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ABSTRACT 
SUBMAXIMAL ISOMETRIC FORCE STEADINESS IN  

PEOPLE WITH MULTIPLE SCLEROSIS UNDER  
SINGLE AND DUAL TASK CONDITIONS 

 
 

Sheri L. Bunyan, MPT 
 

Marquette University, 2020 
 
 

Activities of daily living require steady, non-fatiguing, isometric muscular 
contractions to maintain postural control and stabilize body segments to facilitate 
interaction with the environment. Furthermore, typical activities often require 
simultaneous performance of cognitive and motor tasks. This may challenge people with 
multiple sclerosis, a chronic neurodegenerative disease of the central nervous system 
associated with motor and cognitive impairments. Despite functional relevance, isometric 
force steadiness in both the upper and lower extremities of this population has not been 
explored. Additionally, dual task experiments in multiple sclerosis have primarily used 
gait, a dynamic activity, as the motor task. Thus, the purpose of this dissertation was to 
examine isometric force steadiness performed under single and dual task conditions in 
people with multiple sclerosis. It was hypothesized that people with multiple sclerosis 
would be less steady and have greater dual task costs of cognitive-motor tasks.  

Study one measured steadiness of the ankle dorsiflexors and elbow flexors across 
a range of low to moderate force targets during a single task condition. Absolute force 
fluctuation at each target was measured and relative fluctuation was calculated using the 
coefficient of variation. In the elbow flexors, people with multiple sclerosis were less 
steady than controls only at very low forces and were less steady at nearly all force 
targets in the ankle. However, magnitudes of upper and lower extremity force fluctuation 
did not correlate within either sample.   

Study two determined dual task effects of simultaneous performance of a steady 
ankle dorsiflexion contraction and a cognitive task involving working memory and 
processing speed. Both controls and people with multiple sclerosis experienced negative 
dual task effects on motor and cognitive performances. Although those with multiple 
sclerosis did not perform as well as controls for all tasks, there was no difference in 
motor effects.  

This dissertation shows that 1.) isometric steadiness is impaired in the upper and 
lower extremities of people with multiple sclerosis at very low forces under single task 
conditions, 2.) people with multiple sclerosis experience cognitive-motor interference 
when dual tasking, and 3.) the relative dual task motor effects are nonetheless comparable 
to what is experienced by healthy controls. 
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CHAPTER 1. LITERATURE REVIEW AND DISSERTATION AIMS 

 

 The experiments in this dissertation seek to understand the relation between upper 

and lower extremity force steadiness in a population with multiple sclerosis (MS) and to 

determine the effect of simultaneous performance of cognitive and motor tasks in the 

same population. Thus, this literature review provides an overview of the disease and a 

summary of literature pertaining to force steadiness and dual cognitive-motor task 

performance in adults with MS.  

 

Multiple Sclerosis 

Multiple sclerosis (MS) is a chronic, progressive, autoimmune disorder in which a 

process of inflammation and demyelination progressively damages axons and myelin-

producing oligodendrocytes of the central nervous system (Compston & Coles, 2008; 

Noseworthy, Lucchinetti, Rodriguez, & Weinshenker, 2000; Sospedra & Martin, 2016). 

The first section of this review addresses recent evidence pertaining to the epidemiology, 

etiology, clinical presentation, and diagnostic criteria for MS. Recent changes in 

estimation of incidence and prevalence will be covered, as well as updates to diagnostic 

criteria. 

 

Epidemiology 

 Although the lifetime risk of acquiring MS is low in the general population 

(Compston & Coles, 2008), it is one of the most common acquired neurodegenerative 
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diseases affecting relatively young people with an average age at onset between 29 and 

30 years of age (Global Burden of Diseases 2016 Multiple Sclerosis Collaborators, 2019; 

World Health Organization, 2008). 

Prevalence, the number of cases of a disease at a particular point in time (Portney 

& Watkins, 2015), is widely reported in the MS literature. Recent studies report that MS 

affects up to 420,000 people in the United States (Dilokthornsakul et al., 2016) and 

between 2.1 and 2.3 million people worldwide (Browne et al., 2014), with the greatest 

prevalence in developed nations located in northern latitudes (World Health 

Organization, 2008). Additionally, there is a sex difference in prevalence 

(Dilokthornsakul et al., 2016; Global Burden of Diseases 2016 Multiple Sclerosis 

Collaborators, 2019; Wallin et al., 2019) with 2.8 females affected for each male (Wallin 

et al., 2019).  

Although commonly reported, prevalence is not easily determined. It is typically 

estimated using statistical modeling and accessible data including large datasets from 

insurance providers or health systems. Estimates of prevalence can be influenced by 

sampling errors in which the dataset selected for analysis does not do not does not 

accurately reflect the target population. A prevalence algorithm developed by Wallin and 

colleagues (2019) analyzed datasets in the United States using databases from private 

insurance companies, Medicare, Medicaid programs, and the Veterans Administration.  

They concluded that the prevalence of MS in the United States is vastly underestimated. 

Their model estimates that approximately 720,000 people are currently living with the 

disease as opposed to cited statistics that report half as many cases. 



3 

 

Incidence, the number of new cases of disease observed during a particular period 

of time (Portney & Watkins, 2015), is more difficult to ascertain than prevalence. 

Incidence provides a better estimate of risk of acquiring a condition than prevalence. 

Currently, there is a worldwide trend of increasing incidence of MS (Alonso & Hernán, 

2008; Browne et al., 2014; Multiple Sclerosis International Federation, 2013). However, 

a lack of global standardization in reporting cases of MS necessitates caution in the 

interpretation of specific point estimates (Evans et al., 2013; Global Burden of Diseases 

2016 Multiple Sclerosis Collaborators, 2019). In developing nations, the incidence of MS 

is increasing in conjunction with improved access to advanced diagnostic technology, 

particularly magnetic resonance imaging (MRI) equipment (Multiple Sclerosis 

International Federation, 2013).  Therefore, it is possible that the increase in global 

incidence of MS may be related to an improved capability to detect new cases rather than 

an increase in global risk of acquiring the disease.  

Consistent with worldwide data, evidence suggests that the incidence of MS is 

increasing in North America (Alonso & Hernán, 2008; Evans et al., 2013; Wallin et al., 

2019). Wallin and colleagues (2019) gathered epidemiologic data about individuals in the 

United States who received health care benefits through major insurers, the Veterans 

Administration, Medicare, or Medicaid programs. Data were collected between 2008 and 

2010 and, although incidence was not directly calculated and reported, an increase in 

cumulative prevalence was noted across this relatively brief period. Regardless of 

inconsistencies in determining prevalence and incidence, it is clear that many are affected 

by MS and that this population is growing. 
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Etiology 

 It is generally accepted that the etiology of multiple sclerosis is complex and 

involves interaction of genetic and environmental factors. A single, salient target for 

interventions aimed at preventing MS has not been identified. However, a robust body of 

literature links MS to several risk factors including genetic predisposition (Ascherio & 

Munger, 2008; Canto & Oksenberg, 2018; Cotsapas, Mitrovic, & Hafler, 2018; Dyment, 

Ebers, & Dessa Sadovnick, 2004; Hafler et al., 2007; Levin et al., 2005; Olsson, 

Barcellos, & Alfredsson, 2016), exposure to Epstein-Barr virus (EBV) (Ascherio, 2013; 

Ascherio, Munger, & Lünemann, 2012; Correale & Gaitán, 2015; Olsson et al., 2016), 

Vitamin D insufficiency (Ascherio, 2013; Ascherio et al., 2012; Correale & Gaitán, 2015; 

Munger, Levin, Hollis, Howard, & Ascherio, 2006; Olsson et al., 2016), childhood 

obesity (Ascherio, 2013; Huppke et al., 2019; Mokry et al., 2016; Munger et al., 2013; 

Munger, Chitnis, & Ascherio, 2009; Olsson et al., 2016; Wesnes et al., 2014), and 

cigarette smoking (Ascherio & Munger, 2008; Olsson et al., 2016). A recent meta-

analysis examined over 400 primary research articles exploring the relation between 

environmental risk factors and the development of MS. Three key risk factors were 

identified; Immunoglobulin G (IgG) production detected in serum with exposure to EBV 

antigen, history of infectious mononucleosis (IM), and cigarette smoking (Bellou, 

Evangelou, Ioannidis, & Tzoulaki, 2015).  
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Genetic Factors 

Genetic contributions to the development of MS have largely been supported by 

two types of studies, those in which the rates of MS diagnoses were observed in families 

and those that explored genetic variants people with MS. While the absolute lifetime risk 

of developing MS in the general worldwide population is approximately 0.01% 

(Compston & Coles, 2008), relative risk (RR) increases in individuals who have a family 

members with the disease (Canto & Oksenberg, 2018; Compston & Coles, 2008; Dyment 

et al., 2004). However, estimates of risk vary among published reports.  

The extent to which familial association increases MS risk appears linked to the 

degree of genetic information shared between the at-risk individual and family member 

with MS. Willer and colleagues (2003) examined Canadian twins and discovered that 

monozygotic siblings had a greater rate of MS concordance (25.3%), than dizygotic 

siblings (5.4%). These findings are consistent with others who also examined 

concordance in twins from other parts of the world  (Ebers et al., 1986; Hansen et al., 

2005; Kuusisto et al., 2008; Mumford et al., 1994; Ristori et al., 2006; Robertson et al., 

1996). Sadovnik and colleagues (1988) were among the first to report increased risk in 

first, second, and third degree relatives of people with MS, a finding supported by 

subsequent investigators who also found that risk decreases as genetic links weaken 

between the at-risk individual and family member with MS (Compston & Coles, 2008; 

Dyment et al., 2004).  

A commonly cited work by Compston & Coles (2008) reports lifetime risk of 

acquiring MS based upon pooled data from patient surveys. This report provides point 

estimates and 95% confidence intervals for various levels of genetic sharing. 
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Monozygotic twins who share identical genetic information at birth have the greatest risk 

of recurrence with a point estimate of approximately 30%. When the amount of shared 

genetic information is halved, risk drops to about 24% for a child with two affected 

parents and to 14% for a child with a single affected parent. Risk further decreases in 

second and third degree relatives to approximately 1% (Compston & Coles, 2008). 

When considering familial risk, it is important to note that the highest rate of 

association identified in this literature review was 25% for monozygotic twins (Willer et 

al., 2003). This suggests that even though risk is substantially higher than that of the 

general population, it is still unlikely that one twin will acquire MS when the other is 

affected. To better understand susceptibility, one must be mindful that diagnostic criteria 

for MS require that a patient experience an episode of neurologic impairment 

(Thompson, Banwell, et al., 2018). It is possible that an individual could experience 

neural degeneration associated with MS without reaching the threshold of impairment 

required for diagnosis. This notion is supported by a recent abstract presented at a 2016 

conference hosted by the European Committee for Treatment and Research in Multiple 

Sclerosis. Researchers reported preliminary findings of a German study examining 

monozygotic twins in which one twin had MS and the other did not. MRI findings of 44 

twins who were not diagnosed with MS were analyzed. Twenty-nine of these 

asymptomatic twins had  CNS lesions consistent with MS (Gerdes et al., 2016).  

Therefore, it can be argued that risk estimates with an outcome of clinically-definite MS 

may not adequately capture the risk of experiencing asymptomatic neurodegeneration in 

family members that could precede MS.  
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  The other primary methods of examining genetic contributions to MS include 

genome-wide association study (GWAS) and linkage analysis. GWAS involves scanning 

the complete genomes of people with and without a condition of interest and comparing 

them to identify single nucleotide polymorphisms (SNPs) associated with the disease 

(NIH National Human Genome Research Institute, 2016). GWAS is a relatively new 

approach to genetic research predicated upon the ability to sequence the entire genome. 

Linkage analysis, a technique used to identify genetic markers associated with disease in 

family members at risk for specific conditions (NIH National Cancer Institute, 2019), was 

commonly used to examine genetic contributions to MS prior to availability of GWAS.  

Recent reviews report that both linkage analysis and GWAS have discovered a 

strong association between MS and variations of genes encoding human leucocyte 

antigen (HLC) located on the short arm of chromosome 6 (Figure 1.1) (Canto & 

Oksenberg, 2018; Dobson & Giovannoni, 2019; Dyment et al., 2004; Hollenbach & 

Oksenberg, 2015; Lin, Charlesworth, van der Mei, & Taylor, 2012; Sawcer, Franklin, & 

Ban, 2014). The HLA-DR15 gene has been confirmed to be of particular importance. The 

odds of developing MS are three times greater in those with HLA-DR15 variants that in 

those without (Canto & Oksenberg, 2018; Dobson & Giovannoni, 2019; Lin et al., 2012). 

HLA genes code for major histocompatibility complex (MHC) proteins that play a role in 

adaptive immunity by presenting intracellular proteins to the surface of a cell to signal 

that trigger immune responses directed at the antigen-presenting cell (Kindt, Osborne, & 

Goldsby, 2006).  



8 

 

 

Figure 1.1: Human Leukocyte Antigen Complex: Abnormalities in HLA, located on the short 
arm of chromosome 6 is strongly associated with development of MS. Figure by Terese Winslow. 
Reprinted with permission of Terese Winslow. 
 

Although the genes that encode antigen-presenting molecules in the HLA 

complex account for the greatest portion of genetic susceptibility, this region is not the 

only portion of the genome associated with MS. Over 200 genetic variants outside this 

region have been implicated in increased susceptibility (Canto & Oksenberg, 2018; 

Dyment et al., 2004) and the relation between genetic variants and risk is nonlinear 

(Dyment et al., 2004; Hollenbach & Oksenberg, 2015) highlighting the need to consider 

environment factors and the way they interact with multiple genes associated with MS.  

 

Epstein-Barr Virus 

Exposure to EBV is an important environmental risk factor for development of 

MS. EBV  is a type of herpes virus, transmitted via saliva (Ascherio et al., 2012),  with 
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double-stranded DNA that is experienced by up to 90% of the population (Ascherio, 

2013; Ascherio et al., 2001; Goodin, 2015; Sven Haahr & Höllsberg, 2006). When 

contracted early in life, EBV infection presents as a typical childhood illness. However, if 

acquired in adolescence, symptoms become more profound and can result in more serious 

conditions including mononucleosis (Ascherio, 2013; Ascherio et al., 2001; Sven Haahr 

& Höllsberg, 2006).  

Despite strong link between EBV exposure and MS, causal mechanisms have not 

been determined with certainty (Ascherio, 2013; Ascherio et al., 2001; Sven Haahr & 

Höllsberg, 2006; Levin et al., 2005) and researchers cannot confidently explain why only 

a fraction of those infected with EBV develop MS (Ascherio, 2013; Sven Haahr & 

Höllsberg, 2006). One hypothesis is that initial EBV infection affects both B-cells and T-

cells, components of the adaptive immune system (Ascherio, 2013). B-cells function in 

part circulating in the blood, sampling for antigen known as foreign or potentially 

infectious, and ultimately releasing antibodies to help eradicate the threat. One subtype of 

T-cell, also called cytotoxic or killer T-cells, function by binding to antigen expressed on 

an infected cell and destroying the cell by releasing proteins that weaken the cell 

membrane and elicit intracellular processes that ultimately result in apoptosis (Kindt et 

al., 2006). It is possible that initial EBV infection results in B-cells learning to respond to 

the virus. Subsequent infection activates these educated B-cells that subsequently 

provoke vigorous, persistent cytotoxic T-cell responses. This process is hypothesized to 

make B-cells more resistant to auto-regulatory signals (Ascherio, 2013; Ascherio et al., 

2012). Another hypothesis suggests that EBV is located in MS lesions and directly 
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triggers immune responses. However, postmortem examinations of MS lesions have 

inconsistently reported the presence of EBV (Ascherio, 2013). 

