Thampi, Dr. Robert Clark and Dr.
Ian Fialho, who showed by example the impact a doctorate could have in industry. They
pushed me to pursue my doctorate and provided invaluable guidance in the beginning of
my career.

Thank you to my parents, Thomas and Kathryn Ryan, for their love and instilling
in me early on the importance of a good education. Thank you to my father-in-law and my
mother-in-law, Ronald and Paula Washko, for their unwavering encouragement in pursuit
of my doctorate.

Thank you to my two children, Julia and Nicholas, for their love and patience
while I have been away doing my research. They are my strength and motivation, not only
during this process, but in all parts of my life. Most importantly, I would like to thank my
wife, Carol Ann, without whom none of this would have been possible. Thank you for
your unwavering support, your sacrifice, and for believing me when I said I would finish
this someday.



ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
CHAPTER 1 Uncertainty Analysis of a Multi-Body Dynamics System . . . . . 1

1.1 Multi-Body Dynamic System . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Uncertainty Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Sources of Uncertainty in an MBD System . . . . . . . . . . . . . 8
1.3 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

CHAPTER 2 Literature Review of Uncertainty Analyses Their Application to
Multi-Body Dynamic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Sampling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.1 General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Brute Force Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Latin Hypercube Monte Carlo . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Moment Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Perturbation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Response Surface Method . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Polynomial Chaos Theory Method . . . . . . . . . . . . . . . . . . . . . . 23
2.5.1 General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 Polynomial Chaos Theory Process . . . . . . . . . . . . . . . . . . 26
2.5.3 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

CHAPTER 3 Set Up and Simulation of a Multi-Body Dynamic System . . . . 33
3.1 Background of the Multi-Body Dynamics System . . . . . . . . . . . . . . 33
3.2 Generalized Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Three-Dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Two-Dimensional with Rotation . . . . . . . . . . . . . . . . . . . 39
3.2.3 Two-Dimensional with No Rotation . . . . . . . . . . . . . . . . . 41

3.3 Holonomic Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 Three-Dimensional Constraints . . . . . . . . . . . . . . . . . . . 44
3.3.2 Three-Dimensional Joints . . . . . . . . . . . . . . . . . . . . . . 46



iii

3.3.3 Two-Dimensional Constraints . . . . . . . . . . . . . . . . . . . . 49
3.3.4 Two-Dimensional Joints . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Equations of Motion Derivation . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6.2 Maple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6.3 Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6.4 Automation Summary . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 Example: Deterministic Slider-Crank . . . . . . . . . . . . . . . . . . . . 63
3.7.1 Deterministic Slider-Crank Problem Statement . . . . . . . . . . . 64
3.7.2 Inputs to the System . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7.3 Maple Automation . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.8 Summary of the Multi-Body Dynamic Automation Process . . . . . . . . . 70
CHAPTER 4 Polynomial Chaos Theory Method Applied to A Multi-Body Dy-
namic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Polynomial Chaos Theory Work . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.1 Polynomial Chaos Theory Energy . . . . . . . . . . . . . . . . . . 75
4.1.2 Polynomial Chaos Theory Principle of Virtual Work . . . . . . . . 76
4.1.3 Variational Work Process . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.4 Example: Mass-Spring-Damper . . . . . . . . . . . . . . . . . . . 81

4.2 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2.2 Maple Automation Subprocess . . . . . . . . . . . . . . . . . . . . 94
4.2.3 Matlab Automate Subprocess . . . . . . . . . . . . . . . . . . . . 96

4.3 Example: Polynomial Chaos Theory Slider-Crank . . . . . . . . . . . . . . 97
4.3.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.2 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.3 Maple Automation . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
CHAPTER 5 Examples Using the Deterministic and Polynomial Chaos Multi-
Body Dynamics Automation Processes . . . . . . . . . . . . . . . . . . . . . . . 104

5.1 Slider-Crank Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . 105
5.1.1 Slider-Crank Problem Statement . . . . . . . . . . . . . . . . . . . 105
5.1.2 Slider-Crank Monte Carlo . . . . . . . . . . . . . . . . . . . . . . 107
5.1.3 Polynomial Chaos Theory Slider-Crank . . . . . . . . . . . . . . . 107
5.1.4 Slider-Crank Results and Comparison . . . . . . . . . . . . . . . . 109
5.1.5 Uncertainty Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Motorcycle Traversing a Bump . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2.1 Inputs for the Motorcycle . . . . . . . . . . . . . . . . . . . . . . . 115
5.2.2 Computational Limitations Solving the Motorcycle Traversing a

Bump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



iv

5.2.3 Motorcycle Results Comparison and Discussion . . . . . . . . . . 122
5.3 Bouncing Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3.1 Inputs for the Bouncing Ball . . . . . . . . . . . . . . . . . . . . . 125
5.3.2 Computational Limitations Solving the Bouncing Ball . . . . . . . 127
5.3.3 Bouncing Ball Comparison and Results . . . . . . . . . . . . . . . 128

5.4 Agile Eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.4.1 Inputs for the Agile Eye . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.2 Computational Limitations Solving the Agile Eye . . . . . . . . . . 133
5.4.3 Agile Eye Results Comparison and Discussion . . . . . . . . . . . 134

5.5 Summary of the Automation Examples . . . . . . . . . . . . . . . . . . . . 139
CHAPTER 6 Conclusion and Future Research . . . . . . . . . . . . . . . . . 141

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2.1 Polynomial Chaos Theory Compatible Multi-Body Dynamic Com-
ponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2.2 The Impact of Polynomial Chaos Theory on the Stiffness of a Multi-
Body Dynamic System . . . . . . . . . . . . . . . . . . . . . . . . 148

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
APPENDIX A Maple Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.1 Kinematic Constraint Functions . . . . . . . . . . . . . . . . . . . . . . . 157
A.1.1 Three Dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . 157
A.1.2 Two Dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.2 Kinematic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A.2.1 Three Dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A.2.2 Two Dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.3 Matlab Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
A.4 Multi-Body Dynamics Functions . . . . . . . . . . . . . . . . . . . . . . . 160
A.5 Multi-Body Dynamics State Space . . . . . . . . . . . . . . . . . . . . . . 161
A.6 Polynomial Chaos Theory Functions . . . . . . . . . . . . . . . . . . . . . 162

APPENDIX B Matlab Functions . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.1 Monte Carlo Analysis Functions . . . . . . . . . . . . . . . . . . . . . . . 164
B.2 Polynomial Chaos Theory Functions . . . . . . . . . . . . . . . . . . . . . 164
B.3 Simulation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

APPENDIX C Motorcycle Numerical Information . . . . . . . . . . . . . . . . 166
APPENDIX D Agile Eye Numerical Information . . . . . . . . . . . . . . . . . 169



v

LIST OF TABLES

2.1 Best orthogonal polynomial basis [27] . . . . . . . . . . . . . . . . . . . . . . 26
5.1 Motorcycle kinematic constraints . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2 Motorcycle random variables and PCT parameters . . . . . . . . . . . . . . . . 118
5.3 Bouncing ball random variables and PCT parameters . . . . . . . . . . . . . . 126
5.4 Agile Eye kinematic constraints . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.5 Agile Eye random variables and PCT parameters . . . . . . . . . . . . . . . . 133
C.1 Motorcycle point locations [50] . . . . . . . . . . . . . . . . . . . . . . . . . . 166
C.2 Motorcycle mass properties [50] . . . . . . . . . . . . . . . . . . . . . . . . . 167
D.1 Agile Eye center of mass location [5] . . . . . . . . . . . . . . . . . . . . . . . 169
D.2 Agile Eye mass [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
D.3 Agile Eye moments of inertia [5] . . . . . . . . . . . . . . . . . . . . . . . . . 170
D.4 Agile Eye products of inertia [5] . . . . . . . . . . . . . . . . . . . . . . . . . 170



vi

LIST OF FIGURES

1.1 Piston or slider-crank mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Tank propulsion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Part vector and rotation matrix description . . . . . . . . . . . . . . . . . . . . 43
3.2 DMBoD process flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Two link slider-crank mechanism [45] . . . . . . . . . . . . . . . . . . . . . . 64
4.1 Mass-Spring-Damper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 PCMBoD process flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1 Slider-crank link 1 500 sample histogram for MC analysis . . . . . . . . . . . 108
5.2 Slider-crank link 2 500 sample histogram for MC analysis . . . . . . . . . . . 108
5.3 Slider-crank link 1 position MC and PCT comparison . . . . . . . . . . . . . . 110
5.4 Slider-crank link 2 position MC and PCT comparison . . . . . . . . . . . . . . 110
5.5 Slider-crank point B vertical displacement standard deviation quantified by us-

ing PCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.6 Slider-crank point C horizontal standard deviation quantified by using PCT . . 112
5.7 Motorcycle problem description . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.8 Motorcycle going over a bump at 4.4704 m/sec . . . . . . . . . . . . . . . . . 114
5.9 Motorcycle body 1 vertical response MC and PCT comparison . . . . . . . . . 123
5.10 Motorcycle body 1 rotational response MC and PCT comparison . . . . . . . . 123
5.11 Bouncing ball problem description . . . . . . . . . . . . . . . . . . . . . . . . 125
5.12 Bouncing ball body 1 vertical response MC and PCT comparison . . . . . . . . 129
5.13 Agile Eye problem description [9] . . . . . . . . . . . . . . . . . . . . . . . . 131
5.14 Agile Eye camera view response MC and PCT comparison . . . . . . . . . . . 135
5.15 Agile Eye camera view MC time history histogram . . . . . . . . . . . . . . . 136
5.16 Agile Eye camera view MC histogram at t = 0.4 sec . . . . . . . . . . . . . . 137
5.17 Agile Eye camera view PCT time history histogram . . . . . . . . . . . . . . . 137
5.18 Agile Eye camera view PCT histogram at t = 0.4 sec . . . . . . . . . . . . . . 138



vii

LIST OF SYMBOLS

Syntax

f Vector
F Matrix
f̊ Variable has been projected onto orthogonal polynomial basis
ḟ First time derivative with respect to time
f̈ Second time derivative with respect to time
〈f, g〉 Inner product
f · g Dot product

Multi-Body Dynamics

0 Matrix of zeros
Ai Rotation matrix from the origin to body i
A′i Rotation matrix from body i to another frame on body i
C
(
q̇, q, t

)
, C Nonlinear acceleration inertial terms

δri Virtual displacement of force i
δr̊i Variational virtual displacement of force i
δθi Virtual displacement of moment i
δθ̊i Variational virtual displacement of moment i
δWork Virtual Work
δW̊ork Variational Virtual Work
e Quaternion vector
F Force Vector
F i Force i
F̊ i Variational force i
Gi Matrix transformation from quaternion velocities to body fixed angular

velocity i
g Gravity vector
γ Vector of nonlinear acceleration constraint terms
I Identity matrix
Ji Inertia tensor of body i
Jp System Jacobian with respect to the system states
Jsys System Jacobian



viii

Jv System Jacobian with respect to the time derivatives of the system
states

λ Lagrange multipliers
λ̊ Variational Lagrange multipliers
M
(
q
)
,M Inertia matrix

mi Mass of body i
Mi Mass matrix of body i
M i Moment i
M̊ i Variational moment i
Ω̃ Skew-symmetric matrix for cross-product in 2D
ωi Angular velocity of body i
Φ
(
q, t
)
,Φ Vector of constraint equations

Φ̊ Vector of variational constraint equations
Φ[name] Constraint or joint “name”
Φq

(
q, t
)
,Φq Constraint Jacobian

Φ̊q Variational constraint Jacobian
Φqi The ith row of the constraint Jacobian
Φt Vector of the position constraints explicitly differentiated with respect

to time
Φ̊t Variational vector of the position constraints explicitly differentiated

with respect to time
Φtt Vector of the position constraints explicitly differentiated with respect

to time twice
Q
(
q̇, q, t

)
, Q Vector of generalized forces

Q̊ Variational vector of generalized forces
q Generalized coordinates
Qi Generalized force of generalized coordinate i
Q̊i Variational generalized force of variational generalized coordinate i
q
i

Generalized coordinates for body i
qi Generalized coordinates i
q̊i Variational generalized coordinates i
q
T i

Translational generalized coordinates for body i
R (axis, angle) Rotation about an “axis” by an “angle”
R2D (angle) A 2D rotation by an “angle”
ri Point from the origin to the origin of body i
s′i Point from the origin of body i to a point on body i
T System kinetic energy
T̊ System variational kinetic energy
V System potential energy
V̊ System variational potential energy
Velastic System elastic potential energy



ix

V̊elastic System variational elastic potential energy
Vgrav System gravitational potential energy
V̊grav System variational gravitational potential energy
xp Vector of position states for the system
xv Vector of velocity states for the system
xλ Vector of Lagrange multiplier states for the system
xµ Vector of additional Lagrange multiplier states for the system

Polynomial Chaos Theory

Ψi Polynomial of selected basis
ξ Vector of Random variables
W
(
ξ
)
,W (ξ) Weighting function of basis

X, Y, Z A second order random process with finite variance



1

CHAPTER 1

Uncertainty Analysis of a Multi-Body Dynamics System

Variation occurs in every system ever designed, built or analyzed. The impact that

this variation has on the system needs to be understood to ensure the system stays in its

operational limits or design envelope. Not knowing how the variation affects the loads in

the system can lead to an undersized part that breaks or an oversized part that may cause

added weight for non-optimal performance. Characterization of the uncertainties allows

for a more robust design and improved performance. Quantifying the uncertainties of

system responses is critical to the design or analysis of these systems.

Including dynamics in the design and analysis of a system adds its own unique

challenges. The derivation of the governing equations of a dynamic system with only a

handful of bodies moving through three-dimensional space quickly becomes

overwhelming to do by hand. As the number of bodies of the dynamic system increases,

the difficulty in deriving the equations increases. One solution for simplifying the

derivation of the equations of a dynamic system consisting of a large number of bodies is

using a Multi-Body Dynamics (MBD) method, such as one from Haug [22] or using a

commercial of-the-shelf (COTS) MBD program such as MSC.Adams.

The most popular way to handle variation in an MBD system is using a Monte

Carlo (MC) analysis. Based on the variation of the inputs or parameters, a set of random



2

samples is simulated using the MBD model. Depending on the number of inputs or

parameters with variation, in conjunction with how large and complex the MBD model is,

an MC analysis can have a very long cycle time. A very long cycle time can translate into

days, weeks, or more of analysis, making the analysis itself unrealistic. Therefore, there is

a need for performing an uncertainty analysis (UA) on an MBD system which eliminates

long cycle times, while not sacrificing accuracy.

To achieve a replacement method for a UA in an MBD system that eliminates long

cycle times while maintaining accuracy, the goal of this dissertation is to have the UA

set-up and simulated using a robust computer algorithm. To make this possible, additional

criteria are needed.

• First, the method needs to be general and not an ad hoc approach. The new method

needs to be applied with no additional knowledge beyond that it is an MBD system.

Regardless of user, the same equations of motion are arrived at; it is repeatable and

unambiguous.

• Second, there needs to be a certain level of automation. Given any MBD system, the

resulting method requires little to no user inputs regarding the structure or

coordinates used. Because MBD systems can be very large, the equations of motion

cannot be built manually. Manually building a large system takes a lot of time and

effort, and opens the system to many sources of error.



3

• Third, the method needs to be at least as fast as an MC analysis. If a system needs n

MC simulations to characterize the system response correctly, then the method

needs to be as quick or quicker than running those n simulations serially. In theory,

parallel computing can reduce the time to perform an MC analysis. Unfortunately,

there are many of variables that cannot be controlled such as hardware

specifications, licensing, etc. Therefore, for objectivity, serial simulations is used as

the metric.

• Fourth, post-processing of the results needs to be quick and easy. There should not

be a lot of time associated with trying to quantify the uncertainty of the responses.

MBD system responses are time histories with at least a few hundred time steps in

the response. If there are a large number of random variables in the system,

post-processing through time can add significantly to the cycle time.

The goal is to automate the UA of the MBD system using a method that meets the

four above criteria. Ensuring these criteria are met, a robust analysis method can be

achieved. To accomplish this, an MBD system needs to be defined followed by the

definition of a UA.

In this chapter, an MBD system is defined. Next, a UA is defined. Finally, the

application of a UA to an MBD system is explained.



4

1.1 Multi-Body Dynamic System

To automate the analysis of the MBD system with uncertainty, first an MBD

system needs to be defined. An MBD system is a system of rigid or flexible bodies with

kinematic constraints relating them, as well as forces and moments acting on the system.

An MBD system can be represented in its most compact form, meaning the fewest

equations, by a system of ordinary differential equations (ODEs) that equal the number of

degrees of freedom (DOF) of the system. The largest set of equations occur when each

body is represented by a set of ODEs equal to the number of unconstrained DOF in that

space, plus the kinematic constraint equations connecting the bodies. This model is

referred to as a maximal set of generalized coordinates [3] or a maximal set of differential

algebraic equations (DAE). Therefore, there is an ODE for each generalized coordinate in

the system and a set of algebraic equations equal to the number of kinematic constraint

equations. For an open kinematic chain, the system usually is expressed as a system of

ODEs, while a closed kinematic chain system usually is not. Although it may be possible

represent the closed kinematic chain system as a system of ODEs, the cleanest or most

compact form is a system of DAEs. In general, an MBD system consists of both open and

closed kinematic chains. For this dissertation, only rigid bodies and holonomic constraints

are considered because most MBD systems contain mostly rigid bodies with holonomic



5

Figure 1.1: Piston or slider-crank mechanism

constraints. Most computer-aided engineering MBD software focuses on holonomic

constraints as the basis of the system [22, 38].

A commonly used example of an MBD system is a piston connected to a

crank-shaft or a slider-crank, as seen in Fig. 1.1. The mechanism contains three bodies or

parts that are connected by three revolute (or pin) joints and one prismatic (or

translational) joint. The system is a one DOF system; if the piston head moves, the crank

rotates, and vice versa. Since the system has one DOF, it can be modeled in its most

compact form as one ODE. Assuming this is a planar problem and each part is represented

with three degrees of freedom when unconstrained, then the maximal DAE are nine ODEs

with eight algebraic constraint equations. There are two algebraic constraint equations for

each revolute joint and two for the translational joint.

MBD systems can get very large, and it is not easy to represent them as a system

of ODEs. Systems can have well over a hundred bodies with hundreds of DOFs. For

instance, an MBD system can be a tracked vehicle, such as a tank in Fig. 1.2 . If a

propulsion MBD model is needed, then each of the track links, road wheels, drive



6

Figure 1.2: Tank propulsion model

sprocket, etc., need to be modeled. The system is a couple hundred generalized

coordinates with at least a hundred constraint equations. Also, there is hundreds of contact

forces created to capture the reaction between the track links and the road wheels. Thus,

to model a tank with uncertainty, an automated approach building the equations of motion

that reduces cycle time while maintaining a certain level of accuracy is required.

Typically, an MBD system can have a large number of rigid bodies, which means the

system contains tens or hundreds of generalized coordinates with a large number of

kinematic constraints. Adding to the complexity of the system are nonlinearities. These

occur in the kinematic constraint equations because the system is defined in SE(3)

space [39], which based upon the generalized coordinates chosen results in many

trigonometric (e.g., sin and cos) functions. Also, nonlinearities can come from the kinetics

of the problem. Conservative forces can occur in the gravitational potential or in the



7

elastic potential. For the non-conservative forces, nonlinearities can occur in the losses,

such as friction or damping, in contact or in generic forcing functions.

Due to the size of the MBD system, a robust consistent method is needed to ensure

consistent results. To apply a robust consistent method, automation is needed to derive the

equations of motion and solving the system. Finally, the size of the MBD system creates a

large set of output data. A post-processing method is needed to view the results requested

by the user.

1.2 Uncertainty Analysis

The next step is to define exactly what is a UA. A UA assesses the system outputs

as the errors in the inputs or parameters propagate through the system [7]. In other words,

it is a method for quantifying the uncertainty in system outputs [46]. Typically, the

sources for errors are described statistically, using parameters such as mean and standard

deviation for a normal distribution for example [47]. The purpose of the UA is to

determine the probability density function (PDF) of the response [44]. A UA is different

from a sensitivity analysis (SA), which Saltelli [47] describes as a “study of how the

uncertainty in the output of a model (numerical or otherwise) can be apportioned to

different sources of uncertainty in the model input.” A UA quantifies the probability of the

system outputs, while an SA, using only extreme values of the uncertainties, determines



8

how the outputs are influenced by the uncertainties [28]. Ideally, both a UA and an SA are

performed in all MBD analyses.

In the case of MBD systems, uncertainty plays a big role and needs to be

understood. Whether the uncertainty comes from the machining tolerances, material

changes, or noise from the input, understanding the response of the system due to these

variations is critical. For example, these uncertainties influence the forces and moments

acting on certain parts of the system. Not taking into account how the variation affects the

loads in the system can lead to an undersized part that fails or an oversized part that may

cause added weight. The added weight adds to increased cost of material and more

expensive, oversized actuators. Characterization of the uncertainties allows for a more

robust design and improved performance. Also, if an SA also is performed, knowing how

variation influences the system responses allows for more strategic testing and analysis.

Only parameters which are important to a particular response need to be measured or

modeled.

1.2.1 Sources of Uncertainty in an MBD System

In an MBD system, there are many areas where uncertainties can enter. However,

uncertainties can be classified into three major categories. The first includes geometric

uncertainties, or those uncertainties that affect the physical shape of a body. These can

affect the volume of the body, which affects the mass or inertia. Also, they affect the



9

kinematic constraints and the constraint Jacobian. Finally, the geometric uncertainties can

impact the application of the generalized forces.

The second category of uncertainty includes material properties. The material

property of interest for a rigid body system is the density. For flexible bodies, the modulus

of elasticity, the shear modulus, and Poisson’s ratio also are important. The density affects

the mass or inertia and the other material properties affect the stiffness matrix of a flexible

body. This dissertation is only focusing on rigid body systems, and flexible bodies are

included for completeness in this description.

The last category is kinetic uncertainty. Kinetic uncertainty is a broader category

because it includes anything that affects the forces and moments acting on the system,

which ultimately affect the generalized forces. Examples include the stiffness of a spring,

the coefficient of kinetic friction, contact forces, or a generic forcing function. It is

especially true, because of this last category of uncertainty, that a general formulation to

dealing with uncertainties is needed. Since there is no restriction on the type of forces or

moments that are applied to an MBD system, a general approach that allows the

generalized forces to be computed automatically is critical.



10

1.3 Dissertation Outline

This dissertation is organized as follows. In Chapter 2, the Literature Review,

various UA’s are explained and evaluated as possible solutions to a UA of an MBD

system. Chapter 3 explains an MBD system from the derivation method of Constrained

Lagrangian to numerical simulation of the DAE. A slider-crank is used as an example to

show how the MBD method is applied. In Chapter 4, the concept of Variational Work is

derived and applied to the Constrained Lagrangian. The slider-crank is used again to

demonstrate the application of Variational Work. Chapter 5 compares the slider-crank

formulations and three real-world examples: a bouncing ball, a motorcycle and spherical

mechanism. Finally, Chapter 6 contains the forward work and conclusions.



11

CHAPTER 2

Literature Review of Uncertainty Analyses Their Application to Multi-Body

Dynamic Systems

There are many commercial of-the-shelf (COTS) Multi-Body Dynamics (MBD)

programs widely used in industry and academia. Each of these programs has advantages

and disadvantages when it comes to solving the MBD problem. Also, there are various

UA methods that can be used to analyze uncertainties in an MBD system. Each of these

UA methods is presented and evaluated in the context of the MBD formulation.

