








131

Figure 5.13: Agile Eye problem description [9]

and the moment applied to body 3 is

MB = step (t, 0.15− tol, 0, 0.15 + tol,My)

− step (t, 0.25− tol, 0, 0.25 + tol,My) .

(5.40)

5.4.1 Inputs for the Agile Eye

The inputs to the system are
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• g =

[
0 0 0

]T
,

• ndof = 7,

• nbod = 4,

• ncon = 22, and

• npct = 2.

The constraints for the system are summarized in Table 5.4. In addition to the constraints,

the moments need to be entered. The first step to enter these moments is to describe the

angular velocity of each body. For the actuators, the angular velocities are

ωA = 2G2e2 , and (5.41)

ωB = 2G3e3 . (5.42)

The next input is the elastic potential. For the Agile Eye, there is no elastic potential.

Hence,

Velastic = 0 . (5.43)

Next, distributions and corresponding parameters are provided for the random variables

and chosen orthogonal polynomial basis as shown in Table 5.5. Finally, the last input to be

entered is the definition of the output of the system, which is the direction the camera is
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Table 5.4: Agile Eye kinematic constraints

Type Body i Body j Definition

Revolute 2 Grnd Φrev

(
q
T2
,A2, p1

− p
cm2

, R
(
y, π

2

)
, 0, I, p

1
, R
(
y, π

2

))
Revolute 3 Grnd Φrev

(
q
T3
,A3, p2

− p
cm3

, R
(
x,−π

2

)
, 0, I, p

2
, R
(
x,−π

2

))
Revolute 1 2 Φrev

(
q
T1
,A1,−pcm1

, R
(
x,−π

2

)
, q
T2
,A2,−pcm2

, R
(
x,−π

2

))
Revolute 1 4 Φrev

(
q
T1
,A1,−pcm1

, R
(
y, π

2

)
, q
T4
,A4,−pcm4

, R
(
y, π

2

))
Parallel-2 4 3 Φp2

(
q
T3
,A3, p3

− p
cm3

, q
T4
,A4, p3

− p
cm4

, I
)

Table 5.5: Agile Eye random variables and PCT parameters

Variable Distribution Mean (µ) Std Dev σ Orthogonal Polynomial Basis
xcm1 Normal ¯xcm1 σxcm1 Hermite
ycm1 Normal ¯ycm1 σycm1 Hermite

pointed,

output = A1


0

0

1


. (5.44)

5.4.2 Computational Limitations Solving the Agile Eye

Finding a set of applied moments that allow the simulation to complete is very

difficult for the PCT version of the Agile Eye. The deterministic model using DMBoD

handles the moment successfully; there is always a solution. If the moments are increased

by an order of magnitude, the PCMBoD formulated model fails at one of the smooth

transitions of the applied moments (i.e., around t = 0.1, 0.15, 0.2, or 0.25 sec). Like the
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motorcycle example, regardless of how much the integrator tolerance is adjusted, the

variable step integrator goes to a very small time step, less than 1× 10−13 sec. To address

this issue, the system Jacobian can be calculated explicitly using Eqn. (5.30) instead of

relying on the numerically calculated Jacobian. Unfortunately, for the 3D case, the

components in Eqn. (5.30) are even more computationally expensive when comparing to

the motorcycle calculations. The computation and export takes hours to write out as

Matlab functions, much longer than the MC analysis. Again, this negates any cycle time

advantages that PCT has over the MC analysis. As a solution, the computation of the

system Jacobian is abandoned.

Even though finding a set of applied moments that works with the Agile Eye, the

system has to be moved using applied moments. If a kinematic driver is needed, this

requires atan2. The atan2 function allows an angle to be computed on an interval of

−π ≤ x ≤ π, where using sin limits the interval to 0 ≤ x ≤ π, and cos to −π
2
≤ x ≤ π

2
.

The addition of a kinematic driver involves further refinement of the Taylor series

expansion of a sin and cos function. It might not be possible to place a PCT Taylor Series

expanded sin and cos into atan2 and still be able to find an answer.