 What is known is that EBV exposure, especially exposure that results in 

infectious mononucleosis (IM), increases risk of developing MS. Aschiero (2013) 

reported relative risk using a typical person, one infected with EBV but with no history of 

IM, as a reference (RR = 1.0). Aschiero reported a lower risk of developing MS in those 

who were negative for EBV infection (RR = 0.08) and higher in one with EBV and a 

history of IM (RR = 2.3). This agrees with the findings of a Danish study in which MS 

risk was compared between those who developed IM late in childhood following EBV 

infection and those infected with EBV who did not develop IM.  They determined MS 

risk to be 2.8 times greater in those who experienced IM (S. Haahr, Koch-Henriksen, 

Møller-Larsen, Eriksen, & Andersen, 1995). 

 

Vitamin D 

 Vitamin D appears to have protective, immunomodulatory effects against MS 

(Ascherio, 2013; Ascherio et al., 2012; Munger et al., 2006; Salzer et al., 2012; Sintzel, 

Rametta, & Reder, 2018) and individuals with inadequate intake or low serum levels of 

Vitamin D have a higher risk of acquiring the disease (Ascherio, 2013; Ascherio et al., 

2012; Munger et al., 2006; Munger et al., 2004; Salzer et al., 2012). The specific 

mechanisms by which Vitamin D affects the immune system in MS are not fully 

understood. However, the association between Vitamin D and MS risk is important 

because Vitamin D insufficiency can be addressed with relative ease via supplementation.  
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 Evidence links inadequate intake of Vitamin D to MS.  Munger and colleagues 

(2004) assessed this link using data from two studies on health of registered nurses in the 

United States. They analyzed data from two large studies, the Nurses’ Health Study and 

Nurses’ Health Study II, in which 187,563 female nurses completed health questionnaires 

periodically between 1980 and 2000. The questionnaires inquired about diet and 

nutritional supplement use. As cases of MS became evident in the sample, researchers 

were able to assess the association between that phenomenon and Vitamin D intake. After 

adjusting for smoking, obesity, and latitude, it was determined that the relative risk of 

developing MS in those who supplemented at least 400 international units (IU)/day of 

Vitamin D was approximately 40% lower than females who did not use supplements 

(Munger et al., 2004). Even though these findings depended upon self-reported dietary 

intake, researchers supported validity by comparing the intake reports to reports of hip 

fractures and found an inverse relation between the two factors. This comparison is 

helpful as Vitamin D is related to bone health. 

It is important that the findings of Munger (2004) are not overestimated. Vitamin 

D supplementation of 400 IU/day may have been augmented by exposure to direct 

sunlight. Although researchers did control for latitude with the understanding that people 

in northern latitudes do not receive as much sunlight as those at lower latitudes, they did 

not measure direct exposure to ultraviolet B radiation in sunlight. This is significant 

because approximately 10,000 IU is endogenously produced with twenty minutes of full 

body exposure (Ascherio, Munger, & Simon, 2010; Sintzel et al., 2018). 

 Studies have not only examined Vitamin D intake, but also serum Vitamin D 

concentrations, specifically 25-hydroxyvitamin D (25(OH)D). Many studies examine 
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25(OH)D concentration in people who have already been diagnosed with MS. A study by 

the United States Department of Defense collected serum samples and health records in 

more than 7 million male and female military personnel over a five-year period. Data 

including serum concentrations of 25(OH)D. During the observation period, 257 new 

cases of MS emerged. Each MS case was matched to two control cases and 25(OH)D 

concentrations were compared. The risk of developing MS was 50% lower in Caucasian 

males and females with 25(OH)D concentrations > 100 nmol/L than in people with 

concentrations < 75 nmol/L. Furthermore, Caucasians experienced a 41% decrease in MS 

risk for each 50 nmol/L increase in 25(OH)D. There was no significant association 

between these variables in African Americans who developed MS (Munger et al., 2006).   

 Even though identification and understanding of mechanisms are lacking, 

associations between Vitamin D and MS are compelling enough to result in a shift in 

conceptualizing Vitamin D as playing a role in more than bone health. In fact, the 

Endocrine Society released a clinical practice guideline (CPG) defining an adequate 

serum 25(OH)D concentration as > 75 nmol/L (Holick et al., 2011), a value larger than 

the 50nmol/L concentration advocated by the Institute of Medicine that primarily 

considers skeletal benefits (Sintzel et al., 2018).  

 It is logical to study geographic prevalence of MS when considering that Vitamin 

D is synthesized in skin exposed to ultraviolet B (UVB) radiation from sunlight. Ample 

research has documented a higher prevalence of MS in latitudes further from the equator 

(Ascherio, 2013; Ascherio & Munger, 2008; Ascherio et al., 2012; Sintzel et al., 2018). 

However, the effect of latitude may be diminishing (Alonso & Hernán, 2008; Koch-

Henriksen & Sorensen, 2011; Koch-Henriksen & Sørensen, 2010). Possible reasons 
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include increased ability to detect and report MS in developing nations near the equator, 

increased emphasis on sun protection in the United States, and an increasing incidence of 

EBV infection in southern regions of the United States where the virus previously had 

lower rates of infection than in the north (Sintzel et al., 2018). 

 

Obesity 

 Obesity increases risk of developing MS (Ascherio, 2013; Huppke et al., 2019; 

Mokry et al., 2016; Munger et al., 2013; Munger et al., 2009; Munger et al., 2004; Olsson 

et al., 2016; Wesnes et al., 2014). Potential mechanisms are not fully understood, but it is 

suggested that bioavailability of Vitamin D is limited in people with obesity because it is 

sequestered in adipose tissue (Holick et al., 2011). 

Data from the Nurses’ Health Study found that 18 year-old females with body 

mass index (BMI) measures of  > 30 kg/m2, defined by the Centers for Disease Control 

and Prevention (CDC) as obesity (Centers for Disease Control and Prevention, 2017), had 

a risk 2.25 times greater than females with BMIs between 18.5 and 20.9 kg/m2 (Munger 

et al., 2009), classified as normal weight by the CDC (Centers for Disease Control and 

Prevention, 2017). This agrees with a Swedish study that found the risk of MS doubled in 

20 year-old females with a BMI of > 27kg/m2 (Hedström, Olsson, & Alfredsson, 2012) 

and a Norwegian study that discovered increased risk in obese males and females 

(Wesnes et al., 2014). Another study used a GWAS method to examine genetically 

determined BMI and found that an increase in actual BMI of a single standard deviation 
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above this value resulted in a 41% increase in MS (Mokry et al., 2016). These studies 

provide evidence that obesity in young adults increases risk of developing MS. 

Recent investigations have explored the relation between obesity in childhood and 

development of MS later in life. A case control study in Denmark explored school health 

records that included BMI measures of more than 300,000 children. These data were 

cross-referenced with the Danish MS Registry, MS cases were identified, and MS risk 

was calculated with obesity as the risk factor. It was found that each single unit increase 

in BMI increased MS risk by 15-20%. Furthermore, female children with a BMIs at or 

above the 95th percentile had an MS risk between 60-90% higher than those at or below 

the 85th percentile (Munger et al., 2013). This agrees with findings of a German study 

that retrospectively examined BMI in children diagnosed with MS.  They discovered that 

children with obesity not only had twice the risk of developing MS, but also responded 

poorly to initial pharmacological treatment (Huppke et al., 2019). 

 

Tobacco Smoking 

 The final salient epidemiological consideration included in this review is tobacco 

smoking, a modifiable risk factor that is thought to exacerbate adverse genetic processes 

associated with MS (Lin et al., 2012; Thompson, Baranzini, Geurts, Hemmer, & 

Ciccarelli, 2018). Researchers studying large cohorts of Europeans and Americans have 

consistently found that risk of developing MS increases in smokers (Hedström, 

Bäärnhielm, Olsson, & Alfredsson, 2009; Hernán, Oleky, & Ascherio, 2001; Riise, 

Nortvedt, & Ascherio, 2003; Salzer et al., 2013; Sundström, Nyström, & Hallmans, 
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2008). Furthermore, MS risk also increases with exposure to secondhand smoke 

(Mikaeloff, Caridade, Tardieu, & Suissa, 2007). In those who have MS, smoking worsens 

prognosis and is associated with a more rapid progression of symptoms associated with 

neurodegeneration (Manouchehrinia et al., 2013; Ramanujam et al., 2015; Sundström & 

Nyström, 2008; Wingerchuk, 2012). It seems that these increased risks are attributable to 

smoking, not nicotine. Although a dearth of evidence exists, a Swedish study did not find 

an increased risk of developing MS in smokeless tobacco users (Hedström et al., 2009) .  

 Risk studies of smoking and MS reported odds ratios (OR) and risk ratios (RR) 

ranging between 1.10 (Hernán et al., 2001) and 2.40 (Salzer et al., 2013). Although these 

ratios are relatively low, it is important to note that these values were adjusted for 

potential confounding behaviors known to be associated with MS risk. For example, 

Munger (2009) found that females with obesity smoked at higher rates than females of 

normal BMI and Munger (2004) found that females who used Vitamin D supplements 

were less likely to smoke tobacco. Another consideration in appraising this literature is 

the methodology used to calculate risk. Most studies calculated risk using self-reported 

smoking history. A study measuring cotinine, a biomarker for exposure to tobacco 

smoke, in females recently diagnosed with MS reported an odds ratio of 3.1 (Sundström 

et al., 2008), a higher risk than what was calculated in studies using self-reports of 

tobacco smoking. It can be confidently stated that smoking increases MS risk regardless 

of the methods used to calculate risk and sample participants in these epidemiological 

studies. 
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Clinical Presentation of Multiple Sclerosis 

MS is a progressive neurodegenerative disease that produces damage throughout 

the CNS. Because the sites and severity of autoimmune activity and neural degeneration 

vary among those with the disease, concomitant clinical presentations vary as well 

(Filippi et al., 2018; Thompson, Baranzini, et al., 2018). All neural tissue in the CNS is a 

potential target for autoimmune processes associated with MS. Therefore, clinical signs 

and symptoms vary between people with disease presentation depending upon the 

location and extent of neural damage. Variability of clinical presentation also exists 

within individuals with MS. It is common for signs and symptoms to change over both 

the course of a day and over the lifetime of a person with the disease. Symptoms of MS 

may include fatigue, somatosensory disturbance, visual impairment, weakness, 

incoordination, spasticity, general impairments of gait and balance, cognitive impairment, 

and autonomic dysfunction (Cameron & Nilsagard, 2018; Compston & Coles, 2008; 

Filippi et al., 2018; Noseworthy et al., 2000; Olek, 2005; Thompson, Baranzini, et al., 

2018; Widener, 2007). The ensuing sections of this literature review describe MS 

phenotypes and the clinical presentations of on MS germane to the measures used in the 

experiments of this dissertation. 

 

Multiple Sclerosis Phenotypes 

 An advisory committee convened by the United States’ National MS Society 

defined clinical phenotypes of MS in 1996 to improve consistency in communication 

among health care providers and scientists. An international panel of experts introduced 
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four phenotypes based upon the clinical course of the disease: relapsing remitting 

(RRMS), primary progressive (PPMS), secondary progressive (SPMS), and relapsing 

progressive (RPMS). Two additional terms, benign MS and malignant MS, were included 

to describe disease severity. The panel acknowledged a lack of consensus on the best way 

to define RPMS (Lublin & Reingold, 1996). This terminology was subsequently 

embraced by the MS community and widely used in research and clinical practice. 

Recently, it was reexamined and new recommendations were made by the International 

Advisory Committee on Clinical Trials in Multiple Sclerosis (Lublin et al., 2014).  

 Lublin and colleagues (2014) published revised criteria for MS phenotypes. They 

recommended conceptualizing MS as either relapsing remitting or progressive with 

further distinction of the progressive disease as SPMS or PPMS. RPMS was excluded 

from the updated lexicon. The authors cautioned against using the terms malignant and 

benign due to insufficient clarity. Clinically isolated syndrome (CIS) was introduced as a 

distinct phenotype and a description was provided for a phenomenon termed 

radiologically isolated syndrome (RIS). Updated phenotypes and description of RIS are 

summarized in Table 1.1.   

The most common phenotype is RRMS (Noseworthy et al., 2000; Widener, 

2007). People with RRMS experience exacerbations of negative neural signs and 

symptoms and subsequently enter a remission phase in which the level of disability 

remains steady (Lublin et al., 2014). After 10-15 years of experiencing RRMS, most 

people transition to SPMS (Dobson & Giovannoni, 2019) in which periods of increased 

disability occur without remission (Lublin et al., 2014). Because RIS is a newly 

introduced concept and not yet considered a distinct phenotype (Lublin et al., 2014), data 
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regarding prevalence are lacking. Prevalence estimates for CIS are also lacking. 

However, a study on incidence of CIS in a multiethnic sample showed that incidence is 

higher Blacks and Caucasians and lower in Hispanic and Asian populations in the United 

States (Langer-Gould, Brara, Beaber, & Zhang, 2014).  

 

Table 1.1: Summary of MS Phenotypes. (Lublin et al., 2014) 
Phenotype Description 

 

Relapsing-
remitting 
(RRMS) 

Unpredictable episodes of 
disability that may or may 
not leave permanent 
impairments followed by 
periods of remission 

Secondary-
progressive 
(SPMS) 

Initial course of RRMS that 
is followed by periods of 
increased disability without 
periods of remission 

Primary-
progressive 
(PPMS) 

Steady increase in 
disability that begins at 
disease onset without acute 
exacerbations or periods of 
remission 

Clinically 
Isolated 
Syndrome 
(CIS) 

First clinical presentation 
showing characteristics of 
inflammatory 
demyelination 

Radiologically 
Isolated 
Syndome 
(RIS)* 

Incidental imaging findings 
suggest inflammatory 
demyelination in the 
absence of symptoms 

* Authors do not currently recommend RIS as a distinct phenotype due to lack of prospective 
research in cohorts with this suspected condition.  

 

 

Fatigue 

 Fatigue has been described as a complex, multifactorial symptom defined as a 

subjective lack of physical and/or mental energy that is perceived by the individual or 
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caregiver to interfere with usual and desired activities (Multiple Sclerosis Council for 

Clinical Practice Guidelines, 1998). This general feeling of lassitude is commonly called 

primary fatigue and is one of the most common symptoms of MS (Rohit Bakshi, 2003; R. 

Bakshi et al., 2000; Fiest et al., 2016; Fisk, Pontefract, Ritvo, Archibald, & Murray, 

1994; L. Krupp, 2006; L. B. Krupp, Alvarez, LaRocca, & Scheinberg, 1988; L. B. Krupp, 

Serafin, & Christodoulou, 2010).  

Reports of prevalence for MS-related, primary fatigue vary, likely due to 

variations in research methodology. The Multiple Sclerosis International Foundation 

reports that up to 95% of people with MS experience fatigue and that 55% report it as the 

most disabling symptom (Mills, 2012). Primary fatigue is more common in progressive 

forms of the disease than in RRMS (Johansson, Ytterberg, Hillert, Holmqvist, & von 

Koch, 2008; Lerdal, Gulowsen Celius, Krupp, & Dahl, 2007; Mills & Young, 2010; 

Rooney, Wood, Moffat, & Paul, 2019) and is associated with increased pain (Kahraman, 

Özdoğar, Ertekin, & Özakbaş, 2019), depression (Flachenecker et al., 2002; Greeke et al., 

2017), and poorer scores in quality of life (QOL) measures (Barin et al., 2018; Berrigan 

et al., 2016; Janardhan & Bakshi, 2002; Mäurer et al., 2016; Simpson et al., 2019). There 

is a lack of agreement on the strength of the relation between fatigue and disability (Rohit 

Bakshi, 2003; Hadjimichael, Vollmer, Oleen-Burkey, & North American Research 

Committee on Multiple, 2008) . This could be attributed to use of varied research 

methods and outcome measures such as the Expanded Disability Status Scale (EDSS) 

that may lack sensitivity in comprehensively measuring the complex interaction among 

impairments, activity limitations, and participation restrictions associated with disability. 
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  It is important to distinguish primary fatigue from secondary fatigue and muscular 

fatigue, both of which can be experienced by those with MS. Secondary fatigue is 

associated with factors that are not attributed solely to MS such as insomnia, medication 

use, and depression (Johnson, 2008; Kos, Kerckhofs, Nagels, D'Hooghe, & Ilsbroukx, 

2007; Langeskov-Christensen, Bisson, Finlayson, & Dalgas, 2017) . Muscular fatigue has 

been defined as a temporary decrement in the capability of a muscle or muscle group to 

produce force (Enoka & Stuart, 1992; Gandevia, 2001; J. L. Taylor, Todd, & Gandevia, 

2006). It has been suggested that the trait of primary MS fatigue to be referred to as 

“fatigue” and the state of decreased force production referred to as “fatigability” (Kluger, 

Krupp, & Enoka, 2013) and this terminology has been used with increased frequency in 

recent literature (Aldughmi, Bruce, & Siengsukon, 2017; Proessl, Ketelhut, & Rudroff, 

2018; Severijns et al., 2017; Zijdewind, Prak, & Wolkorte, 2016). 

