Strength of π-Stacking, from Neutral to Cation: Precision Measurement of Binding Energies in an Isolated π-Stacked Dimer

Damian Kokkin
Marquette University

Maxim V. Ivanov
Marquette University

John Loman
Marquette University

Jin-Zhe Cai
Marquette University

Rajendra Rathore
Marquette University, rajendra.rathore@marquette.edu

See next page for additional authors

Follow this and additional works at: https://epublications.marquette.edu/chem_fac

Part of the Chemistry Commons

Recommended Citation

Kokkin, Damian; Ivanov, Maxim V.; Loman, John; Cai, Jin-Zhe; Rathore, Rajendra; and Reid, Scott A., "Strength of π-Stacking, from Neutral to Cation: Precision Measurement of Binding Energies in an Isolated π-Stacked Dimer" (2018). *Chemistry Faculty Research and Publications*. 875.
https://epublications.marquette.edu/chem_fac/875
Strength of \(\pi \)-Stacking, from Neutral to Cation: Precision Measurement of Binding Energies in an Isolated \(\pi \)-Stacked Dimer

Damian Kokkin
Department of Chemistry, Marquette University, Milwaukee, WI
Maxim V. Ivanov
Department of Chemistry, Marquette University, Milwaukee, WI
John Loman
Department of Chemistry, Marquette University, Milwaukee, WI
Jin-Zhe Cai
Department of Chemistry, Marquette University, Milwaukee, WI
Rajendra Rathore
Department of Chemistry, Marquette University, Milwaukee, WI
Scott A. Reid
Abstract

π-Stacking interactions are ubiquitous across chemistry and biochemistry, impacting areas from organic materials and photovoltaics to biochemistry and DNA. However, experimental data is lacking regarding the strength of π-stacking forces—an issue not settled even for the simplest model system, the isolated benzene dimer. Here, we use two-color appearance potential measurements to determine the binding energies of the isolated, π-stacked dimer of fluorene (C_{13}H_{10}) in ground, excited, and ionic states. Our measurements provide the first precise values for π-stacking interaction energies in these states, which are key benchmarks for theory. Indeed, theoretical predictions using ab initio and carefully benchmarked DFT methods are in excellent agreement with experiment.

Noncovalent interactions are crucially important in diverse areas extending from organic materials to drug–substrate interactions to protein folding. Of these forces, π-stacking is not the strongest, yet its importance in systems involving aromatic residues is increasingly recognized. For example, dimer radical cations have been extensively investigated in the context of understanding charge transport processes in π-stacked assemblies and DNA and nucleobase oxidative damage. (1−5)

Despite the importance of π-stacking, few studies have examined the strength of the binding interaction in isolated dimers; these are summarized in a recent review. (6) Experimental measurements of the ground state binding energy of the prototypical system, the benzene dimer, vary by some 50%, (7−9) roughly bracketing the best theoretical predictions. (10−13) Even for the few systems that have been studied, (6) it is not clear that a π-stacked arrangement is favored in the ground state as C−H/π interactions are also prevalent. In such cases, excited/ionic state barriers to conformational reorganization may also limit access to π-stacked structures. Yet, experimental studies of π-stacking interactions are critical for providing benchmark data for theoretical methods as commonly employed computational methods (e.g., DFT) can exhibit deficiencies in the proper treatment of dispersion. (14,15)
To address this issue, here we report new experimental studies of a model π-stacked system, the isolated fluorene (C_{13}H_{10}) van der Waals dimer (F)_2, using two-color appearance potential (2CAP) measurements. Extensive measurements of the electronic spectra and threshold ionization potentials (IPs) of the monomer and dimer have determined the energies of ground (S_0), excited (S_1), and cation radical (D_0) states to spectroscopic accuracy, as illustrated in Figure 1. With this information in hand, the binding energies in all three states are simply derived, through the thermochemical cycles shown in Figure 1, from the measurement of the binding energy in any one state, which links the respective ladders. We achieve this by measuring the fragmentation of the isolated dimer cation radical in a cold supersonic beam, determining the binding energy in S_0 using the 2CAP method.

Use of the thermochemical scheme in Figure 1 is strictly appropriate only if adiabatic IPs are measured. This is certainly true for the monomer, as evidenced by the abrupt onset in the ion yield curve (inset of Figure 1), signifying a small geometry change between excited and cation radical states. For the dimer, we have shown that the ground state structure and corresponding excited state structure accessed by vertical excitation correspond to a parallel-orthogonal π-stack, as evidenced by two excitonic components of nearly equal intensity in the excitation spectrum (Figure 1, lower right). However, the line widths in this spectrum are homogeneously broadened, indicating a rapid (≈2 ps) rearrangement (to a sandwich excimeric structure as evidenced in a broad, unstructured, and red-shifted emission band) in the excited state. As our two-color resonant ionization method features a
time delay of tens of ns, ionization occurs only from the excimer well, which is structurally similar to the dimer cation radical. Thus, we conclude that our measured IP of the dimer must also be close to the adiabatic value, a point examined further below.