5.4.3 Agile Eye Results Comparison and Discussion

To compare the outputs of the model between an MC analysis and the PCT

analysis, 500 cases are used. For the MC analysis, the 500 cases apply to xcm1 and ycm1 .
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For the PCT analysis, the 500 cases are applied to ξ1 and ξ2. The comparison between

these two analyses can be seen in Fig. 5.14. The comparison is not good due to the

underlying distribution of the response. Although the means are identical, when looking at

Fig. 5.14, the standard deviations do not compare. The maximum L2-norm of the

difference between the MC and the PCT responses for the mean is 9.82× 10−2 m, but for

the standard deviation is 6.69× 10−1 m. A time history histogram of the MC results is

shown in Fig. 5.15. A time history histogram shows the histogram at each slice in time by

using a color axis. When looking at Fig. 5.15, the response of the camera is not normally

distributed. Unfortunately, a normally distributed response is an assumption for the
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Figure 5.14: Agile Eye camera view response MC and PCT comparison. The red lines are
the MC analysis and the blue lines are the PCT analysis. The means show good agreement,
but the standard deviations do not.
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Figure 5.15: Agile Eye camera view MC time history histogram. The color shows the
number of occurrences of at each time. The camera view from the MC analysis is not
normally distributed.

solution by only expanding the states by first order Hermite polynomial expansions. A

time slice of Fig. 5.15 at t = 0.4 sec can be seen in Fig. 5.16. This time slice illustrates

even further that the response is not normally distributed. Using the FBD tool from the

File Exchange of Matlab [1], the response appears to fit a Weibull distribution. The PCT

time history histogram and a time slice at t = 0.4 sec histogram are shown in Fig. 5.17

and Fig. 5.18, respectively. These two plots clearly show that the PCT derived response

are incorrectly normally distributed. The PCT response giving a normally distributed

response is to be expected because of the first order Hermite polynomial expansion used.

Truncation of the orthogonal polynomial basis is always a concern with PCT. If
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Figure 5.16: Agile Eye camera view MC histogram at t = 0.4 sec. Using data at t = 0.4

sec, the histogram from the MC analysis of the camera view is not normally distributed.

Figure 5.17: Agile Eye camera view PCT time history histogram. The color shows the
number of occurrences of at each time. The camera view from the PCT analysis is incor-
rectly shown to be normally distributed.
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Figure 5.18: Agile Eye camera view PCT histogram at t = 0.4 sec. Using data at t = 0.4

sec, the histogram from the PCT analysis of the camera view is incorrectly computed to be
normally distributed.

not enough terms are carried, then the response of the system can be incorrect. The

assumption of the responses being normally distributed is done to keep the size of the

system down. Because the responses are not normally distributed, a higher order Hermite

polynomial expansion is needed to capture the variation in the responses. Expanding the

size of the system is too much for IDAS integrator. It is difficult to get IDAS to solve a

DAE with eighty-four second order differential equations and seventy-eight algebraic

position kinematic constraints. If the system is to be expanded to a second order Hermite

polynomial, using Eqn. (2.15), the eighty-four becomes 168, and the seventy-eight
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becomes 156. Increasing the order of the basis does not even ensure that the PCT

expansion captures the response correctly.

5.5 Summary of the Automation Examples

In this chapter, four examples are solved using an MC analysis with DMBoD and

PCT with PCMBoD. The slider-crank example shows that the same mean and standard

deviations of the states are achieved whether using an MC analysis or PCT; however, PCT

is at least ten times faster in this dissertation, when unsupported components are not

encountered.

Although the slider-crank example shows the possible benefits of applying PCT to

an MBD system, the next three examples show some limitations. The motorcycle

traversing a bump shows a limitation with dealing with non-zero length springs in the PCT

formulation. The bouncing ball demonstrates difficulties with using PCT on a

non-differentiable force such as contact. Finally, a 3D problem, the Agile Eye, shows

limitations with the order of the orthogonal polynomial basis set. If the PCT expansion is

truncated too much, then an incorrect response variation is calculated.