 Although muscular fatigability and primary fatigue are conceptualized as different 

symptoms of MS, they may be weakly associated.  A recent meta-analysis reports a 

correlation of 0.31 (95% CI =  0.21, 0.41) between the two constructs (Loy, Taylor, 

Fling, & Horak, 2017). Investigators have found that those with MS who report greater 

levels of primary fatigue are also more susceptible to muscle fatigue in the first dorsal 

interosseous (Steens et al., 2011; Thickbroom et al., 2006; Wolkorte, Heersema, & 

Zijdewind, 2015) and quadriceps femoris muscle groups (Andreasen, Jakobsen, Petersen, 

& Andersen, 2009). Another research team examined motor evoked potentials (MEP) 

elicited via transcranial magnetic stimulation (TMS) before and after a fatiguing handgrip 

task in people with MS. They found that those who reported higher levels of primary 

fatigue took longer to return to a normal motor threshold for response to magnetic 
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stimulation (Liepert, Mingers, Heesen, Bäumer, & Weiller, 2005). Evidence supports the 

notion that decrements in inhibitory control may underlie this association (Leocani et al., 

2001; Liepert et al., 2005). However, these findings are not consistent. Several studies 

have found no significant association between subjective measures of primary fatigue and 

muscle fatigue in the ankle dorsiflexors (Ng, Miller, Gelinas, & Kent‐Braun, 2004) and 

muscles involved in handgrip (Iriarte & de Castro, 1998). 

 Comprehensive, specific mechanisms of primary MS fatigue remain unknown.  

However, evidence suggests that the primary pathological process of MS, including 

axonal damage and inflammation, contribute to the symptom (Kos et al., 2007; 

Langeskov-Christensen et al., 2017; Tartaglia et al., 2004; Vucic, Burke, & Kiernan, 

2010). Targaglia and colleagues (2004) performed a retrospective analysis of people with 

MS who had undergone MRI spectroscopy and completed the Fatigue Severity Scale 

(FSS), a subjective measure of primary fatigue. They discovered that higher measures of 

primary fatigue were correlated with lower levels of N-acetylaspartate, a marker of neural 

integrity.  

 

Motor Function 

 Multiple aspects of motor function can be negatively affected by MS. A common 

symptom is muscle weakness (Motl, Snook, & Schapiro, 2008; Ng et al., 2004; Widener, 

2007) that often affects one side of the body more than the other (Confavreux & Vukusic, 

2008). Weakness can be attributed to both primary CNS damage and secondary changes 

due to limited activity (Widener, 2007). In addition to of weakness, people with MS may 
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experience additional issues impairing muscle function including spasticity, tremor, and 

ataxia (Thompson, Baranzini, et al., 2018; Widener, 2007). These muscular 

abnormalities, combined with other impairments of body structures and functions, such 

as impaired somatosensation, can contribute to activity limitations that include problems 

with gait and balance (Cameron & Lord, 2010; Cameron & Nilsagard, 2018). People with 

MS are more likely than their healthy peers to fall while walking (Cameron & Nilsagard, 

2018) and more and are more likely to sustain injuries as resulting from a fall 

(Mazumder, Murchison, Bourdette, & Cameron, 2014).  

 A meta-analysis of 32 studies contrasted gait characteristics between people with 

MS and healthy peers (Comber, Galvin, & Coote, 2017). This secondary analysis 

reported mean values for typical kinematic gait characteristics, confirming that MS is 

associated with differences that result in less stable gait. Typical gait in MS is 

characterized by a slower gait velocity, slower cadence, shorter step and stride lengths, 

increased step width, additional time spent in double limb support, less time in the swing 

phase, and longer stride time. These average kinematic parameters summarized by 

Comber (2017) were measured in laboratory settings, not in a natural environment. 

Another research team reported that MS not only affects laboratory-based measure of 

gait, but that these impairments are more pronounced in a natural, as opposed to 

laboratory, environment (Storm, Nair, Clarke, Van der Meulen, & Mazzà, 2018). 

Furthermore, variability of kinematic parameters is greater in people with MS than in 

healthy controls (Socie, Motl, Pula, Sandroff, & Sosnoff, 2013).  

 Postural control has been described as the action of controlling the body’s 

position in space for the purposes of orientation and stability (Shumway-Cook & 
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Woollacott, 2012) and the act of maintaining, achieving, or restoring the center of gravity 

within one’s base of support (Pollock, Durward, Rowe, & Paul, 2000).  This construct is 

often impaired in those with MS (Alpini et al., 2012; Cameron & Lord, 2010; Cameron & 

Nilsagard, 2018; Kasser, Jacobs, Foley, Cardinal, & Maddalozzo, 2011; Prosperini & 

Castelli, 2018; Prosperini et al., 2013) and impaired postural control is associated with 

falling (Cameron & Lord, 2010; Kasser et al., 2011; Mazumder et al., 2014; Sosnoff et 

al., 2011).   

 Researchers have determined that people with symptomatic MS experience 

impaired motor function of the upper extremities (Carpinella, Cattaneo, & Ferrarin, 2014; 

Pellegrino, Coscia, Muller, Solaro, & Casadio, 2018; Quintern et al., 1999; Thickbroom 

et al., 2006; Wolkorte et al., 2015), as do people with CIS and asymptomatic MS (Solaro 

et al., 2007). However, studies examining the relation between upper and lower limb 

impairment in MS are lacking. A recent study by Coghe and colleagues (2019) reported 

kinematic profiles of people with MS performing two different motor tasks involving the 

upper or lower extremities and found that both upper and lower limbs are increasingly 

impaired as MS progresses. Although related, the upper and lower extremity impairments 

in their sample were only moderately related. It is interesting to note that the degree of 

motor control required to complete the tasks in Coghe may have influenced their results. 

For the lower extremity task, they selected steady-state gait, a continuous task influenced 

by central pattern generators that coordinate movement across all four limbs using 

sensory feedback (Guertin, 2013; Shumway-Cook & Woollacott, 2012). The upper 

extremity task was bringing the hand to the mouth, a discrete task in which feedforward 
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control is more important in successful execution of the task. Thus, this dissertation 

examined both upper and lower extremity task performance in people with MS. 

Adequate motor control of the ankle is important to postural control during quiet 

standing. Although muscles of multiple joints work together (Reimann & Schöner, 2017), 

ankle musculature plays a particularly important role in managing small perturbations 

(Gatev, Thomas, Kepple, & Hallett, 1999; Horak & Nashner, 1986; Runge, Shupert, 

Horak, & Zajac, 1999).  Therefore, experiments in this dissertation employed tasks in 

which the steadiness of the tibalis anterior, a primary dorsiflexor involved in the ankle 

strategy of postural control, was examined under two conditions, one in which a 

participant’s focus was on maintaining steadiness of the contraction and another in which 

attention was divided between maintaining steadiness and completing a cognitive task.  

 

Cognitive Function  

Cognitive dysfunction is a common symptom of MS. It is estimated that up to 

70% of people with MS experience some form of cognitive impairment (Amato, Zipoli, 

& Portaccio, 2006; Chiaravalloti & DeLuca, 2008; Rao, Leo, Bernardin, & Unverzagt, 

1991). Furthermore, cognitive impairment can be observed in those with CIS, the earliest 

presentation of the disease (Anhoque, Domingues, Teixeira, & Domingues, 2010; 

Moghadam, Moayed, Sahraian, & Ameli, 2014). Cognitive dysfunction has traditionally 

been underdiagnosed (Benedict & Zivadinov, 2011; Chiaravalloti & DeLuca, 2008), in 

part due to the tendency for patient-reported problems of cognition to be confounded by 

primary fatigue and depression (Benedict et al., 2005; Carone, Benedict, Munschauer, 
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Fishman, & Weinstock-Guttman, 2005; Chiaravalloti & DeLuca, 2008; Rao et al., 1991). 

It may also be overlooked because it is not readily observable in most patients (Benedict 

& Zivadinov, 2011).  

Although cognitive impairment itself detracts from a patient’s quality of life, its 

presence in the early stages of MS is also associated with more rapid disease progression. 

People with CIS and cognitive impairment are more likely to convert to full MS than 

those with CIS who do not experience cognitive dysfunction (Zipoli et al., 2010). 

Furthermore, when cognitive impairment is present in those newly diagnosed with 

RRMS, the progression to greater levels of disability and progression to SPMS is 

hastened (Moccia et al., 2016).   

Cognition is a construct that poses measurement challenges in both clinical 

practice and research. Studies comparing patients with and without cognitive impairment 

typically classify patients based upon performance thresholds from a variety of measures 

that assess different aspects of cognition (Sumowski et al., 2018). This results in varied 

operational definitions in the literature. The presentation of cognitive dysfunction in an 

individual with MS is variable and can affect multiple facets of cognition including 

episodic and working memory, executive functions of abstract reasoning and problem 

solving, attention, concentration, language functions, and visuospatial skills (Benedict & 

Zivadinov, 2011; Bobholz & Gremley, 2011; Chiaravalloti & DeLuca, 2008). Slowed 

information processing speed has been well documented in people with MS (Archibald & 

Fisk, 2000; DeLuca, Chelune, Tulsky, Lengenfelder, & Chiaravalloti, 2004; Demaree, 

DeLuca, Gaudino, & Diamond, 1999; Moccia et al., 2016) and may contribute to other 

cognitive impairments (Costa, Genova, DeLuca, & Chiaravalloti, 2017).  
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 Working memory is the process of temporarily storing information while 

simultaneously performing some other cognitive task such as reading or solving a 

problem (Baddeley, 1983). Working memory can be impaired in people with CIS 

(Anhoque et al., 2010) and MS (Archibald & Fisk, 2000; Bobholz & Gremley, 2011; 

Chiaravalloti & DeLuca, 2008; D'Esposito et al., 1996; Nelson et al., 2017).  

Baddeley and Hitch (1974) first introduced the notion of a multicomponent 

working memory system by conducting a series of experiments to test the prevailing 

theory of the time. During this era, it was believed that working memory was an interplay 

between short and long term memory storage. However, Baddeley and Hitch believed 

this notion inadequate to explain the complexity of working memory and supported this 

idea with their findings from experiments in which participants were presented with 

isolated letters of the alphabet to remember, followed by reasoning tasks in which the 

letters needed to be recalled (Baddeley & Hitch, 1974). In addition to their experiments, 

the idea of a multicomponent working memory system was supported by the clinical 

observation that patients with impaired short term memory could manage information 

processing demands associated with working memory with minimal difficulty (Baddeley, 

1983).  

The Baddeley & Hitch model of working memory has three primary components, 

the central executive, phonologic loop, and visuospatial scratch-pad or sketchpad. The 

central executive is a limited-capacity processor that coordinates information distributed 

to the phonologic loop and visuospatial sketchpad that maintain auditory and visual 

information, respectively (Baddeley, 1983). The phonologic loop and visuospatial sketch 

pad are considered to be “slave systems” as they are responsible for maintaining 
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information directed to them from the central executive. The model has been refined to 

add another slave system, the episodic buffer, capable of holding chunked information 

that combines visual and auditory information with other sensory information such as 

taste or smell (Fig 1.2) (Baddeley, 2010). People with MS have been shown to have 

deficits in both the central executive (D'Esposito et al., 1996; Schulz, Kopp, Kunkel, & 

Faiss, 2006) and slave systems (Rao et al., 1993; Schulz et al., 2006) of working memory.  

The multicomponent model of working memory provides opportunities to 

examine the visuospatial sketch pad, phonologic loop, and episodic buffer with various 

experimental tasks. However, working memory and its subcomponents cannot be 

dissociated from information processing speed. Tasks used to measure working memory 

typically require participants to attend to a task, process stimuli, and generate appropriate 

responses. Thus, a general impairment in processing speed can influence measurement of 

a specific component of working memory. This is an important consideration because 

strong evidence supports the notion that people with MS have slower processing speed 

than their healthy peers (Archibald & Fisk, 2000; Costa et al., 2017; Forn, Belenguer, 

Parcet-Ibars, & Ávila, 2008; Genova, Lengenfelder, Chiaravalloti, Moore, & DeLuca, 

2012) and studies in populations with MS have revealed that processing speed is a greater 

contributor to cognitive impairments than working memory alone (Chiaravalloti, 

Stojanovic-Radic, & Deluca, 2013; DeLuca et al., 2004; Genova et al., 2012). 
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Figure 1.2. Multicomponent Model of Working Memory: Revision of Baddeley & Hitch’s 
multicomponent model of working memory. The revised model includes a central executive 
component that distributes attention across three slave systems including the phonologic loop, 
visuospatial sketch pad, and episodic buffer. The episodic buffer was not included in the original 
model. Figure from Baddeley (2010). 
 

 The PASAT, one part of the MSFC, was first used to describe the initial effects of 

mild traumatic brain injury on information processing speed (Gronwall & Sampson, 

1974). This task is considered to be a measure of both working memory and processing 

speed (Chiaravalloti et al., 2013; Fisk & Archibald, 2001). It is typically administered 

using a voice recording that provides a stimuli of a single-digit numbers delivered at a 

specific rate of speed. Respondents are asked to state the sum of the two most recently 

presented stimuli. The MSFC version of the PASAT presents stimuli every three seconds 

with an optional task of stimulus presentation at two-second intervals (Fischer, Rudick, 

Cutter, & Reingold, 1999).  



29 

 

The PASAT challenges working memory because respondents must hold one 

number in memory while performing an addition task and retrieve it to perform the next 

mathematical operation when the subsequent stimulus is presented. The task also 

addresses processing speed since the rate at which stimuli are presented can be 

manipulated using different interstimulus intervals. Although both working memory 

impairment and slowed information processing contribute to lower scores on the PASAT 

in people with MS, information processing is believed to be the primary factor by some 

(Forn et al., 2008), while others argue that the PASAT is too complex to be 

conceptualized as a simple measure of processing speed (Costa et al., 2017). 

 

Quality of Life 

It is important to not only understand specific impairments of body structures and 

functions associated with MS, but also to conceptualize the cumulative effect of these 

impairments on quality of life in a specific individual. A person with MS can experience 

any combination of previously mentioned clinical factors in varying degrees of severity. 

This may impact the activities a patient attempts and the manner in which he or she 

participates in daily life. It is reasonable to surmise that these impairments can contribute 

to psychosocial aspects of the disease. 

People with MS generally have lower scores than healthy peers on quality of life 

measures (Goverover, Chiaravalloti, & DeLuca, 2016), a higher prevalence of depression 

(Feinstein, Magalhaes, Richard, Audet, & Moore, 2014), a greater risk of suicide 

(Brenner et al., 2016; Feinstein & Pavisian, 2017), and are more likely to experience 
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financial hardship (Jones, Pike, Marshall, & Ye, 2016; Maroney & Hunter, 2014; 

Thormann et al., 2017). A study examining data from 2013 calculated costs of MS-

related care in the United States determined that total annual costs of managing and 

monitoring MS in a single patient range between $51,875 and $61,117, with higher costs 

associated with those who have more severe symptoms (Jones et al., 2016) as determined 

by the EDSS score.  

 

Disease Specific Measures 

 Because clinical signs and symptoms of MS span a range of impairments, disease-

specific tools have been developed to measure the summary effects of the disease. 

Measures commonly used in clinical practice and research include the Expanded 

Disability Status Scale (EDSS), the Patient-Determined Disease Steps Scale (PDDS), 

Multiple Sclerosis Functional Composite (MSFC), and the Functional Assessment of 

Multiple Sclerosis (FAMS). Each of these tools provide a measure of function or 

disability related to MS. 