COTS MBD programs include (not an exhaustive list) MSC.Adams [36],

Virtual.Lab Motion [51], Simulia [8], RecurDyn [35] and Mathworks’ Simscape

Multibody [32]. These programs are used extensively to solve complex problems, with

degrees of freedom (DOF) in the hundreds. The software packages all build their version

of the maximal set of equations [22, 38]. However, each of these codes have a rigid

formulation for how many generalized coordinates each part can have. For example,

MSC.Adams defines all rigid bodies with six generalized coordinates, three translational

and three Euler angles (ZXZ), which cannot be changed [38]. This rigid formulation

prevents the use of some of the UA techniques that do not use a deterministic model.

For decades, many people have tried to solve the UA problem. Some of the major

classifications of UA methods are sampling techniques, moment equations, perturbation



12

theory, remote surface method (RSM), and polynomial chaos theory (PCT). Each of these

methods has advantages and disadvantages when applied to an MBD system. Each of

these methods in this chapter is organized with sections of “General Approach” and

“Assessment.”

2.1 Sampling Techniques

The following section discusses sampling techniques and some common uses of

them. Sampling Techniques are evaluated for use in an MBD system.

2.1.1 General Approach

Sampling techniques are statistical approaches that take samples from a population

of inputs and use these to predict the population of the output. The more samples of the

input population, the more accurate the prediction of the output population is. The hope is

that there are enough samples to represent sufficiently the whole population [12].

Unfortunately, the choice of sampling technique influences the error in the prediction of

the probabilistic nature of the system outputs [59]. There are two types of sampling

techniques: probability sampling and nonprobability sampling. The probability sampling

bases its sampling from probability density functions (PDF), and these fall into the family

of Monte Carlo (MC) methods [12]. Nonprobability sampling does not involve

randomness and is outside the scope of this dissertation [12].



13

MC methods are the primary technique for performing an uncertainty analysis.

According to Halton [19], “the Monte Carlo method is generally defined as representing

the solution of a problem as a parameter of a hypothetical population, and using a random

sequence of numbers to construct a sample of the population, from which statistical

estimates of the parameter can be obtained.” In other words, independent realizations of

the random inputs or parameters are created from their respective PDFs, then the set of

realizations is run through a deterministic model, and the realizations of the outputs are

collected [61]. Because the independent realizations typically are generated by a

computer, using a deterministic algorithm to create a random number, they are technically

pseudorandom [12].

There are many MC methods, each one has advantages and disadvantages.

However, they all follow a simple process [21]:

1. Determine the PDFs for the random input variables,

2. Repeatedly sample the PDFs to form a simulation set,

3. Simulate the deterministic model with each set, and

4. Collect response data and compute statistical information.

Two popular MC methods that are discussed in the following sections are the brute force

and Latin Hypercube methods.



14

2.1.2 Brute Force Monte Carlo

The simplest MC method is the brute force method. Each variational input or

parameter is sampled n times based on its PDF. For the purpose of this dissertation, the

PDF is assumed to be known. A set of all the random variables is created, placed into the

deterministic model, and simulated. The deterministic model is evaluated or simulated n

times. The responses of each of the simulations is collected, and statistical information are

extracted, typically the mean and standard deviation [61].

2.1.3 Latin Hypercube Monte Carlo

Latin Hypercube MC tries to reduce the number of samples that are needed to

define a system response accurately in the brute force method [12]. Each random variable

is divided into equal non-overlapping probability intervals [12]. A single random sample

from each bin is then computed [12]. All the samples of the random variables are paired

randomly to form an MC set [12]. Each of these sets is then simulated using the

deterministic model, similar to the brute force method. Statistical information then is

extracted from all of the system responses. Since the Latin Hypercube method represents

the distributions more efficiently, it takes fewer samples to achieve an accurate mean and

standard deviation estimate [25].



15

2.1.4 Assessment

The MC methods can be applied in a general sense to any MBD problem. This is

primarily why it is one of the most commonly used methods to quantify uncertainty in an

MBD system. It can be combined easily with existing MBD software such as

MSC.Adams or any MBD system building method, as from [22]. Unfortunately, since

MBD systems are large and complex models, it is not sufficiently fast. Also, since MBD

systems are simulated through time, the statistical information of each response is

computed at every time step.

2.2 Moment Equations

Another type of UA uses moment equations. Moment equations are discussed in

the following section. This type of UA is then evaluated for use in an MBD system.

2.2.1 General Approach

Moment equations are an uncertainty analysis that computes the moments of the

responses directly using a Taylor series expansion about a value [61]. The first moment is

the mean, and the second moment is the variance or the standard deviation squared.

Typically, the mean value is used as the point to expand the Taylor series [58]. Given an

MBD DAE system, if each equation is designated Gk (x), where x is a vector of n random



16

variables, then the Taylor series expansion is [44]

Gk (x) =Gk

(
µ
)

+
n∑
i=1

∂Gk (x)

∂xi

∣∣∣
x=µ

(xi − µi)

+
1

2

n∑
i=1

n∑
j=1

∂2Gk (x)

∂xi∂xj

∣∣∣
x=µ

(xi − µi) (xj − µj)

+H.O.T. ,

(2.1)

where H.O.T. is short for higher order terms. There are generally two methods for

calculating the mean and variance of the system, the first order second moment (FOSM)

and the second order second moment method (SOSM). In [29], a detailed derivation is

shown for how the mean and variance are calculated. Assuming the random variables are

independent, to calculate the first moment, the mean, and the second moment, the

variance [58],

µGk = Gk

(
µ
)
, and (2.2)

σ2
Gk

=
n∑
i=1

(
∂Gk (x)

∂xi

∣∣∣
x=µ

)2

σ2
xi
, (2.3)



17

where σxi is the standard deviation of the random variable. The first and second moments

for the SOSM formulation are

µGk = Gk

(
µ
)

+
1

2

n∑
i=1

∂2Gk (x)

∂x2
i

∣∣∣
x=µ

σ2
xi
, and (2.4)

σGk =

(
∂Gk (x)

∂xi

∣∣∣
x=µ

)2

σ2
xi

+
1

2

(
∂2Gk (x)

∂x2
i

∣∣∣
x=µ

σxi

)2

. (2.5)

Each equation in the system is evaluated using either the FOSM or the SOSM

equations. The new system is twice as large as the original system, one system for the

mean and one system for the variance. The system then can be integrated or simulated

with respect to time to get the means and variances of the responses.

2.2.2 Assessment

Depending on the size of the MBD system, it might be impractical to build the

system governing equations analytically. The impracticality is true regardless of whether

it is a minimal DOF system consisting of only ODEs or a maximal system DAE. The first

and/or second partial derivatives of the system equations with respect to the random

variables need to be found, and they need to be squared. This is easier for the FOSM than

it is the SOSM, but the SOSM in theory is more accurate [20].

In general, the moment equation formulations fail when applied to highly

nonlinear systems [30]. In the case of the MBD system, except in a very rare case, the



18

system is nonlinear with polynomial, trigonometric, exponential, etc., terms. Also,

moment equations are not able to handle discontinuities, such as contact or friction, which

cannot be linearized.

To get the FOSM or SOSM to work, the user needs to be involved in almost every

step of the way making simplifications. Applying Moment Equations to an MBD system

is very ad hoc. This violates criteria one and two in Chapter 1, and therefore Moment

Equations are not an appropriate method to use with a general MBD system.

2.3 Perturbation Method

A third type of UA is the perturbation method. The perturbation method is

discussed in the following section. This type of UA then is evaluated for use in an MBD

system.

2.3.1 General Approach

Perturbation theory sometimes is confused with moment equation methods in the

literature. There are similarities which involve Taylor series expansions, but in the

perturbation method, the components of the governing equations are expanded via Taylor

series, including the responses, about the mean of the random variables. In the moment

equation method, the moments are computed directly from the governing equations [61].



19

The coefficients of the expansions of the responses are calculated using a closed-form

solution [53]. This method is used most commonly in structural dynamics. All of the

examples that were found [11, 31, 34, 53, 54] were of the static finite element analysis

(FEA) form

K (α)x (α) = F (α) , (2.6)

where K is the stiffness matrix, F is the applied force vector, x is the displacement vector

and α is a vector of random variables. In [54], the example problems look at variation of

the system response, x, about the equilibrium for the system. Each term is expanded about

its mean via a Taylor series expansion. For example, the stiffness is expanded

K (α) =K
(
µ
)

+
n∑
i=1

∂K (α)

∂xi

∣∣∣
α=µ

(αi − µi)

+
1

2

n∑
i=1

n∑
j=1

∂2K (α)

∂αi∂αj

∣∣∣
α=µ

(αi − µi) (αj − µj)

+H.O.T.

(2.7)

Each term in Eqn. (2.6) is expanded like Eqn. (2.7) using the same Taylor series expansion

order and substituted back into Eqn. (2.6). Like terms are grouped on both sides of the

equation based on similar order coefficients of αi [54]. If possible, then x is solved for

from each of theses terms. Once the coefficients of the Taylor series expanded response

are found, the mean and variance can than be computed. Using a second order Taylor



20

series expansion, a two degree of freedom spring system had a very accurate

approximation of the real response [34].

2.3.2 Assessment

All of the solutions found using the perturbation method were static FEA

problems. It is difficult to determine how to implement this method for an MBD system

where there are derivatives of the responses. In the simple case of

Mẍ+ Kx = F , (2.8)

where M is the mass matrix, the second derivative of x can be expanded by taking the

second derivative of the Taylor series response. The system then can be simulated through

time to determine the coefficients of the Taylor series expansion. The method seems to be

very arduous for a very large system, where taking partial derivatives for the Taylor series

can become unrealistic and increase computational time [34]. Also, in general, using a

second order or higher Taylor series expansion approximation only works for Gaussian or

normal distributions [53]. Finally, for perturbation methods to be accurate, the inputs and

outputs magnitude of uncertainties need to be under 10% [61]. This method also appears

to be an ad hoc method; the user is involved making decisions at every step of the process.

Due to the process seeming more manual, it is not easily automated. Since the

perturbation method appears unrealistic to implement for a large system, in violation of



21

criteria one and two in Chapter 1, the perturbation method is not an appropriate method to

use with a general MBD system.

2.4 Response Surface Method

A fourth type of uncertainty analysis is the response surface method. This method

is discussed in the following section. The response surface method then is evaluated for

use in an MBD system.

2.4.1 General Approach

There are many uses of the term “response” surface in the literature. Myers’s [40]

definition is accepted for this dissertation, “a collection of tools in design or data analysis

that enhance the exploration of a region of design variables in one or more responses.” In

general, there are four steps for the response surface method (RSM) [13]:

1. Sensitivity analysis to determine important inputs or parameters,

2. Determine a simplified model that represents the original model,

3. Calculate moments of the RSM model, and

4. Fit a statistical model to the moments.



22

The statistical model is assumed to be a polynomial of the form [44]

Yk (x) ≈ a0 + a1x1 + · · ·+ anxn + an+1x
2
1 + · · ·+ a2nx

2
n + a2n+1x1x2 + · · · , (2.9)

where Yk (x) is the k response, and xi are the random variables.

As an example, assume the system in Eqn. (2.6). A sensitivity analysis is

performed on the system to determine to which of the random variables, αi, the system is

sensitive. Based upon these sensitivities, a simplified model or models is created of Eqn.

(2.6). Using a method such as MC analysis or the FOSM or the SOSM, the moments of

the simplified models are calculated [13]. Using an assumed statistical model, such as

Eqn. (2.9), fit the moments of the RSM models to the assumed model for the outputs.

2.4.2 Assessment

Because an MBD system can be nonlinear, determining the sensitivity of model

inputs, or even a simplified model, can be difficult. At best, a local RSM analysis may be

performed. In the end, it almost needs to be compared to an MC analysis to ensure that the

correct inputs are identified, that the model is simplified correctly, and that a good

statistical model is chosen [59]. Due to the choosing of simplified models, it appears as if

this is done ad hoc. Different users can apply the method and get different answers. Since

RSM is more of a local UA due to the use of a simplified model and violates at least



23

criterium one in Chapter 1, RSM is not an appropriate method to use with a general MBD

system.

2.5 Polynomial Chaos Theory Method

Finally, Polynomial Chaos Theory (PCT) is the last uncertainty analysis. This

method is discussed in the following section. PCT then is evaluated for use in an MBD

system.

2.5.1 General Approach

The underlying philosophy for PCT, or in some literature generalized Polynomial

Chaos (gPC) [27, 43, 61, 63], is that it allows random variables to be represented by a

series expansion in terms of orthogonal polynomial basis functions [62]. According to

Xiu [61], PCT “is an spectral representation in random space.” The PCT expansion was

introduced first by Wiener [60] using Gaussian or normally distributed random variables

represented by a Hermite orthogonal polynomial basis set. It has been expanded to the

Wiener-Askey polynomial chaos, which used other polynomials of the Askey scheme. An

Askey scheme is used to classify hypergeometric orthogonal polynomials, of which

Hermite polynomials are a subset [62].

A PCT expansion begins with expanding a generic variable based on an



24

orthogonal polynomial basis set. A second order random process with finite variance can

be written as [62]

X (θ) =a0I0

+
∞∑
i1=1

ci1I1 (ξi1 (θ))

+
∞∑
i1=1

∞∑
i2=1

ci1i2I2 (ξi1 (θ) , ξi2 (θ))

+
∞∑
i1=1

∞∑
i2=1

∞∑
i3=1

ci1i2i3I3 (ξi1 (θ) , ξi2 (θ) , ξi3 (θ))

+ · · · ,

(2.10)

where ci are the coefficients of the expansion, Ii (ξi (θ)) are the polynomials of the

selected orthogonal polynomial basis, ξi (θ) are a vector of random variables, and θ is a

random event. More compactly, Eqn. (2.10) can be represented by

X =
∞∑
j=0

ajΨj

(
ξ
)
, (2.11)

where X is the random process, aj are the coefficients of the expansion, Ψj are the

polynomial of the selected bases and ξ are random variables [52]. The orthogonal

polynomial basis forms a complete orthogonal basis in the Hilbert space of square

integrable random variables [48]

〈Ψi,Ψj〉 = 0 for i 6= j , (2.12)



25

where the operator 〈·, ·〉 is the ensemble average. Also, Eqn. (2.12) can be written as [62]

〈Ψi,Ψj〉 = 〈Ψ2
i 〉δij , (2.13)

where δij is the Kronecker delta. To calculate the inner product on the Hilbert space for

the random variable ξ [62],

〈f (ξ) , g (ξ)〉 =

∫
f (ξ) g (ξ)W (ξ) dξ , (2.14)

where W (ξ) is the weighting function for the chosen basis set in the Askey scheme [56].

For certain orthogonal polynomials, the weighting functions are probability functions of

random distributions [62].

Based on the distribution of the random variables, there may be a better choice for

the orthogonal polynomials. Kewlani [27] summarized the preferred orthogonal

polynomials basis to use based on a the type of random variable, which can be seen in

Table 2.1. A common orthogonal polynomial basis must be used to represent all of the

uncertain random variables. If a good match between the orthogonal polynomials and the

distribution of variables is not achieved, the expansion still can be performed, but it may

require more terms in the series expansion to get the same level of accuracy as if the good

match is used [52].

For practical purposes, an infinite expansion is not possible. Given nv random



26

Table 2.1: Best orthogonal polynomial basis [27]

Random Variable Orthogonal Polynomial Basis
Gaussian Hermite
Gamma Laguerre

Beta Jacobi
Uniform Legendre

variables and np, the order of the selected polynomial basis, an appropriate number of

terms of the polynomial chaos expansion is [56]

P =
(np + nv)!

np!nv!
− 1. (2.15)

This changes the series expansion in Eqn. (2.11) to

X ≈
P∑
j=0

ajΨj (ξ) . (2.16)

2.5.2 Polynomial Chaos Theory Process

Each of the random variables is expanded in terms of the selected orthogonal basis.

A generic variable a is expanded onto the chosen orthogonal polynomial basis set by [56],

a ≈
np∑
i=0

aiΨi . (2.17)



27

Each of the random variables needs to be projected onto the orthogonal basis set by using

Eqn. (2.14) to determine the coefficients,

ai =
〈a,Ψi〉
〈ΨiΨi〉

. (2.18)

Now with each of the random variables for the system expanded in terms of the

orthogonal polynomial basis set, the states of the model also need to be expanded as a

function of the orthogonal polynomial basis by Eqn. (2.16). The system of equations

contains the same number of equations as it did previously, but are a function of

polynomial basis variables, ξi. These polynomial basis variables, ξi, need to be eliminated

to solve the problem. To eliminate them, a multivariate Galerkin projection, a

generalization of Eqn. (2.14), is used [62]

〈f
(
ξ
)
, g
(
ξ
)
〉 =

∫
f
(
ξ
)
g
(
ξ
)
W
(
ξ
)
dξ , (2.19)

where W
(
ξ
)

is the multivariate weighting function for the chosen orthogonal basis set.

The size of the original MBD system is increased and is projected onto the orthogonal

polynomial basis.



28

For a DAE, the resulting system is increased in equations by [48]

(P + 1) (Number of 1st order ODEs)

+ (P + 1) (Number of Algebraic Equations) (2.20)

For the MBD system, the ODEs are second order, creating a state space model of the

system results in a system that is

2 (P + 1) (Number of 2nd order ODEs)

+ (P + 1) (Number of Algebraic Equations) (2.21)

For a simple planar pendulum pinned at one end with the length as a random variable, the

original, deterministic system is a DAE with three 2nd order ODEs and two constraint

equations. After applying the PCT method, the system consists of six second order, or

twelve first order ODEs, and four constraint equations.

2.5.3 Assessment

The power of PCT is that the same information about the outputs can be found

from an MC analysis, but in one simulation. This simulation is a larger size, but it only

needs to be run once [57]. As an additional benefit, the sensitivity of a given random

variable to the output is shown more intuitively. The impact of each of the random



29

variables is separated into distinct states of the system. In an MC analysis, only the overall

impact of all the variables is calculated, not the individual components. For an MC

simulation, the system in essence becomes a black box, and post-MC analysis needs to be

done to determine the sensitivities. Also, if a three-dimensional rigid or flexible body

dynamic system takes hours to run once, then an MC analysis can take days or weeks to

run a sufficiently large enough set to get a statistically significant result. With PCT, all the

work is up front with computing all of the inner products. Once these are known, the

analysis takes significantly less time [57].

PCT offers many benefits with great possibilities. However, PCT also has some

drawbacks. Some of the drawbacks involve the complexity of solving for the PCT

coefficients. Also, there are some unresolved issues with how it can be applied to a highly

nonlinear mechanical system. One issue is that all of the random variables need to be

represented by the same polynomial basis [52]. Different polynomial bases are able to

represent different types of distributions with fewer terms, which cuts down on the

number of inner products that need to be computed. If most of the random variables are of

the same type of distribution, then the complexity of solving for PCT coefficient might not

be an issue. However, if there are many random variables with many different

distributions, then the time savings of a PCT analysis might disappear. An MC analysis

might be run in the time it takes to compute all of the PCT coefficients. It is out of the

scope of this dissertation to determine the point where PCT becomes too time consuming



30

when compared to an MC simulation. This point is highly dependent on computer

hardware, which is outside of the control of this dissertation.

Another issue with PCT is dealing with nonlinearities. Fisher et al. described two

types: polynomial and transcendental nonlinearities [14]. If the polynomial nonlinearities

are positive integer order, then the Galerkin projection in Eqn. (2.19) can handle

them [14]. If nonlinearity is a rational function of polynomials then through some linear

algebra manipulation with the Galerkin projection in Eqn. (2.19), the coefficients can be

found. For other special functions, such as the square root, there are special iterative

algorithms that can be used to solve for the coefficients [10]. For transcendental

nonlinearities, the most popular way to evaluate them is with a Taylor Series

expansion [10]. The most common transcendental functions found in an MBD system are

trigonometric functions, and the Taylor series expansion is demonstrated in [57]. In the

end, there is some fidelity lost because of the linear approximation of the nonlinearity. If

the simulation goes too far away from the operating point, the results can be erroneous. It

should be noted that both of these uncertainty types are smooth. Another type of

uncertainty not really discussed is the discontinuous or piecewise nonlinearity, which can

be seen in a mechanical system in the form of friction or contact.

As has been stated before, computing the coefficients needed for PCT is not trivial.

The projection of the random variable onto the polynomial basis and the subsequent

Galerkin projection to eliminate the basis vector are complicated. The more random



31

variables that are included in the model, the more complicated these calculations become.

In [57] the complicated single and double integral calculations for a two-link robot arm

with two uncertainties in each of their lengths are performed.

PCT has been applied specifically to MBD systems in [48, 49, 56, 57]. However,

the MBD examples illustrated were all able to be reduced to a set of ODEs. The PCT

method was expanded to a maximal set DAE by Ryan [45] for an index-1 DAE MBD

system. The index-1 formulation was used because the DAE integrator chosen was

Matlab’s ode15i, which only supports index-1 DAEs. In general, one of the issues with

PCT is that all of the work is determining the coefficients by the inner product calculation.

Most of the research on PCT applies it to the state equations; this how PCT is

applied to the maximal set DAE by Ryan [45]. Applying it to the state equations means

that the deterministic problem is fully derived before the PCT process is initiated.

Depending on the system, this can lead to many complicated Galerkin projections. For an

MBD system, some of the complexity of the Galerkin projections can be reduced or

eliminated. Unfortunately, there is nothing that can be done to reduce the number of inner

products required to project the random variables onto the orthogonal basis set. Using a

Constrained Lagrangian approach

d
dt

(
∂T
∂q̇i

)
− ∂T

∂qi
+ ∂V

∂qi
= Qi + ΦT

qi
λ

Φ = 0 ,

(2.22)



32

where T is the kinetic energy, V is the potential energy, Qi is the ith generalized force,

Φqi , is the ith row of the constraint Jacobian, and λ is the vector of Lagrange multipliers

with the constraint equations, Φ = 0, some calculations can be reduced. The Galerkin

projection of the pieces, such as T and Q, can be performed.

If a Constrained Lagrangian method is applied to already expanded PCT terms,

where the orthogonal polynomial basis variables, ξi, are eliminated, then a general

automated process can be achieved. Since a Constrained Lagrangian process is being

used, a robust consistent method for deriving the equations of motion is possible. The

process is faster than an MC analysis run and leads directly to uncertainty quantification

of the responses. Also, because the responses are a function of each random variable, a

sensitivity analysis can be done. A Constrained Lagrangian method lends itself to

automation easily. An MBD method can easily be set up using the Constrained

Lagrangian. Using PCT to compute the components needed in the Constrained

Lagrangian method leads to less complicated PCT coefficient calculations via a Galerkin

projection. Constrained Lagrangian derivations need to be placed into state space, which

allows a subset of outputs to be calculated for the model and post-processed. All the

criteria from Chapter 1 are met. Hence, PCT is be pursued in this dissertation.

In the following chapter, the MBD problem using the Constrained Lagrangian

method will be set up and solved. In Chapter 4, PCT will be embedded into the

Constrained Lagrangian method.