Two of the examples, the motorcycle traversing a bump and the Agile Eye, show

numerical issues as well. The PCT systems get stiffer, causing the integrator to reduce the

time step to a prohibitively very small number. Adding PCT to an MBD system makes it
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more difficult for the integrator to solve, and computing and exporting the system

Jacobian is impractical with the current computing resources. Finding a robust integrator

that can solve these types of problems is critical.

Also, without PCMBoD, none of the solutions to the examples is easily

achievable. Manually performing the Agile Eye projections with Eqn. (2.19) is incredibly

difficult if done by hand, even using the system of two ODEs instead of the maximal set.

Quaternions are necessary to not have equations with trigonometric functions, which

causes even more complexity in the Agile Eye. Thus, without PCMBoD, the system

stiffness and rotational kinematic drivers cannot be investigated.

For PCT to be useful on any generic MBD problem, some additional capability

needs to be added to PCMBoD. Additional algorithms can be written to handle special

cases such as the square root. Ultimately, one of the main obstacles to overcome is finding

or building an appropriate integrator to handle the added complexity that PCT adds to the

MBD problem. There is a need for a more robust integrator to handle polynomial

truncation. Unless the responses of a system are known to be normally distributed and the

number of random variables is low, then an MC analysis is better to use. Finally, if the

system contains a non-differential function, such as found in a contact, an MC analysis is

the correct method to use.
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CHAPTER 6

Conclusion and Future Research

There is a need for a fast and accurate way to perform an uncertainty analysis

(UA) in a multi-body dynamics (MBD) system. To understand the response of a system

based on the variations that exist in the inputs or system parameters is critical to ensure the

system stays within its operational limits or design envelope. MBD systems can contain

hundreds of states and have various nonlinearities associated with them. Because of the

size of the systems and inherent nonlinearities, the dominant UA method used for an

MBD system is a Monte Carlo (MC) analysis. A potentially better UA for MBD systems

is polynomial chaos theory (PCT), which can handle nonlinearities. PCT has the potential

of decreasing cycle time by embedding the stochastic parameters into the system and

solving the resulting larger system once.

6.1 Conclusion

To perform a UA analysis that uses PCT, first, an automation process needs to be

created. The deterministic multi-body dynamic (DMBoD) process solves an MBD

problem with limited user inputs. DMBoD can support three sets of Euclidean spaces:

three-dimensional (3D), two-dimensional (2D) with rotation, and 2D without rotation.

Every body in the model has the same number of generalized coordinates depending on
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the Euclidean space chosen. All rotational degrees of freedom for a body are represented

by quaternions, even in the 2D with rotation Euclidean space. A set of standard holonomic

kinematics constraints and joints are used to ensure a consistent set of kinematic

constraints is applied to the system. DMBoD takes the inputs entered by the user, and

using Maple, derives the differential algebraic equations (DAE) representing the equations

of motion using a Constrained Lagrangian method. The equations are converted to state

space and exported as Matlab functions containing vectors and matrices for Eqn. (3.39).

The user enters the numerical information into Matlab, and then the system is solved. The

outputs or system responses of the model are then plotted.

With an automation process created to solve an MBD problem, the next step is to

incorporate PCT into the process. However, incorporating PCT into an MBD formulation

poses some challenges. The Galerkin projection in Eqn. (2.19) is complex. To address the

complexity associated with the Galerkin projection and the application of PCT to an MBD

system, several solutions are proposed in this dissertation.

• A trigonometric function, which can be found in all MBD systems with rotations, is

a transcendental function, which if used explicitly with a Galerkin projection, yields

a complex number which is not able to be used in the solution. To address this issue,

quaternions are used to derive the MBD equations of motion for both

two-dimensional (2D) and three-dimensional (3D) formulations. Most of the

trigonometric functions that would appear traditionally in the MBD equations of



143

motion are eliminated by using quaternions. Without having to approximate the

trigonometric functions, a more exact and efficient solution using quaternions is

possible for an MBD system with uncertainty.