 

Expanded Disability Status Scale (EDSS) 

 The EDSS is a common measure of MS-related disability. EDSS scores are based 

upon a neurological examination, traditionally administered by neurologists who 

specialize in MS, of eight functional systems categorized as pyramidal, cerebellar, 

brainstem, sensory, bowel and bladder, visual, cerebral, and a category labeled “other” 

that includes any neurologic signs not captured during the examination of the other 
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functional systems. These functional system examination findings are converted to a ten-

point ordinal scale in which higher scores indicate greater disability. The scale is 

anchored by scores of zero, normal neurological examination, and ten, death due to MS.  

EDSS scores are strongly influenced by walking ability with scores between 0 and 

4.5 ascribed to people who can ambulate without assistive devices. Higher scores indicate 

increased reliance on assistive devices for ambulation and activity limitations  (Kurtzke, 

1983). The EDSS has been shown to lack responsiveness to change in disease status 

(Bethoux & Bennett, 2011; Sharrack, Hughes, Soudain, & Dunn, 1999). Furthermore, 

EDSS scores and increased lesion load do not correlate for patients experiencing RRMS, 

an early stages of the disease, but do correlate as the disease progresses to SPMS (Truyen 

et al., 1996).  

 

Patient Determined Disease Steps (PDDS) 

 The Disease Steps (DS) tool was introduced in 1995 as a simple, reproducible, 

ordinal measurement of disability designed to specifically capture ambulation ability, the 

most recognizable motor system impairment associated with MS (Hohol, Orav, & 

Weiner, 1995). Scores on the DS and EDSS were strongly correlated in the sample used 

to validate the measure (Hohol et al., 1995) and change scores between the two measures 

were moderately correlated after one year (Hohol, Orav, & Weiner, 1999). DS scores 

were based upon patient history and a neurological examination and anchored at scores of 

0, normal neurologic function, and 6, confined to wheelchair (Hohol et al., 1995). 
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 The Patient Determined Disease Steps (PDDS) scale is a valid, patient-reported 

outcome measure of MS-related disability (Learmonth, Dlugonski, et al., 2013). It has 

been argued that the PDDS is a suitable alternative to the EDSS (Marrie & Goldman, 

2007). It is an ordinal measure that is administered as a single-item questionnaire in 

which a person with MS selects the single category that best describes his or her walking 

impairment due to MS. Scores range from 0, normal activity, to 8, bedridden. The PDDS 

is included in global patient registry of the North American Research Committee on MS 

(NARCOMS) (Vollmer, Ni, Stanton, & Hadjimichael, 1999) and investigators have 

begun to use it in lieu of the EDSS as a primary outcome measure (Briggs, Gunzler, 

Ontaneda, & Marrie, 2017; Duff et al., 2018; Fitzgerald et al., 2018; Pöttgen et al., 2018; 

Rizzo, Hadjimichael, Preiningerova, & Vollmer, 2004; Silveira & Motl, 2019; Wang et 

al., 2018; Weinkle et al., 2019). The PDDS has also been used to specify participation 

criteria when the EDSS was used as an outcome measure of disability (Coote et al., 

2017).   

 

Multiple Sclerosis Functional Composite (MSFC) 

 The MSFC is the product of an international task force convened in 1994 by the 

National MS Society of the United States. The task force was charged with developing a 

multidimensional clinical tool that was sensitive to change, avoided ceiling effects in 

greatly affected individuals, and included a measure of cognitive function, an aspect of 

MS that had not been included in other measures widely available at the time (Cutter et 

al., 1999; Rudick et al., 1996). Their final product, the MSFC, includes three simple, 
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objective clinical measures, converted to z-scores, that represent a composite snapshot of 

function (Fischer, Rudick, et al., 1999).  

The three dimensions assessed by the MSFC include leg function, arm function, 

and cognition. Leg function is measured by recording the number of seconds required to 

walk 25 feet (25FWT). Arm function is measured by recording the number of seconds 

required to complete the 9-hole peg test (9HPT) in which participants grasp, place, and 

release pegs about a standard peg board as quickly as possible with a single hand. 

Cognition is measured by administering the Paced Auditory Serial Addition Test 

(PASAT) in which audio recordings of 60 single-digit numbers are presented at 3-second 

intervals for three minutes. On the PASAT, participants continuously state the sum of the 

last two digits presented. The PASAT outcome is the number of correct responses.  

Because the three domains of the MSFC use different measurement units (time in 

seconds and number of correct responses) and directionality (higher scores indicate better 

performance on PASAT, but worse performance in 9HPT and 25FWT), domain scores 

are converted to z-scores for each component and a composite scores is then calculated 

(Cutter et al., 1999; Fischer, Rudick, et al., 1999). Lower MSFC scores indicate a greater 

degree of impairment than higher scores. 

The MSFC has strong interrater and intrarater reliability (Cohen et al., 2000). 

Cutter et al. (1999) reported a moderate, inverse relation (r = -.47) between EDSS and 

MSFC composite scores with the strongest association between 25FWT and EDSS (r = -

.52). The stronger relation of EDSS to 25FWT than to PASAT and 9HPT has 

subsequently reported by other investigators (Cohen et al., 2001; Cohen et al., 2000; 



34 

 

Hoogervorst, Kalkers, Uitdehaag, & Polman, 2002; Kalkers et al., 2000; Ozakbas, 

Cagiran, Ormeci, & Idiman, 2004) .   

Additional evidence suggests that the cognitive aspect of the MSFC is not 

adequately assessed by simply reporting the number of correct responses on the PASAT. 

Some patients use a chunking strategy in which they skip some responses, effectively 

easing the cognitive burden of the task and possibly changing the underlying cognitive 

process used to complete it (Fisk & Archibald, 2001). This does not negatively affect 

internal validity of research studies using the MSFC but suggests that investigators and 

clinicians who wish to obtain a comprehensive measure of cognitive function should 

administer additional tests.  

 

Diagnostic Criteria 

 A definitive diagnosis of MS cannot be based only the presence of clinical signs 

and symptoms. Although diagnostic criteria for MS have evolved with advances in 

knowledge and technology, all iterations include consideration of a patient’s subjective 

history with imaging evidence of at least two visible areas of plaque formation in the 

central nervous system (CNS), observed at two distinct time points, referred to as 

dissemination of lesions in time and space. Furthermore, a diagnosis of MS should not be 

made unless other conditions that could better explain examination findings are ruled out 

(Brownlee, Hardy, Fazekas, & Miller, 2017; De Angelis, Brownlee, Chard, & Trip, 2019; 

Lublin et al., 2014; McDonald et al., 2001; Polman et al., 2011; Polman et al., 2005; 

Poser et al., 1983).   
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Table 1.2 summarizes the 2017 McDonald criteria, the most current diagnostic 

standards for MS. These revised recommendations include biomarker screening of 

cerebrospinal fluid for the presence of oligoclonal bands of immunoglobulin G (IgG) 

with electrophoresis, CNS imaging to visualize lesions, and a thorough review of a 

patient’s history. The notable departure from prior criteria is the recommendation to 

diagnosis MS based upon a single episode of neurologic symptoms as long as the episode 

is accompanied by the presence of IgG in cerebrospinal fluid (CSF) (Thompson, Banwell, 

et al., 2018; Thompson, Baranzini, et al., 2018).  

Because MS is a progressive neurodegenerative disease, it is commonly accepted 

that it is desirable to have patients begin disease-modifying medications to slow the rate 

at which symptoms and irreversible CNS damage present. The 2017 McDonald criteria 

revisions have expedited the diagnosis of MS resulting in earlier intervention with disease 

modifying drugs (Mantero, Abate, Balgera, La Mantia, & Salmaggi, 2018). Research 

studies comparing diagnoses made using both the 2010 and 2017 McDonald criteria in 

the same cohort of patients found the 2017 criteria to be more sensitive in detecting MS 

(Lee, Peschke, Utz, & Linker, 2019; Schwenkenbecher et al., 2019; van der Vuurst de 

Vries et al., 2018). Schwenkenbener and colleagues (2018) conducted a systematic 

review that applied the two iterations of the McDonald criteria to pooled patient data. 

They determined that 37% of patients would be diagnosed with MS using the 2010 

criteria as compared to 68% diagnosed using the 2017 criteria. However, as sensitivity 

increased, specificity decreased (Lee et al., 2019; Schwenkenbecher et al., 2019; 

Solomon, Naismith, & Cross, 2019; van der Vuurst de Vries et al., 2018), potentially 

leading to an increased rate of false positive diagnoses.  
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Table 1.2: Diagnostic Criteria for MS. Summary of 2017 McDonald Criteria 
(Thompson, Banwell, et al., 2018) 
Number of 
Clinical 
Episodes* 

Imaging Evidence at 
Time of Clinical Episode 

Additional Criteria 

≥2 Evidence of  ≥2 lesions 
OR A single lesion with 
historical evidence of a 
prior lesion in a different 
area 

None 

≥2 Evidence of 1 lesion Additional clinical episode affecting a 
different location in the CNS OR ≥1 lesion 
in an area of CNS associated with MS 
lesions** 

1 Evidence of 2 lesions Additional report of previous clinical 
episode OR ≥2 lesions in MS-associated 
areas** OR presence of oligoclonal bands in 
CSF 

1 Evidence of 1 lesion Additional report of previous clinical 
episode OR ≥1 lesion in MS associated area 
AND any of the following: simultaneous 
presence of asymptomatic lesion OR new 
lesion compared to baseline image taken at 
any time OR presence of oligoclonal bands 
in CSF 

* A clinical episode is an attack or symptom flare-up lasting at least 24 hours. 
** MS-associated lesion areas: periventricular, cortical, juxtacortical, infratentorial, or spinal cord 

 

Submaximal Isometric Force Steadiness  

 Voluntary, goal-directed movement in humans begins with motor preparation and 

planning distributed throughout the cerebrum including the parietal, temporal (Gentili et 

al., 2011; Toni, Thoenissen, & Zilles, 2001), and frontal lobes with the occipital lobe 

contributing to intended movement dependent upon visual feedback (Gentili et al., 2011). 

When sufficiently stimulated, corticospinal neurons in the primary motor cortex (M1) 

conduct action potentials along axons that primarily synapse on lower motor neurons in 

the ventral horn of the spinal cord and interneurons of the spinal cord (Schieber & Baker, 



37 

 

2013). These corticospinal neurons ultimately activate motor units, the smallest unit of 

voluntary muscular activation, consisting of a single alpha motor neuron, also called a 

lower motor neuron, and the muscle fibers it innervates (Liddell & Sherrington, 1925; 

Sherrington, 1925). The amount of muscular force produced is influenced by both the 

number of motor units recruited and the rate at which these motor units discharge, with 

lower forces particularly influenced by rate coding, the frequency at which motor units 

discharge action potentials (De Luca, LeFever, McCue, & Xenakis, 1982; Enoka & 

Duchateau, 2017; Milner-Brown, Stein, & Yemm, 1973).  

 Isometric contractions occur when muscles produce force but do not change 

length (Neumann, 2009). Isometric contractions contribute to tasks requiring joint 

stability and most activities of daily living are performed at submaximal levels of force 

(Grabiner & Enoka, 1995). Steady, submaximal isometric contractions are performed 

during activities such as standing quietly or stabilizing a proximal limb segment as the 

distal segment moves. Excessive force fluctuation (unsteadiness) during such tasks could 

have undesired consequences. 

Quantification of force fluctuation, force steadiness, can be conceptualized in two 

ways, using standard deviation (SD) or coefficient of variation (CV) (Enoka et al., 2003; 

Galganski, Fuglevand, & Enoka, 1993). SD is an absolute measure of force fluctuation 

and reflects the dispersion of sampled forces about a mean of the distribution of those 

forces. Thus, SD is influenced by the absolute magnitude of the force produced. When 

force production is low, SD is also low. When force production increases, SD increases. 

While SD is a measure of absolute fluctuation, CV is a relative measure that normalizes 

the SD to the mean force produced. In contrast to SD which is low at lower forces, CV 
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tends to be greatest at lower levels of force production (Enoka et al., 2003; Moritz, Barry, 

Pascoe, & Enoka, 2005; Tracy & Enoka, 2002; Tracy, Maluf, Stephenson, Hunter, & 

Enoka, 2005; Vanden Noven et al., 2014). The equation for calculating CV is listed here. 

 

𝐶𝑉 % =  
𝑆𝐷 (𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)

𝑋 (𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛)
  𝑋 100% 

 

Increased CV at low force targets is attributed to a low-frequency oscillating 

neural drive of 2-3 Hz that is influenced by descending corticospinal commands as well 

as afferent inputs (Negro, Holobar, & Farina, 2009; Negro, Yavuz, & Farina, 2016). This 

finding has been observed via analysis of motor unit discharge rates by intramuscular or 

surface EMG in muscles with smaller motor units well suited for precision control 

(Negro et al., 2009; Tracy et al., 2005) and in muscles with larger motor units  

(Jesunathadas, Klass, Duchateau, & Enoka, 2012; Negro et al., 2009).  Additionally, the 

demand of visual processing increases variability at very low levels of force (Tracy, 

2007). Although it is not known whether the low-frequency oscillations are a perturbation 

to neural drive or a strategy to precisely regulate CNS output, it is argued that these 

oscillations are not solely attributable to noise (Lodha & Christou, 2017).  

Hamilton and colleagues (2004) examined force steadiness in muscles associated 

with the thumb, index finger, wrist, and elbow and found a positive association between 

force steadiness and strength. The elbow flexors, the strongest muscle group in their 

experiment produced the steadiest contractions in the stronger elbow extensors and wrist 
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flexors and the least steady contractions were produced by the smaller thumb extensors 

and abductors of the second digit. This suggests that stronger muscles with greater 

numbers of motor units are steadier than smaller muscles with fewer motor units. 

Interestingly, Tracy and colleagues (2007) examined force fluctuation in upper and lower 

extremity muscles of young and old adults using the first dorsal interosseous (FDI) of the 

hand, the elbow flexors and knee extensors. The weaker FDI was less steady than the 

larger muscle groups, but the strongest group, the knee extensors, were less steady than 

the elbow flexors. It can be argued that Tracy’s findings show that strength and motor 

unit numbers contribute to, but are not solely responsible for, force steadiness. Tracy 

(2007) also found that older adults were less steady than younger adults only at very low 

forces of the first dorsal interosseus and not the larger muscle groups. This, combined 

with the findings reported by Negro (2009), suggest that precise control at low forces is 

particularly affected by neural impairments, possibly due to an inability to manage noise 

and converging synaptic inputs to the motor unit pools. Therefore, this dissertation sought 

to examine upper and lower extremity steadiness across a range of forces in upper and 

lower extremity muscles of a similar size. 

 

Submaximal Isometric Force Steadiness in Multiple Sclerosis 

 Little is known about submaximal isometric force steadiness in people with MS. 

Five published studies have reported findings for steadiness of lower extremity muscles 

in people with MS (Almuklass et al., 2018; Arpin, Davies, & Kurz, 2016; Davies et al., 

2015; Davies, Hoffman, Healey, Zabad, & Kurz, 2017; Gould et al., 2018). Despite 

functional relevance and the fact that upper extremity motor impairments  in muscles of 
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the upper extremity and steadiness in any muscle group across a range of forces has not 

yet been explored in this population despite the func. 

 Steadiness of ankle muscles in people with MS has been reported in four studies. 

Two examined ankle plantar flexor steadiness at 20% MVIC during an isometric task 

(Arpin et al., 2016; Davies et al., 2015). One examined ankle plantar flexors and 

dorsiflexors at 10% and 20% MVIC (Almuklass et al., 2018). Another used a dynamic 

steadiness task in which participants used the plantar flexors to trace a force target 

displayed on an adjacent monitor (Davies et al., 2017). All four studies reported impaired 

steadiness in those with MS that was associated with gait impairments. Furthermore, 

Davies (2015) reported that a 14-week training program consisting of a general warm-up, 

balance exercises, and over-ground or treadmill walking improved both force steadiness 

and gait quality in people with MS. Table 1.3 summarizes the literature examining force 

steadiness of ankle musculature in people with MS.  