33

CHAPTER 3

Set Up and Simulation of a Multi-Body Dynamic System

To automate the derivation and numerical solution of a multi-body dynamic

(MBD) system, a set of rigid rules needs to be applied. These rules include the choice of

generalized coordinates, the constraint equations, and the form of the final state space

model. If these rules and processes are not followed, then an ad hoc method is being built,

which is not allowed. The same set of equations needs to be built and solved regardless of

the person deriving them.

This chapter derives the theory for an MBD system, including the general

structure. Next, the generalized coordinates used for the derivation are explained. Then

the holonomic constraints are derived for both two-dimensional (2D) and

three-dimensional (3D) formulations. Following this, the Constrained Lagrangian method

is explained. The automation process is described next. Finally, the derived MBD system

is transformed to state space, and the numerical simulation is explained. This process is

illustrated by using a slider-crank example.

3.1 Background of the Multi-Body Dynamics System

For an MBD system, the largest set of equations occur when each body is

represented by a set of ODEs equal to the number of unconstrained degrees of freedom



34

(DOF) in that space plus the kinematic constraint equations. This model uses a maximal

set of generalized coordinates [3] or a maximal set of DAEs. Using this approach ensures

that a robust set of constraints can be applied to the system. No ad hoc constraints are

used, or no reduction of the number of generalized coordinates is allowed. Using a

maximal set of generalized coordinates is the approach that many commercial of-the-shelf

(COTS) MBD programs use.

Given a maximal set of generalized coordinates, q, the general form of a

rigid-body MBD system is

M
(
q
)
q̈ = Q

(
q̇, q, t

)
− C

(
q̇, q, t

)
+ Φq

(
q, t
)T
λ

Φ
(
q, t
)

= 0 ,

(3.1)

where t is time, M
(
q
)

is the inertia matrix, Φ
(
q, t
)

are the constraint equations,

C
(
q̇, q, t

)
are the nonlinear acceleration inertial terms, Φq

(
q, t
)

is the constraint

Jacobian, λ is a vector of the Lagrange multipliers, and Q
(
q̇, q, t

)
is a vector of the

generalized forces. The generalized forces include the conservative forces of the system,

the gravitational forces, and spring forces. For simplicity the “
(
q
)
”, “
(
q, t
)
”, and

“
(
q̇, q, t

)
” are omitted. A system of this form is a semi-explicit DAE of index-3. The

system in Eqn. (3.1) is an index-3 DAE because the constraint equations, Φ = 0, need to

be differentiated with respect to time three times to get to a system of ODEs. The system



35

is semi-explicit because it is a function of the form [15]

q̈ = f
(
q, q̇, λ, t

)
0 = g

(
q, q̇, t

)
.

(3.2)

An MBD system of the form in Eqn. (3.1) in general cannot be solved analytically;

there is rarely a closed-form solution. Furthermore, numerically solving the system is not

easy. First, the systems are very large, nonlinear and stiff. The kinematic constraints

guarantee a stiff system because of the infinite frequencies associated with the

constraints [4]. A stiff system occurs when the first eigenvalue of the system is much

lower (i.e., orders of magnitude lower) than the highest eigenvalue. Second, if using the

maximal set of equations for the MBD system, the system needing to be numerically

integrated or simulated is a stiff semi-explicit index-3 DAE. To solve this class of

problems, a specific type of integrator is needed. Unfortunately, there are not many

integrators that solve a stiff semi-explicit index-3 DAE.

3.2 Generalized Coordinates

The generalized coordinates for each body are defined using the maximal set of

generalized coordinates for the given space. Approaching the problem with a maximal set

allows for a consistent set of robust holonomic constraints to be used. Using a consistent

set ensures a non-ad hoc system is built.



36

This dissertation considers three Euclidean spaces: two-dimensional with no

rotation, two-dimensional with rotation SE(2), or full 3D SE(3). The three Euclidean

spaces are discussed in this order because it is easier to fully define the problem and take

away DOF then it is to add.

3.2.1 Three-Dimensional

For a body defined in a 3D space, the maximal set of generalized coordinates is not

straightforward. The translational DOF are Cartesian coordinates and are not an issue in

the maximal set. However, there are many options to pick for representing the rotations:

Euler Angles, quaternions, Rodriguez Parameters, etc. The advantages and disadvantages

of each are outside the scope of this dissertation. However, due to limitations in the

Polynomial Chaos Theory (PCT) method, quaternions are used because they result in

quadratic terms and not trigonometric (see Section 2.5.3). A quaternion is [22]

e =



e0

e1

e2

e3


. (3.3)



37

Given as a screw axis, an instantaneous axis of rotation, ω, and a rotation about that axis,

θ, the physical meaning behind a quaternion can be thought of as [39]

e =

 cos
(
θ
2

)
ω sin

(
θ
2

)
 . (3.4)

This relationship is only true if the quaternions being used are unit quaternions [39]. To be

a unit quaternion, the components must satisfy

Φe = e0 2 + e1 2 + e2 2 + e3 2 = 1. (3.5)

Thus, for a body defined in a 3D space using quaternions, the maximal set of

generalized coordinates for body i is

q
i

=



xi

yi

zi

e0 i

e1 i

e2 i

e3 i



. (3.6)



38

Using this set of generalized coordinates means that a constraint equation enforcing that

the quaternions are unit quaternions is needed, Eqn.(3.5).

Useful Quaternion Identities

To use quaternions as generalized coordinates, two useful identities are needed.

The first identity, Ai, defines general constraints and coordinate transformations. Given ei,

a rotation matrix is [22]

Ai =



2 e0 i
2 + 2 e1 i

2 − 1 −2 e0 i e3 i + 2 e1 i e2 i 2 e0 i e2 i + 2 e1 i e3 i

2 e0 i e3 i + 2 e1 i e2 i 2 e0 i
2 + 2 e2 i

2 − 1 −2 e0 i e1 i + 2 e2 i e3 i

−2 e0 i e2 i + 2 e1 i e3 i 2 e0 i e1 i + 2 e2 i e3 i 2 e0 i
2 + 2 e3 i

2 − 1


.

(3.7)

To relate body-fixed angular velocity to quaternions [22]

ωi = 2Gi



˙e0 i

˙e1 i

˙e2 i

˙e3 i


, (3.8)



39

where

Gi =



−e1 i e0 i e3 i −e2 i

−e2 i −e3 i e0 i e1 i

−e3 i e2 i −e1 i e0 i


. (3.9)

Equation (3.8) is useful in defining the kinetic energy for the rotational DOFs with

quaternions.

3.2.2 Two-Dimensional with Rotation

For a body defined in a 2D space with rotation, the maximal set of generalized

coordinates for body i is typically

q
i

=


xi

yi

θi


. (3.10)

θi is defined as positive about the z-axis of the system, perpendicular to the plane of

translation. θi ultimately results in trigonometric functions in the equations of motion,

which due to a limitation in PCT, needs to be approximated by a Taylor series [10] (see

Section 2.5.3). This limitation can be overcome by using quaternions or Euler

parameters [22] which result in quadratic terms, not trigonometric. Because this is a 2D

problem with rotation only about the z-axis, the quaternions in Eqn. (3.3) simplify to



40

e =

e0
e3

 . (3.11)

The resulting unit quaternion constraint for 2D is

Φe = e0 2 + e3 2 = 1. (3.12)

Substituting the unit quaternions for θi, the resulting maximal set of generalized

coordinates for body i is

q
i

=



xi

yi

e0 i

e3 i


. (3.13)

Useful Quaternion Identities

To use quaternions as generalized coordinates in 2D, two useful identities are

needed. The first identity, Ai, helps define general constraints and coordinate

transformations. Given ei, a rotation matrix is

Ai =


2 e0 i

2 − 1 −2 e0 i e3 i

2 e0 i e3 i 2 e0 i
2 − 1

 . (3.14)



41

To relate body-fixed angular velocity to quaternions,

ωi = 2Gi

ė0i
ė3i

 , (3.15)

where

Gi =

[
−e3 i e0 i

]
. (3.16)

Equation (3.15) is useful in defining the kinetic energy for the rotational DOFs.

3.2.3 Two-Dimensional with No Rotation

For a body defined in a 2D space with no rotation, the maximal set of generalized

coordinates for body i is

q
i

=

xi
yi

 . (3.17)

There are no rotational DOFs in this case.

3.3 Holonomic Constraints

With the description of the generalized coordinates of each body defined, a

formulation of how these bodies interact with each other via kinematic constraints is

needed. To ensure that the method used to build the MBD system is not ad hoc, a set of

robust holonomic constraints needs to be defined. These constraints help with the



42

automation by applying consistency to all of the kinematics constraints. To build the

holonomic constraint equations for the system, there are two categories: constraints and

joints. Constraints are simple kinematic position constraints that typically only constrain

one or two DOF. Joints typically are made up of multiple position kinematic constraints

and form complex kinematic constraints.

For the purpose of this dissertation, the axis used to define constraints and joints is

a z-axis of a coordinate system located on the respective bodies for 3D and a y-axis for

2D. Also body i is constrained to follow body j, i 6= j. The vectors and rotation matrices

for a given body used for the definition of the constraints can be seen in Fig. 3.1. The

rotation matrix for the origin of body i with respect to the inertial or global frame is

denoted Ai. The rotation matrix from the body frame of i to the frame on body i that

forms the constraint is A′i. Ai is a function of the generalized coordinates, while A′i is

constant. The point from the origin to the origin of body i is denoted ri, and the point from

the origin of body i to the constraint application point is s′i.

A summary of the constraints and joints is presented first, followed by a more

formal definition. The constraints and joints follow Haug’s definitions [22]. Some of the

constraints and joints work for both 2D and 3D Euclidean spaces, others are only for 3D.

The constraints are:



43

Figure 3.1: Part vector and rotation matrix description

• Dot-1 – an axis on one body remains perpendicular to an axis on another body (2D

and 3D)

• Dot-2 - translation along an axis remains perpendicular to axis on another body (2D

and 3D)

• Parallel-1 – an axis on one body remains parallel to an axis on another body (3D

only)

• Parallel-2 – the distance between a point on each body remains parallel to an axis on

one body (3D only)

• Fixed Point – a point on one body is fixed to another body (2D and 3D)

• Fixed Distance – distance between a point on each body remains fixed (2D and 3D)

The joints, which are composites of multiple constraints, are:



44

• Fixed – no net motion between two bodies (2D and 3D)

• Revolute – one relative rotational DOF between two bodies (2D and 3D)

• Prismatic – one relative translational DOF between two bodies (2D and 3D)

• Spherical – translational DOF fixed between two bodies (3D only)

• Cylindrical - one relative rotational DOF between two bodies and one translational

DOF about axis (3D only)

• Universal – two rotational DOF between two bodies (3D only)

3.3.1 Three-Dimensional Constraints

A system of constraints is needed to use in the 3D formulation. The constraints

outlined follow Haug’s definitions [22].

• The first constraint needed is a dot-1 constraint, where one z-axis in one coordinate

system on body i stays perpendicular to a z-axis in the other coordinate system on

body j [22],

Φd1

(
Ai,A

′
i,Aj,A

′
j

)
=

[
0 0 1

]
(AiA

′
i)
T (

AjA
′
j

)


0

0

1


. (3.18)

• The next constraint is the fixed point constraint. This constraint fixes a point on



45

body i to a point on body j. It is defined as [22]

Φfp

(
ri,Ai, s

′
i, rj,Aj, s

′
j

)
= (ri + Ais

′
i)−

(
rj + Ajs

′
j

)
. (3.19)

• The next constraint is a dot-2 constraint. This constraint ensures that the translation

along an axis remains perpendicular to an axis on body j, [22]

Φd2

(
ri,Ai, s

′
i, rj,Aj, s

′
j,A

′
j

)
=
(
AjA

′
j

)T
Φfp

(
ri,Ai, s

′
i, rj,Aj, s

′
j

)


0

0

1


. (3.20)

• The next constraint is a parallel-1 constraint. This constraint ensures that the z-axis

on body i remains parallel to a z-axis on body j, [22]

Φp1

(
Ai,A

′
i,Aj,A

′
j

)
=

Φd1

(
Ai,A

′
iR
(
x, −π

2

)
,Aj,A

′
j

)
Φd1

(
Ai,A

′
iR
(
y, π

2

)
,Aj,A

′
j

)
 , (3.21)

where R (axis, angle) denotes a rotation about an axis by an angle.

• The next constraint is a parallel-2 constraint. This constraint ensures that the

distance between a point on each of the bodies remains parallel to a z-axis on body



46

j, [22]

Φp2

(
ri,Ai, s

′
i, rj,Aj, s

′
j,A

′
j

)
=Φd2

(
ri,Ai, s

′
i, rj,Aj, s

′
j,A

′
jR
(
x, −π

2

))
Φd2

(
ri,Ai, s

′
i, rj,Aj, s

′
j,A

′
jR
(
y, π

2

))
 . (3.22)

• Finally, the last constraint is a fixed distance constraint that typically is formed by

two spherical joints [22]

Φfd

(
ri,Ai, s

′
i, rj,Aj, s

′
j, d
)

=

Φfp

(
ri,Ai, s

′
i, rj,Aj, s

′
j

)T
Φfp

(
ri,Ai, s

′
i, rj,Aj, s

′
j

)
− d2 , (3.23)

where d is the fixed distance between the two spherical joints.

These six constraints are the building blocks for joints. Using these constraints in

different combinations results in standard joints such as a pin joint or a spherical

joint.

3.3.2 Three-Dimensional Joints

In a mechanical system, it is rare that parts are constrained by one or two

constraints. To help in the definition of how parts or bodies in a mechanical system are

more commonly constrained, joints are used.



47

• A fixed joint is a joint which allows zero DOFs between two parts. The constraints

defining this joint are

Φfix

(
ri,Ai, s

′
i,A

′
i, rj,Aj, s

′
j,A

′
j

)
=

Φfp

(
ri,Ai, s

′
i, rj,Aj, s

′
j

)
Φp1

(
Ai,A

′
i,Aj,A

′
j

)
Φd1

(
Ai,A

′
iR
(
y, π

2

)
,Aj,A

′
jR
(
x, −π

2

))


. (3.24)

• A revolute joint is a joint which allows one relative rotational DOF between two

parts. This joint is sometimes known as a pin or hinge joint. The constraints

defining this joint are [22]

Φrev

(
ri,Ai, s

′
i,A

′
i, rj,Aj, s

′
j,A

′
j

)
=

Φfp

(
ri,Ai, s

′
i, rj,Aj, s

′
j

)
Φp1

(
Ai,A

′
i,Aj,A

′
j

)
 . (3.25)

• A spherical joint is a joint which allows all translations between two parts at a point

to be fixed, but constrains zero rotational DOFs. The constraints defining this joint

are [22]

Φsph

(
ri,Ai, s

′
i, rj,Aj, s

′
j

)
= Φfp

(
ri,Ai, s

′
i, rj,Aj, s

′
j

)
. (3.26)

• A prismatic joint, or sometimes a translational joint, is a joint which allows one

relative translational DOF between two parts. The constraints defining this joint



48

are [22]

Φpris

(
ri,Ai, s

′
i,A

′
i, rj,Aj, s

′
j,A

′
j

)
=

Φp1

(
Ai,A

′
i,Aj,A

′
j

)
Φp2

(
ri,Ai, s

′
i, rj,Aj, s

′
j,A

′
j

)
Φd1

(
Ai,A

′
iR
(
y, π

2

)
,Aj,A

′
jR
(
x, −π

2

))


. (3.27)

• A cylindrical joint is a joint which allows one relative rotational DOF between two

parts and one translational DOF between those two parts along the rotational axis.

The constraints defining this joint are [22]

Φcyl

(
ri,Ai, s

′
i,A

′
i, rj,Aj, s

′
j,A

′
j

)
=  Φp1

(
Ai,A

′
i,Aj,A

′
j

)
Φp2

(
ri,Ai, s

′
i, rj,Aj, s

′
j,A

′
j

)
 . (3.28)

• A universal or Hooke’s joint is a joint which allows two rotational DOFs between

two parts, and fixes all translational DOFs. The constraints defining this joint

are [22]

Φuniv

(
ri,Ai, s

′
i,A

′
i, rj,Aj, s

′
j,A

′
j

)
=

Φfp

(
ri,Ai, s

′
i, rj,Aj, s

′
j

)
Φd1

(
Ai,A

′
i,Aj,A

′
j

)
 . (3.29)

These joints are not all the types of joints that can be defined, but include all the joints



49

used in this dissertation. The constraints and joints described in 3D are the typical types

that are found in COTS software. With 3D constraints and joints defined, a subset of these

is used to define constraints and joints for a 2D formulation.

3.3.3 Two-Dimensional Constraints

A system of constraints is needed to use in the 2D formulation, similar to the 3D

constraints. The 2D constraints outlined follow Haug’s definitions [22]. These differ in the

3D definitions by using the y-axis instead of the z-axis. The y-axis is used in 2D because

the z-axis is technically always perpendicular to the plane and is not available as a DOF to

constrain. Note, the dimensionality of the vectors in 2D are 2 by 1 and matrices are 2 by 2.

• The first constraint needed is a dot-1 constraint, where one y-axis in one coordinate

system on body i stays perpendicular to a y-axis in the other coordinate system on

body j [22],

Φd1

(
Ai,A

′
i,Aj,A

′
j

)
=

[
0 1

]
(AiA

′
i)
T (

AjA
′
j

)
0

1

 . (3.30)

• The fixed point constraint in 2D is the same as 3D and is defined in Eqn. (3.19).



50

• The dot-2 constraint for 2D is defined as [22]

Φd2

(
ri,Ai, s

′
i, rj,Aj, s

′
j,A

′
j

)
=
(
AjA

′
j

)T
Φfp

(
ri,Ai, s

′
i, rj,Aj, s

′
j

)
0

1

 . (3.31)

• The fixed distance constraint in 2D is defined between two revolute joints and is

defined using Eqn. (3.23).

Similar to the 3D formulation, these four constraints are the building blocks for

joints in 2D.

3.3.4 Two-Dimensional Joints

For a planar system, the joint definitions of how parts or bodies in a mechanical

system are less than in 3D.

• The fixed joint has the same definition as 3D, but constraints are slightly different.

The constraints defining this joint are

Φfix

(
ri,Ai, s

′
i, rj,Aj, s

′
j

)
= Φfp

(
ri,Ai, s

′
i, rj,Aj, s

′
j

)
Φd1

(
Ai,A

′
iR
(
y, π

2

)
,Aj,A

′
jR
(
x, −π

2

))
 . (3.32)

• The revolute joint has the same definition as 3D, but constraints are slightly



51

different. The constraints defining this joint are [22]

Φrev

(
ri,Ai, s

′
i, rj,Aj, s

′
j

)
= Φfp

(
ri,Ai, s

′
i, rj,Aj, s

′
j

)
. (3.33)

• The prismatic joint has the same definition as 3D, but constraints are slightly

different. The constraints defining this joint are [22]

Φpris

(
ri,Ai, s

′
i,A

′
i, rj,Aj, s

′
j,A

′
j

)
= Φd2

(
ri,Ai, s

′
i, rj,Aj, s

′
j,A

′
j

)
. (3.34)

Having constraints and joints defined for both 3D and 2D formulations of an MBD

system, attention can be shifted to the derivation of the equations of motion.

3.4 Equations of Motion Derivation

With the generalized coordinates and the systematic process for constraint

equations chosen, the equations of motion can be derived. The equations of motion of an

MBD system are most easily automated using a Constrained Lagrangian approach. Other

methods can be used such as Kane’s Method, Gibbs-Appell, or Newton-Euler [17, 18], but

these are not as straightforward or as easy to automate as a Lagrangian approach. The



52

Constrained Lagrangian equations of motion are derived using

d
dt

(
∂T
∂q̇i

)
− ∂T

∂qi
+ ∂V

∂qi
= Qi + ΦT

qi
λ

Φ = 0 ,

(3.35)

where qi are generalized coordinates, T is the kinetic energy of the system, V is the

potential energy of the system, Qi are the generalized forces, λ are a vector of the

Lagrange multipliers, Φqi , is the ith row of the constraint Jacobian, and Φ are the

constraint equations. Using Eqn. (3.35) leads to Eqn. (3.1). Building the components of

Eqn. (3.35 are easy to automate with a symbolic mathematical software such as Maple.1

To solve the MBD system in Eqn. (3.1), the various vectors and matrices need to

be found using the Constrained Lagrangian method. With the components found, the

system can be solved or simulated numerically.

1Note that the Constrained Lagrangian approach is more constraining in its choice of states for a system.
In other methods, such as Kane’s method, are position states are the generalized coordinates, q, and the
velocity states are generalized speeds, u [26]. To use the Constrained Lagrangian method, ui = q̇i. Other
methods do not carry this restriction.



53

3.5 Numerical Solution

To solve the problem, Eqn. (3.1) needs to be transformed into state space. The

states of a system derived using the Constrained Lagrangian method are

x =


q

q̇

λ


=


xp

xv

xλ


. (3.36)

The use of the variable “x” is customary when placing a system into state space. The

variable is different from the generalized coordinate DOF, “xi”. Substituting Eqn. (3.36)

into Eqn. (3.1) yields the following state space model for an MBD system

ẋp = xv

Mẋv = Q− C + ΦT
q xλ

Φ = 0 .

(3.37)

This system is an index-3 DAE because there are position constraints. The constraints

need to be differentiated three times to get to a system of ODEs.

There are not many index-3 DAE solvers available to solve the system in Eqn.

(3.37). To help find solvers for this problem, the index of the system needs to be reduced.

In theory, differentiating Φ with respect to time once or twice leads to an index-2 or



54

index-1 DAE, respectively. However, these systems can have numerical issues because

there are no constraints enforcing the position constraints; over time the system can drift.

A better way to help with the solver issue is to keep the position constraints in the

system. One can keep the position constraints explicitly defined and reduce the index by

introducing additional Lagrange multipliers, µ [16]. This approach ensures that the

position constraints are enforced [55]. The system states then become

x =



xp

xv

xλ

xµ


, (3.38)

where xµ = µ. These added states change Eqn. (3.37) to

ẋp = xv + ΦT
q xµ

Mẋv = Q− C + ΦT
q xλ

Φ = 0

Φqxv = −Φt ,

(3.39)

where Φt is a vector of the position constraints explicitly differentiated with respect to

time. This index-2 DAE system is referred to as a stabilized index-2 (SI2) DAE because it

ensures that the position constraints do not drift [55]. In essence, the index-3 DAE is



55

embedded in the index-2 DAE. The system can be reduced further to an index-1 by

repeating the same reduction method [16]; however such an index reduction is not

necessary.

The system in Eqn. (3.39) is simulated using Matlab using a DAE solver. Matlab is

chosen because it is easier to debug and simulate systems then more general programming

languages such as C or Fortran. Unfortunately, Matlab only supports index-1 DAEs [33].

To solve the system in Eqn. (3.39), the Matlab toolbox, sundialsTB, from Lawrence

Livermore National Laboratory [23] is used. The integrator IDAS from sundialsTB

supports index-1 or higher DAEs [24].

Before the system is ready to be solved, a consistent set of initial conditions needs

to be found. A consistent set of initial conditions ensures that the residual at t = 0 of the

system in Eqn. (3.39) is zero. Rearranging, the residual equation for Eqn. (3.37) is

−ẋp + xv + ΦT
q xµ = 0

−Mẋv +Q− C + ΦT
q xλ = 0

Φ = 0

Φqxv + Φt = 0 .