• Traditionally, PCT is applied to the final equations of motion of an MBD system.

Applying Eqn. (2.19) to acceleration-based terms leads to very complicated

calculations. A new method to reduce the complexity of the Galerkin projection, the

concept of Variational Work, is derived in this dissertation. The concept of

Variational Work applies the Galerkin projection to simpler equations rather than

the full set of the equations of motion. Using Variational Work, the Galerkin

projection is used on energy functions, which contain velocities, rather than on

acceleration functions, which are more complicated. Thus, the application of PCT is

embedded into the derivation of the equations of motion, rather than an added step

at the end. This application of PCT allows for an easier implementation into an

automated process.

• To further simplify the application of the PCT method to an MBD system, an

automation process, the polynomial chaos multi-body dynamics (PCMBoD)

process, is created. The PCMBoD process is based on the DMBoD process. The

PCMBoD process incorporates Variational Work and quaternions into the

automation process. With limited user inputs and a standard set of kinematic

constraints, the PCT equations of motion are built automatically and solved. The
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user does not need to derive manually the equations of motion and perform Galerkin

projections. The process is automated fully. The PCMBoD process is capable of

analyzing MBD systems with uncertain system responses faster and easier than an

MC analysis.

Using these solutions, the application of PCT to a mechanical system is more

seamless. There have been previous attempts at applying PCT to an MBD system. Sandu

et al. [48, 49] applied PCT to a quarter-car model. Voglewede et al. [56, 57] applied the

PCT to an open kinematic chain mechanism. These problems are planar and reduce to a

system of ordinary differential equations (ODE). With the use of PCMBoD, all of these

problems can be solved quicker and more accurately. No additional simplifications need

to be made. There are no Taylor series approximations of trigonometric functions as seen

in [57]. Quaternions have eliminated this issue. With the PCMBoD process, the

complexity of problems that can be solved has increased. A full 3D mechanism is able to

be simulated, such as the Agile Eye, which was not possible before.

In the previous work [48, 49, 56, 57], because the MBD problems reduced to an

ODE, there was no issue solving them. The stiffness of the system and its impact on the

solution were never discussed. Using PCMBoD on the motorcycle and Agile Eye

example, the impact of the system stiffness on the PCT formulation is very noticeable.

Without PCMBoD, the impact PCT has on the stiffness of an MBD system would not

have come to light.
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Using PCMBoD, four example problems are simulated and compared to an MC

analysis. Some of these examples are more real-world, less textbook based problems than

any problems solved in the literature. These examples illustrate certain types of standard

MBD components that are not supported in PCMBoD at this time, which was not known

before. These components include common ones, such as a rotational kinematic driver,

contact forces and non-zero length springs.

The purpose of this dissertation is to find a new method of analyzing a UA for an

MBD system. The PCMBoD process meets the main criteria being sought for a new UA.

• PCMBoD is general and not an ad hoc process.

• PCMBoD is automated with a limited amount of inputs from the user.

• PCMBoD is as fast as an MC analysis, and in most cases much faster, as long as the

MBD system contains compatible components.

• PCMBoD quickly and easily post-processes the outputs or system responses.

Using a standard set of generalized coordinates and kinematic constraints made a general

automated process with limited user inputs possible. Variational Work allowed PCT to be

embedded into the automation process.

Using PCMBoD, PCT is able to replace an MC analysis in most cases. Not all of

the standard MBD components are supported by PCMBoD, and there is a possible issue



146

with the system stiffness. The development of PCMBoD is not finished, but shows great

promise for replacing an MC analysis. If the types of distribution of the responses of the

system are understood, and the system does not contain any components that are not

supported, PCMBoD should be used as the given UA of choice.