Gould and colleagues (2018) hypothesized that intellectual capacity of people 

with MS influenced both the perception of fatigue and muscular fatigability and tested 

this hypothesis in an experiment involving the knee extensors. After completing 

assessments of cognition, participants performed 60 successive quadriceps contractions, 

10-seconds in length, at 25% MVIC on both legs. Participants were instructed to hold 

each contraction as steady as possible during each 10-second trial. The investigators 

measured muscle fatigue and force steadiness. They did not observe relations among 

muscle fatigue, perceived fatigue, and cognition. However, they did find that force 

steadiness decreased at a greater rate in people with MS during the series of fatiguing 

contractions.  
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Table 1.3: Summary of Research Exploring Force Steadiness in Non-fatiguing 
Muscular Contractions in People with MS.  
Study MS 

Type 
Muscle or 
muscle group 

Task MS CV (%)  
𝑿 ഥ (SD) 

Compared to 
healthy controls 

Almuklass 

(2018) 

RRMS Plantar flexors 
& 
dorsiflexors 

30-sec trials  
10% and 
20% MVIC 

Plantar flexors: 
10%: 3.9(2.6) 
20%: 3.0(1.9) 
Dorsiflexors: 
10%: 4.6(5.5) 
20%: 3.5(5.2) 

No control group 

Arpin 

(2015) 

RRMS 

SPMS 

 Plantar flexors 20% MVIC 3.9 * MS: Less steady, 
slower gait, slower 
cadence, impaired 
gait kinematics, 
weaker  

Davies 

(2015) 

RRMS 

SPMS 

 Plantar flexors 20% MVIC Pre: 4.2* 
Post: 2.3* 

MS less steady at 
baseline; 45% 
reduction in CV 
with training; no 
significant 
difference between 
groups after 
training 

Davies 

(2017) 

RRMS 

SPMS 

 Plantar flexors Dynamic 
tracing task 

**Normalized 
torque: 0.42* 
Nm/kg 

MS less steady; 
slower gait speed, 
altered gait 
kinematics 

*Inferred from figure. Specific values of data not provided. 
** Normalized torque in Newton x meters/kilogram for dynamic steadiness task. 

 

There is a paucity of research exploring force steadiness in people with MS, but 

findings are consistent. Submaximal force steadiness of lower extremity muscles is 

impaired in people with MS and is associated with impaired gait kinematics. 

Opportunities exist to further explore force steadiness, its mechanisms, functional 

consequences, and rehabilitation approaches in people with MS. 
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Dual Cognitive Motor Task Performance 

 Activities of daily living are rarely performed in isolation. They typically involve 

simultaneous performance of two or more tasks such as completing a retail transaction 

while maintaining quiet stance or carrying on a conversation while walking. Therefore, 

dual-task laboratory experiments have the potential to generate knowledge particularly 

useful in shaping clinical practice.   

 When two tasks are performed simultaneously, attentional demands are greater 

than if each task were performed alone and can lead to diminished performance of both 

tasks (Abernethy, 1988; Lajoie, Teasdale, Bard, & Fleury, 1993). The relative change in 

performance of each task is termed dual task effect (DTE) and can be quantified with the 

equations that follow (Kelly, Janke, & Shumway-Cook, 2010). Negative values indicate a 

dual-task cost in which there is a decrement in performance with the addition of a second 

task. Positive values indicate a dual-task benefit in which performance improves with an 

additional task (Plummer & Eskes, 2015). Therefore, it is important to be mindful of the 

functional implications of the direction of change in variables of interest. 

 It is appropriate to use this equation to examine variables in which larger scores 

indicate better performance, such as strength or number of accurate responses. 

𝐷𝑇𝐸 % =  
(𝑑𝑢𝑎𝑙 𝑡𝑎𝑠𝑘 − 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑎𝑠𝑘)

𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑎𝑠𝑘
 × 100% 

 When lower scores indicate better performance, such as reaction time, force 

fluctuation, or speed, the previous equation is modified by adding a negative sign to the 

numerator. 
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𝐷𝑇𝐸 % =  
− (𝑑𝑢𝑎𝑙 𝑡𝑎𝑠𝑘 − 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑎𝑠𝑘)

𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑎𝑠𝑘
 × 100% 

  

DTE calculations provide insight into performance changes of both tasks. 

However, publications reporting DTE often fail to address the effect on both tasks 

(Plummer & Eskes, 2015). For example, a common clinical measure, the cognitive timed-

up-and-go test (TUGc), is structured in a way that allows simple calculation of the motor 

effect, but not the cognitive effect. The TUGc motor task involves performing the 

following series of actions as quickly as possible when given a verbal instruction to “go”: 

rise from a chair, walk three meters, turn, return to the chair, and return to a seated 

position. The motor task is performed alone and repeated while counting backward by 

three (Shumway-Cook, Brauer, & Woollacott, 2000).  

The DTE of cognition on motor performance of the TUGc can be easily 

calculated by comparing the time taken to complete the task under single task (action 

only) and dual task (action and counting) conditions. The cognitive cost is not easily 

calculated because the lengths of time for each condition differ so that poorer motor 

performance, increased time to task completion, results in more time to provide 

additional cognitive responses. Reporting the TUGc DTE solely upon the motor task 

performance only shows the effect of the cognitive challenge on motor performance. 

Even though motor performance is typically impaired with addition of a secondary task, 

the cognitive task could be impaired, enhanced, or unaffected. Each of these cognitive 

outcomes would be interpreted differently.  
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Plummer and colleagues (2013) described a conceptual framework (Figure 1.3) 

for classifying possible outcomes of dual task performances. These outcomes include 

four primary changes (motor task facilitation, motor task interference, cognitive task 

facilitation, cognitive task interference), combinations of these changes, and the 

possibility that no changes occur. The bottom, left quadrant represents mutual 

interference in which both the cognitive and motor tasks impair one another. This is the 

logical hypothesis for outcomes of dual task experiments in which both tasks are 

sufficiently challenging and demand attention of the performer. Mutual facilitation is an 

outcome that would be observed if both tasks were enhanced by simultaneous 

performance. Cognitive-priority tradeoff occurs when the cognitive measure improves, 

but the motor measure worsens under dual task conditios. The converse, motor-priority 

tradeoff, is also a possible outcome (Plummer, Villalobos, Vayda, Moser, & Johnson, 

2014).  
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Figure 1.3: Patterns of Cognitive-Motor Dual Task Effects. Possible outcomes of a dual-
cognitive task involving gait. Center (red circle) represents no dual task effect on cognition or 
gait. Mutual interference is illustrated in the bottom left quadrant, in which both tasks are 
impaired under dual task conditions. From Plummer (2014). Reprinted with permission of 
Prudence Plummer.  

 

Dual Cognitive Motor Task Performance in Multiple Sclerosis 

Inconsistent findings of DTE have been reported in studies of people with MS.  

This may be attributed to the variety of experimental tasks used in research or the varied 

levels of MS-related disability between samples. An additional confounding factor is that 

several studies report only the motor effects and not cognitive effects of experimental 

dual tasks.  
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A recent systematic review analyzed findings of 13 controlled studies that 

reported DTE with an emphasis on cognitive-motor interference (CMI), a decrement of 

both cognitive and motor task performances under dual task conditions. All but two 

studies had 95% confidence intervals that spanned zero indicating no difference between 

groups. The overall pooled effect revealed that both people with MS and healthy controls 

experience CMI. Further, it was noted that although people with MS experienced a 

greater degree of CMI than controls, differences were minimal (Learmonth, Ensari, & 

Motl, 2017).  

Another systematic review of dual tasking examined the motor task of 

maintaining postural control while standing. Investigators reviewed 11 studies and found 

that only three reported CMI, two reported improved postural control with dual tasking, 

and nine reported a negative DTE of a cognitive task on the motor task of postural 

control. Unfortunately, several of the included studies did not report the DTE that the 

motor task exerted on cognitive performance (Chamard Witkowski, Mallet, Bélanger, 

Marrero, & Handrigan, 2019). 

 To date, no dual task studies in MS have used submaximal isometric force 

steadiness as a primary motor task. The most common motor tasks in dual task 

experiments include gait and static standing. Gait has been examined in the context of 

gait initiation, ambulation over short distances, and gait termination.  

Two controlled studies examined gait initiation in people with CIS (Brecl Jakob, 

Remšak, Šega Jazbec, Horvat Ledinek, & Rot, 2017) and MS (Jacobs & Kasser, 2012). 

Both reported greater dual-task impairments in people with CIS or MS.  
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Gait over distances 25 feet or less is a common experimental motor task used in 

both controlled studies (Allali, Laidet, Assal, Armand, & Lalive, 2014; Coghe, Pilloni, et 

al., 2018; F. Hamilton et al., 2009; Kalron, Dvir, & Achiron, 2010; Learmonth, Pilutti, & 

Motl, 2015; Mofateh, Salehi, Negahban, Mehravar, & Tajali, 2017; Nogueira, Santos, 

Sabino, Alvarenga, & Thuler, 2013; Pau et al., 2018; Saleh et al., 2018; Sandroff, 

Benedict, & Motl, 2015; Wajda, Sandroff, Pula, Motl, & Sosnoff, 2013) and cohort 

studies (Chaparro et al., 2017; Etemadi, 2017; Fritz, Kloos, Kegelmeyer, Kaur, & 

Nichols-Larsen, 2019; Malcay, Grinberg, Berkowitz, Hershkovitz, & Kalron, 2017; Motl 

et al., 2014; Sosnoff et al., 2017; Wajda, Motl, & Sosnoff, 2013). Most, but not all, 

controlled studies in this review reported a greater negative DTE on motor performance 

in MS than in healthy controls. The most consistent observation was that during dual task 

conditions involving gait and a cognitive task, people with MS experienced greater 

declines in gait velocity (Allali et al., 2014; F. Hamilton et al., 2009; Kalron et al., 2010; 

Pau et al., 2018; Sandroff, Motl, Sosnoff, & Pula, 2015), cadence (Mofateh et al., 2017), 

and increased variability of step or stride lengths (Allali et al., 2014; F. Hamilton et al., 

2009; Mofateh et al., 2017; Pau et al., 2018) than healthy controls. Three studies found no 

detrimental DTE of an added cognitive task on velocity or cadence in people with MS 

(Learmonth et al., 2015; Nogueira et al., 2013; Saleh et al., 2018). Finally, a study by 

Coghe and colleagues (2018), reported a positive association between decrements in 

motor performance of gait during dual tasking and general brain atrophy measured with 

MRI. 

 Uncontrolled studies using gait as a motor task explored associations between 

DTE on the motor task and other variables. Findings include an association between 
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greater negative DTE and increased fall risk (Etemadi, 2017) and level of disability 

(Sosnoff et al., 2017). An imaging study using functional magnetic resonance imaging 

(fMRI) reported a moderate association between supplementary motor area (SMA) 

activity and the calculated DTE of cognition on motor performance of the Timed-Up-

and-Go test (TUG) (Fritz et al., 2019). 

 In addition to studying steady gait and gait initiation, gait termination has been 

explored. A controlled study asked participants to stop walking when presented with a 

verbal cue. Both healthy controls and those with MS experienced a negative DTE of 

cognition on the motor aspects of gait termination including altered kinematic parameters 

and increased time required to terminate gait. There were no significant differences in the 

DTE between groups with and without MS (Roeing, Wajda, Motl, & Sosnoff, 2015).  

 Quiet standing, a task of postural control, is another experimental task used in 

dual task designs of both controlled (Kalron, Dvir, & Achiron, 2011; Negahban et al., 

2011; Prosperini et al., 2016; Prosperini et al., 2015; Ruggieri et al., 2018) and cohort 

studies (Boes et al., 2012; Etemadi, 2017) in people with MS. The controlled studies 

found greater negative DTEs on quiet stance in people with MS than controls. The cohort 

studies reported no association between level of disability and DTE (Boes et al., 2012). 

Cohort studies also reported increased fall risk associated with a negative DTE on 

cognition, but not the DTE on the motor task of quiet standing (Etemadi, 2017). 

 Most studies of DTE examined lower extremity motor function. However, 

activities of daily living also include motor tasks performed with the upper extremities.  

In this literature search, only one dual-task study was found in which an upper extremity 

motor task was used. Participants in a study by Learmonth and colleagues (2015) 
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performed the 9-hole peg test and a cognitive task of reciting alternate letters of the 

alphabet. They found that both healthy controls and those with MS experienced a 

negative DTE on motor performance when adding a cognitive task and that the 

magnitude of DTE was not different between the groups.  

 Cognitive tasks vary across studies and do not include the PASAT, a component 

of the MSFC. The most common cognitive tasks include word list generation (Malcay et 

al., 2017; Motl et al., 2014; Prosperini et al., 2016; Wajda, Motl, et al., 2013; Wajda, 

Sandroff, et al., 2013),  Stroop tasks (Coghe, Fenu, et al., 2018; Coghe, Pilloni, et al., 

2018; Jacobs & Kasser, 2012; Kalron et al., 2011; Prosperini et al., 2016; Prosperini et 

al., 2015; Ruggieri et al., 2018), reciting alternate letters of the alphabet (Chaparro et al., 

2017; Learmonth et al., 2015; Roeing et al., 2015; Sandroff, Benedict, et al., 2015; 

Sosnoff et al., 2017) and serial subtraction tasks (Etemadi, 2017; Malcay et al., 2017; 

Mofateh et al., 2017; Negahban et al., 2011; Nogueira et al., 2013; Saleh et al., 2018; 

Sosnoff et al., 2017). Findings for motor DTE on cognitive task performances are not 

reported as frequently as motor effects associated with the addition of a secondary 

cognitive task. When these cognitive effects are reported, findings are inconsistent. Some 

studies reporting similar DTE on cognition in people with MS and controls (Prosperini et 

al., 2016; Roeing et al., 2015) and others report a greater negative DTE of motor task 

performance on cognition in MS (F. Hamilton et al., 2009; Saleh et al., 2018) and CIS 

(Brecl Jakob et al., 2017). This may be partially attributed to a lack of instructions to 

participants on how to prioritize dual tasks. Because falling is a consequence of failed 

attempts at static standing or gait perturbations, it is logical to surmise that participants 

would devote additional attention to the motor task. Without knowing how tasks were 
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prioritized in the literature, it is not possible to assume that effort was equally devoted to 

both tasks. 

Studies of dual task performance in people with MS have typically been 

descriptive. However, a seminal study by D’Esposito and colleagues (1996) examined 

mechanisms of DTE in MS within a model of working memory (Baddeley, 1983). 

D’Espotio’s primary task required participants to make a visual judgement about the 

orientation of two lines by either vocalizing the correct response or pointing to it. The 

secondary tasks included rapid finger tapping, repeatedly and accurately humming a 

lullaby, and repeatedly reciting the alphabet. There were no between group differences in 

single task performances for all four individual tasks. However, those with MS 

demonstrated a greater negative DTE for dual task line orientation judgement with all 

secondary tasks as well as a greater negative DTE on humming and reciting the alphabet 

in those with MS. Impairment on the orientation task was lowest for the finger tapping 

task in both controls and MS, presumably attributed to the fact that finger tapping without 

a target t requires little attention relative to accurate humming or reciting the alphabet.  

D’Esposito (1996) also discovered that impaired DTE in people with MS was 

associated with neurological measures of executive functioning including the PASAT and 

symbol digit modalities test. Although the tasks used in this study differ from the 

cognitive-motor tasks previously addressed in this review, it provides evidence for 

impaired central executive functioning as a mechanism for dual task decrements in MS. 

The central executive of Baddeley’s working memory model is responsible for managing 

attention across the subsystems of the phonologic loop, visuospatial sketch pad 
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(Baddeley, 1983, 1992), and episodic buffer (Baddeley, 2010). It therefore reasons that 

attentional capacity contributes to dual task performance. 