(3.40)

To find a consistent set of initial conditions, a rudimentary assembly (i.e.,

root-finding) algorithm is used for the system in Eqn. (3.39). The rudimentary assembly

algorithm uses a Newton-Raphson method to find xp0 and xv0, where the subscript “0”



56

denotes initial value. Using the position constraint equations from Eqn. (3.39), the

specified position initial conditions are substituted. The Newton-Raphson method requires

the computation of the system Jacobian, which has already been computed, Φq. The rows

and columns pertaining to the specified initial conditions are removed. The

Newton-Raphson method calculates the remaining consistent set of positional initial

conditions, xp0.

To find the consistent set of velocity initial conditions, xv0, the process is repeated

with the velocity constraint equations from Eqn. (3.39). Only the constraint Jacobian, Φq,

and Φt are needed, and the rows and columns pertaining to the specified initial conditions

are removed from the constraint Jacobian for the Newton-Raphson Jacobian.

Finally, the accelerations and Lagrange Multiplier initial states need to be

calculated, using the index-1 DAE system. The index-1 DAE uses acceleration constraints

instead of positions constraints. The index-1 DAE state space model is


I 0 0

0 M −ΦT
q

0 Φq 0




ẋp

ẋv

ẋλ


=


xv

Q

γ − Φtt


, (3.41)

where 0 is a matrix of zeros, γ is the nonlinear acceleration constraint terms, and Φtt is the

second derivative explicitly with respect to time of the constraints equations. Note, ẋµ = 0

by definition [16].



57

The MBD system has been fully derived. The next step is to automate the process

using the generalized coordinates, the constraint and joint equations, and the Constrained

Lagrangian method.

3.6 Automation

Now with rules and processes for the MBD system set, the automation of the

derivation and simulation can be considered. The flow chart of the Deterministic

Multi-Body Dynamics (DMBoD) automation process can be seen in Fig. 3.2. The process

starts with Maple to calculate symbolically each of the matrices and vectors needed to set

up Eqn. (3.39). These matrices and vectors are exported as Matlab functions. In Matlab,

the minimum set of initial conditions are specified, and the system is simulated.

3.6.1 Inputs

To set up the dimensionality of the system to be simulated, the following inputs are

needed:

• The gravitational vector, g, is needed.

• The number of generalized coordinates per body ndof . This number is either 2, 4, or

7 generalized coordinates, depending on the dimensionality of the model. Each of



58

Figure 3.2: DMBoD process flow chart



59

these cases is defined in Section 3.2, specifically Section 3.2.3, Section 3.2.2, and

Section 3.2.1, respectively.

• The number of bodies in the model, nbod, is needed

• The number of holonomic constraints, ncon, is needed.

Using the holonomic constraint definitions in Section 3.3, the constraint vector, Φ,

is defined. Each of the applied forces and moments is defined along with the

corresponding velocity variable of the point for a force or the angular velocity variable of

the body for a moment. Then the elastic potential energy is defined. As an example, the

elastic potential energy for a system with linear springs is

Velastic =

nspr∑
i=1

1

2
dTi kidi , (3.42)

where nspr is the number of springs in the system, di is the distance the spring is

compressed, and ki is the spring stiffness matrix. The linear spring’s elastic potential is

shown as one example, and the elastic potential easily can contain nonlinear stiffness

terms. Finally, the desired responses from the model, the outputs, are defined.

3.6.2 Maple

With the dimensionality of the system defined, the kinematic constraints defined,

the forces and moments and the velocity and angular velocity of their application defined,



60

and the elastic potential energy, the components of Eqn. (3.39) can be calculated. The

following calculations are all automated using custom-built Maple libraries.

First dealing with the constraint equations, the constraint Jacobian, Φq, and the

constraint vector differentiated explicitly with respect to time, Φt, are calculated. Next, the

acceleration components of the constraint equations are found.

The energy of the system is the next step in the automation. The kinetic energy of

the system is calculated by

T =

nbod∑
i=1

1

2
q̇T
i
Miq̇i , (3.43)

where

Mi =

miI 0

0 4GT
i JiGi

 , (3.44)

mi is the mass of body i, I is the identity matrix, and Ji is the inertia tensor of body i.

When applying the Constrained Lagrangian with n generalized coordinates, this leads to

M and C in Eqn. (3.39) by

M =



∂
∂q̈1

(
d
dt

(
∂T
∂q̇1

))
∂
∂q̈2

(
d
dt

(
∂T
∂q̇1

))
. . . ∂

∂q̈n

(
d
dt

(
∂T
∂q̇1

))
∂
∂q̈1

(
d
dt

(
∂T
∂q̇2

))
∂
∂q̈2

(
d
dt

(
∂T
∂q̇2

))
. . . ∂

∂q̈n

(
d
dt

(
∂T
∂q̇2

))
...

...
...

∂
∂q̈1

(
d
dt

(
∂T
∂q̇n

))
∂
∂q̈2

(
d
dt

(
∂T
∂q̇n

))
. . . ∂

∂q̈n

(
d
dt

(
∂T
∂q̇n

))


, (3.45)



61

and

C =



d
dt

(
∂T
∂q̇1

)
− ∂T

∂q1

d
dt

(
∂T
∂q̇2

)
− ∂T

∂q2

...

d
dt

(
∂T
∂q̇n

)
− ∂T

∂qn


−Mq̈ . (3.46)

M is the matrix that pre-multiplies all of the linear acceleration terms and is not made up

directly of Mi. The potential energy for the system has two components, the gravitational

potential and the elastic potential. The gravitational potential is

Vgrav =

nbod∑
i=1

−mig
T · q

T i
, (3.47)

where g is the gravitational vector defined in the inertial frame, and q
T i

are the

translational generalized coordinates for a body. This formulation is slightly different

from the typical V = migh definition because gravity is defined as a vector in global

coordinates. The total potential energy for the system to be used in Eqn. (3.35) is

V = Vgrav + Velastic , (3.48)

recalling that Velastic is defined by the user. Finally, the generalized forces, Qi, are found

with help from the Principle of Virtual Work,

δWork =

nfrc∑
i=1

F i · δri +
nmom∑
j=1

M j · δθj , (3.49)



62

where nfrc is the number of forces, nmom is the number of moments, F i is a force, M j is a

moment, δri is the virtual displacement of the force, δθj is the virtual displacement of the

moment, and δWork is the virtual work. The virtual displacements, δri and δθj , are

computed by using the kinematical method [17]. In the kinematical method, the velocity

of a point or the angular velocity of a body is computed as functions of the generalized

coordinates and time. Then the generalized coordinate velocities, q̇i, are replaced with the

virtual displacement of the generalized coordinates, δqi.

To find the generalized forces, the potential energy in Eqn. (3.48) and the virtual

work in Eqn. (3.49) are used. The generalized force for generalized coordinate k is

Qk =
∂ (δWork)

∂ (δqk)
− ∂V

∂qk
. (3.50)

Using the Constrained Lagrangian in Eqn. (3.35), the various matrices and vectors

are calculated for Eqn. (3.39) and exported as Matlab functions. The system is built with

custom Maple functions. The descriptions of the functions can be found in Appendix A.

3.6.3 Matlab

The last step in the automation process in Fig. 3.2 is to solve the system in Matlab

by simulating through time. With the components of the equations exported from Maple

as Matlab functions, the final input are the initial conditions for the free DOFs of the



63

system. Matlab then solves for a consistent set of initial conditions following the process

given in Section 3.5. Finally, the system in Eqn. (3.39) is simulated, and the outputs are

plotted. The system is simulated with custom Matlab functions. The descriptions of the

functions can be found in Appendix B.

3.6.4 Automation Summary

The method followed in this dissertation to automate an MBD system is not

entirely new. Most COTS programs do not need to derive the equations for each solve

because the number of generalized coordinates per body are fixed. The components of

Eqn. (3.39) can be solved for up front for any generic problem, and the symbolic

derivation from Maple is not needed for every problem. In the PCT implementation in the

next chapter, the number of generalized coordinates per body changes depending on the

number of random variables and the orthogonal polynomial basis. Each problem is unique

due to the number of random variables and the number of generalized coordinates per

body. Therefore, the components of Eqn. (3.39) need to be derived for each problem.

3.7 Example: Deterministic Slider-Crank

As an example to show how the DMBoD is applied to a problem, a slider-crank

mechanism based on the work from [57] is used. The slider-crank equations of motion are

derived, and the various components of Eqn. (3.39) are calculated and exported.



64

Figure 3.3: Two link slider-crank mechanism [45]

In [57] a two link open kinematic chain with its lengths as random variables is

analyzed both kinematically and dynamically. The slider-crank developed for this

example uses the same parameters as the two link manipulator, except the link lengths are

not random, and only the dynamics is considered. The two link manipulator in [57] is a

two DOF system, but the slider-crank is a one DOF system.

3.7.1 Deterministic Slider-Crank Problem Statement

The slider-crank is shown in Fig. 3.3. The link lengths are l1 and l2. Points A and B

are revolute joints, and Point C is constrained to move in a slot. The mechanism moves in

a plane perpendicular to the gravity vector. The mass of link 1 and link 2 are m1 and m2,

respectively, and the moment of inertia is assumed to be a slender rod i.e.,

(Ji = 1
3
mil̄i

2
, i = 1, 2). The system is driven by a torque, Tapp, at Point A. The initial

conditions are based on θ1o ≡ π
4

and θ̇1o ≡ 0.



65

3.7.2 Inputs to the System

• g =

[
0 0

]T
,

• ndof = 4,

• nbod = 2, and

• ncon = 5.

The constraints for the system are two revolute joints and one dot-2 constraint.

Recall, the dot-2 constraint ensures that the translation along an axis remains

perpendicular to an axis on the body. The revolute joint constraints at Point A are

ΦA =


x1 −

(
2 e0 1

2 − 1
)
l1

−2 e0 1 e3 1 l1 + y1

 . (3.51)

The revolute joint constraints for Point B are

ΦB =


x2 −

(
2 e0 2

2 − 1
)
l2 − x1 −

(
2 e0 1

2 − 1
)
l1

−2 e0 1 e3 1 l1 − 2 e0 2 e3 2 l2 − y1 + y2

 . (3.52)

The dot-2 constraint for Point C is

ΦC = −2 e0 2 e3 2 l2 − y2. (3.53)



66

The final constraint equation vector with the unit quaternion constraints, that are

automatically added by Maple, is

Φ =



x1 −
(
2 e0 1

2 − 1
)
l1

−2 e0 1 e3 1 l1 + y1

x2 −
(
2 e0 2

2 − 1
)
l2 − x1 −

(
2 e0 1

2 − 1
)
l1

−2 e0 1 e3 1 l1 − 2 e0 2 e3 2 l2 − y1 + y2

−2 e0 2 e3 2 l2 − y2

e0 1
2 + e3 1

2 − 1

e0 2
2 + e3 2

2 − 1



. (3.54)

The next step is to define the angular velocity for the applied moments of the

system. The applied moment is Eqn. (5.1), and the angular velocity of body 1 is

ω = 2 e0 1
˙e3 1 − 2 e3 1

˙e0 1 . (3.55)

The last step is to define the elastic potential of the system,

Velastic = 0 . (3.56)



67

3.7.3 Maple Automation

Based on Eqn. (3.54), the constraint Jacobian is

Φq =



1 0 −4 e0 1 l1 0 0 0 0 0

0 1 −2 e3 1 l1 −2 e0 1 l1 0 0 0 0

−1 0 −4 e0 1 l1 0 1 0 −4 e0 2 l2 0

0 −1 −2 e3 1 l1 −2 e0 1 l1 0 1 −2 e3 2 l2 −2 e0 2 l2

0 0 0 0 0 −1 −2 e3 2 l2 −2 e0 2 l2

0 0 2 e0 1 2 e3 1 0 0 0 0

0 0 0 0 0 0 2 e0 2 2 e3 2



, (3.57)



68

and the nonlinear acceleration terms are

γ =



4 ˙e0
2

1l1

4 ˙e3 1 l1 ˙e0 1

4 ˙e0
2

1l1 + 4 ˙e0
2

2l2

4 ˙e3 1 l1 ˙e0 1 + 4 ˙e3 2 l2 ˙e0 2

4 ˙e3 2 l2 ˙e0 2

−2 ˙e0
2

1 − 2 ˙e3
2

1

−2 ˙e0
2

2 − 2 ˙e3
2

2



. (3.58)

which are automatically calculated by Maple.

Next, the kinetic energy and the potential energy need to be determined to define

the system in Eqn. (3.39). The kinetic energy, T , for the system is calculated

automatically,

T =
1

2

(
ẋ2

1 + ẏ2
1

)
m1 +

(
2 e0 1

2 ˙e3
2

1 − 4 e3 1
˙e0 1 e0 1

˙e3 1 + 2 e3 1
2 ˙e0

2

1

)
J1

+
1

2

(
ẋ2

2 + ẏ2
2

)
m2 +

(
2 e0 2

2 ˙e3
2

2 − 4 e3 2
˙e0 2 e0 2

˙e3 2 + 2 e3 2
2 ˙e0

2

2

)
J2 .

(3.59)

When applying Lagrange’s method, the kinetic energy leads to M, the inertia matrix, and

C the nonlinear acceleration terms vector. The potential energy, V , for the system is

V = 0. (3.60)



69

Applying the Principle of Virtual Work in Eqn. (3.49) with the pre-existing

automation scripts

δWork = Tapp (2 e0 1 δe3 1 − 2 e3 1 δe0 1) , (3.61)

leads to the generalized forces

Q =



0

0

−2Tapp · e3 1

2Tapp · e0 1

0

0

0

0



. (3.62)

Applying the Constrained Lagrangian method in the Maple script leads to all of

the matrices and vectors in Eqn. (3.39) being defined. The state space system contains

sixteen ordinary differential equations, seven position constraints, and seven velocity

constraints, for a total of thirty equations of motion.

The Matlab automation part of DMBoD for the deterministic slider-crank is



70

presented in Section 5.1. The system is simulated numerically in a Monte Carlo analysis

and compared to the PCT solution of the same problem.

3.8 Summary of the Multi-Body Dynamic Automation Process

The DMBoD process is not entirely a novel one. Other COTS programs perform

the same calculations, albeit not each time the problem is solved. COTS programs can

solve for the components of Eqn. (3.39) ahead of time because the simulations are

deterministic with a fixed set of generalized coordinates per body. Because of the PCT

implementation in the next chapter, the generalized coordinates per body is not fixed.

Therefore, the components in Eqn. (3.39) need to be found for each problem.

Also, the use of quaternions for a 3D problem is not novel; however, it is novel for

a 2D problem. For a deterministic system, the use of quaternions for a 2D system

unnecessarily overcomplicates the derivation. There is an added abstraction on the 2D

rotation using quaternions because it results in quadratic terms and not trigonometric.

However, this is advantageous when applying PCT to the process, which can be seen in

the next chapter.

In this chapter, a general repeatable method has been derived for building the DAE

equations of motion of an MBD system and solving them. The method is automated, the

DMBoD process, limiting the input the user needs to provide. A slider-crank with applied



71

torque to the crank is used as an example to show the method and process. Using the

DMBoD process as a starting point, the PCT method from Section 2.5 is able to be

embedded. A new process is created to build and solve a PCT MBD problem.



72

CHAPTER 4

Polynomial Chaos Theory Method Applied to A Multi-Body Dynamic System

To integrate the Polynomial Chaos Theory (PCT) method described in Section 2.5

into the Multi-Body Dynamic (MBD) formulation in Chapter 3, additional theory needs to

be developed, the concept of Variational Work. With Variational Work, PCT is applied to

the components of the Constrained Lagrangian method in Eqn. (3.35). Using Variational

Work leads to a more streamlined automation than if PCT were applied directly to the

system in Eqn. (3.39).

This chapter derives the theory for Variational Work. The new process using

Variational Work is contrasted with the Traditional Process of using PCT on the final state

equations using a mass-spring-damper system. Then the automation process in Section

3.6 is updated to use Variational Work. Finally, the derived PCT system using Variational

Work is compared to the Monte Carlo method using the slider-crank example.

4.1 Polynomial Chaos Theory Work

For an MBD system, some of the complexity of the Galerkin projections can be

reduced or eliminated. Variational Work can be applied only to those terms in Eqn. (3.35)

that are defined using energy or the Principle of Virtual Work. Unfortunately, there is

nothing that reduces the number of inner products required to project the random variables



73

onto the orthogonal basis set or the kinematic constraints (see Section 2.5.2 for review of

inner products). Projecting the components required to formulate the Constrained

Lagrangian onto the orthogonal polynomial basis via the Galerkin projections can lead to

a reduction in the complexity of the calculation. Reduction in the complexity can help

speed up the Maple processing to get a system even faster. In theory, given a large enough

system, there would not be enough computing power to handle the Galerkin projections if

they were performed on the final equations of motion.

To use the Constrained Lagrangian in Eqn. (3.35), the concept of work with

variation needs to be expanded. Specifically, kinetic and potential energy and the Principle

of Virtual Work need to be derived. Work is the product of the force over a distance, and

work is a scalar not a vector. In terms of vector spaces,

Work = 〈F (r) , r〉 , (4.1)

where “〈〉” is the inner product, F is an applied force, and r is the distance the force acted.

For Cartesian space, the inner product is the dot product,

Work =

∫
F (r) • dr . (4.2)

For an orthogonal polynomial basis, the inner product is defined in Eqn. (2.19). If F (r)



74

and r are functions of the random variable, ξ, then two inner products need to be

performed; one for Cartesian space and one for the orthogonal polynomial basis.

If it is assumed that F is not a function of r, then Eqn. (4.2) can be written as

Work = F • r . (4.3)

It is very common in mechanical systems for F to not be a function of r; this occurs in

non-conservative forces.

To compute the variational work, F and r are first projected onto the orthogonal

polynomial basis using Eqn. (2.19). This is the first inner product. Then using Eqn. (4.3),

W̊ork = F̊ • r̊ , (4.4)

where “̊•” denotes that the variable is projected onto the orthogonal polynomial basis.

Equation (4.4) is used in the Variational Principle of Virtual Work.

Another approach to compute work with variation is to compute the work in

Cartesian space and then use the definition of the inner product for the orthogonal

polynomial basis, Eqn. (2.19). This leads to the calculation of work

W̊ork =

∫ (∫
F
(
r, ξ
)
dr
(
ξ
))

W
(
ξ
)
dξ . (4.5)



75

W̊ork can be defined further as

W̊ork =

∫
Work

(
r, ξ
)
W
(
ξ
)
dξ . (4.6)

Equation (4.6) allows classical equations of energy for a system to be projected onto the

orthogonal polynomial basis. Without Eqn. (4.6), the Constrained Lagrangian would not

be as advantageous to use.

Both Eqns. (4.4) and (4.6) form the basis for Variational Work. With these two

versions of Variational Work, the Constrained Lagrangian method for deriving the

equations of motion can be used. Without Variational Work, PCT would be applied to the

final equations of motion. This would lead to very complex coefficient calculation while

projecting the equations of motion onto the orthogonal polynomial basis. With Variational

Work, PCT application can be compartmentalized and smaller, less complex Galerkin

projections can be performed.

4.1.1 Polynomial Chaos Theory Energy

For a mechanical system, there are three common types of work: kinetic energy,

gravitational potential and elastic potential. All of these energies can be handled the same

way when projecting onto the orthogonal polynomial basis.

The kinetic energy, gravitational energy, and elastic potential energy for a



76

mechanical system are derived in Eqns. (3.43), (3.47), and (3.42), respectively. Equation

(4.6) is used to project these onto the orthogonal polynomial basis

T̊ =

∫
T
(
ξ
)
W
(
ξ
)
dξ , (4.7)

V̊grav =

∫
Vgrav

(
ξ
)
W
(
ξ
)
dξ , and (4.8)

V̊elastic =

∫
Velastic

(
ξ
)
W
(
ξ
)
dξ . (4.9)

The total potential energy for the system to be used in Eqn. (3.35) is

V̊ = V̊grav + V̊elastic . (4.10)

4.1.2 Polynomial Chaos Theory Principle of Virtual Work

With the kinetic and potential energy projected onto the orthogonal polynomial

basis, the final piece of Eqn. (3.35) is to address computation of the generalized forces,

Qi. To find the generalized forces in Eqn. (3.35), Qi, the Principle of Virtual Work, needs

to be projected onto the orthogonal polynomial basis. The Principle of Virtual Work is

used to find the generalized forces resulting from conservative nonlinear forces or

non-conservative applied forces. The Principle of Virtual Work for a mechanical system is

defined in Eqn. (3.49). Because F i and M j in Eqn. (3.49) are arbitrary and can be

nonlinear, the easiest way to project these forces and moments onto the orthogonal



77

polynomial basis is to use the first method for projecting Work, Eqn. (4.4)

δ ˚Work =

nfrc∑
i=1

F̊ i · δr̊i +
nmom∑
j=1

M̊ j · δθ̊j . (4.11)

This form of the Variational Work can be used because the applied forces and moments

are never a function of the virtual displacements.

PCT Work and PCT Principle of Virtual work are the final pieces needed to embed

PCT into the Constrained Lagrangian method. Now a process can be discussed that

incorporates Variational Work.

4.1.3 Variational Work Process

The Variational Work Process applies PCT to the components of Eqn. (3.35), then

uses the Constrained Lagrangian method to derive the equations of motion. To project the

various components or equations onto the orthogonal polynomial basis, a simple algorithm

is needed. Algorithm 1 loops through each component or equation and projects it onto the

orthogonal polynomial basis component via the Galerkin projection in Eqn. (2.19).

To help explain the Variational Work Process, it will be contrasted with the

Traditional Process. The Traditional Process is the typical method used, applying PCT to

the final equations of motion of the system.



78

Algorithm 1 Equation PCT Projection
1: procedure GALERKINPROJECTION(f,Ψ)
2: n← number of equations in Ψ

3: i = 0

4: for each equation in f do
5: i = i+ 1

6: j = 0

7: for each Ψ do
8: j = j + 1

9: index = n ∗ (i− 1) + j

10: f̊ (index) = 〈f (i) ,Ψ (j)〉
11: end for
12: end for
13: return f̊
14: end procedure

Traditional Process

The Traditional Process derives the equations of motion for the system resulting in

an index-3 differential algebraic equation (DAE) system. PCT is applied then to the

index-3 DAEs [48, 49]. To give as close of a comparison to the Variational Work Process,

the equations of motion in the Traditional Process are derived using a Constrained

Lagrangian method. In theory, since the Traditional Process is applied to the final

equations of motion, any MBD method can be used. The Traditional Process is:

1. Derive Φ = 0

2. Calculate constraint Jacobian, Φq

3. Calculate the energy for the system



79

• Calculate T , Eqn. (3.43)

• Calculate Vgrav, Eqn. (3.47)

• Calculate Velastic, Eqn. (3.42)

4. Use the Principle of Virtual work to compute generalized forces

• Calculate
∑nfrc

i=1 F i and
∑nmom

i=1 M i

• Calculate
∑nfrc

i=1 δri and
∑nmom

i=1 δθi

• Calculate Virtual Work, Eqn. (3.49)

• Calculate Q, Eqn. (4.65)

5. Perform Constrained Lagrangian operations

6. Compute ai, Eqn. (2.18) and substitute into system in Eqn. (3.1)

7. Expand q and λ in terms of the orthogonal polynomial basis using Eqn. (2.16)

8. Substitute into system

9. For each equation of the DAE, use Algorithm 1

Using these steps, the PCT equations of motion are derived. In general, using Algorithm 1

on the final equations of motion results in more complicated Galerkin projections. These

complicated projections can result in equations that are too complicated for a computer to

solve or to simplify. Not being able to simplify the equations can result in less efficient

equations of motion, thus, making the cycle time longer than necessary.