6.2 Future Research

To have PCMBoD achieve its full potential and replace an MC analysis, there are

additional opportunities for research. The additional opportunities for further research

studies fall into two categories: compatible component application and the impact of PCT

on the stiffness of a mechanical system.

6.2.1 Polynomial Chaos Theory Compatible Multi-Body Dynamic Components

As shown for the first time in this dissertation, there are certain types of common

mechanical components that are unable to be used in the current PCMBoD process due to

limitations with the form of the constitutive relationships (e.g., nonlinearities).

Specifically, the components discovered in this dissertation that are not compatible with

PCMBoD are rotational kinematic drivers, non-zero length springs, and contact forces.

While this list is not exhaustive, it shows the breadth of common components that are not

compatible with PCMBoD.
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Ultimately, finding a way to project these functions in general onto an orthogonal

polynomial basis can be the answer to this issue. There are algorithms that have been

developed to help with specific types of functions. For rational functions of polynomials,

the method in [14] where the rational function is rearranged to be a product of polynomials

can be implemented. For square roots, a process based on the method described by [10]

where a new variable is introduced that is squared instead of being a square root can be

used. For transcendental functions, the Taylor series approach can be used. This approach

is already done for trigonometric functions in [57], and a simple algorithm is implemented

in [45]. Finally, how to project a discontinuous function onto an orthogonal basis is

unknown at this time. A solution is possibly using a discontinuous Galerkin projection

method that is common in finite element method [6]. Using the PCMBoD architecture,

these additions can be added and the functionality of PCMBoD increased.

Finally, there is an opportunity for putting all of these algorithms together in the

current PCMBoD architecture. PCMBoD needs to determine automatically that a function

contains one of the special cases and use the appropriate algorithm to project the function

onto the orthogonal polynomial basis. Detecting special functions and projecting them is

not straightforward for complicated functions. To incorporate this new functionality into

PCMBoD, additional functions can be written to handle the detection and projection.
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6.2.2 The Impact of Polynomial Chaos Theory on the Stiffness of a Multi-Body Dy-

namic System

The motorcycle and Agile Eye examples illustrate how the stiffness of a system

when PCT is applied to a differential algebraic equation (DAE) representation of an MBD

system increases. This work is the first to uncover how the stiffness changes for a PCT

MBD system. Understanding how the projection of a system onto an orthogonal

polynomial basis affects the stiffness of the resulting DAE is critical. There is an

opportunity to address this impact. Stiffness is the reason why a system can run in the

DMBoD process, but fails to complete in the PCMBoD process due to an integration time

step falling below acceptable tolerances. This research can take two routes: inclusion of

the system Jacobian into the solver and/or a custom designed and tuned PCT DAE

integrator.

The intent of including the system Jacobian into the solver is to aid the integrator

in the solution of stiffer systems. By default, IDAS computes the system Jacobian

numerically, but is able to take an analytical Jacobian as an input. The obvious approach

of using Maple to evaluate Eqn. (5.30) analytically proves to be too time consuming.

Perhaps using automatic differentiation inside the Matlab environment, or as an additional

step in another software program, can be better. Using automatic differentiation can

produce a system Jacobian in a reasonable amount of time allowing more complicated
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systems to be solved. Either way, including a better approximation to the system Jacobian

can improve the capability of the integrator. Incorporating this functionality into the

PCMBoD process ensures a robust application to MBD problems.

The second path is to determine or develop the best class of integrators specifically

for a PCT mechanical system DAE. Other DAE integrators are available, such as

DAETS [41], which may be suitable for this application. If this particular DAE integrator

is not applicable, then one could be developed specifically for these types of problems.