 The idea of attention required by a cognitive task has been explored in healthy 

populations. Loirst and colleagues (2002) asked healthy adults to perform an auditory 

choice reaction task and a steady, fatiguing, submaximal contractions at 5% and 30% 

MVIC of the first dorsal interosseus muscle under both single and dual task conditions. 

They observed CMI in dual task conditions that greatly increased with fatigue. 

Interestingly, this same group subsequently performed a similar study using the same 

methods in a high-effort, non-fatiguing task at targets of 30% and 60% of MVIC 

(Zijdewind, van Duinen, Zielman, & Lorist, 2006). CMI was observed in this study, 

especially at the higher target forces, but to a lesser degree than in the prior study 

specifically designed to fatigue the muscle even at the same target force of 30% MVIC. 

Because higher voluntary forces are produced via increased central drive, it is plausible 

that cortical information processing required to increase neural drive could divert 

attentional resources from the cognitive task to the high-effort motor task, especially 

when that task induces muscle fatigue. Although these studies included a sample of 

healthy adults, the mechanisms underlying CMI in this population may be helpful in 

conceptualizing CMI in those with MS. 

 

Dissertation Aims and Hypotheses 

 Submaximal isometric force steadiness is required across a range of forces for 

successful completion of everyday tasks, yet it is unknown if multiple sclerosis affects 
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this aspect of motor behavior. Furthermore, the ability to simultaneously perform 

cognitive and motor tasks has not been fully examined in a population with multiple 

sclerosis. Two experiments were carried out to address the aims that follow.  

The first study sought to determine isometric force steadiness of upper and lower 

extremity muscle groups, determine if a relation between upper and lower extremity 

steadiness existed, and compare these findings between people with MS and healthy 

controls. A secondary goal was to identify a steady, non-fatiguing force target for people 

with MS that could be successfully completed in the second experiment, an examination 

of dual task effects of cognitive and motor tasks. The muscles selected in this first 

experiment include the ankle dorsiflexors, key contributors to the ankle strategy to 

maintain postural control in standing, and the elbow flexors, for holding the distal hand 

and wrist steady for interaction with the environment. 

The second study explored cognitive-motor task performance in people with 

multiple sclerosis and compared the findings to healthy controls. The cognitive task 

included a modified version of the PASAT, a measure of working memory and 

information processing speed. PASAT stimuli were delivered with interstimulus interval 

of 3-seconds and 4-seconds. The motor task selected was ankle dorsiflexion at a steady, 

non-fatiguing force identified in the first experiment.  

Aim 1: To compare force steadiness during low-force, non-fatiguing isometric 

contractions between people with multiple sclerosis and healthy, age and sex matched 

peers. 
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 Hypothesis 1a: People with MS will be less steady across all ranges of force than 

healthy controls. 

 Hypothesis 1b: All participants will demonstrate less steadiness at the lowest 

force targets of 2.5% and 5.0% MVIC in both the upper and lower extremities. 

Aim 2: To determine if people with MS use a different motor control strategy to optimize 

steadiness as compared to healthy controls. 

 Hypothesis 2: People with MS will use a co-contraction strategy more often that 

healthy controls. 

Aim 3: To compare force steadiness between upper and lower extremity muscle groups 

in people with MS and compare these findings to healthy controls. 

 Hypothesis 3: Force steadiness will be positively correlated between upper and 

lower extremity muscle groups to the same degree in people with and without 

MS.  

Aim 4: To determine if dual task effects of performing a cognitive-motor task differ 

between people with and without MS.  

 Hypothesis 4a: Both healthy controls and those with MS will experience 

cognitive motor interference, a decrement in both motor and cognitive 

performances, with dual tasks. 

 Hypothesis 4b: Both healthy controls and those with MS will experience a 

greater cognitive dual task cost when processing time is shortened. 

 Hypothesis 4c: People with MS will experience a greater negative dual task effect 

on cognition than healthy controls. 
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 Hypothesis 4d: People with MS will experience a greater negative dual task 

effect on force steadiness than healthy controls. 
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CHAPTER 2. SUBMAXIMAL ISOMETRIC STEADINESS OF THE UPPER AND 
LOWER EXTREMITIES IN PEOPLE WITH MULTIPLE SCLEROSIS 

 

INTRODUCTION 

 Steady, submaximal, isometric contractions are required to perform everyday 

tasks. Force fluctuation has been well studied in healthy younger and older adults (Enoka 

et al., 2003; Galganski et al., 1993; Pereira et al., 2019; Pereira, Schlinder-Delap, 

Nielson, & Hunter, 2018; Pereira et al., 2015; Tracy, 2007; Tracy, Dinenno, Jorgensen, & 

Welsh, 2007; Tracy & Enoka, 2002; Tracy et al., 2005; Tracy, Mehoudar, et al., 2007; 

Vanden Noven et al., 2014; Yoon, Vanden Noven, Nielson, & Hunter, 2014) and less 

frequently studied in people with MS (Almuklass et al., 2018; Arpin et al., 2016; Davies 

et al., 2015; Davies et al., 2017; Gould et al., 2018) . Controlled studies of submaximal 

force steadiness in MS during non-fatiguing contractions have been limited to the ankle 

plantar flexors (Arpin et al., 2016; Davies et al., 2015) and one uncontrolled study that 

examined the ankle plantar flexors and dorsiflexors (Almuklass et al., 2018). At 20% 

MVIC, the ankle plantar flexors of people with MS are less steady than healthy controls 

and is associated with impairments in lower extremity motor control (Arpin et al., 2016; 

Davies et al., 2015). Exercise interventions targeted specifically at improving steady, 

submaximal, isometric contractions in people with MS not only improve steadiness 

(Davies et al., 2015) , but also gait (Davies et al., 2017). Therefore, examination, 

evaluation, and interventions involving steady, isometric contractions may benefit those 

with MS. 
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It is well known that MS is a chronic, progressive, autoimmune disorder in which 

a process of inflammation and demyelination progressively damages axons and myelin-

producing oligodendrocytes of the central nervous system (Compston & Coles, 2008; 

Noseworthy et al., 2000; Sospedra & Martin, 2016). The resulting signs and symptoms 

depend upon the extent and location of the neural damage (Noseworthy et al., 2000), yet 

even those with asymptomatic MS have been found to have impairments in cognition 

(Schulz et al., 2006) and motor control (Kalron et al., 2011; Solaro et al., 2007). Coghe 

and colleagues (2019) attempted to determine the relation between upper and lower 

kinematics in people with minimal to moderate MS-related disability. They found that 

greater disability was associated with declines in upper and lower limb motor 

performance. Interestingly, there was only a moderate relation between upper and lower 

extremity impairment. Thus, the same autoimmune processes produce varied clinical 

presentations that involve both the upper and lower extremities, but it is not known 

whether upper and lower extremities are similarly affected by the general strain placed 

upon the CNS by disease related processes.      

Tracy and colleagues (2007) examined force fluctuation in upper and lower 

extremity muscles of young and old adults using the first dorsal interosseous (FDI) of the 

hand, the elbow flexors and knee extensors. The relatively small FDI was less steady than 

the larger elbow and knee muscle groups and fluctuation between those two muscle 

groups were moderately associated for forces at or above 5% MVIC suggesting that the 

motor unit pools controlling these upper and lower extremity muscle groups is similarly 

affected by input from the CNS. Because MS affects the CNS and even asymptomatic 

patients may have motor impairments, it is reasonable to speculate that a CNS 
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impairment primarily affecting lower extremity motor control may also affect the upper 

extremity, as well as the converse. 

No study has yet examined steadiness in the upper and lower extremities in 

people with MS across a range of forces. The purposes of this study were threefold. The 

first was to compare force steadiness during low-force, non-fatiguing isometric 

contractions between people with MS and healthy controls. The second was to determine 

if people with MS used a different motor control strategy than healthy controls. The third 

was to compare force steadiness between upper and lower extremity muscles in the same 

group of individuals. It was hypothesized that people with MS would be less steady 

across all forces in both the upper and lower extremities, that people with MS would 

exhibit a greater degree of agonist-antagonist co-activation during steady isometric 

contractions, and that lower and upper extremity force steadiness would positively 

associate within groups (MS and controls). 

 

METHODS 

Fifteen people with MS (5 males and 10 females; mean (SD): 49.7 (9.5) years; 

168.6 (6.7) cm height, 80.2 (16.7) kg body mass) and fifteen healthy controls (3 males 

and 12 females; mean (SD): 47.2 (6.4) years; 167.3 (11.5) cm in height, 80.2 (16.8) kg in 

body mass) volunteered to participate. Volunteers were eligible if they were between the 

ages of 18 and 60 and could actively dorsiflex the left ankle and flex the left elbow 

through a full range of motion against gravity. Those with MS were eligible if disease 

progression was stable for at least six months. Participants were excluded if they lacked 
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sufficient visual acuity to see a computer monitor at a distance of 1.0 meter or 

experienced any condition other than MS that impaired function of the left ankle. 

The experiment was conducted in a single session at Marquette University. 

Volunteers were oriented to the protocol and provided informed consent as approved by 

the university’s Institutional Review Board (Protocol HR-3154).  

 

Participants 

Recruitment and Enrollment. Participants were recruited from an existing pool of 

volunteers who had previously completed research studies in our lab. People with MS 

were recruited at community events sponsored by the MS Society and at an area gym for 

people with MS. Advertisements were placed on social media sites and shared by local 

MS support groups. Prospective participants were screened for inclusion and exclusion 

criteria via phone or email and consecutively enrolled in the study.  

Participant Characteristics. All participants completed a series of questionnaires 

to measure fatigue and depression and basic demographic information was obtained.  

Each participant provided his or her age, birth month, birth year, biologic sex, and 

number of years of secondary and postsecondary education completed. Height in cm and 

mass in kg were obtained with a stadiometer and digital scale, respectively. The trait of 

primary fatigue was measured with the Modified Fatigue Impact Scale (MFIS) (Rivito et 

al., 1997) and depression with the Centers for Epidemiologic Studies Depression Scale 

(CESD) (Radloff, 1977). 
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The MFIS is an ordinal scale measure of fatigue (Rivito et al., 1997). This 

questionnaire contains 21 items and total score ranges from 0-84, with higher scores 

indicating greater impact of fatigue on daily life. The measure also reports fatigue on 

three subscales, physical, cognitive, and psychosocial. The tool is included in the MS-

Quality of Life Inventory (Fischer, LaRocca, et al., 1999; Rivito et al., 1997), a ten-item 

battery of questionnaires recommend for use by the United States’ Multiple Sclerosis 

Society.  Although the tool has adequate test-retest reliability (Kos et al., 2005; Larson, 

2013) and correlates with other measure of fatigue (Flachenecker et al., 2002; Larson, 

2013; Téllez et al., 2005), caution should be used when interpreting the measure as solely 

a measure of fatigue. Because MFIS scores may be confounded by depression (Larson, 

2013) this study also included a measure of depression. 

The CESD is an ordinal measure of depression developed for use in a the general 

population (Radloff, 1977). Scores on this 20-item questionnaire reange between 0-60, 

with higher scores indicative of depression. It is reliable in a population with MS 

(Verdier-Taillefer, Gourlet, Fuhrer, & Alpérovitch, 2001). Although debate exists on 

applying a cutoff score to make this ordinal scale measure a diagnostic screening tool, it 

is generally accepted that higher scores indicate depression in people with MS (Patten, 

Berzins, & Metz, 2010).  It is a reliable measure in people with MS (Verdier-Taillefer et 

al., 2001). 

Participants with MS completed disease-specific questionnaires to measure 

disability and quality of life.  Questionnaires included the Patient Determined Disease 

Steps Scale (PDDS) (Learmonth, Motl, Sandroff, Pula, & Cadavid, 2013; Rizzo et al., 

2004), a self-reported measure disability status and the Functional Assessment of 
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Multiple Sclerosis (FAMS) (Cella et al., 1996), a self-reported measure of quality of life. 

Both questionnaires asked specific questions pertaining to symptoms of MS and were 

therefore not applicable for completion by healthy controls.  Participants with multiple 

sclerosis also provided the month and year of diagnosis, MS phenotype, and indicated 

which disease modifying medications were used at the time the experiment took place. 

Multiple Sclerosis Functional Composite (MSFC). All participants completed the 

three tasks comprising the MSFC (Fischer, Rudick, et al., 1999). The two activity domain 

tasks in the MSFC include the 9-hole peg test (9HPT) and 25-foot walk test (25FWT). 

The cognitive domain was assessed via the Paced Auditory Serial Addition Test 

(PASAT).  

The 9HPT, a measure of upper extremity function, was administered using 

standard procedures described in the MSFC guidebook using a Roylan 9-hole peg test 

board (Smith & Nephew, Germantown, WI). The time in seconds (s) required for 

participants to move nine pegs from a shallow well to placeholders and back to the well 

was recorded. Two trials were completed with the dominant hand followed by two trials 

with the nondominant hand. The mean of all four trials was recorded and used to 

calculated composite MSFC score and as a descriptive variable.  

The 25FWT, a measure of lower extremity function and walking ability, was 

administered according to MSFC guidebook instructions. Participants walked 25 feet as 

quickly as could be safely managed in a private, unobstructed laboratory space. 

Participants were permitted to use walking aids if these assistive devices were also used 

during typical ambulation. The time in seconds (s) to walk 25 feet was recorded. The task 

was completed twice and mean of the two trials was recorded.  
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The PASAT, a measure of cognitive function, was administered following 

instructions in the MSFC guidebook. Subjects listened to an audio recording of single 

digit numbers that were presented every 3 seconds (PASAT-3). Subjects stated the sum 

of the two most recently presented digits. A practice block of 10 items was completed 

prior to scored trials. Participants completed at least one, but no more than three, practice 

blocks. Following the practice block, 60 digits were presented and the number of correct 

responses was recorded. 

MSFC composite scores were calculated for participants with MS. Scores for 

individual components of the MSFC (9HPT, 25FWT, PASAT-3) were converted to z-

scores to allow calculation of a composite MSFC score using the formula reported in the 

administration and scoring guidebook. 

𝑀𝑆𝐹𝐶 𝑆𝑐𝑜𝑟𝑒 = ቐ
𝑋ത ቀ

1
9𝐻𝑃𝑇

ቁ − .0439

. 0101
+

−𝑋ത(25𝐹𝑊𝑇) − 9.5353

11.4058
+

𝑃𝐴𝑆𝐴𝑇3 − 45.0311

12.0771
ቑ /3.0 

 

Experimental Setup and Measures 

Measures of Force. Experimental tasks were performed using the left ankle 

dorsiflexors and left elbow flexors. For both upper and lower extremity tasks, participants 

were seated upright in an adjustable chair with hips and knees flexed to 90°. Proximal 

body segments were secured to prevent accessory movements that could affect force 

measures. Limb length was recorded between the axis of the elbow or ankle joints and the 

point at which force was applied to the transducer to allow calculation of torque. 
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For the elbow flexion task, each participant placed the left elbow on a supportive 

pad with the shoulder in approximately 20° abduction and the forearm in anatomic 

neutral. The distal forearm and wrist were secured in a modified orthosis secured to a JR3 

load cell (JR3, Woodland, CA) that was calibrated with known loads (kg) prior to the 

study. Force output was converted to a digital signal using a Power 1401 analog to digital 

convertor and sampled at a frequency of 500 Hz using Spike 2 software (Cambridge 

Electronic Designs, Cambridge, UK). The experimental setup for the elbow is depicted in 

Figure 2.1. 

  

 

For the ankle dorsiflexion task, the left foot of each participant was secured to a 

footplate and secured with a firm hook-and-loop fastening strap placed just proximal to 

the metatarsal heads. A strap was also placed over the talocrural joint to secure posterior 

aspect of the heel to the footplate. Participants wore flat soled athletic shoes during 

testing and a thin foam pad was placed between the strap and shoelaces to prevent 

potential discomfort of the tightly secure strap from affecting effort. 