80

Variational Work

The Variational Work Process must use an energy-based MBD formulation. The

Constrained Lagrangian method is chosen for building the equations of motion. The

Variational Work Process also results in an index-3 DAE. The Variational Work Process is:

1. Derive Φ = 0

2. Compute ai, Eqn. (2.18) and expand random variables

3. Expand q and λ in terms of the orthogonal polynomial basis using Eqn. (2.16)

4. Calculate PCT q and λ using Algorithm 1

5. Calculate PCT kinematics

• Calculate PCT Φ̊ using Algorithm 1

• Calculate PCT Φ̊q

6. Calculate Variational Energy

• Calculate T , Eqn. (3.43)

• Calculate T̊ , Eqn. (4.7)

• Calculate Vgrav, Eqn. (3.47)

• Calculate V̊grav, Eqn. (4.8)

• Calculate Velastic, Eqn. (3.42)



81

• Calculate V̊elastic, Eqn. (4.9)

• Calculate V̊ , Eqn. (4.10)

7. Calculate PCT Generalized Forces using the Variational Principle of Virtual Work

• Calculate
∑nfrc

i=1 F̊ i and
∑nmom

i=1 M̊ i, Algorithm 1

• Calculate
∑nfrc

i=1 δr̊i and
∑nmom

i=1 δθ̊i, Algorithm 1

• Calculate Variational Virtual Work, Eqn. (4.11)

• Calculate Q̊, Eqn. (4.65)

8. Perform Constrained Lagrangian operations

The Variational Work Process applies PCT throughout the whole process in

intermediate steps. This results in simpler Galerkin projections, but possibly more of

them. This leads to a faster algorithm building the final equations of motion, and possibly

more efficient equations because they may be easier to simplify.

4.1.4 Example: Mass-Spring-Damper

A mass-spring-damper is used to contrast the use of the Variational Work Process

with the Traditional Process of applying PCT to the deterministic equations of motion.

This is a simple example, but it highlights the differences between the two methods.

The mass-spring-damper is shown in Fig. 4.1. Variability is assumed to exist in the



82

Figure 4.1: Mass-Spring-Damper

spring stiffness, k, with a normal distribution: mean of k̄ and standard deviation of σk.

The system is represented with two generalized coordinates q =

[
x y

]T
. Gravity is

acting in the −Ŷ direction. The mass is constrained to move only along the Ŷ axis.

Hermite Polynomials

There is overlap in some of the calculations between the Traditional Process and

Variational Work Process. One of the main overlaps is the projection of the random

variable onto the orthogonal polynomial basis. Hermite Polynomials are the best choice

for the PCT expansion of spring stiffness because it is normally distributed (see Tab. 2.1).

There are two weighting functions commonly used with Hermite Polynomials; for this

example, the probability weighting function is used [63]:

w (ξ) =
1√
2π
e

−ξ2
2 . (4.12)



83

With this weighting function, the first three terms of the corresponding Hermite PCT basis

set are

H (ξ) =



1

ξ

ξ2 − 1


. (4.13)

Substituting Eqn. (4.12) and the basis functions in Eqn. (4.13) into Eqn. (2.14) yields

1√
2π

∫
Hi (ξ)Hj (ξ) e

−ξ2
2 dξ = n!δij . (4.14)

The stiffness, k, is expanded using Eqn. (2.16) and yields

k ≈
p∑
j=0

ajHj (ξ) . (4.15)

To determine the coefficients aj in Eqn. (4.15), they need to be projected onto the Hermite

Polynomial basis set [57]

aj =

1√
2π

∫∞
−∞

(
k̄ + σkη

)
Hi (η) e

−η2
2 dη

1√
2π

∫∞
−∞Hj (η)Hi (η) e

−η2
2 dη

. (4.16)

Using Eqn. (4.14) to simplify the expression,

aj =
1

n!
√

2π

∫ ∞
−∞

(
k̄ + σkη

)
Hi (η) e

−η2
2 dη . (4.17)



84

Finding each coefficient in Eqn. (4.15), for j = 0,

a0 =
1

0!
√

2π

∫ ∞
−∞

(
k̄ + σkη

)
(1) e

−η2
2 dη = k̄ , (4.18)

for j = 1,

a1 =
1

1!
√

2π

∫ ∞
−∞

(
l̄i + σliη

)
(η) e

−η2
2 dη = σk . (4.19)

and for j = 2,

a2 =
1

2!
√

2π

∫ ∞
−∞

(
k̄ + σkη

) (
η2 − 1

)
e

−η2
2 dη = 0 . (4.20)

All coefficients when j ≥ 2 are zero. Using the calculated coefficients, aj , for Eqn. (4.15),

the PCT expansion of the stiffness k is exact,

k = k̄ + σkξ . (4.21)

All of the states of the model are expanded using the first two terms of Eqn. (4.13).

Expanding them based on these two orthogonal polynomial vectors assumes their

responses are normally distributed as well.

Traditional Process

Using the steps for the Traditional Process, the PCT equations of motion are

derived for the mass-spring-damper. The following are the results of each step. Because



85

the only constraint in the system is to ensure there is no motion in the X̂ direction, Steps 1

and 2 result in kinematic constraints

Φ = x = 0 , (4.22)

and constraint Jacobian

Φq =

[
1 0

]
. (4.23)

In Step 3, the energy for the system is built,

T =
1

2
m
(
ẋ2 + ẏ2

)
, (4.24)

Vgrav = mgy , and (4.25)

Velastic =
1

2
ky2 . (4.26)

Next, in Step 4 the Principle of Virtual Work is applied to calculate the generalized forces.

The applied force is

F = −cẏ , (4.27)

and the corresponding virtual displacement is

δr = δy . (4.28)



86

The virtual work is then

δWork = −cẏ δy , (4.29)

which yields the generalized force vector

Q =

 0

−cẏ

 . (4.30)

Using the Constrained Lagrangian formulation in Step 5, the deterministic equations of

motion are derived:

mẍ = λ , (4.31)

mÿ + ky +mg = −cẏ , and (4.32)

x = 0 . (4.33)

Up until this point, PCT is not included. Projecting the random variable and expanding the

generalized coordinates and Lagrange Multipliers in Steps 6 and 7 yields

k = k̄ + σkξ , (4.34)

x = x0 + x1ξ , (4.35)

y = y0 + y1ξ , and (4.36)

λ = λ0 + λ1ξ . (4.37)



87

The generalized coordinates and Lagrange Multipliers are assumed to be normally

distributed, which is a very good assumption in this particular case. Substituting in the

random variable and generalized coordinates and Lagrange Multipliers expansions into

the equations of motion in Step 8 yields the PCT embedded equations of motion

m (ẍ0 + ẍ1ξ) = λ0 + λ1ξ , (4.38)

m (ÿ0 + ÿ1ξ) +
(
k̄ + σkξ

)
(y0 + y1ξ) +mg = −C (ẏ0 + ẏ1ξ) , and (4.39)

x0 + x1ξ = 0 . (4.40)

Using Algorithm 1 in the final step yields

mẍ0 = λ0 , (4.41)

mẍ1 = λ1 , (4.42)

mÿ0 + k̄y0 + σky1 +mg = −cẏ0 , (4.43)

mÿ1 + σky0 + k̄y1 = −cẏ1 , (4.44)

x0 = 0 , and , (4.45)

x1 = 0 . (4.46)

The PCT method is added in the last couple steps. The full system of equations of

the deterministic model is derived before even implementing PCT. Typically, although not



88

in this case, the ordinary differential equations (ODE) are a lot more complicated, and

applying PCT is more difficult.

Variational Work Process

Using the Variational Work Process on the mass-spring-damper, the following are

the results of each step. Step 1 results in kinematic constraints, which is the same as Eqn.

(4.22). The random variable is projected, and the generalized coordinates and Lagrange

Multipliers are expanded in Step 2 - 3 yielding the Eqns. (4.34) - (4.37). Step 4 projects

the generalized coordinates of the system

q̊ =



x0

x1

y0

y1


(4.47)

and the Lagrange Multipliers

λ̊ =

λ0

λ1

 . (4.48)



89

Step 5 projects the kinematic constraint equations and constraint Jacobian onto the

orthogonal polynomial basis, embedding PCT into the process earlier, yielding

Φ̊ =

x0

x1

 = 0 (4.49)

and the PCT constraint Jacobian

Φ̊q =

1 0 0 0

0 1 0 0

 . (4.50)

The energy of the system and the Variational Energy are calculated in Step 6. The kinetic

energy is the same as Eqn. (4.24). The variational kinetic energy is

T̊ =
1

2
m
(
ẋ2

0 + ẋ2
1 + ẏ2

0 + ẏ2
1

)
. (4.51)

The gravitational potential energy of the system is calculated, which is the same as Eqn.

(4.25). The variational gravitational potential energy is

V̊grav = mgy0 . (4.52)



90

The elastic potential energy of the system is calculated, which is the same as Eqn. (4.25).

The variational elastic potential energy is

V̊elastic =
1

2
k̄y2

0 + k̄y2
1 + σky0y1 . (4.53)

This leads to the total PCT potential energy,

V̊ = mgy0 +
1

2
k̄y2

0 + k̄y2
1 + σky0y1 . (4.54)

In Step 7, the PCT generalized forces are calculated using the Variational Principle of

Virtual work. The applied force projected onto the orthogonal polynomial basis is

F̊ = −c

ẏ0

ẏ1

 . (4.55)

The corresponding virtual displacement is

δr̊ =

δy0

δy1

 . (4.56)

With F̊ and δr̊ defined, the Variational Principle of Virtual Work is

δW̊ork = −cẏ0 δy0 − cẏ1 δy1 , (4.57)



91

which yields the generalized forces

Q̊ =



0

0

−cẏ0

−cẏ1


. (4.58)

Using the Constrained Lagrangian formulation in Step 16,

mẍ0 = λ0 , (4.59)

mẍ1 = λ1 , (4.60)

mÿ0 + +k̄y0 + σky1 +mg = −cẏ0 , (4.61)

mÿ1 + σky0 + k̄y1 = −cẏ1 , (4.62)

x0 = 0 , and (4.63)

x1 = 0 . (4.64)

Using both the Traditional Process and the Variational Work Process yields the

same equations of motion. The Traditional Process applies the Galerkin projections to the

final system of equations. The Variational Work Process applies the Galerkin projections

to each of the components, resulting in simpler calculations. If the system grows and

generalized coordinates are not as easily decoupled, especially when 3D rotations are



92

involved, projecting the equations of motion is more difficult than projecting the energy.

Embedding PCT earlier into the derivation process lends itself to be better for automation.

The calculations are not as difficult acting on position and velocity terms rather than on

acceleration terms in the Traditional Process. The Variational Work Process is able to run

faster due to the less complicated projections. Also, with less complicated projections, the

calculations can be simplified easier, compared to performing the equations on

acceleration level equations.

4.2 Automation

With the process using Variational Work defined, it is now appropriate for it to be

placed into DMBoD defined in Section 3.6. The flow chart for the Polynomial Chaos

Multi-Body Dynamics (PCMBoD) automation process, the automation of the PCT

equations of motion and their solution, can be seen in Fig. (4.2). Similarly to the

deterministic process shown in Fig. 3.2, PCMBoD uses the same inputs with the addition

of the random variables. The major addition is that the Variational Work Process is applied

in Maple. The process starts with Maple to find symbolically each of the matrices and

vectors needed to solve Eqn. (3.39). These matrices and vectors are exported as Matlab

functions. In Matlab, the initial conditions are specified, and the system is simulated.



93

Figure 4.2: PCMBoD process flow chart where the orange font shows the changes from the
DMBoD process



94

4.2.1 Inputs

To set up the dimensionality of the PCT system, additional information is needed.

The PCT system has the same inputs as the deterministic system with the addition of the

number of random variables, npct.

In addition to using the holonomic constraint definitions in Section 3.3, the

constraint vector Φ is defined. Each of the applied forces and moments is defined along

with the corresponding velocity variable of the point for a force or the angular velocity

variable of the body for a moment. Then the elastic potential energy is defined. The

random variables need to be defined with the corresponding probability density function

(PDF) and defining parameters. Next, the orthogonal polynomial basis needs to be

selected; this should be based on the best selection in Table 2.1. With the orthogonal

polynomial basis selected and the random variables fully defined, PCMBoD can build

PCT vectors, Ψ. Finally, similar to the deterministic process the outputs for the model are

defined.

4.2.2 Maple Automation Subprocess

With the dimensionality of the system defined, the kinematic constraints defined

and the forces and moments and the velocity and angular velocity of their application



95

defined, the system, the components of Eqn. (3.39) can be calculated. This can be seen in

the following procedure, which follows very closely the procedure in Section 3.6.2.

First, the random variables are expanded via the orthogonal polynomial basis, and

the coefficients are calculated. The generalized coordinates and Lagrange Multipliers are

expanded next. The PCT generalized coordinates and the Lagrange Multipliers are

computed using Algorithm 1.

Next, the kinematic constraints are projected using Algorithm 1. Then the

constraint Jacobian, Φ̊q, and the constraint vector differentiated explicitly with respect to

time, Φ̊t, are calculated. Next, the PCT acceleration components of the constraint

equations are found.

The energy of the system is the next step in the automation. The kinetic energy of

the system is calculated in Eqn. (3.43). Using Eqn. (4.7), the variational kinetic energy is

calculated. Applying the Constrained Lagrangian leads to M and C in Eqn. (3.39) by

Eqn. (3.45) and Eqn. (3.46), respectively, using the PCT generalized coordinates, q̊.

The potential energy for the system contains two components, the gravitational

potential and the elastic potential. The gravitational potential is calculated in Eqn. (3.47).

The variational gravitational potential is calculated in (4.8). The elastic potential energy

was defined as in input, and the PCT potential energy is calculated using (4.9). The total

potential energy is Eqn. (4.10).



96

Finally, the generalized forces are found with help from the Variational Principle

of Virtual Work. The applied forces, moments and virtual displacements are projected

using Algorithm 1. The Variational Virtual Work is calculated then by Eqn. (4.11).

To find the generalized forces, the potential energy in Eqn. (4.10) and Eqn. (4.11)

are used. The generalized force for PCT generalized coordinate k is

Q̊k =
∂
(
δW̊ork

)
∂ (δq̊k)

− ∂V̊

∂q̊k
. (4.65)

Using the Constrained Lagrangian in Eqn. (3.35), the various matrices and vectors

are calculated for Eqn. (3.39). These components are exported as Matlab functions. The

system in Eqn. (3.39) is built with custom Maple functions. The descriptions of the

functions can be found in Appendix A.

4.2.3 Matlab Automate Subprocess

With the components of the equations exported from Maple as Matlab functions,

the final input is the set of initial conditions for the free DOFs of the system. Matlab then

solves for a consistent set of initial conditions. Finally, the system is simulated, and the

outputs are plotted.



97

4.3 Example: Polynomial Chaos Theory Slider-Crank

As an example to show how the PCMBoD automation process is applied, the

deterministic slider-crank in Section 3.7 is be used. Recall that the slider-crank

mechanism being analyzed is based on the work from [57] and has been analyzed before

by applying PCT to the equations of motion [45]. The slider-crank problem is updated to

add variation to the link lengths.

4.3.1 Problem

The slider-crank is shown in Fig. 3.3. Uncertainty in the link lengths is

incorporated by simulating populations of each with normal distributions: means of l̄1 and

l̄2 and standard deviations of σl1 and σl2, respectively. Points A and B are revolute joints,

and Point C is constrained to move in a slot. The mechanism moves in a plane

perpendicular to the gravity vector. The mass and the moment of inertia are assumed to be

constant as the link lengths vary. The system is driven by a torque, Tapp, at Point A.

4.3.2 Inputs

The inputs to the system are

• g =

[
0 0

]T
,



98

• ndof = 4,

• nbod = 2,

• ncon = 5, and

• npct = 2, because there are two random variables.

The kinematic constraints are exactly the same as the constraints in the

deterministic slider-crank in Section 3.7, Eqn. (3.54). The angular velocity of the applied

moments of the system is Eqn. (3.55). The elastic potential energy is defined in Eqn.

(3.56).

Finally, the last input needed for the PCT automation is the description of the

random variables. The random variables in this example for the slider-crank are the link

lengths, which are taken from normal distributions with prescribed means and standard

deviations. Because the random variables are taken from normal distributions, a Hermite

Polynomial the orthogonal basis is used (see Table. 2.1).

4.3.3 Maple Automation

All the calculations in this section are part of the automated process. They are

shown only for comparison to the deterministic slider-crank example in Section 3.7.

The first step in the automation is to project the random variables onto the



99

orthogonal polynomial basis. The weighting functions used is Eqn. (4.12) with the same

Hermite PCT basis set as Eqn. (4.13).

The link length, li, is expanded using Eqn. (2.16),

li ≈
P∑
j=0

ajΨj (ξ) . (4.66)

Using equation Eqn. (2.18), each coefficient is

a0 = l̄i , and (4.67)

a1 = σli . (4.68)

The PCT expansion of the length li is exact for this example. The expansions of each link

of the slider-crank are

l1 = l̄1 + σl1ξ1 , and (4.69)

l2 = l̄2 + σl2ξ2 . (4.70)

After expanding the random variables, the automation process expands the

generalized coordinates, q =

[
x1 y1 e0 1 e3 1 x2 y2 e0 2 e3 2

]T
, and Lagrange

multipliers, λ =

[
λ1 λ2 λ3 λ4 λ5

]T
, in terms of the PCT orthogonal basis. Using

Eqn. (2.15) with nv = 2 and np = 1, the number of PCT terms is 2. Expanding the



100

generalized coordinates and Lagrange multipliers yields

qi = qi0 + qi1ξ1 + qi2ξ2 , and (4.71)

λi = λi0 + λi1ξ1 + λi2ξ2 . (4.72)

These expansions result in the PCT generalized coordinates for body i

q̊i =



xi0

xi1

xi2

yi0

yi1

yi2

e0 i0

e0 i1

e0 i2

e3 i0

e3 i1

e3 i2



(4.73)



101

and Lagrange multiplier j

λ̊j =



λj0 (t)

λj1 (t)

λj2 (t)


. (4.74)

With the random variables and generalized coordinates expanded in terms of the

orthogonal polynomial basis, they are substituted into the kinematic constraint equations

Eqn. (3.54) and the angular velocity of body 1 in Eqn. (3.55). Using Algorithm 1 with the

kinematic constraints and the Hermite Polynomial basis in Eqn. (4.13), the kinematic

constraints can be projected onto the orthogonal polynomial basis. Using the dot-2

constraint, as an example, at Point C, the resulting constraint equations are

Φ̊C = −2



(e3 20 e0 20 + e3 21 e0 21 + e0 22 e3 22) l̄2

+ (e3 21 e0 20 + e3 20 e0 21)σl2 +
y20

2

(e3 21 e0 20 + e3 20 e0 21) l̄2

+ (e3 20 e0 20 + 3 e3 21 e0 21 + e0 22 e3 22)σl2 +
y21

2

(e0 20 e3 22 + e0 22 e3 20) l̄2

+ (e3 22 e0 21 + e3 21 e0 22)σl2 +
y22

2



. (4.75)

These equations are calculated automatically and only shown for comparison.

Computing the PCT constraint Jacobian and nonlinear acceleration vector are



102

straightforward. These terms are computed the same as the deterministic case, however the

differentiation is done with respect to the generalized coordinates defined in Eqn. (4.73).

The kinetic energy and the potential energy need to be determined to use the

Constrained Lagrangian. The kinetic energy, T , is defined in Eqn. (3.59). Using Eqn. (4.7)

with Eqn. (3.59), the variational kinetic energy, T̊ , can be computed. The potential energy,

V , for the system is exactly the same as Eqn. (3.60),

V = V̊ = 0 . (4.76)

Finally, using the Variational Principle of Virtual Work, the applied moment needs

to be projected onto the orthogonal polynomial basis using Eqn. (4.11). The applied

moment and virtual displacements are projected using Algorithm 1. With the applied

moment and virtual displacement projected, the virtual work for the system can be

calculated. This process ultimately leads to the generalized force vector, Q̊, using Eqn.

(4.65).

Using all of the PCT components, T̊ , V̊ , Q̊, Φ̊q, and Φ̊, the PCT equations of

motion of the system can be derived. The equations derived are identical to the PCT

equations derived by applying Algorithm 1 to the deterministic equations of motion using

Maple.



103

The numerical solution of the system is shown in Chapter 5, where the PCT

method is compared to a Monte Carlo Analysis.

4.4 Summary

In this chapter, the concept of Variational Work was derived. A procedure for

using Variational Work was outlined and compared to the Traditional Process using a

mass-spring-damper example. Next, the automation algorithm was updated to include

Variational Work. A slider-crank with applied torque to the crank was used as an example

to demonstrate the automation.

Using the Variational Work process embeds PCT into derivation of the equations

of motion. This allows for a more integrated automation process, which reduces the

complexity of the Galerkin projections. The reduction results in a faster automation

process. Also, the reduction can lead to a more efficient solution by allowing the

equations to be simplified easier. Embedding PCT earlier into the process enables the full

advantages of the Constrained Lagrangian to be realized.

In the next chapter, the slider-crank in Section 3.7 in a Monte Carlo analysis and

the slider-crank in this chapter are numerically solved. Additional, more complicated

examples are presented and solved using a Monte Carlo analyses and PCT.



104

CHAPTER 5

Examples Using the Deterministic and Polynomial Chaos Multi-Body Dynamics

Automation Processes

This chapter offers several examples showcasing the Deterministic Multi-Body

Dynamic Process (DMBoD) and the Polynomial Chaos Multi-Body Dynamics

(PCMBoD) automation processes. To show additional functionality with PCMBoD, three

additional examples are solved: a planar motorcycle traversing a bump, a planar ball

bouncing and a spherical mechanism, the Agile Eye [9]. These examples also illustrate

some of the limitations of the PCT approach. Each example is compared to a Monte Carlo

simulation to verify its accuracy. The slider-crank also is solved numerically along with

the additional example problems. The example problems try to use typical functionality in

a multi-body dynamics (MBD) formulation.

The examples are simulated on a computer with the following specifications:

• Operating System – Windows 10,

• System Type – 64 bit,

• Processor - Intel Core i5-3330 CPU @3.00Ghz, and

• RAM – 8.00 GB.

The software used is:



105

• Matlab 2016a,

• Maple 2016, and

• Sundials 2.4.0 .

5.1 Slider-Crank Numerical Solution

The slider-crank example from Sections 3.7 and 4.3 is used to compare PCT to

traditional methods of the Monte Carlo (MC) analysis. The deterministic slider-crank

equations of motion are derived in Section 3.7, and the PCT equations of motion are

derived in Section 4.3. Both of these formulations are derived using the automation

processes DMBoD and PCMBoD, respectively. Using the deterministic slider-crank

model, an MC analysis is performed and compared to the results of the PCT system.

5.1.1 Slider-Crank Problem Statement

The full problem statement is restated with numerical values for completeness.