Also, a different class of DAE integrators can be investigated based on differential

variational inequality (DVI) solvers which have benefits when dealing with

discontinuities [42]. However, developing a specific DAE integrator is very difficult since

most of the DAE integrators classify the type of problems that can be solved by the

stiffness of the system. By understanding the impact PCT has on the stiffness of the DAE

system, the system could be classified, and an appropriate solver may be able to be

developed. The impact of the order of the orthogonal polynomial basis has on stiffness

also can be studied. In this dissertation, a first order Hermite polynomial expansion is

used, and the systems get stiffer. There is an opportunity understanding how the order of

the orthogonal polynomial basis affects the stiffness. Using PCMBoD, the PCT

orthogonal polynomial basis order can be expanded easily and aid in the investigation.

Ensuring that the compatible MBD components and the appropriate integrator is

developed or chosen for a PCT system, PCMBoD will become more powerful. The goal is
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to have any MBD system analyzed with PCT, which has been shown to be more accurate

and faster using PCMBoD. PCMBoD in its current state is closer to having a PCT-based

UA replace an MC analysis as the default analysis for an MBD system. With additional

research, PCMBoD can achieve this goal fully.
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APPENDIX A

Maple Functions

A series of functions built for Maple that aid in the generation of a deterministic or

polynomial chaos theory (PCT) expanded multi-body dynamics (MBD) system.

A.1 Kinematic Constraint Functions

A.1.1 Three Dimensional

Constraints

• Dot1Constraint - Builds dot-1 constraint

• Dot2Constraint - Builds dot-2 constraint

• Parallel1Constraint - Builds parallel-1 constraints

• Parallel2Constraint - Builds parallel-2 constraints

• SphericalConstraint - Builds spherical constraints

Joints

• CylindricalJoint - Builds constraints for a cylindrical joint
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• FixedJoint - Builds constraints for a fixed joint

• PrismaticJoint - Builds constraints for a prismatic joint

• RevoluteJoint - Builds constraints for a revolute joint

• SphericalJoint - Builds constraints for a spherical joint

• SphericalSpherical - Builds fixed distance constraint

• UniversalJoint - Builds constraints for a universal joint

A.1.2 Two Dimensional

Constraints

• Dot1Constraint2D - Builds dot-1 constraint

• Dot2Constraint2D - Builds dot-2 constraint

Joints

• FixedJoint2D - Builds constraints for a fixed joint

• PrismaticJoint2D - Builds constraints for a prismatic joint

• RevoluteJoint2D - Builds constraints for a revolute joint

• RevoluteRevolute2D - Builds fixed distance constraint
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A.2 Kinematic Functions

A.2.1 Three Dimensional

• AngVelquat - Builds the body-fixed angular velocity from quaternion rates

• Aquat - Builds a rotation matrix from a quaternion vector

• Gquat - Builds matrix relating body-fixed angular velocity to quaternion rates

• Rx - Builds a rotation matrix about an x-axis

• Ry - Builds a rotation matrix about an y-axis

• Rz - Builds a rotation matrix about an z-axis

• SkewSymmetric - Builds a skew-symmetric matrix of a vector

A.2.2 Two Dimensional

• AngVelquat2D - Builds the body-fixed angular velocity from quaternion rates

• Aquat2D - Builds a two dimensional rotation matrix from a quaternion vector

• Gquat2D - Builds matrix relating body-fixed angular velocity to quaternion rates

• Rz2d Builds a two dimensional rotation matrix
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A.3 Matlab Functions

• MatlabFunctionIDAS - Exports a matrix or vector as a Matlab function to be used

by the integrator IDAS

• MatlabFunctionIDASO - Exports a only non-zero components of a matrix or vector

as a Matlab function to be used by the integrator IDAS

• MatlabFunctionIDASOptimized - Exports a vector as a Matlab function with Maple

“optimized” flag to be used by the integrator IDAS

• MatlabFunctionIDASParameters - Exports the parameters as Matlab function to be

user inputted in Matlab and to be used by the integrator IDAS

• StringFix - Fixes Maple’s variable name limitations when export Matlab Code

A.4 Multi-Body Dynamics Functions

• AppliedGenForces - Calculate the applied generalized force

• DelEDelq - Calculates the derivative of energy with respect to a generalized

coordinate

• ConstraintJacobian - Calculate the constraint Jacobian

• DiffState - Calculates the derivative with respect to a state or generalized coordinate