Figure 2.1. Experimental Setup for 
Elbow Force Measurement. 
Participants were seated in an 
adjustable chair with the left elbow 
resting on a padded support surface 
and the distal forearm and wrist in a 
modified orthosis secured to the 
measurement apparatus. Force was 
measured with a JR3 load cell, seen 
inferior to the wrist. 
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Force output was measured with a custom strain gauge transducer (Transducer 

Techniques, Temecula, CA) that was calibrated with known weights (kg) prior to the 

study. Signals were amplified X100 and low pass filtered at 25 Hz using an amplifier 

(Grass Telefactor, Model P122, Warwick, RI). Force output was digitized using an 

analog to digital convertor, (CED 1401, Cambridge Electronic Designs, Cambridge, UK), 

sampled at 500 Hz, recorded, and saved for analysis using a custom program operated via 

Spike 2.7 (Cambridge Electronic Designs, Cambridge, UK). The experimental setup for 

the ankle is depicted in Figure 2.2. 

 

 

 

A 27” monitor was placed at eye level approximately 1 meter in front of the 

participant. The monitor displayed continuous force feedback over a 15-second window. 

The y-axis display remained constant across all targets as increased visual gain has been 

shown to positively affect force steadiness in muscles of the ankle and elbow (Prodoehl 

& Vaillancourt, 2010). 

Figure 2.2. Experimental Setup for 
Ankle Force Measurement. 
Participants were seated in an 
adjustable chair with the left foot 
secured to a footplate. Force was 
measured with a customized strain 
gauge transducer, seen superior and to 
the right of the toe. 
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Electromyography. Whole muscle surface electromyographic (EMG) activity of 

primary agonists and antagonists was recorded and amplified (x1000) using a two-

channel Delsys Bagnoli handheld EMG unit (Delsys, Natik, MA). EMG signals were 

recorded through a Power 1401 analog to digital convertor and sampled at 1 kHz using 

Spike 2 software. Delsys DE-2.1 differential surface electrodes (Delsys, Natik, MA) were 

used as recording electrodes. These recording electrodes contain two silver contacts, 1 cm 

in length and 1 cm apart, housed in a noise-shielding polyurethane shell. Recording 

electrodes were placed so points of contacts aligned perpendicular to fiber orientation of 

the target muscle. Disposable self-adhering Dermatrode electrodes (American IMEX, 

Irvine, CA) were used as ground electrodes. Prior to affixing electrodes, the skin was 

gently abraded and cleaned using electrode prep pads (Professional Disposables 

International, Orangeburg, NY). 

 EMG recording were made for the tibialis anterior and medial head of the 

gastrocnemius for ankle tasks and the biceps brachii and triceps brachii for elbow tasks. 

Recording and ground electrodes were placed on muscle bellies and bony landmarks in 

accord with recommendations by the Surface Electromyography for the Non-Invasive 

Assessment of Muscles (SENIAM) project (Hermens, Freriks, Disselhorst-Klug, & Rau, 

2000) with the exception of the ground electrode placement for ankle tasks in which the 

ground electrode was placed on the patella. Noise was checked by collecting 5-10 

seconds of data in which participants were instructed to relax the muscles of interest. 

Threshold for acceptable noise was set at 0.005 volts (V).  
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Experimental Protocol 

 The ankle dorsiflexion task was performed prior to the elbow flexion task. This 

order was chosen because a secondary aim of the study was to determine a steady, non-

fatiguing ankle force level that could be used in the subsequent experiment involving 

dual task performance. As it was unknown how primary fatigue might affect those with 

MS over the duration of the experimental session, the ankle task was performed first.  

Maximal Voluntary Isometric Contraction. After a participant’s position, EMG 

recording, and force recordings were appropriately established, he or she performed at 

least three maximal voluntary isometric contractions (MVICs), 3-5 seconds in duration, 

with at least 60 seconds rest between attempts to prevent muscular fatigue for the 

purposes of determining force targets and normalizing EMG. Participants were provided 

with real-time visual force feedback, verbal encouragement from the investigator, and 

were asked if a maximal effort was made after each trial. Attempts to obtain MVIC 

ceased when the maximum magnitude of force produced in any two efforts was within 

5% of each other and the participant agreed that maximal effort was provided. The 

highest MVIC force magnitude was used to calculate submaximal force targets for the 

elbow flexors and ankle dorsiflexors. The highest MVIC EMG magnitude of the agonist 

muscle was used to normalize subsequent recordings.  

Submaximal Isometric Force Steadiness. Each subject performed two submaximal 

steadiness trials, 15-seconds in length at 2.5%, 5%, 15%, 30%, and 45% of the MVIC for 

elbow flexion and ankle dorsiflexion. The order of presentation of force targets was 

randomized. Participants completed at least one, but not more than three practice trials 

immediately preceding the trials used in the analysis. Individual steadiness trials at the 
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same target force were separated by at least 20 seconds rest. Sets of trial at different force 

tasks were separated by at least 60 seconds. An additional MVIC was performed upon 

completion of the final force target to verify absence of muscular fatigue. (Figure 2.3) 

 

Figure 2.3 Experimental Protocol. At least three maximum voluntary isometric contractions of 
the elbow flexors and ankle dorsiflexors were performed to normalize EMG and calculate target 
force for submaximal force steadiness trials. Each participant performed 1-3 practice trials (not 
shown) and two trials used for analysis at 2.5, 5, 15, 30, and 45% MVIC. The order in which 
target forces were presented was randomized. Each trial consisted of a 15-second hold. 
Subsequent trials at the same target force were separated by at least 20 seconds of rest. A rest of 
at least 60 seconds was provided between force targets.  

 

 

 During steadiness tasks, participants viewed a monitor that displayed real-time 

force feedback over a 15-second interval with force magnitude on the y-axis and time on 

the x-axis. Target force was displayed as a horizontal black line that extended across the 

screen. Force feedback was displayed as a slightly thicker, green line that moved in the 

direction of the contraction. Participants were instructed to move the force tracing to the 

target line as quickly as possible. Once target force was attained, participants were told to 
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maintain the position being “as accurate and steady as possible.” During practice trials, 

participants were cued to “cover the black (target) line with the green (force feedback) 

line.” Instructions were repeated prior to each trial, but cueing, encouragement, and 

feedback from the investigator were not provided during the steadiness tasks included for 

analysis.  

Cueing was not provided during these tasks for two reasons. First, the timeframe 

of the contraction (15 s) was short enough for participants to adequately attend to the task 

without a need for redirection. Second, a secondary aim of this study was to further refine 

methods for the second experiment in which participants simultaneously performed a 

cognitive task while maintaining a steady contraction. Additional cueing could 

complicate that task by requiring participants to attend to visual force feedback, auditory 

presentation of the cognitive task, and verbal instructions from the investigator. Thus, it 

was desirable to obtain a measure of steadiness in this experiment using the same mode 

of feedback. 

 

 

Data Analysis  

Measures of Force. Voltage recordings for force were converted to Newtons (N) 

using equations from calibration curves created prior to enrolling participants in the 

study. Torque was calculated as the product of force and length of the bony lever and 

expressed in Newton meters (Nm). The distance of the ankle lever was measured between 

the center of the ankle joint and just proximal to the metatarsal heads where the 



68 

 

stabilizing straps were placed. Elbow distance was measured between the olecranon 

process and just proximal to the radial head, the location at which the custom orthosis 

was attached to the force transducer setup.     

MVIC force was quantified as the mean value of a 0.5 second interval centered on 

the peak force. Force steadiness was quantified using a 5.0 second interval centered about 

the midpoint of the duration of the steady hold. Steadiness was quantified in both 

absolute and relative measures. The standard deviation (SD) of torque was the absolute 

measure. The coefficient of variation (CV) was the relative measure. CV was calculated 

by dividing the SD by the mean (CV% = SD/mean force x 100%). 

Electromyography. EMG signals were quantified using the same intervals 

described for collection of force data. MVIC EMG was calculated as the root mean 

square (RMS) over the 0.5 second interval in which the MVIC was performed. RMS 

values were also used to quantify muscle activity for each submaximal contraction over 

the 5.0 second interval selected for analysis. EMG values of all contractions were 

normalized to the MVIC effort with the greatest magnitude of activity. Coactivation 

ratios were calculated for all segments using the average normalized, RMS values of 

EMG (Coactivation % = agonist EMG/antagonist EMG x 100%) (Pereira et al., 2015; 

Rudroff, Justice, Matthews, Zuo, & Enoka, 2010).  

Statistical Analysis 

Data were analyzed using IBM Statistical Package for Social Sciences, Version 

26 and an online effect size calculator (Ellis, 2009).  Alpha was set at .05. Data are 

reported at mean and standard deviation, 𝑋 ഥ (SD), in the text and mean and standard error 
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of the mean , 𝑋 ഥ (SE), in figures. Variability of distributions for all variables was checked 

with Levene’s Test for Equality of Variance for comparison of two samples and 

Mauchly’s Test of Sphericity with three or more samples. When sphericity was violated 

with an epsilon value of .75 or greater, the Huynh-Feldt correction was applied. When 

sphericity was violated with an epsilon value below .75, the Greenhouse-Geiser 

correction was applied. As the sample sizes were small, effect sizes were calculated using 

Hedges’g when standard deviations were similar between groups and Glass’ Δ when 

Levene’s test revealed differences in variance between groups (Lakens, 2013). Effect 

sizes for pairwise comparisons made with the Mann Whitney U test are reported as r2. 

These nonparametric effect sizes were calculated in Excel, first by determining the value 

of r (𝑟 =  


√
), then squaring the value (r2). 

Participant characteristics were compared between groups using independent t-

test and Mann-Whitney U for ordinal data.  Analysis of variance (ANOVA) with repeated 

measures on within subjects factors were used to analyze force steadiness data. The 

between-group factor was disease status (MS, control). The within subjects factors were 

muscle group (elbow flexors, ankle dorsiflexors) and load (2.5, 5, 15, 30, and 50% 

MVIC). When the F-statistic was significant, post hoc comparisons were made using 

independent t-tests to examine differences at each force target between groups.  

 Pearson’s product moment correlations (r) between ankle and elbow steadiness 

were compared within groups. Associations among other measures was examined with 

Pearson’s r for interval and ratio data and Spearman’s rank correlation coefficient for 

ordinal data. 
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RESULTS 

Participant Characteristics. Participant characteristics are reported in Table 2.1. 

The MS and control groups were similar in age, height, and body mass.  People with MS 

had greater levels of depression (CESD) score, greater fatigue (MFIS), lower scores for 

activity-based measures (25FWT and 9HPT), lower cognitive measures (PASAT-3) and 

weaker ankle dorsiflexors (ankle dorsiflexion MVIC). 

Table 2.1: Participant Characteristics.  

Variable 
MS 

(n=15; 5 male) 
Control 

(n=15; 3 male) 
p  

Effect 
size 

Age, yr 49.67 (9.47) 47.20 (6.42) .411  
Height, cm 168.62 (6.77) 168.63 (10.74) .998  
Mass, kg 80.21 (16.67) 80.18 (16.79) .996  
BMI, kg/m2 28.32 (5.63) 28.07 (4.51) .933  
CESD 10.27 (5.65) 3.93 (4.06)  .001 * 0.36† 
MFIS Total 35.60 (13.11) 8.73 (10.97)  .000 * 0.57† 
   MFIS Physical 14.53 (7.25) 2.93 (5.22)  .000 * 0.52† 
   MFIS Cognitive 18.21 (5.02) 5.40 (5.66)  .000 * 0.56† 
   MFIS Psychosocial 2.87 (2.26) 0.40 (0.74)  .000 * 0.39† 
25FWT, s 4.99 (1.20) 3.78 (0.46) .002 * 1.30 
9HPT, s 21.50 (0.36) 17.82 (1.39) .000 * 2.65 
PASAT-3, n 44.47 (11.75) 54.60 (5.30) .007 * 1.08 
Ankle dorsiflexion MVIC, Nm 7.16 (2.49) 15.15 (5.19) .000 * 1.54 
Elbow flexion MVIC, Nm 45.19 (14.16) 43.29 (16.88) .740  
Note: Values are mean (SD); * p < .05; Effect sizes are Hedge’s g or r2 (†). 
BMI = Body mass index, CESD = Center for Epidemiologic Studies Depression Scale, MFIS = 
Modified Fatigue Impact Scale, 25FWT = 25-foot Walk Test, 9HPT = 9-hole Peg Test, PASAT-3 = 
Paced Auditory Serial Addition Test, 3 second interval, MVIC = Maximum voluntary isometric 
contraction   

 

MS-specific characteristics are reported in Table 2.2. The MSFC incorporates the 

25FWT, 9HPT, and PASAT-3. It is expressed as a z-score in relation to the population 

with MS with higher scores indicating better function. Thus, our sample’s mean score of 

0.22 indicates slightly better function than the population. The mean score of 0.93 on the 
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PDDS, a self-reported measure of MS-related disability, indicates that our sample 

perceived themselves as having normal function to mild disability.  

 

Table 2.2: MS-Specific Participant Characteristics.  

Variable 
MS 

(n=15; 5 male) 
MS Duration, months 158.73 (112.76) 

MSFC 0.22 (0.39) 

PDDS .93 (1.33) 

FAMS Total 165.20 (25.66) 

   FAMS Mobility 18.33 (2.64) 

   FAMS Symptoms 23.03 (3.67) 

   FAMS Emotional Well-Being 23.00 (3.02) 

   FAMS General Contentment 21.20 (4.26) 

   FAMS Thinking and Fatigue 18.47 (5.01) 

   FAMS Family/Social Well-Being 21.67 (5.83) 

   FAMS Additional Concerns 39.33 (7.81) 

Note: Values are mean (SD) MSFC = Multiple Sclerosis Functional Composite, PDDS 
= Patient Determined Disease Steps, FAMS = Functional Assessment of Multiple 
Sclerosis 

 

Force Steadiness: Ankle. Ankle dorsiflexion MVIC was weaker in people with 

MS (Figure 2.4) and the resulting target forces consequentially lower. The absolute 

measure of force fluctuation, SD, was not different between groups at any force level [F 

(1.01, 28.38) = 2.96, p = .096]. The relative measure of force fluctuation, CV, was greater 

in those with MS for all force target levels except 15% MVIC [t (27.43) = -1.72, p = 

.097]. Figure 2.5 illustrates the absolute and relative force steadiness for both samples 

across all forces. Effect sizes for force differences ranged from 0.61 to 1.21; 2.5% [t 

(17.10) = -3.20, p = .005, Δ = 0.87], 5% [t(16.76) = -4.02 , p = .001, Δ = 1.09], 30% 
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[t(28) = -3.40  , p = .002 , g = 1.21], and 45% [t(21.62) = -2.09 , p = .049 , Δ = 0.61]. See 

Table 2.3 for descriptive statistics of ankle and elbow force fluctuation. 
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Figure 2.4. Ankle MVIC and Target Torques. Mean (SE) for MVIC and submaximal 
torque for controls (closed) and those with MS. Controls produced more torque than those 
with MS in the MVIC and at all submaximal force targets, * p < .05 
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Force Steadiness: Elbow. MVIC and submaximal torque generated by the elbow 

flexors did not differ between groups for MVIC or any force target (Figure 2.6); MVIC [t 

(28) = -.34, p = .740], 2.5% [t (28) = -.16, p = .847], 5% [t (28) = -.50, p = .625], 15% [t 

Figure 2.5. Relative and Absolute Ankle Steadiness. (A.) Standard deviation (SD) of torque across the 
range of submaximal target forces. MS (open) and controls (closed) did not differ in absolute magnitude 
of force fluctuation. (B.) Coefficient of variation (CV) across the range of submaximal target forces. 
Between group CV differed for all force targets except 15% MVIC. (* p < .05) 
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(28) = -.53, p = .602], 30% [t (28) = -.438, p = .665], and 45% [t (28) = -.21, p = .839]. 

Absolute force fluctuation, SD, was greater in those with MS at the 2.5% target [t(14) = -

2.15, p = .050, g = 0.81], but not at higher targets [t (14.00) = -.2.02, p = .063], 15% [t 

(14.02) = -2.07, p = .058], 30% [t (14.11) = -1.58, p = .137], and 45% [t (14.17) = -1.49, p 

= .159]. Relative fluctuation, CV, was higher for the MS sample at lower force targets of 

2.5 and 5% [2.5% t(28) = -2.35, p = .026, g = 0.84; 5% t(28) = -2.12 , p = .043, g = 0.75]. 