The slider-crank is shown in Fig. 3.3. Variability in the link lengths is incorporated by

simulating populations of each with normal distributions: means of l̄1 = 1 and l̄2 = 1.5

and standard deviations of σl1 = 0.05 and σl2 = 0.075, respectively. Points A and B are

revolute joints, and Point C is constrained to move in a slot. The mechanism moves in a

plane perpendicular to the gravity vector; thus, gravitational forces are not important. The



106

mass of link 1 and link 2 are m1 = 2 and m2 = 3, respectively, and the moment of inertia

is assumed to be a slender rod (i.e., Ji = 1
3
mil̄i

2). The mass and the moment of inertia are

assumed to be constant as the link lengths vary. The location of the center of mass does

not change because it is always the midpoint of the links. The system is driven by a torque

at Point A,

Tapp =



1 t ≤ 1

−1 1 < t ≤ 2

0 t > 2

. (5.1)

The initial conditions are θ1o ≡ π
4

and θ̇1o ≡ 0.

A DAE integrator is very sensitive to discontinuities. The torque as it is defined as

a step function in Eqn. (5.1) needs to be represented by a smooth approximation.

Following the approach in MSC.Adams, the step function is approximated as [37]

step (t, t1, x1, t2, x2) =



x1 t ≤ t1

x2 + (x2 − x1) (3− 2∆) ∆2 t1 < t < t2

x2 t ≥ t2

, (5.2)

where ∆ =
(
t−t1
t2−t1

)
.



107

5.1.2 Slider-Crank Monte Carlo

In Section 3.7, the Matlab functions needed to solve the deterministic slider-crank

are exported. Matlab is used to simulate the system. The first step is to enter the numerical

values for the slider-crank problem. The next step finds a consistent set of initial

conditions. Finally, the system is simulated, and the responses can be plotted.

Performing an MC analysis with the DMBoD requires some extra steps. In Section

3.7, the deterministic slider-crank equations of motion are derived. A database of 500

cases is built using the randn MATLAB function with different combinations for l1 and l2.

A larger set of 1000 cases is built with similar results as the 500 case MC analysis. The

resulting histogram for l1 and l2 can be seen in Figs. 5.1 and 5.2, respectively. Each case is

simulated using the deterministic state space equations in Eqn. (3.39) with the applied

torque in Eqn. (5.1) using the torque approximation in Eqn. (5.2).

5.1.3 Polynomial Chaos Theory Slider-Crank

In Section 4.3, the Matlab functions needed to solve the PCT slider-crank are

exported. The PCT system derived is simulated using the state space equations in Eqn.

(3.39). Additional initial conditions are needed, as the PCT slider crank has three DOF.

The additional initial conditions for the slider-crank are the variations on θ1 and θ̇1. These

additional initial conditions are zero.



108

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

Length of Link 1 (m)

0

2

4

6

8

10

12

14

16

18

N
um

be
r 

of
 O

cc
ur

re
nc

es

Figure 5.1: Slider-crank link 1 500 sample histogram for MC analysis

1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75

Length of Link 2 (m)

0

2

4

6

8

10

12

14

16

N
um

be
r 

of
 O

cc
ur

re
nc

es

Figure 5.2: Slider-crank link 2 500 sample histogram for MC analysis



109

Matlab is used to simulate the system. The first step, as in the deterministic case, is

to enter the numerical values for the slider-crank problem. The next step is to find a

consistent set of initial conditions using the stated and additional PCT initial conditions.

Finally, the system is simulated, and the responses can be plotted.

5.1.4 Slider-Crank Results and Comparison

The position responses for the MC and PCT analysis can be seen in Figs. 5.3 and

5.4. Instead of plotting the planar quaternions, the planar rotation angle is computed from

the quaternion states. The position comparison between the two methods shows good

agreement. The maximum L2-norm of the difference between the MC and the PCT

responses for the translational displacement mean and standard deviations are 6.77× 10−2

m and 7.01× 10−2 m, respectively. The maximum L2-norm of the difference between the

MC and the PCT responses for the angular displacement mean and standard deviations are

3.08× 10−2 rad and 2.25× 10−2 rad, respectively. In most instances, the blue PCT results

lie on top of the red MC results, showing agreement between the two methods.

5.1.5 Uncertainty Effects

Depending on the outputs of the model, the uncertainty in the link lengths has

different effects. As an example, the operational envelope of the mechanism is used in

Fig. 3.3. To be more specific, the vertical displacement of Point B and the horizontal



110

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

X
 P

os
iti

on
 (

m
)

MC(500) µ
MC(500) µ±3σ
PCT µ
PCT µ±3σ

0 0.5 1 1.5 2 2.5 3
0.6

0.7

0.8

0.9
Y

 P
os

iti
on

 (
m

)

0 0.5 1 1.5 2 2.5 3

Time (sec)

0.75

0.8

0.85

0.9

O
rie

nt
at

io
n 

(r
ad

)

Figure 5.3: Slider-crank link 1 position MC and PCT comparison. The red lines are the
MC analysis, and the blue lines are the PCT analysis. The orientation starts out with zero
standard deviation because it is specified as an initial condition

0 0.5 1 1.5 2 2.5 3
2

2.5

3

3.5

X
 P

os
iti

on
 (

m
)

MC(500) µ
MC(500) µ±3σ
PCT µ
PCT µ±3σ

0 0.5 1 1.5 2 2.5 3
0.6

0.7

0.8

0.9

Y
 P

os
iti

on
 (

m
)

0 0.5 1 1.5 2 2.5 3

Time (sec)

-0.7

-0.6

-0.5

-0.4

-0.3

O
rie

nt
at

io
n 

(r
ad

)

Figure 5.4: Slider-crank link 2 position MC and PCT comparison. The red lines are the
MC analysis, and the blue lines are the PCT analysis.



111

displacement of Point C are used. Fig. 5.5 shows the standard deviation as a function of

time of the vertical position Point B. The overall variation does not change because as the

standard deviation of Link 1 decreases, it increases for Link 2. Looking at the horizontal

standard deviation of Point C in Fig. 5.6, it can be seen that the overall standard deviation

is driven by Link 1; Link 2 has no effect.

The slider-crank example shows the power of PCT when compared to the

traditional Monte Carlo analysis. For this example, the equations of motion take about the

same time to derive. The PCT slider-crank takes negligibly longer to solve than one

Monte Carlo simulation; the complete Monte Carlo analysis takes 500 times longer. The

same responses from the states are determined using both processes, with PCT being

much quicker. In the next example, the process is applied to a real-world motorcycle

simulated as a planar problem. This example increases the number of bodies in the

problem and type of forces that appear in the problem.

5.2 Motorcycle Traversing a Bump

The complexity of the problem is increased with a motorcycle traversing a bump.

The problem is still two-dimensional (2D); however, the number of bodies is increased to

five. Also, there is potential energy, both gravitational and elastic potential. This example

tests the integrator with the stiffness of the system increasing and tests the flexibility of

PCMBoD.



112

0 0.5 1 1.5 2 2.5 3

Time (sec)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

D
is

p
la

ce
m

en
t 

(m
)

Both
L

1
 Only

L
2
 Only

Figure 5.5: Slider-crank point B vertical displacement standard deviation quantified by
using PCT. Each link length effects the overall standard deviation, which stays constant

0 0.5 1 1.5 2 2.5 3

Time (sec)

0.09

0.1

0.11

0.12

0.13

0.14

0.15

D
is

p
la

ce
m

en
t 

(m
) Both

L
1
 Only

L
2
 Only

Figure 5.6: Slider-crank point C horizontal standard deviation quantified by using PCT.
Link 1 only affects the standard deviation of the overall standard deviation



113

The motorcycle model is based on the work of Sharp [50] and is shown in Fig. 5.7.

The numerical parameters for the motorcycle are found in Appendix C. The motorcycle is

modeled as a planar system with rotations. The uncertainty in the system is from variation

in the spring stiffness of the front fork and the rear shock. The motorcycle travels over a

bump, which is modeled as moving points p6 and p7. The responses for the system that are

important are the vertical and rotational displacement of the main body, 1.

The position initial conditions for the system are in the configuration shown with

zero velocity.

The bump is created using Eqn. (5.2) for both the front and rear tires. Specifically,

Figure 5.7: Motorcycle problem description



114

the bumps are modeled as

yfront = step

(
t, tstart, 0, tstart +

Lbump

2vodom

, hbump

)
− step

(
t, tstart +

Lbump

2vodom

, 0, tstart +
Lbump

vodom

, hbump

)
, and

(5.3)

yrear = step

(
t, tstart, 0, tstart +

Lbump

2vodom

+
Lwheel
vodom

, hbump

)
− step

(
t, tstart + 2

Lbump

vodom

, 0, tstart +
Lbump

vodom

+
Lwheel
vodom

, hbump

)
,

(5.4)

where tstart is the simulation time at which the front tire hits the bump, Lbump is the length

of the bump, hbump is the height of the bump, and vodom is the speed of the motorcycle.

The resulting displacement of each point can be seen in Fig. 5.8.

0 0.5 1 1.5

Time (sec)

0

0.01

0.02

0.03

0.04

0.05

0.06

T
ire

 D
is

pl
ac

em
en

t (
m

)

p6
p7

Figure 5.8: Motorcycle going over a bump at 4.4704 m/sec. The blue line is displacement
of the front tire via p6 and the red line is the displacement of the rear tire via p7.



115

5.2.1 Inputs for the Motorcycle

The inputs to the system are

• g =

[
0 −1

]T
,

• ndof = 4,

• nbod = 5,

• ncon = 13, and

• npct = 2.

The constraints for the system are summarized in Table 5.1. I is the identity matrix, L2022

is the distance between p20 and p22, and R2D (ε) is a 2D rotation an angle of ε. Recall, q
T i

are the translational generalized coordinates for body i. In addition to the constraints, the

forces need to be entered. There are four forces, two springs and two dampers, from the

two shocks in the system. The first step to enter these forces is to describe the position and

velocity of each point. For the front shock, the positions of the end points are

rfrontA = q
T2

+ A2

(
p

4
− p

cm2

)
, and (5.5)

rfrontB = q
T3

+ A3

(
p

4
− p

cm3

)
, (5.6)



116

Table 5.1: Motorcycle kinematic constraints

Type Body i Body j Definition

Fix 2 1 Φfix

(
q
T2
,A2, p2

− p
cm2

, q
T1
,A1, p2

− p
cm1

)
Revolute 4 1 Φrev

(
q
T4
,A4, p11

− p
cm4

, q
T1
,A1, p11

− p
cm1

)
Revolute 5 1 Φrev

(
q
T5
,A5, p19

− p
cm5

, q
T1
,A1, p19

− p
cm1

)
Fxd Dist 5 4 Φfd

(
q
T5
,A5, p20

− p
cm5

, q
T4
,A4, p22

− p
cm4

, L2022

)
Prismatic 3 2 Φpris

(
q
T3
,A3, p4

− p
cm3

, R2D (ε) , q
T2
,A2, p4

− p
cm2

, R (ε)
)

Dot-2 1 Grnd Φd2

(
q
T1
,A1, 0, 0, I, 0, I

)
Driver 1 Grnd Φd2

(
q
T3
,A3, p6

− p
cm3

, 0, I, 0, R
(
π
2

))
− p6y − yfront

Driver 1 Grnd Φd2

(
q
T4
,A4, p7

− p
cm4

, 0, I, 0, R
(
π
2

))
− p7y − yrear

and the velocities of the end points are

ṙfrontA = q̇
T2

+ A2

((
2G2ė2Ω̃

)(
p

4
− p

cm2

))
, and (5.7)

ṙfrontB = q̇
T3

+ A3

((
2G3ė3Ω̃

)(
p

4
− p

cm3

))
, (5.8)

where

Ω̃ =

0 −1

1 0

 . (5.9)

For the rear shock, the positions of the end points are

rrearA = q
T1

+ A1

(
p

13
− p

cm1

)
, and (5.10)

rrearB = q
T5

+ A5

(
p

21
− p

cm5

)
, (5.11)



117

and the velocities are

ṙrearA = q̇
T1

+ A1

((
2G1ė1Ω̃

)(
p

13
− p

cm1

))
, and (5.12)

ṙrearB = q̇
T5

+ A5

((
2G5ė5Ω̃

)(
p

21
− p

cm5

))
. (5.13)

To define the forces, the differences in the positions and the velocities are needed,

∆rfront = rfrontB − rfrontAma (5.14)

∆rrear = rrearB − rrearA , (5.15)

∆ṙfront = ṙfrontB − ṙfrontA , and (5.16)

∆ṙrear = ṙrearB − ṙrearA . (5.17)

For the damper of the shocks, the forces are

F1 = −Cff∆ṙfront , and (5.18)

F2 = −Csa∆ṙrear . (5.19)

The corresponding velocities for the Principle of Virtual Work are

v1 = ∆ṙfront , and (5.20)

v2 = ∆ṙrear . (5.21)



118

The last item that needs to be entered is the elastic potential energy. For the

motorcycle, there are two shocks and therefore two springs. If Lsa is the free length of the

rear spring, the elastic potential for the system is

Velastic =
1

2
kff (∆rfront)

T (∆rfront) +
1

2
ksa

((
(∆rrear)

T (∆rrear)
) 1

2 − Lsa
)2

. (5.22)

Next, distributions and corresponding parameters are provided for the random

variables and chosen orthogonal polynomial basis as shown in Table 5.2.

Table 5.2: Motorcycle random variables and PCT parameters

Variable Distribution Mean (µ) Std Dev σ Orthogonal Polynomial Basis
kff Normal ¯kff σkff Hermite
ksa Normal k̄sa σksa Hermite

Finally, the last input to be entered is the definition of the outputs of the system,

output1 = y1 , and (5.23)

output2 = atan2
(
2 e0 i

2 − 1, 2 e0 i e3 i
)
. (5.24)

5.2.2 Computational Limitations Solving the Motorcycle Traversing a Bump

With the inputs of the system fully defined, DMBoD can be used to solve the

problem; however, PCMBoD cannot. The elastic potential in Eqn. (5.22) cannot be



119

projected onto the orthogonal polynomial basis. When using Variational Work Eqn. (4.6)

with Eqn. (5.22), the resulting energy from the calculation is no longer real; it is complex.

The complex number comes from projecting the square root. The Galerkin projection

method described in this dissertation does not work explicitly with rational functions of

polynomials, square roots or transcendental functions [10]. The Galerkin projection in this

dissertation can handle a regular polynomial. In this case, with the square root present, a

different calculation can be performed to project it onto the orthogonal polynomial basis.

To handle the projection of the square root of the form [10]

Y
(
ξ
)

= X
(
ξ
) 1

2 , (5.25)

a iterative algorithm using Newton-Raphson is used. To solve Eqn. (5.25), it is

rewritten [10]

X
(
ξ
)

= Y
(
ξ
)2
, (5.26)

and the coefficients of Y
(
ξ
)

are estimated. Special cases for the Galerkin projection are

outside the scope of this dissertation.

To solve this example, Eqn. (5.22) is modified to assume that the rear shock free

length is zero. This yields an acceptable rational polynomial

Velastic =
1

2
kff (∆rfront)

T (∆rfront) +
1

2
(∆rrear)

T (∆rrear) . (5.27)



120

The MC analysis is performed on both systems, one with Eqn. (5.22) and one with

Eqn. (5.27). The PCT method is only performed on the system with Eqn. (5.27).

Another issue in simulating the motorcycle is choosing a bump model that can be

simulated. As the speed is increased or the length or height of the bump changes, the

integrator IDAS from sundialsTB fails. Regardless of how much the integrator tolerances

are adjusted, both looser and tighter, the variable step integrator goes to a very small time

step, less than 1× 10−13 sec. The integrator only completes the simulation successfully if

the bump is relatively small, and the velocity of the motorcycle is slow. This restriction is

due to increased stiffness of the numerical system, where a small change in the input

caused a large output in the states of the model. One way to address the stiffness is to

specify the Jacobian for the system.

Using the current settings, the Jacobian for the system is estimated numerically.

Given the general arbitrary system

f (ẋ, x, t) = 0 , (5.28)

the Jacobian can be computed by [23]

Jsys = α
∂f

∂ẋ
+
∂f

∂x
, (5.29)

where α is a scalar that is a function of the current simulation step size. Using the residual



121

in Eqn. (3.40), the system Jacobian is

Jsys = αJv + Jp , (5.30)

where

Jv =



I 0 0 0

0 −M 0 0

0 0 0 0

0 0 0 0


, and (5.31)

Jp =



∂(ΦT
q xµ)
∂xp

I 0 ΦT
q

∂(−Mẋv+Q−C+ΦT
q xλ)

∂xp

∂(Q−C)
∂xv

ΦT
q 0

Φq 0 0 0

∂(Φqxv+Φt)

∂xp
Φq 0 0


. (5.32)

Unfortunately, although most of the components in the system Jacobian are

already computed, the terms not computed are not trivial to calculate. The time Maple

took to create these matrices and export them as Matlab functions is significantly longer

than not exporting them. Computing and exporting these values takes much longer than

running the complete MC analysis. Since this process eliminated the cycle time benefits

when comparing to the MC analysis, the effort is abandoned as a solution to address the

system stiffness.



122

5.2.3 Motorcycle Results Comparison and Discussion

To compare the outputs of the model between an MC analysis and the PCT

analysis, 500 cases are used. For the MC analysis, the 500 cases apply to kff and ksa. For

the PCT analysis, the 500 cases are applied to ξ1 and ξ2. Recall that ξ1 and ξ2 are the

random variables of the orthogonal polynomial basis which resulted from projecting kff

and ksa, respectively. The comparison between responses of the two analyses can be seen

in Figs. 5.9 and 5.10. For the zero length rear spring case, the PCT lies directly on top of

the MC analysis, making the MC analysis almost invisible. The L2-norm of the difference

between the MC and the PCT responses for the main body vertical displacement mean and

standard deviations are 2.83× 10−5 m and 2.90× 10−5 m, respectively. The L2-norm of

the difference between the MC and the PCT responses for the main body angular

displacement mean and standard deviations are 1.09× 10−4 rad and 5.84× 10−5 rad,

respectively. The green lines for the zero length MC analysis results appear to not be

plotted. Unfortunately, both of these analyses are not as accurate as the original MC

analysis using a non-zero length for the rear shock. Systems containing a square root

cannot be handled by PCMBoD; special Galerkin projection cases are not yet

implemented. The square root in the original elastic potential in Eqn. (5.22) is not able to

be projected. Hence, an inaccurate simplification is made. In the end, for this example,

PCT is quicker to set up and faster to run than the MC analyses, approximately ten times

faster; however, accuracy is sacrificed.



123

0 0.5 1 1.5

Time (sec)

0.53

0.54

0.55

0.56

0.57

0.58

0.59

M
ai

n 
B

od
y 

Y
 (

m
)

MC w/len (500) µ
MC w/len (500)  µ±3σ
MC  (500) µ
MC (500)   µ±3σ
PCT µ
PCT µ±3σ

Figure 5.9: Motorcycle body 1 vertical response MC and PCT comparison. The red lines
are the MC analysis of the non zero length spring, the green lines are the MC analysis of a
zero length spring, and the blue lines are the results of the PCT analysis.

0 0.5 1 1.5

Time (sec)

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

M
ai

n 
B

od
y 

T
he

ta
 (

ra
d)

MC w/len (500) µ
MC w/len (500)  µ±3σ
MC  (500) µ
MC (500)   µ±3σ
PCT µ
PCT µ±3σ

Figure 5.10: Motorcycle body 1 rotational response MC and PCT comparison. The red
lines are the MC analysis of the non zero length spring, the green lines are the MC analysis
of a zero length spring, and the blue lines are the results of the PCT analysis.



124

Increasing the complexity of the problem proved to be an issue for the PCT

formulation and the integrator in the motorcycle example. A better integrator allows the

system to traverse a more severe bump. Without a change to the PCMBoD automation

process to handle springs of non-zero lengths, the utility of PCMBoD is limited in these

cases with the Galerkin projection.

In the next example, the DCMBoD and PCMBoD processes are applied to a

system with contact. It is a simple example, but it further shows the capability of the PCT

method and its limitations.

5.3 Bouncing Ball

A common type of force found in an MBD system is a discontinuous force, such

as contact or friction. A bouncing ball is used as example to show how a system with

contact and uncertainty is analyzed. A ball is dropped from a known distance and allowed

to bounce with a perfect elastic contact. The bouncing ball is shown in Fig. 5.11. The

uncertainty in the system is from variation in the radius, r, and contact stiffness, k, and is

incorporated by simulating populations of each with normal distributions: means of r̄ = 1

and k̄ = 1× 106 and standard deviations of σr = 0.05 and σk = 3.33× 103, respectively.

The ball is constrained to move only vertically. Gravity acts in the negative Ŷ direction.



125

Figure 5.11: Bouncing ball problem description

The mass of ball is m = 1. The contact force is modeled as a linear spring

Fcontact =


0 y1 − r ≥ 0

−k (y1 − r) y1 − r < 0

. (5.33)

5.3.1 Inputs for the Bouncing Ball

The inputs to the system are

• g =

[
0 −1

]T
,

• ndof = 2,

• nbod = 1,

• ncon = 1, and



126

• npct = 2.

The constraint for the system is a dot-2 constraint,

Φ = Φd2 (r1, I, 0, 0, I, 0, R2D (0)) . (5.34)

There is only one force in the system, the contact force. For the automation process, Eqn.

(5.33) becomes

F1 =


0 y1 − r ≥ 0

−k (y1 − r) y1 − r < 0

. (5.35)

The velocity of the point of contact is

v1 = ẏ1 . (5.36)

Next, distributions and corresponding parameters are provided for the random

variables and chosen orthogonal polynomial basis as shown in Table 5.3. Finally, the last

Table 5.3: Bouncing ball random variables and PCT parameters

Variable Distribution Mean (µ) Std Dev σ Orthogonal Polynomial Basis
r Normal r̄ σr Hermite
k Normal k̄ σk Hermite



127

input to be entered is the definition of the outputs of the system. The output is defined as

output1 = y1 . (5.37)

5.3.2 Computational Limitations Solving the Bouncing Ball

Because the force is piecewise, the function cannot be projected onto the

orthogonal polynomial basis using Eqn. (4.4). In [60], the PCT Hermite polynomials are

described as the continuous polynomial chaos. An additional constraint is that PCT needs

to be a globally smooth function [61]. A contact force is discontinuous the way it is

modeled typically in an MBD system. In this case, the contact is continuous, but not

smooth. Unfortunately, Eqn. (5.35) cannot be modeled in this form and be consistent with

the current application of PCT. Another process needs to be applied for piecewise

functions, such as the piecewise polynomial method described by [2]. As an assumption,

to project the piecewise force conditions, only the means of the conditions are used.



128

Ultimately, when projected, the contact force in Eqn. (5.35) becomes

F̊1 =




〈0, 1〉 〈y1 − r, 1〉 ≥ 0

〈−k (y1 − r) , 1〉 〈y1 − r, 1〉 < 0
〈0, ξ1〉 〈y1 − r, 1〉 ≥ 0

〈−k (y1 − r) , ξ1〉 〈y1 − r, 1〉 < 0
〈0, ξ2〉 〈y1 − r, 1〉 ≥ 0

〈−k (y1 − r) , ξ2〉 〈y1 − r, 1〉 < 0



. (5.38)

The MC analysis is performed using Eqn. (5.35). The PCT method is performed

with Eqn. (5.38).