• ElimDepOnT - Eliminates functions of time in variables
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• FrcMom2GenFrc - Calculates the generalized force or moment

• GammaVec - Calculates the gamma vector for acceleration constraints

• GeneralizedCoordinates - Builds the generalized coordinate vector

• KineticEnergyMatrix - Calculates the kinetic energy of the system

• LagrangeMultipliers - Builds the Lagrange Multipliers vector

• LagrangeT - Calculates the mass matrix and nonlinear acceleration inertial terms

from the kinetic energy

• PEGenFroces - Calculates the conservative forces from the potential energy

• Phit - Calculate the explicit time derivative of position constraints

• Phitt - Calculate the second explicit time derivative of position constraints

• PotentialEnergy - Calculates the potential energy of the system

• QuaternionConstraints - Calculates unit quaternion constraint and adds it to the

position constraints

• VarDiffT - Calculates the derivative of an equation with respect to time

• Velocity2VirtualDisp - Replaces velocities with virtual displacements

A.5 Multi-Body Dynamics State Space

• ConServForceSS - Moves the conservative forces to state space
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• GammaSS - Moves the constraint equations to state space

• GenForceSS - Moves the generalized forces to state space

• MassMatrixSS - Moves the mass matrix to state space

• NLAccSS - Moves the nonlinear acceleration inertial vector to state space

• PhiSS - Moves the constraint equations to state space

• PhiqSS - Moves the constraint Jacobian to state space

• RequestSS - Moves the requests or outputs to state space and cleans up the PCT

variables

• SSIndx3SI2 - Builds the SI2 state space system

• Vel2PosDot - Builds the position states derivative relationship to velocity states

A.6 Polynomial Chaos Theory Functions

• GeneralizedCoordinatesPCT - Expands the velocity and acceleration generalized

coordinates along the orthogonal polynomial basis

• GalerkinProjection - Performs the Galerkin projection

• GalerkinProjectionEnergy - Performs the Variational Energy projection

• GenPCTForce - Performs the Variational Principle of Virtual Work

• HermitianPolynomial - Hermitian polynomial expansion
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• InnerProduct - Calculates the coefficients of the random variable along the

orthogonal polynomial basis

• PCTOrder - Determines the order of the polynomial expansion

• PCTParameters - Builds the PCT variables and Galerkin projection Weighting

function

• PCTQExpansion - Expands the generalized coordinates and Lagrange Multipliers

along the orthogonal polynomial basis

• PCTVariableExpansion - Expands a random variable in a given orthogonal

polynomial basis set. Only Hermitian polynomials are supported at this time.
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APPENDIX B

Matlab Functions

A series of functions were built for Matlab to solve stabilized index-2 (SI2)

differential algebraic equations (DAE) using the IDAS integrator [23].

B.1 Monte Carlo Analysis Functions

• GetRandomVariables - Builds sample population for Monte Carlo analysis

B.2 Polynomial Chaos Theory Functions

• BuildPCTDist - Builds sample population for polynomial chaos theory variables to

evaluate outputs

B.3 Simulation Functions

• AccelLagrangeICs - Calculates a consistent set of acceleration and Lagrange

Multiplier initial conditions (IC)

• Assembly - Calculates a consistent set of ICs
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• AssemblyNoCheck - Calculates a consistent set of ICs without checking final

residual

• DAEI3SI2 - Calculates the residual for an SI2 DAE formulation

• PositionICs - Calculates a consistent set of position ICs using Newton-Raphson

• VelocityICs - Calculates a consistent set of velocity ICs using Newton-Raphson
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APPENDIX C

Motorcycle Numerical Information

The numerical parameters for the Motorcycle Example in Section 5.2 are defined

in this Appendix. This information comes from Sharp [50].

• The point locations for the motorcycle are in Table C.1.