We determined the S_0 binding energy using 2CAP measurements, which give an upper limit to the binding energy.\cite{16} In this method, shown schematically in Figure 2a with details provided in the Supporting Information, two-color excitation prepares the dimer cation with a well-defined energy, and the yield of the (fragment) monomer cation is measured as the ionizing laser is scanned. The disadvantage of this method is that the excess energy taken away by the electron at threshold is not known.\cite{6} Recent studies of a related system, the anisole dimer,\cite{16,24} illustrate that in comparison with velocity mapped ion imaging (VMI) measurements, the more sensitive 2CAP method is preferred when fragmentation preferentially populates excited (vibrational or electronic) states.

![Figure 2](image_url)

Figure 2. (a) Schematic of the 2CAP method. (b) 2CAP measurement of the ground state binding energy of the fluorene dimer.

Figure 2b displays the 2CAP curve, obtained by tuning λ_1 (panel (a)) to the dimer origin and scanning λ_2 while monitoring the monomer mass channel. The energy axis is given in eV and is determined by subtracting the monomer ionization energy from the two-photon excitation energy. A clear onset is observed, and a linear extrapolation of the rising edge to the baseline returns a value of E_{binding} (in S_0) = 0.400(27) eV. Application of the thermochemical cycle (Figure 1) then affords the binding energy in excited (S_1) and cation radical (D_0) states, given in Table 1 in units of kJ/mol. We note that the binding energy in D_0 is roughly twice that in S_0. It may seem surprising that the binding energies in S_0 and S_1 are similar; however, remember that here we measure the binding energy of a local (parallel-orthogonal) minimum accessed upon vertical electronic excitation, not the global minimum in S_1, which is the sandwich excimer and is more strongly bound.\cite{22}
Table 1. Comparison of Experimental and Computed Binding Energies

<table>
<thead>
<tr>
<th>method</th>
<th>binding energy in kJ/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S₀</td>
</tr>
<tr>
<td>experiment (2CAP)</td>
<td>38.6(26)</td>
</tr>
<tr>
<td>CAM-B3LYP-D3/6-31G(d)</td>
<td>34.2</td>
</tr>
<tr>
<td>CAM-B3LYP-D3/cc-pVDZ</td>
<td>36.6</td>
</tr>
<tr>
<td>B1LYP40-D3/6-31G(d) b</td>
<td>26.9</td>
</tr>
<tr>
<td>B1LYP40-D3/cc-pVDZ b</td>
<td>28.3</td>
</tr>
<tr>
<td>PBE0-D3/def2-SV(P)</td>
<td>40.1</td>
</tr>
<tr>
<td>PBE0-D3/cc-pVDZ</td>
<td>41.2</td>
</tr>
<tr>
<td>M06-2X/6-31G(d)</td>
<td>33.0</td>
</tr>
<tr>
<td>M06-2X/cc-pVDZ</td>
<td>40.8</td>
</tr>
<tr>
<td>EOM-CCSD/6-31G(d) c</td>
<td>29.7</td>
</tr>
<tr>
<td>EOM-CCSD/cc-pVDZ c</td>
<td>34.5</td>
</tr>
</tbody>
</table>

a All DFT binding energies were corrected for zero-point energy and basis set superposition error using the counterpoise method.

b Dispersion parameters from CAM-B3LYP-D3 method were employed.

c Single-point calculations at CAM-B3LYP-D3-optimized geometries: CCSD for ground states, EOM-EE-CCSD for excited states, EOM-IP-CCSD for cation radical states.

How do the experimental values compare with theory? Previously, we[22] and others[25] have reported benchmarking studies of the neutral benzene dimer and related complexes using DFT and ab initio methods. This work showed that a simple PBE0 functional,[26,27] augmented with Grimme’s D-3 dispersion correction,[28] performed well. For cationic states, our prior work has established that a B1LYP functional[29] with 40% contribution from the exact Hartree–Fock exchange (i.e., B1LYP40) is a method of choice for predicting cationic charge stabilization/delocalization in π-conjugated systems.[30,31] Building upon these efforts, we have performed a benchmark DFT study of the fluorene dimer in ground, excited, and cation radical states. All DFT calculated binding energies were corrected for the zero-point energy and basis set superposition error using the counterpoise method.[32,33] Taking the DFT-optimized structures, we then performed single-point ab initio calculations. In order to obtain reliable values of the binding energies at the neutral, excited, and cation radical states, the method of choice must treat all three electronic states on the same footing. We therefore resorted to the equation-of-motion coupled-cluster (EOM-CCSD) family of methods,[34] i.e., EOM-EE-CCSD for the excited state, EOM-IP-CCSD for the cation radical state, and CCSD for neutral state. Due to the computational restraints, all calculations were performed with 6-31G(d) and cc-pVDZ basis sets.[35,36]