5.3.3 Bouncing Ball Comparison and Results

To compare the outputs of the model between an MC analysis and the PCT

analysis, 500 cases are used. For the MC analysis, the 500 cases apply to r and k. For the

PCT analysis, the 500 cases are applied to ξ1 and ξ2. The comparison between these two

analyses can be seen in Fig. 5.12. For the first contact the results comparison is very good;

the PCT results lie directly on top of the MC results. With each subsequent contact, the

PCT comparison diverges farther and farther from the MC. Focusing on the first two

contacts, the L2-norm difference between the MC and PCT responses for the mean and



129

0 1 2 3 4 5 6

Time (sec)

-1

0

1

2

3

4

5

6

Y
 P

os
iti

on
 (

m
)

MC(500) µ
MC(500) µ±3σ
PC µ
PC µ±3σ

Figure 5.12: Bouncing ball body 1 vertical response MC and PCT comparison. The MC
and PCT analysis agree in the beginning with PCT diverging from the MC analysis as time
progresses.

standard deviation are 2.04× 10−1 m and 3.48× 10−3 m, respectively. Unfortunately, the

overall L2-norm for the mean and standard deviation are 2.43 m and 4.00 m, respectively.

Using the contact force approximation, the PCT solution seems to add energy to the

system by rising above the starting point. The ball also penetrates the ground more and

more when comparing to the MC analysis. The system is unstable, with each succussive

contact growing in magnitude. Adding a conservation of energy constraint to the system

might help, but this is outside the dissertation scope. These unstable results are a direct

result of the simplification of the piecewise force. A better method for projecting

piecewise functions is needed.

In the next example, the process is be applied to a three-dimensional (3D) system.



130

This example increases the complexity of the system by adding more DOF to each body

and moving through a 3D space.

5.4 Agile Eye

The complexity of the problem is increased again with the Agile Eye. The

example is modeling a spherical mechanism in 3D. The Agile Eye example increases the

dimensionality of the system and adds 3D rotations. This example is the final test in this

dissertation for the flexibility of PCMBoD.

The Agile Eye example is based on the work of Caron [5] and is shown in Fig.

5.13. The Agile Eye mechanism is used to orient a camera. The numerical parameters for

the Agile Eye are found in Appendix D. The Agile Eye is modeled in full 3D space. The

uncertainty in the system is from variation in the location of the center of mass x and y

coordinates of the camera, body 1 (see Fig. 5.13). The system is driven by a moment in

each actuator. The response for the system that is important is the unit normal of the view

of the camera. Gravity is ignored in this example. The initial conditions for the position

are in the configuration shown with zero velocity.

The moment applied to body 2 is

MA = step (t, 0.1− tol, 0, 0.1 + tol,Mx)

− step (t, 0.2− tol, 0, 0.2 + tol,Mx) ,

(5.39)



131

Figure 5.13: Agile Eye problem description [9]

and the moment applied to body 3 is

MB = step (t, 0.15− tol, 0, 0.15 + tol,My)

− step (t, 0.25− tol, 0, 0.25 + tol,My) .

(5.40)

5.4.1 Inputs for the Agile Eye

The inputs to the system are



132

• g =

[
0 0 0

]T
,

• ndof = 7,

• nbod = 4,

• ncon = 22, and

• npct = 2.

The constraints for the system are summarized in Table 5.4. In addition to the constraints,

the moments need to be entered. The first step to enter these moments is to describe the

angular velocity of each body. For the actuators, the angular velocities are

ωA = 2G2e2 , and (5.41)

ωB = 2G3e3 . (5.42)

The next input is the elastic potential. For the Agile Eye, there is no elastic potential.

Hence,

Velastic = 0 . (5.43)

Next, distributions and corresponding parameters are provided for the random variables

and chosen orthogonal polynomial basis as shown in Table 5.5. Finally, the last input to be

entered is the definition of the output of the system, which is the direction the camera is



133

Table 5.4: Agile Eye kinematic constraints

Type Body i Body j Definition

Revolute 2 Grnd Φrev

(
q
T2
,A2, p1

− p
cm2

, R
(
y, π

2

)
, 0, I, p

1
, R
(
y, π

2

))
Revolute 3 Grnd Φrev

(
q
T3
,A3, p2

− p
cm3

, R
(
x,−π

2

)
, 0, I, p

2
, R
(
x,−π

2

))
Revolute 1 2 Φrev

(
q
T1
,A1,−pcm1

, R
(
x,−π

2

)
, q
T2
,A2,−pcm2

, R
(
x,−π

2

))
Revolute 1 4 Φrev

(
q
T1
,A1,−pcm1

, R
(
y, π

2

)
, q
T4
,A4,−pcm4

, R
(
y, π

2

))
Parallel-2 4 3 Φp2

(
q
T3
,A3, p3

− p
cm3

, q
T4
,A4, p3

− p
cm4

, I
)

Table 5.5: Agile Eye random variables and PCT parameters

Variable Distribution Mean (µ) Std Dev σ Orthogonal Polynomial Basis
xcm1 Normal ¯xcm1 σxcm1 Hermite
ycm1 Normal ¯ycm1 σycm1 Hermite

pointed,

output = A1


0

0

1


. (5.44)

5.4.2 Computational Limitations Solving the Agile Eye

Finding a set of applied moments that allow the simulation to complete is very

difficult for the PCT version of the Agile Eye. The deterministic model using DMBoD

handles the moment successfully; there is always a solution. If the moments are increased

by an order of magnitude, the PCMBoD formulated model fails at one of the smooth

transitions of the applied moments (i.e., around t = 0.1, 0.15, 0.2, or 0.25 sec). Like the



134

motorcycle example, regardless of how much the integrator tolerance is adjusted, the

variable step integrator goes to a very small time step, less than 1× 10−13 sec. To address

this issue, the system Jacobian can be calculated explicitly using Eqn. (5.30) instead of

relying on the numerically calculated Jacobian. Unfortunately, for the 3D case, the

components in Eqn. (5.30) are even more computationally expensive when comparing to

the motorcycle calculations. The computation and export takes hours to write out as

Matlab functions, much longer than the MC analysis. Again, this negates any cycle time

advantages that PCT has over the MC analysis. As a solution, the computation of the

system Jacobian is abandoned.

Even though finding a set of applied moments that works with the Agile Eye, the

system has to be moved using applied moments. If a kinematic driver is needed, this

requires atan2. The atan2 function allows an angle to be computed on an interval of

−π ≤ x ≤ π, where using sin limits the interval to 0 ≤ x ≤ π, and cos to −π
2
≤ x ≤ π

2
.

The addition of a kinematic driver involves further refinement of the Taylor series

expansion of a sin and cos function. It might not be possible to place a PCT Taylor Series

expanded sin and cos into atan2 and still be able to find an answer.

5.4.3 Agile Eye Results Comparison and Discussion

To compare the outputs of the model between an MC analysis and the PCT

analysis, 500 cases are used. For the MC analysis, the 500 cases apply to xcm1 and ycm1 .



135

For the PCT analysis, the 500 cases are applied to ξ1 and ξ2. The comparison between

these two analyses can be seen in Fig. 5.14. The comparison is not good due to the

underlying distribution of the response. Although the means are identical, when looking at

Fig. 5.14, the standard deviations do not compare. The maximum L2-norm of the

difference between the MC and the PCT responses for the mean is 9.82× 10−2 m, but for

the standard deviation is 6.69× 10−1 m. A time history histogram of the MC results is

shown in Fig. 5.15. A time history histogram shows the histogram at each slice in time by

using a color axis. When looking at Fig. 5.15, the response of the camera is not normally

distributed. Unfortunately, a normally distributed response is an assumption for the

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time (sec)

-0.05

0

0.05

0.1

0.15

0.2

X
 C

en
te

r 
of

 M
as

s 
(m

)

MC(500) µ
MC  (500)  µ±3σ
PCT µ
PCT µ±3σ

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time (sec)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Y
 C

en
te

r 
of

 M
as

s 
(m

)

MC(500) µ
MC  (500)  µ±3σ
PCT µ
PCT µ±3σ

Figure 5.14: Agile Eye camera view response MC and PCT comparison. The red lines are
the MC analysis and the blue lines are the PCT analysis. The means show good agreement,
but the standard deviations do not.



136

Figure 5.15: Agile Eye camera view MC time history histogram. The color shows the
number of occurrences of at each time. The camera view from the MC analysis is not
normally distributed.

solution by only expanding the states by first order Hermite polynomial expansions. A

time slice of Fig. 5.15 at t = 0.4 sec can be seen in Fig. 5.16. This time slice illustrates

even further that the response is not normally distributed. Using the FBD tool from the

File Exchange of Matlab [1], the response appears to fit a Weibull distribution. The PCT

time history histogram and a time slice at t = 0.4 sec histogram are shown in Fig. 5.17

and Fig. 5.18, respectively. These two plots clearly show that the PCT derived response

are incorrectly normally distributed. The PCT response giving a normally distributed

response is to be expected because of the first order Hermite polynomial expansion used.

Truncation of the orthogonal polynomial basis is always a concern with PCT. If



137

0.06 0.08 0.1 0.12 0.14 0.16 0.18
X̂-Direction (m)

0

10

20

30

40

50

N
um

be
r 

of
 O

cc
ur

re
nc

es

-0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15
Ŷ -Direction (m)

0

10

20

30

40

50

N
um

be
r 

of
 O

cc
ur

re
nc

es

Figure 5.16: Agile Eye camera view MC histogram at t = 0.4 sec. Using data at t = 0.4

sec, the histogram from the MC analysis of the camera view is not normally distributed.

Figure 5.17: Agile Eye camera view PCT time history histogram. The color shows the
number of occurrences of at each time. The camera view from the PCT analysis is incor-
rectly shown to be normally distributed.



138

0.13 0.135 0.14 0.145 0.15 0.155 0.16 0.165 0.17
X̂-Direction (m)

0

5

10

15

20

N
um

be
r 

of
 O

cc
ur

re
nc

es

-0.37 -0.365 -0.36 -0.355 -0.35 -0.345 -0.34 -0.335 -0.33
Ŷ -Direction (m)

0

5

10

15

20

25

N
um

be
r 

of
 O

cc
ur

re
nc

es

Figure 5.18: Agile Eye camera view PCT histogram at t = 0.4 sec. Using data at t = 0.4

sec, the histogram from the PCT analysis of the camera view is incorrectly computed to be
normally distributed.

not enough terms are carried, then the response of the system can be incorrect. The

assumption of the responses being normally distributed is done to keep the size of the

system down. Because the responses are not normally distributed, a higher order Hermite

polynomial expansion is needed to capture the variation in the responses. Expanding the

size of the system is too much for IDAS integrator. It is difficult to get IDAS to solve a

DAE with eighty-four second order differential equations and seventy-eight algebraic

position kinematic constraints. If the system is to be expanded to a second order Hermite

polynomial, using Eqn. (2.15), the eighty-four becomes 168, and the seventy-eight



139

becomes 156. Increasing the order of the basis does not even ensure that the PCT

expansion captures the response correctly.

5.5 Summary of the Automation Examples

In this chapter, four examples are solved using an MC analysis with DMBoD and

PCT with PCMBoD. The slider-crank example shows that the same mean and standard

deviations of the states are achieved whether using an MC analysis or PCT; however, PCT

is at least ten times faster in this dissertation, when unsupported components are not

encountered.

Although the slider-crank example shows the possible benefits of applying PCT to

an MBD system, the next three examples show some limitations. The motorcycle

traversing a bump shows a limitation with dealing with non-zero length springs in the PCT

formulation. The bouncing ball demonstrates difficulties with using PCT on a

non-differentiable force such as contact. Finally, a 3D problem, the Agile Eye, shows

limitations with the order of the orthogonal polynomial basis set. If the PCT expansion is

truncated too much, then an incorrect response variation is calculated.

Two of the examples, the motorcycle traversing a bump and the Agile Eye, show

numerical issues as well. The PCT systems get stiffer, causing the integrator to reduce the

time step to a prohibitively very small number. Adding PCT to an MBD system makes it



140

more difficult for the integrator to solve, and computing and exporting the system

Jacobian is impractical with the current computing resources. Finding a robust integrator

that can solve these types of problems is critical.

Also, without PCMBoD, none of the solutions to the examples is easily

achievable. Manually performing the Agile Eye projections with Eqn. (2.19) is incredibly

difficult if done by hand, even using the system of two ODEs instead of the maximal set.

Quaternions are necessary to not have equations with trigonometric functions, which

causes even more complexity in the Agile Eye. Thus, without PCMBoD, the system

stiffness and rotational kinematic drivers cannot be investigated.

For PCT to be useful on any generic MBD problem, some additional capability

needs to be added to PCMBoD. Additional algorithms can be written to handle special

cases such as the square root. Ultimately, one of the main obstacles to overcome is finding

or building an appropriate integrator to handle the added complexity that PCT adds to the

MBD problem. There is a need for a more robust integrator to handle polynomial

truncation. Unless the responses of a system are known to be normally distributed and the

number of random variables is low, then an MC analysis is better to use. Finally, if the

system contains a non-differential function, such as found in a contact, an MC analysis is

the correct method to use.



141

CHAPTER 6

Conclusion and Future Research

There is a need for a fast and accurate way to perform an uncertainty analysis

(UA) in a multi-body dynamics (MBD) system. To understand the response of a system

based on the variations that exist in the inputs or system parameters is critical to ensure the

system stays within its operational limits or design envelope. MBD systems can contain

hundreds of states and have various nonlinearities associated with them. Because of the

size of the systems and inherent nonlinearities, the dominant UA method used for an

MBD system is a Monte Carlo (MC) analysis. A potentially better UA for MBD systems

is polynomial chaos theory (PCT), which can handle nonlinearities. PCT has the potential

of decreasing cycle time by embedding the stochastic parameters into the system and

solving the resulting larger system once.

6.1 Conclusion

To perform a UA analysis that uses PCT, first, an automation process needs to be

created. The deterministic multi-body dynamic (DMBoD) process solves an MBD

problem with limited user inputs. DMBoD can support three sets of Euclidean spaces:

three-dimensional (3D), two-dimensional (2D) with rotation, and 2D without rotation.

Every body in the model has the same number of generalized coordinates depending on



142

the Euclidean space chosen. All rotational degrees of freedom for a body are represented

by quaternions, even in the 2D with rotation Euclidean space. A set of standard holonomic

kinematics constraints and joints are used to ensure a consistent set of kinematic

constraints is applied to the system. DMBoD takes the inputs entered by the user, and

using Maple, derives the differential algebraic equations (DAE) representing the equations

of motion using a Constrained Lagrangian method. The equations are converted to state

space and exported as Matlab functions containing vectors and matrices for Eqn. (3.39).

The user enters the numerical information into Matlab, and then the system is solved. The

outputs or system responses of the model are then plotted.

With an automation process created to solve an MBD problem, the next step is to

incorporate PCT into the process. However, incorporating PCT into an MBD formulation

poses some challenges. The Galerkin projection in Eqn. (2.19) is complex. To address the

complexity associated with the Galerkin projection and the application of PCT to an MBD

system, several solutions are proposed in this dissertation.

• A trigonometric function, which can be found in all MBD systems with rotations, is

a transcendental function, which if used explicitly with a Galerkin projection, yields

a complex number which is not able to be used in the solution. To address this issue,

quaternions are used to derive the MBD equations of motion for both

two-dimensional (2D) and three-dimensional (3D) formulations. Most of the

trigonometric functions that would appear traditionally in the MBD equations of



143

motion are eliminated by using quaternions. Without having to approximate the

trigonometric functions, a more exact and efficient solution using quaternions is

possible for an MBD system with uncertainty.

• Traditionally, PCT is applied to the final equations of motion of an MBD system.

Applying Eqn. (2.19) to acceleration-based terms leads to very complicated

calculations. A new method to reduce the complexity of the Galerkin projection, the

concept of Variational Work, is derived in this dissertation. The concept of

Variational Work applies the Galerkin projection to simpler equations rather than

the full set of the equations of motion. Using Variational Work, the Galerkin

projection is used on energy functions, which contain velocities, rather than on

acceleration functions, which are more complicated. Thus, the application of PCT is

embedded into the derivation of the equations of motion, rather than an added step

at the end. This application of PCT allows for an easier implementation into an

automated process.

• To further simplify the application of the PCT method to an MBD system, an

automation process, the polynomial chaos multi-body dynamics (PCMBoD)

process, is created. The PCMBoD process is based on the DMBoD process. The

PCMBoD process incorporates Variational Work and quaternions into the

automation process. With limited user inputs and a standard set of kinematic

constraints, the PCT equations of motion are built automatically and solved. The



144

user does not need to derive manually the equations of motion and perform Galerkin

projections. The process is automated fully. The PCMBoD process is capable of

analyzing MBD systems with uncertain system responses faster and easier than an

MC analysis.

Using these solutions, the application of PCT to a mechanical system is more

seamless. There have been previous attempts at applying PCT to an MBD system. Sandu

et al. [48, 49] applied PCT to a quarter-car model. Voglewede et al. [56, 57] applied the

PCT to an open kinematic chain mechanism. These problems are planar and reduce to a

system of ordinary differential equations (ODE). With the use of PCMBoD, all of these

problems can be solved quicker and more accurately. No additional simplifications need

to be made. There are no Taylor series approximations of trigonometric functions as seen

in [57]. Quaternions have eliminated this issue. With the PCMBoD process, the

complexity of problems that can be solved has increased. A full 3D mechanism is able to

be simulated, such as the Agile Eye, which was not possible before.

In the previous work [48, 49, 56, 57], because the MBD problems reduced to an

ODE, there was no issue solving them. The stiffness of the system and its impact on the

solution were never discussed. Using PCMBoD on the motorcycle and Agile Eye

example, the impact of the system stiffness on the PCT formulation is very noticeable.

Without PCMBoD, the impact PCT has on the stiffness of an MBD system would not

have come to light.



145

Using PCMBoD, four example problems are simulated and compared to an MC

analysis. Some of these examples are more real-world, less textbook based problems than

any problems solved in the literature. These examples illustrate certain types of standard

MBD components that are not supported in PCMBoD at this time, which was not known

before. These components include common ones, such as a rotational kinematic driver,

contact forces and non-zero length springs.

The purpose of this dissertation is to find a new method of analyzing a UA for an

MBD system. The PCMBoD process meets the main criteria being sought for a new UA.

• PCMBoD is general and not an ad hoc process.

• PCMBoD is automated with a limited amount of inputs from the user.

• PCMBoD is as fast as an MC analysis, and in most cases much faster, as long as the

MBD system contains compatible components.

• PCMBoD quickly and easily post-processes the outputs or system responses.

Using a standard set of generalized coordinates and kinematic constraints made a general

automated process with limited user inputs possible. Variational Work allowed PCT to be

embedded into the automation process.

Using PCMBoD, PCT is able to replace an MC analysis in most cases. Not all of

the standard MBD components are supported by PCMBoD, and there is a possible issue



146

with the system stiffness. The development of PCMBoD is not finished, but shows great

promise for replacing an MC analysis. If the types of distribution of the responses of the

system are understood, and the system does not contain any components that are not

supported, PCMBoD should be used as the given UA of choice.

6.2 Future Research

To have PCMBoD achieve its full potential and replace an MC analysis, there are

additional opportunities for research. The additional opportunities for further research

studies fall into two categories: compatible component application and the impact of PCT

on the stiffness of a mechanical system.

6.2.1 Polynomial Chaos Theory Compatible Multi-Body Dynamic Components

As shown for the first time in this dissertation, there are certain types of common

mechanical components that are unable to be used in the current PCMBoD process due to

limitations with the form of the constitutive relationships (e.g., nonlinearities).

Specifically, the components discovered in this dissertation that are not compatible with

PCMBoD are rotational kinematic drivers, non-zero length springs, and contact forces.

While this list is not exhaustive, it shows the breadth of common components that are not

compatible with PCMBoD.



147

Ultimately, finding a way to project these functions in general onto an orthogonal

polynomial basis can be the answer to this issue. There are algorithms that have been

developed to help with specific types of functions. For rational functions of polynomials,

the method in [14] where the rational function is rearranged to be a product of polynomials

can be implemented. For square roots, a process based on the method described by [10]

where a new variable is introduced that is squared instead of being a square root can be

used. For transcendental functions, the Taylor series approach can be used. This approach

is already done for trigonometric functions in [57], and a simple algorithm is implemented

in [45]. Finally, how to project a discontinuous function onto an orthogonal basis is

unknown at this time. A solution is possibly using a discontinuous Galerkin projection

method that is common in finite element method [6]. Using the PCMBoD architecture,

these additions can be added and the functionality of PCMBoD increased.

Finally, there is an opportunity for putting all of these algorithms together in the

current PCMBoD architecture. PCMBoD needs to determine automatically that a function

contains one of the special cases and use the appropriate algorithm to project the function

onto the orthogonal polynomial basis. Detecting special functions and projecting them is

not straightforward for complicated functions. To incorporate this new functionality into

PCMBoD, additional functions can be written to handle the detection and projection.



148

6.2.2 The Impact of Polynomial Chaos Theory on the Stiffness of a Multi-Body Dy-

namic System

The motorcycle and Agile Eye examples illustrate how the stiffness of a system

when PCT is applied to a differential algebraic equation (DAE) representation of an MBD

system increases. This work is the first to uncover how the stiffness changes for a PCT

MBD system. Understanding how the projection of a system onto an orthogonal

polynomial basis affects the stiffness of the resulting DAE is critical. There is an

opportunity to address this impact. Stiffness is the reason why a system can run in the

DMBoD process, but fails to complete in the PCMBoD process due to an integration time

step falling below acceptable tolerances. This research can take two routes: inclusion of

the system Jacobian into the solver and/or a custom designed and tuned PCT DAE

integrator.

The intent of including the system Jacobian into the solver is to aid the integrator

in the solution of stiffer systems. By default, IDAS computes the system Jacobian

numerically, but is able to take an analytical Jacobian as an input. The obvious approach

of using Maple to evaluate Eqn. (5.30) analytically proves to be too time consuming.

Perhaps using automatic differentiation inside the Matlab environment, or as an additional

step in another software program, can be better. Using automatic differentiation can

produce a system Jacobian in a reasonable amount of time allowing more complicated



149

systems to be solved. Either way, including a better approximation to the system Jacobian

can improve the capability of the integrator. Incorporating this functionality into the

PCMBoD process ensures a robust application to MBD problems.

The second path is to determine or develop the best class of integrators specifically

for a PCT mechanical system DAE. Other DAE integrators are available, such as

DAETS [41], which may be suitable for this application. If this particular DAE integrator

is not applicable, then one could be developed specifically for these types of problems.

Also, a different class of DAE integrators can be investigated based on differential

variational inequality (DVI) solvers which have benefits when dealing with

discontinuities [42]. However, developing a specific DAE integrator is very difficult since

most of the DAE integrators classify the type of problems that can be solved by the

stiffness of the system. By understanding the impact PCT has on the stiffness of the DAE

system, the system could be classified, and an appropriate solver may be able to be

developed. The impact of the order of the orthogonal polynomial basis has on stiffness

also can be studied. In this dissertation, a first order Hermite polynomial expansion is

used, and the systems get stiffer. There is an opportunity understanding how the order of

the orthogonal polynomial basis affects the stiffness. Using PCMBoD, the PCT

orthogonal polynomial basis order can be expanded easily and aid in the investigation.