Table C.1: Motorcycle point locations [50]

Point X Y
(m) (m)

p2 1.1730 0.7490
p4 1.3420 0.2820
p6 1.4100 0.2820
p7 0.0000 0.2970
p11 0.5490 0.3608
p13 0.4870 0.4888
p19 0.5390 0.1878
p20 0.4946 0.1522
p21 0.4443 0.1782
p22 0.3722 0.2748

• The mass properties for the motorcycle are in Table C.2.
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Table C.2: Motorcycle mass properties [50]

Body pcmix pcmiy Mass Inertia
(m) (m) (kg) (kg-m2)

1 0.6334 0.5855 198.81 37.7614
2 1.1640 0.7700 9.9900 1.5840
3 1.3930 0.2979 19.1500 0.5011
4 0.4946 0.2578 26.6000 1.1439
5 0.5490 0.1522 0.001 0.001

• The system parameters are [50]

– The rake angle, ε = 0.4412 radians,

– The front stiffness, kff = 25000 N/m,

– The front damping, Cff = 2134 N-sec/m,

– The rear shock free length, Lsa = 0.3435 m,

– The front stiffness, ksa = 58570 N/m, and

– The front damping, Csa = 11650 N-sec/m.

• The random variables parameters are

– The mean of front shock stiffness, ¯kff = kff N/m,

– The standard deviation of front shock stiffness, σkff = 833.3 N/m,

– The mean of rear shock stiffness, k̄sa = ksa N/m, and

– The standard deviation of rear shock stiffness, σksa = 1.952× 103 N/m,



168

• The speed and bump parameters are

– The speed of the motorcycle, vodom = 4.4704 m/sec,

– The length of the bump, Lbump = 0.3048 m,

– The length of the bump, hbump = 0.0508 m, and

– The wheel length, Lwheel = 1.4100 m.
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APPENDIX D

Agile Eye Numerical Information

The numerical parameters for the Agile Eye Example in Section 5.4 are defined in

this Appendix. This information comes from Caron [5].

• The center of mass locations for the Agile Eye in Table D.1.

Table D.1: Agile Eye center of mass location [5]

Body pcmix pcmiy pcmiz
(m) (m) (m)

1 0.0000 −4.8700× 10−4 −0.0121

2 0.0195 0.0000 0.0000

3 0.0000 0.0000 −0.0375

4 −0.0169 0.0000 −0.0267

• The mass and inertia for the Agile Eye in Table D.2, Table D.3 and Table D.4.

Table D.2: Agile Eye mass [5]

Body Mass
(kg)

1 0.0349

2 0.0000

3 0.0154

4 0.0094
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Table D.3: Agile Eye moments of inertia [5]

Body Jxx Jyy Jzz
(kg-m2) (kg-m2) (kg-m2)

1 1.3413× 10−5 1.3830× 10−5 4.5815× 10−6

2 3.4040× 10−5 2.0830× 10−5 5.4400× 10−5

3 1.7550× 10−5 6.2820× 10−6 1.1640× 10−5

4 1.1930× 10−5 1.5360× 10−5 3.6500× 10−6

Table D.4: Agile Eye products of inertia [5]

Body Jxy Jxz Jyz
(kg-m2) (kg-m2) (kg-m2)

1 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000

4 0.0000 2.4930× 10−6 0.0000

• The system parameters are [5]

– L1 = 0.06508 m,

– L2 = 0.06508 m, and

– L3 = 0.506 m.

• The applied moment parameters are

– Mx = 0.001 N-m,

– My = 0.0015 N-m, and

– tol = 0.01 sec.
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• The random variables parameters are

– The mean of body 1 x-component center of mass, ¯xcm1 = xcm1 m,

– The standard deviation of body 1 x-component center of mass, σxcm1 = 0.01

m,

– The mean of body 1 y-component center of mass, ¯ycm1 = ycm1 m, and

– The standard deviation of body 1 x-component center of mass, σycm1 = 0.01 m.