Table 1 provides a comparison of experiment and selected theoretical values, in kJ/mol; the full results of this initial benchmarking study are provided in Table S2 in the Supporting Information. Note that according to the experiment calculated binding energies at ground and excited states are referenced to
the parallel-orthogonal π-stacked structure, while the binding energy at the cation radical state corresponds to the sandwich structure (Figure 3A). Overall, CAM-B3LYP-D3 best reproduces the experimental binding energies across all three states, while B1LYP40-D3 provides the most accurate description of the cation radical state. In contrast, the PBE0-D3 and M06-2X methods well reproduce the binding in S0 but severely overestimate binding in excited and especially in the cation radical states. A proper theoretical prediction of π-stacked dimer cation radicals using DFT must account for the self-interaction error and dispersion interaction in a balanced way. Remarkably, despite modest basis sets, EOM-CCSD calculations performed exceedingly well by providing a balanced description of the binding energies across all three states.

![Figure 3](image)

Figure 3. (a) Schematic representation of the relevant points on the PES of the fluorene dimer at neutral (S0), excited (S1), and cation radical (D0) states. (b) Leading electronic configurations of the excited (F)2 at parallel-orthogonal geometry with corresponding MOs involved in the excitation computed using EOM-EE-CCSD/cc-pVDZ (see Table S1 in the Supporting Information for all configurations). (c) Dominant configuration of the ionized (F)2 at sandwich geometry with corresponding MOs computed using EOM-IP-CCSD/cc-pVDZ.

Considering the molecular orbital description of the electronic structure of the fluorene dimer, the upper two occupied frontier molecular orbitals (FMOs) are formed as symmetric (HOMO−1) and antisymmetric (HOMO) linear combinations of the fluorene HOMOs. In parallel-orthogonal (F)2, the
orthogonal arrangement of the monomeric HOMOs leads to poor orbital overlap and results in an almost nonexistent HOMO/HOMO–1 energy gap of 0.03 eV. The first excited state of parallel-orthogonal (F)₂ is dominated by the similarly contributing transitions from HOMO and HOMO–1 to LUMO and LUMO+3, respectively (Figure 3B and see Table S1 in the Supporting Information for details on all transitions involved in the excitation).

In sandwich-like (F)₂, i.e., the global minimum structure at the D₀ state, cofacial arrangement of two fluorenes results in a significant orbital overlap and, consequently, in a sizable HOMO/HOMO–1 energy gap of 1.1 eV. The ionized state of sandwich-like (F)₂ is dominated by the Koopmans-like configuration corresponding to electron ejection from the HOMO (Figure 3C).

Note that a different relative arrangement of fluorenes in S₀ and (vertical) S₁ states as compared to the D₀ state (i.e., orthogonal vs sandwich) results in the different electronic coupling as judged by the different HOMO/HOMO–1 energy gap and, as such, explains the remarkably similar BEs in S₀ and S₁ states that are nearly by a factor of 2 smaller than that in the D₀ state (Table 1). Again, we emphasize that the parallel-orthogonal S₁ structure is accessed via vertical excitation from the ground state and corresponds to a local minimum.

In conclusion, we have reported precise measurement of the binding energies of an isolated π-stacked dimer, the van der Waals dimer of fluorene, in its ground, excited, and cation radical states using 2CAP measurements. The derived values are in excellent agreement with ab initio and benchmarked DFT calculations, with CAM-B3LYP-D3 best reproducing, even using the modest basis sets (with counterpoise correction), the experimental binding energies across all three states. The B1LYP functional with 40% Hartree–Fock exchange, optimized to describe cationic charge delocalization in π-conjugated systems, provides an accurate description of the cation radical state.

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpclett.8b00742.

The authors declare no competing financial interest.

Acknowledgments

Support by the National Science Foundation (Grant CHE-1508677) is acknowledged. The calculations were performed on the high-performance computing cluster Père at Marquette University funded by NSF Awards OCI-0923037 and CBET-0521602 and the Extreme Science and Engineering Discovery Environment (XSEDE) funded by NSF (TG-CHE130101).

References