Ensuring that the compatible MBD components and the appropriate integrator is

developed or chosen for a PCT system, PCMBoD will become more powerful. The goal is



150

to have any MBD system analyzed with PCT, which has been shown to be more accurate

and faster using PCMBoD. PCMBoD in its current state is closer to having a PCT-based

UA replace an MC analysis as the default analysis for an MBD system. With additional

research, PCMBoD can achieve this goal fully.



151

REFERNCES

[1] Y. Aminov, “FBD - find the best distribution tool,” Matlab Central File Exchange.

Retrieved: October 10, 2018. [Online]. Available: https://www.mathworks.com/

matlabcentral/fileexchange/36000-fbd-find-the-best-distribution-tool

[2] I. Babuska, R. Tempone, and G. E. Zouraris, “Galerkin finite element

approximations of stochastic elliptic partial differential equations,” SIAM Journal on

Numerical Analysis, vol. 42, no. 2, pp. 800–825, 2004.

[3] D. Baraff, “Linear-time dynamics using Lagrange multipliers,” in Proceedings of the

23rd Annual Conference on Computer Graphics and Interactive Techniques, ser.

SIGGRAPH ’96. New York, NY, USA: ACM, 1996, pp. 137–146.

[4] O. A. Bauchau, “Computational schemes for flexible, nonlinear multi-body

systems,” Multibody System Dynamics, vol. 2, no. 2, pp. 169–225, 1998.

[5] F. Caron, “Analyse et conception d’un manipulateur pallèle sphèrique à deux degrès

de libertè pour l’orientation d’une camèra,” Master’s thesis, Universitè Laval, Août

1997.

[6] B. Cockburn, G. E. Karniadakis, and C.-W. Shu, “The development of discontinuous

Galerkin methods,” in Discontinuous Galerkin Methods. Springer, 2000, pp. 3–50.

[7] M. Crosetto and S. Tarantola, “Uncertainty and sensitivity analysis: Tools for

GIS-based model implementation,” International Journal of Geographical

Information Science, vol. 15, no. 5, pp. 415–437, 2001.

[8] Dassault Systémes Simulia Corp, “Simulia: Simulation for product, nature & life,”

accessed: July 23, 2018. [Online]. Available:

https://www.3ds.com/products-services/simulia/

[9] L. de robotique, “The agile eye,” accessed: July 23, 2018. [Online]. Available:

https://robot.gmc.ulaval.ca/en/research/research-thrusts/parallel-mechanisms/

the-agile-eye/

[10] B. J. Debusschere, H. N. Najm, P. P. Pébay, O. M. Knio, R. G. Ghanem, and O. P.



152

Le Maıtre, “Numerical challenges in the use of polynomial chaos representations for

stochastic processes,” SIAM Journal on Scientific Computing, vol. 26, no. 2, pp.

698–719, 2004.

[11] A. Der Kiureghian and J.-B. Ke, “The stochastic finite element method in structural

reliability,” in Stochastic Structural Mechanics. Springer, 1987, pp. 84–109.

[12] U. M. Diwekar and S. Ulas, Sampling Techniques, online ed. John Wiley & Sons,

Inc., 2000.

[13] D. J. Downing, R. Gardner, and F. Hoffman, “An examination of response-surface

methodologies for uncertainty analysis in assessment models,” Technometrics,

vol. 27, no. 2, pp. 151–163, 1985.

[14] J. Fisher and R. Bhattacharya, “Optimal trajectory generation with probabilistic

system uncertainty using polynomial chaos,” Journal of Dynamic Systems,

Measurement, and Control, vol. 133, no. 1, p. 014501, 2011.

[15] C. W. Gear, “Differential-algebraic equation index transformations,” SIAM Journal

on Scientific and Statistical Computing, vol. 9, no. 1, pp. 39–47, 1988.

[16] C. Gear, B. Leimkuhler, and G. Gupta, “Automatic integration of Euler-Lagrange

equations with constraints,” Journal of Computational and Applied Mathematics,

vol. 12–13, pp. 77 – 90, 1985.

[17] J. Ginsberg, Engineering Dynamics. New York: Cambridge University Press, 2008.

[18] D. T. Greenwood, Advanced Dynamics. New York: Cambridge University Press,

2006.

[19] J. H. Halton, “A retrospective and prospective survey of the Monte Carlo method,”

SIAM Rev., vol. 12, no. 1, pp. 1–63, Jan. 1970.

[20] M. E. Harr, “Probabilistic estimates for multivariate analyses,” Applied

Mathematical Modelling, vol. 13, no. 5, pp. 313–318, 1989.

[21] R. L. Harrison, “Introduction to Monte Carlo simulation,” AIP Conference

Proceedings, vol. 1204, pp. 17–21, January 2010.

[22] E. J. Haug, Computer Aided Kinematics and Dynamics of Mechanical Systems. Vol.



153

1: Basic Methods. Needham Heights, MA: Allyn & Bacon, Inc., 1989.

[23] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker,

and C. S. Woodward, “SUNDIALS: Suite of nonlinear and differential/algebraic

equation solvers,” ACM Trans. Math. Softw., vol. 31, no. 3, pp. 363–396, Sep. 2005.

[24] A. C. Hindmarsh, R. Serban, and A. Collier, “User documentation for IDA v2. 9.0

(SUNDIALS v2. 7.0),” 2016.

[25] F. Hoffman, J. Hammonds, and S. M. Bartell, “An introductory guide to uncertainty

analysis in environmental and health risk assessment. environmental restoration

program,” Oak Ridge National Laboratory, Oak Ridge, TN, Tech. Rep.

ES/ER/TM-35/Rl, 1994.

[26] T. R. Kane and D. A. Levinson, Dynamics, Theory and Applications. New York:

McGraw Hill, 1985.

[27] G. Kewlani, J. Crawford, and K. Iagnemma, “A polynomial chaos approach to the

analysis of vehicle dynamics under uncertainty,” Vehicle System Dynamics, vol. 50,

no. 5, pp. 749–774, 2012.

[28] J. P. C. Kleijnen, “Sensitivity analysis and related analyses: A review of some

statistical techniques,” Journal of Statistical Computation and Simulation, vol. 57,

pp. 111–142, 1997.

[29] B. Kriegesmann, “Probabilistic design of thin-walled fiber composite structures,”

Ph.D. dissertation, Mitteilungen des Instituts für Statik und Dynamik der Leibniz

Universität Hannover, April 2012.

[30] S. H. Lee and W. Chen, “A comparative study of uncertainty propagation methods

for black-box-type problems,” Structural and Multidisciplinary Optimization,

vol. 37, no. 3, pp. 239–253, 2009.

[31] W. K. Liu, T. Belytschko, and A. Mani, “Probabilistic finite elements for nonlinear

structural dynamics,” Computer Methods in Applied Mechanics and Engineering,

vol. 56, no. 1, pp. 61–81, 1986.

[32] Mathworks, “Simscape Multibody,” accessed: July 23, 2018. [Online]. Available:

https://www.mathworks.com/products/simmechanics.html



154

[33] Mathworks, “Solve differential algebraic equations (DAEs),”

https://www.mathworks.com/help/matlab/math/solve-differential-algebraic-

equations-daes.html, accessed: January 22,

2017.

[34] H. G. Matthies, C. E. Brenner, C. G. Bucher, and C. G. Soares, “Uncertainties in

probabilistic numerical analysis of structures and solids-stochastic finite elements,”

Structural Safety, vol. 19, no. 3, pp. 283 – 336, 1997.

[35] Motion Port, “RecurDyn multibody dynamics simulation,” accessed: July 23, 2018.

[Online]. Available: http://www.motionport.com/index.aspx?page=RecurDyn

[36] MSC Software Corporation, “Adams the multibody dynamics simulation solution,”

accessed: July 23, 2018. [Online]. Available:

http://www.mscsoftware.com/product/adams

[37] MSC.Adams, “Using the Adams/View function builder,” 2014.

[38] MSC.Adams, “Welcome to the C++ version of Adams/Solver,” 2014.

[39] R. M. Murray, S. S. Sastry, and L. Zexiang, A Mathematical Introduction to Robotic

Manipulation, 1st ed. Boca Raton, FL, USA: CRC Press, Inc., 1994.

[40] R. H. Myers, A. I. Khuri, and W. H. Carter, “Response surface methodology:

1966–l988,” Technometrics, vol. 31, no. 2, pp. 137–157, 1989.

[41] N. Nedialkov and J. Pryce, “DAETS: Differential-algebraic equations by Taylor

series,” accessed: August 26, 2018. [Online]. Available:

http://www.cas.mcmaster.ca/∼nedialk/daets/

[42] J.-S. Pang and D. E. Stewart, “Differential variational inequalities,” Mathematical

Programming, vol. 113, no. 2, pp. 345–424, 2008.

[43] R. Pulch, “Polynomial chaos for linear differential algebraic equations with random

parameters,” International Journal for Uncertainty Quantification, vol. 1, no. 3, pp.

223–240, 2011.

[44] D. G. Robinson, “A survey of probabilistic methods used in reliability, risk and

uncertainty analysis: Analytical techniques 1,” Sandia National Laboratories,



155

Albuquerque, NM, Tech. Rep. SAND98-1189, June 1998.

[45] P. S. Ryan, S. Baxter, and P. A. Voglewede, “Variational analysis of a two link

slider-crank mechanism using polynomial chaos theory,” in Proceedings of the 2017

ASME IDETC, no. DETC2017-67328, 2017.

[46] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana,

and S. Tarantola, Global Sensitivity Analysis. The Primer. John Wiley & Sons, Ltd,

2008.

[47] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity Analysis in

Practice: A Guide to Assessing Scientific Models. New York, NY, USA: Halsted

Press, 2004.

[48] A. Sandu, C. Sandu, and M. Ahmadian, “Modeling multibody systems with

uncertainties. Part I: Theoretical and computational aspects,” Multibody System

Dynamics, vol. 15, no. 4, pp. 369–391, 2006.

[49] C. Sandu, A. Sandu, and M. Ahmadian, “Modeling multibody systems with

uncertainties. Part II: Numerical applications,” Multibody System Dynamics, vol. 15,

no. 3, pp. 241–262, 2006.

[50] R. Sharp, S. Evangelou, and D. J. Limebeer, “Advances in the modelling of

motorcycle dynamics,” Multibody System Dynamics, vol. 12, no. 3, pp. 251–283,

2004.

[51] Siemens PLM Software, “LMS Virtual.Lab Motion,” accessed: July 23, 2018.

[Online]. Available:

https://www.plm.automation.siemens.com/fr/products/lms/virtual-lab/motion

[52] A. H. C. Smith, “Robust and optimal control using polynomial chaos theory,” Ph.D.

dissertation, University of South Carolina, 2007.

[53] G. Stefanou, “The stochastic finite element method: past, present and future,”

Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 9, pp.

1031–1051, 2009.

[54] B. Sudret and A. Der Kiureghian, Stochastic finite element methods and reliability: a

state-of-the-art report. Department of Civil and Environmental Engineering,



156

University of California Berkeley, CA, 2000.

[55] T. Uchida and J. McPhee, “Triangularizing kinematic constraint equations using

gröbner bases for real-time dynamic simulation,” Multibody System Dynamics,

vol. 25, no. 3, pp. 335–356, 2011.

[56] P. Voglewede, A. H. C. Smith, and A. Monti, “Dynamic performance of a SCARA

robot manipulator with uncertainty using polynomial chaos theory,” IEEE

Transactions on Robotics, vol. 25, no. 1, pp. 206–210, Feb 2009.

[57] P. A. Voglewede and A. Monti, “Variation analysis of a two link planar manipulator

using polynomial chaos theory,” in Proceedings of the 2006 ASME IDETC, vol.

Volume 2: 30th Annual Mechanisms and Robotics Conference, Parts A and B, no.

10.1115/DETC2006-99170, 2006.

[58] R. W. Walters and L. Huyse, “Uncertainty analysis for fluid mechanics with

applications,” NASA, Hampton, VA, Tech. Rep. No. ICASE-2002-1, February 2002.

[59] C. Wang, “Parametric uncertainty analysis for complex engineering systems,” Ph.D.

dissertation, Massachusetts Institute of Technology, 1999.

[60] N. Wiener, “The homogeneous chaos,” American Journal of Mathematics, vol. 60,

no. 4, pp. 897–936, 1938.

[61] D. Xiu, “Fast numerical methods for stochastic computations: A review,”

Communications in Computational Physics, vol. 5, no. 2-4, pp. 242–272, 2009.

[62] D. Xiu and G. E. Karniadakis, “The Wiener-Askey polynomial chaos for stochastic

differential equations,” SIAM Journal on Scientific Computing, vol. 24, no. 2, pp.

619–644, 2002.

[63] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method

Approach. Princeton, New Jersey: Princeton University Press, 2010.



157

APPENDIX A

Maple Functions

A series of functions built for Maple that aid in the generation of a deterministic or

polynomial chaos theory (PCT) expanded multi-body dynamics (MBD) system.

A.1 Kinematic Constraint Functions

A.1.1 Three Dimensional

Constraints

• Dot1Constraint - Builds dot-1 constraint

• Dot2Constraint - Builds dot-2 constraint

• Parallel1Constraint - Builds parallel-1 constraints

• Parallel2Constraint - Builds parallel-2 constraints

• SphericalConstraint - Builds spherical constraints

Joints

• CylindricalJoint - Builds constraints for a cylindrical joint



158

• FixedJoint - Builds constraints for a fixed joint

• PrismaticJoint - Builds constraints for a prismatic joint

• RevoluteJoint - Builds constraints for a revolute joint

• SphericalJoint - Builds constraints for a spherical joint

• SphericalSpherical - Builds fixed distance constraint

• UniversalJoint - Builds constraints for a universal joint

A.1.2 Two Dimensional

Constraints

• Dot1Constraint2D - Builds dot-1 constraint

• Dot2Constraint2D - Builds dot-2 constraint

Joints

• FixedJoint2D - Builds constraints for a fixed joint

• PrismaticJoint2D - Builds constraints for a prismatic joint

• RevoluteJoint2D - Builds constraints for a revolute joint

• RevoluteRevolute2D - Builds fixed distance constraint



159

A.2 Kinematic Functions

A.2.1 Three Dimensional

• AngVelquat - Builds the body-fixed angular velocity from quaternion rates

• Aquat - Builds a rotation matrix from a quaternion vector

• Gquat - Builds matrix relating body-fixed angular velocity to quaternion rates

• Rx - Builds a rotation matrix about an x-axis

• Ry - Builds a rotation matrix about an y-axis

• Rz - Builds a rotation matrix about an z-axis

• SkewSymmetric - Builds a skew-symmetric matrix of a vector

A.2.2 Two Dimensional

• AngVelquat2D - Builds the body-fixed angular velocity from quaternion rates

• Aquat2D - Builds a two dimensional rotation matrix from a quaternion vector

• Gquat2D - Builds matrix relating body-fixed angular velocity to quaternion rates

• Rz2d Builds a two dimensional rotation matrix



160

A.3 Matlab Functions

• MatlabFunctionIDAS - Exports a matrix or vector as a Matlab function to be used

by the integrator IDAS

• MatlabFunctionIDASO - Exports a only non-zero components of a matrix or vector

as a Matlab function to be used by the integrator IDAS

• MatlabFunctionIDASOptimized - Exports a vector as a Matlab function with Maple

“optimized” flag to be used by the integrator IDAS

• MatlabFunctionIDASParameters - Exports the parameters as Matlab function to be

user inputted in Matlab and to be used by the integrator IDAS

• StringFix - Fixes Maple’s variable name limitations when export Matlab Code

A.4 Multi-Body Dynamics Functions

• AppliedGenForces - Calculate the applied generalized force

• DelEDelq - Calculates the derivative of energy with respect to a generalized

coordinate

• ConstraintJacobian - Calculate the constraint Jacobian

• DiffState - Calculates the derivative with respect to a state or generalized coordinate

• ElimDepOnT - Eliminates functions of time in variables



161

• FrcMom2GenFrc - Calculates the generalized force or moment

• GammaVec - Calculates the gamma vector for acceleration constraints

• GeneralizedCoordinates - Builds the generalized coordinate vector

• KineticEnergyMatrix - Calculates the kinetic energy of the system

• LagrangeMultipliers - Builds the Lagrange Multipliers vector

• LagrangeT - Calculates the mass matrix and nonlinear acceleration inertial terms

from the kinetic energy

• PEGenFroces - Calculates the conservative forces from the potential energy

• Phit - Calculate the explicit time derivative of position constraints

• Phitt - Calculate the second explicit time derivative of position constraints

• PotentialEnergy - Calculates the potential energy of the system

• QuaternionConstraints - Calculates unit quaternion constraint and adds it to the

position constraints

• VarDiffT - Calculates the derivative of an equation with respect to time

• Velocity2VirtualDisp - Replaces velocities with virtual displacements

A.5 Multi-Body Dynamics State Space

• ConServForceSS - Moves the conservative forces to state space



162

• GammaSS - Moves the constraint equations to state space

• GenForceSS - Moves the generalized forces to state space

• MassMatrixSS - Moves the mass matrix to state space

• NLAccSS - Moves the nonlinear acceleration inertial vector to state space

• PhiSS - Moves the constraint equations to state space

• PhiqSS - Moves the constraint Jacobian to state space

• RequestSS - Moves the requests or outputs to state space and cleans up the PCT

variables

• SSIndx3SI2 - Builds the SI2 state space system

• Vel2PosDot - Builds the position states derivative relationship to velocity states

A.6 Polynomial Chaos Theory Functions

• GeneralizedCoordinatesPCT - Expands the velocity and acceleration generalized

coordinates along the orthogonal polynomial basis

• GalerkinProjection - Performs the Galerkin projection

• GalerkinProjectionEnergy - Performs the Variational Energy projection

• GenPCTForce - Performs the Variational Principle of Virtual Work

• HermitianPolynomial - Hermitian polynomial expansion



163

• InnerProduct - Calculates the coefficients of the random variable along the

orthogonal polynomial basis

• PCTOrder - Determines the order of the polynomial expansion

• PCTParameters - Builds the PCT variables and Galerkin projection Weighting

function

• PCTQExpansion - Expands the generalized coordinates and Lagrange Multipliers

along the orthogonal polynomial basis

• PCTVariableExpansion - Expands a random variable in a given orthogonal

polynomial basis set. Only Hermitian polynomials are supported at this time.



164

APPENDIX B

Matlab Functions

A series of functions were built for Matlab to solve stabilized index-2 (SI2)

differential algebraic equations (DAE) using the IDAS integrator [23].

B.1 Monte Carlo Analysis Functions

• GetRandomVariables - Builds sample population for Monte Carlo analysis

B.2 Polynomial Chaos Theory Functions

• BuildPCTDist - Builds sample population for polynomial chaos theory variables to

evaluate outputs

B.3 Simulation Functions

• AccelLagrangeICs - Calculates a consistent set of acceleration and Lagrange

Multiplier initial conditions (IC)

• Assembly - Calculates a consistent set of ICs



165

• AssemblyNoCheck - Calculates a consistent set of ICs without checking final

residual

• DAEI3SI2 - Calculates the residual for an SI2 DAE formulation

• PositionICs - Calculates a consistent set of position ICs using Newton-Raphson

• VelocityICs - Calculates a consistent set of velocity ICs using Newton-Raphson



166

APPENDIX C

Motorcycle Numerical Information

The numerical parameters for the Motorcycle Example in Section 5.2 are defined

in this Appendix. This information comes from Sharp [50].

• The point locations for the motorcycle are in Table C.1.

Table C.1: Motorcycle point locations [50]

Point X Y
(m) (m)

p2 1.1730 0.7490
p4 1.3420 0.2820
p6 1.4100 0.2820
p7 0.0000 0.2970
p11 0.5490 0.3608
p13 0.4870 0.4888
p19 0.5390 0.1878
p20 0.4946 0.1522
p21 0.4443 0.1782
p22 0.3722 0.2748

• The mass properties for the motorcycle are in Table C.2.



167

Table C.2: Motorcycle mass properties [50]

Body pcmix pcmiy Mass Inertia
(m) (m) (kg) (kg-m2)

1 0.6334 0.5855 198.81 37.7614
2 1.1640 0.7700 9.9900 1.5840
3 1.3930 0.2979 19.1500 0.5011
4 0.4946 0.2578 26.6000 1.1439
5 0.5490 0.1522 0.001 0.001

• The system parameters are [50]

– The rake angle, ε = 0.4412 radians,

– The front stiffness, kff = 25000 N/m,

– The front damping, Cff = 2134 N-sec/m,

– The rear shock free length, Lsa = 0.3435 m,

– The front stiffness, ksa = 58570 N/m, and

– The front damping, Csa = 11650 N-sec/m.

• The random variables parameters are

– The mean of front shock stiffness, ¯kff = kff N/m,

– The standard deviation of front shock stiffness, σkff = 833.3 N/m,

– The mean of rear shock stiffness, k̄sa = ksa N/m, and

– The standard deviation of rear shock stiffness, σksa = 1.952× 103 N/m,



168

• The speed and bump parameters are

– The speed of the motorcycle, vodom = 4.4704 m/sec,

– The length of the bump, Lbump = 0.3048 m,

– The length of the bump, hbump = 0.0508 m, and

– The wheel length, Lwheel = 1.4100 m.



169

APPENDIX D

Agile Eye Numerical Information

The numerical parameters for the Agile Eye Example in Section 5.4 are defined in

this Appendix. This information comes from Caron [5].

• The center of mass locations for the Agile Eye in Table D.1.

Table D.1: Agile Eye center of mass location [5]

Body pcmix pcmiy pcmiz
(m) (m) (m)

1 0.0000 −4.8700× 10−4 −0.0121

2 0.0195 0.0000 0.0000

3 0.0000 0.0000 −0.0375

4 −0.0169 0.0000 −0.0267

• The mass and inertia for the Agile Eye in Table D.2, Table D.3 and Table D.4.

Table D.2: Agile Eye mass [5]

Body Mass
(kg)

1 0.0349

2 0.0000

3 0.0154

4 0.0094



170

Table D.3: Agile Eye moments of inertia [5]

Body Jxx Jyy Jzz
(kg-m2) (kg-m2) (kg-m2)

1 1.3413× 10−5 1.3830× 10−5 4.5815× 10−6

2 3.4040× 10−5 2.0830× 10−5 5.4400× 10−5

3 1.7550× 10−5 6.2820× 10−6 1.1640× 10−5

4 1.1930× 10−5 1.5360× 10−5 3.6500× 10−6

Table D.4: Agile Eye products of inertia [5]

Body Jxy Jxz Jyz
(kg-m2) (kg-m2) (kg-m2)

1 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000

4 0.0000 2.4930× 10−6 0.0000

• The system parameters are [5]

– L1 = 0.06508 m,

– L2 = 0.06508 m, and

– L3 = 0.506 m.

• The applied moment parameters are

– Mx = 0.001 N-m,

– My = 0.0015 N-m, and

– tol = 0.01 sec.



171

• The random variables parameters are

– The mean of body 1 x-component center of mass, ¯xcm1 = xcm1 m,

– The standard deviation of body 1 x-component center of mass, σxcm1 = 0.01

m,

– The mean of body 1 y-component center of mass, ¯ycm1 = ycm1 m, and

– The standard deviation of body 1 x-component center of mass, σycm1 = 0.01 m.


	Automating the Analysis of Uncertainties in Multi-Body Dynamic Systems Using Polynomial Chaos Theory
	Recommended Citation

	tmp.1549313319.pdf.IdC89