CV did not differ between groups at higher force targets of 15%, 30%, and 45% MVIC; 

15% [t (17.53) = -2.06, p = .054], 30% [t (28) = -.99, p = .329], and 45% [t (28) = -.347, 

p = .731]. Figure 2.7 illustrates the absolute and relative force steadiness for both samples 

across all forces. Additionally, the standard deviation of the absolute and relative 

fluctuation, SD and CV respectively, were larger in people with MS. See Table 2.3 for 

descriptive statistics of ankle and elbow force fluctuation.  

 

Table 2.3: Force Fluctuation Values for Ankle Dorsiflexors and Elbow Flexors  

Ankle 
Dorsiflexors 

2.5%  
MVIC 

5% 
MVIC 

15% 
MVIC 

30% 
MVIC 

45% 
MVIC 

Control SD  .078 (.080) .106 (.181) .210 (.533) .370 (1.048) .786 (2.441) 
 CV 4.634 (1.309) 2.465 (.808) 1.443 (.828) 1.304 (.351) 1.694 (.460) 
       
MS SD  .069 (.043) .101 (.108) .178 (.313) .327 (.632) .488 (.966) 
 CV 8.040 (3.90) 5.252 (2.560) 1.930 (.716) 1.893 (.572) 2.213 (.846) 
       
Elbow 
Flexors 

2.5%  
MVIC 

5% 
MVIC 

15% 
MVIC 

30% 
MVIC 

45% 
MVIC 

Control SD  .016 (.010) .023 (.009) .075 (.051) .294 (.216) .592 (.383) 
 CV 3.908 (1.717) 2.982 (1.474) 1.779 (.581) 2.351 (1.080) 3.004 (1.215) 
       
MS SD  .348 (.599) .637 (1.177) 1.160 (2.035) 1.707 (3.460) 2.942 (4.929) 
 CV 5.643 (2.282) 4.279 (1.863) 2.696 (1.622) 2.769 (1.219) 3.182 (1.562) 
       
Values expressed as mean (SD). 
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Figure 2.6. Elbow MVIC and Target Torques. Mean (SE) for MVIC and submaximal 
torque for controls (closed) and those with MS. Groups produced similar torque at all 
targets. 
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Figure 2.7. Relative and Absolute Elbow Steadiness. (A.) Standard deviation (SD) of 
torque across the range of submaximal target forces. MS (open) and controls (closed) did 
not differ in absolute magnitude of force fluctuation. (B.) Coefficient of variation (CV) 
across the range of submaximal target forces. Between group CV differed for 2.5 and 5% 
MVIC only. (* p < .05)  

* 
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Force Steadiness Associations. Associations of force steadiness in the elbow 

flexors and ankle dorsiflexors were explored within groups. No significant associations in 

relative fluctuation were found between upper and lower extremities in either group at 

any force as illustrated in Figure 2.8. Furthermore, there were few significant correlations 

between CV and MVIC. In controls, ankle MVIC and CV were strongly associated at the 

2.5% target [r(13) = - 0.75, p = .001] and moderately associated in the elbow at 2.5% 

[r(13) = - 0.52, p = .049], 5% [r(13) = - 0.54, p = .037], and 15% MVIC [r(13) = - 0.55, p 

= .034]. In those with MS, there was a moderate correlation at the elbow for at the 2.5% 

MVIC target [r(13) = - .62, p = .013]. Thus, in our sample, weaker maximal contractions 

(MVIC) were associated with greater force fluctuation (CV) values at very low forces in 

the elbow flexors of both groups and in the ankle dorsiflexors of controls.  

Muscle Activation. An attempt was made to calculate muscle coactivation for the 

ankle (tibialis anterior and medial gastrocnemius) and elbow (biceps brachii and triceps 

brachii) by dividing the normalized magnitude of the agonist EMG by the antagonist. In 

both sample and both muscle groups, coactivation could not be calculated due to 

inadequate signal-to-noise ratio in the antagonist muscles.  
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Figure 2.8. Associations of Steadiness in Upper and Lower Extremities. Pearson 
product moment correlations (r) were not significant within either group at any force 
target, A. 2.5%, B. 5%, C 15%, D 30%, and E 45%. 

MS 
r = -0.48 
p = .069 

Control 
r = 0.15 
p = .605  
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Salient Associations. There were no significant within group associations between 

elbow CV and ankle CV at any force level in either people with MS or controls as shown 

in Figure 2.8. There were no significant associations between tibialis anterior CV at any 

force level and the measures that were different between groups, the CESD [Ankle 

Controls: 2.5% rs (13) = .10,  p = .727; 5% rs (13) = -.01, p = .979; 15% rs (13) = .04, p = 

.897; 30% rs (13) = .03, p = .918, 45% rs (13) = .04, p = .887 and MS: 2.5% rs (13) = .30, 

p = .272; 5% rs (13) = .17, p = .557; 15% rs (13) = .20, p = .485; 30% rs (13) = -.13, p = 

.643, 45% rs (13) = .02, p = .954] and MFIS total score [Controls: 2.5% rs (13) = -.05, p = 

.849; 5% rs (13) = -.13, p = 0.646; 15% rs (13) = -.07, p = .799; 30% rs (13) = -.03, p = 

.929, 45% rs (13) = .06, p = .839 and MS: 2.5% rs (13) = .11, p = .685; 5% rs (13) = .16, p 

= .576; 15% rs (13) = .11, p = .704; 30% rs (13) = .01, p = .960, 45% rs (13) = .104, p = 

.960] Additionally, for the elbow flexors there were no within group correlations with 

either the CESD [Controls: 2.5% rs (13) = -.48, p = .071; 5% rs (13) = -.42, p = .116; 15% 

rs (13) = -.36, p = .186; 30% rs (13) = -.413, p = .127, 45% rs (13) = .41, p = .510 and MS: 

2.5% rs (13) = -.23, p = .403; 5% rs (13) = .03 , p = .929; 15% rs (13) = .05, p = .854; 30% 

rs (13) = .34, p = .222, 45% rs (13) = .27, p = .339  ] or MFIS [Controls: 2.5% rs (13) =     

-.44, p = .099; 5% rs (13) = -.30, p = .274; 15% rs (13) = -.09, p = .740; 30% rs (13) =       

-.22, p = .424, 45% rs (13) = -.421, p = .118 and MS: 2.5% rs (13) = -.13, p = .657; 5% rs 

(13) = .239, p = .390; 15% rs (13) = .15, p = .594; 30% rs (13) = -.04, p = .879, 45% rs 

(13) = -.05, p = .850]. Because the control and MS group differed in ankle MVIC, but not 

elbow MVIC, the association between CV of all force targets and MVIC of the ankle was 

tested and found to be insignificant in both controls and those with MS with the 

exception of 2.5% MVIC in controls [Controls: 2.5% r (13) = .746 , p = .001; 5% r (13) = 
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-.43, p = .112; 15% r (13) = -.12, p = .668; 30% r (13) = .01, p = .967, 45% r (13) = -.36, 

p = .183 and MS: 2.5% r (13) = -.31, p = .264; 5% r (13) = -.19, p = .509; 15% r (13) =    

-.48, p = .069; 30% r (13) = -.25, p = .373, 45% r (13) = -.08, p = .788] 

Moderate relations between ankle CV and 25FWT were significant for all target 

forces except 30% MVIC [2.5% r (13) = .68, p = .005; 5% r (13) = .61, p = .015; 15% r 

(13) = .57, p = .026; 30% r (13) = .49, p =.065; and 45% r (13) = -.64, p = .008)]. 

However, these associations were not observed in those with MS [2.5% r (13) = -.11, p = 

.701; 5% r (13 ) = -.07, p = .807; 15% r (13 ) = -.39, p = .154; 30% r (13 ) =  -.383, p 

=.158; and 45% r (13 ) = -.22, p = .429)]. Associations between the 9HPT and CV of the 

elbow at any force for either group were not significant with the exception of a moderate 

correlation at 30% MVIC in the group with MS [Controls: 2.5% r (13) = -.17, p = .557; 

5% r (13) = -.05, p = .830; 15% r (13) = -.05, p = .867; 30% r (13) = .40, p = .138, 45% r 

(13) = .27, p = .338 and MS: 2.5% r (13) = -.25, p = .363; 5% r (13) = -.25, p = .375; 15% 

r (13) = -.35, p = .202; 30% r (13) = -.57, p = .026, 45% r (13) = -.44, p = .098]. 

 

DISCUSSION 

 This study is the first to explore non-fatiguing submaximal isometric force 

steadiness across a range of forces in joints of the upper and lower extremities in people 

with MS. A novel finding is that the observed pattern of force fluctuation is consistent 

with the literature examining steadiness of the same muscle groups in healthy populations 

of young and old adults (Jesunathadas et al., 2012; Taylor, Christou, & Enoka, 2003; 

Tracy et al., 2005; Yoon et al., 2014). In both controls and those with MS, absolute 
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fluctuation (SD) was lowest at the lowest target force and highest at the highest target 

force. Relative fluctuation (CV) was highest at very low forces (2.5 and 5% MVIC) and 

lowest at low-effort contractions (15% MVIC).  

The first purpose of this study was to compare force steadiness during low-force, 

non-fatiguing isometric contractions between people with MS and healthy controls. It 

was hypothesized that those with MS would be less steady than controls in both joints at 

all force levels. This hypothesis was influenced by findings of Arpin (2016) and Davies 

(2015) who observed that people with MS were less steady than healthy controls for 

isometric steadiness tasks of the ankle plantar flexors at 20% MVIC. Our findings were 

consistent with these reports in that controls were steadier at all ankle forces except 15% 

MVIC. These differences in relative ankle force fluctuation were associated with large 

effect sizes. 

Comparisons of elbow fluctuation between groups were not identical to our 

findings in the ankle. Unlike the ankle in which differences in CV were observed at 

higher and very low force targets, elbow CV only differed in people with MS at very low 

forces (2.5 and 5% MVIC).  We did not observe the same phenomenon in the elbow 

flexors. In the elbow, those with MS were less steady than controls only at very low force 

targets of 2.5% and 5%. Even though the groups did not differ in strength and steadiness 

at and above 15% MBIC, the MS sample greater variability in the CV than controls at all 

force levels.  

Interestingly, people with MS are less steady than controls at very low forces 

(2.5% MVIC) in both the upper and lower extremities and the effect is moderately large 

to large. It is known that the dendrites of alpha motor neurons receive multiple inputs 
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from cortical neurons and interneurons and that these inputs can further be distributed 

across individual motor units in the same pool.  The net effect is a shared synaptic input 

results in low-frequency oscillations in central drive that influences motor unit discharge 

rates and can contribute to force fluctuation (Negro et al., 2009; Negro et al., 2016; 

Pereira et al., 2019). Thus, it is reasonable to speculate that neural degeneration 

associated with MS could potentially influence the frequency of this underlying drive, 

amplifying fluctuations at the lowest forces in which steadiness is particularly sensitive to 

changes in common synaptic input. This could explain the group differences and large 

effect sizes observed only at low forces. This could be explored by repeating our 

experimental tasks while recording discharge rates of single motor units using 

intramuscular EMG. 

 The second purpose of this study was to determine if people with MS used a 

different motor control strategy than healthy controls. It was hypothesized that people 

with MS may use a co-contraction strategy to improve steadiness. In both upper and 

lower limbs of controls and those with MS, antagonist muscle EMG did not exceed the 

threshold for noise in any trial. Our 2-channel surface EMG measurement was lacked 

sensitivity to adequately measure motor unit discharge rates and provide insight into the 

mechanisms underlying motor control. However, it does show that, contrary to our 

hypothesis, people with MS did not use a different pattern of activation to complete the 

experimental tasks as both groups had antagonist EMG values near the threshold for 

noise.  

 The third purpose was to compare force steadiness between upper and lower 

extremity muscles in the same group of individuals. It was hypothesized that the CV of 
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force would positively correlate between the elbow and ankle at all force targets within 

groups. However, no significant correlations were observed. This could be due to 

differences in corticospinal projections between upper and lower extremity neurons. In 

our experiment the elbow force was produced primarily by the biceps brachii. However, 

the effects of the agonist brachioradialis could not be controlled. Similarly, it is likely that 

the tibialis anterior, extensor digitorum, and extensor hallucis all contributed to 

dorsiflexion. The cortical representation of the upper limb muscles we examined is larger 

than the lower limb muscles used. Thus, one could speculate that control of additional 

pyramidal neurons could pose a greater demand on executing motor commands. 

Examination of the cortical map for each of these regions using fMRI could provide 

further insight.  

 Experience is another possible explanation for the finding that people with MS 

were less steady than controls for ankle forces at or above 15% MVIC, but just as steady 

in the elbow forces at these same force targets. For example, the upper extremity is 

involved in reaching and grasping tasks in which visual location of a target is the first 

step in the process. While the hand is being transported to the target, both somatosensory 

and visual feedback are used to refine the movement. Because visual feedback was the 

mode by which our participants made determinations about force adjustments, it is 

possible that experience allowed them to more easily use our visual feedback when 

controlling the arm. Our participants with MS had the disease for an average of 159 

months, providing many opportunities to gradually accommodate for losses in motor 

control through normal daily activities involving reaching and grasping. It is reasonable 

to speculate that any positive practice effects may have been adequate to manage 
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impairments at higher force targets, but not at lower targets at which the effects of 

synaptic noise and common inputs to the motor unit pools are more robust. 

 It is also possible the structure of the muscle itself could be responsible for the 

differences in association of CV between muscle groups.  A definitive reference 

indicating a precise range of the number in whole muscles are lacking. However, studies 

that have explored this concept report a greater number of motor units in the biceps 

brachii than in the tibialis anterior (A. Hamilton et al., 2004; McComas, 1998). If each 

motor unit is considered a degree of freedom that can be controlled, it suggests that 

demands on cortical resources may be different and could account for our observation.  

An association between ankle CV and the 25FWT was observed in controls, but 

not in those with MS. Moderate, positive correlations were discovered at all but the 30% 

force target. There was a moderate relation at this target force that approached 

significance suggesting that our design had inadequate power to reveal this secondary 

finding. This contrasts with the MS group that did not approach significant associations 

between the 25FWT time and CV at any force level. This further suggests that the 

mechanisms underlying force isometric force steadiness may also contribute to the 

dynamic activity of gait. This observation is consistent with Davies and colleagues 

(2015) who found that a neurorehabilitation program not only improved submaximal 

isometric force steadiness of the ankle plantar flexors, but that these improvements 

occurred in conjunction with functional improvements in postural control and 

ambulation.  
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Collectively, these findings suggest that people with multiple sclerosis have 

impairments of force steadiness at lower forces and that there may a functional 

significance for gait when ankle steadiness is compromised. 
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CHAPTER 3: DUAL COGNITIVE-MOTOR TASK PERFORMANCES IN 
PEOPLE WITH MULTIPLE SCLEROSIS 

 

INTRODUCTION 

 Typical activities rarely require that people sequentially perform tasks one at a 

time. Instead, activities of daily living often require simultaneous performance of two or 

more tasks such as maintaining stable standing while completing a retail transaction or 

carrying on a conversation while walking. Because attention is a limited resource 

(Baddeley, 1983; Kahneman, 1973) and is required to complete each task, it is logical to 

surmise that simultaneous performance of two tasks results in decreased performance in 

both tasks. This DTE can be quantified for both the motor and cognitive performances by 

comparing the same outcome under single and dual task conditions (Plummer & Eskes, 

2015; Plummer et al., 2014).  

People with MS are known to experience both motor and cognitive impairments 

(Amato et al., 2006; Cameron & Nilsagard, 2018; Chiaravalloti & DeLuca, 2008; 

Compston & Coles, 2008; Filippi et al., 2018; Noseworthy et al., 2000; Olek, 2005; Rao 

et al., 1991; Thompson, Baranzini, et al., 2018; Widener, 2007). As such, it is important 

to understand dual task performance in this population to assist in developing effective 

rehabilitation interventions. Dual task studies of people with MS have frequently 

involved ambulation tasks (Hamilton et al., 2009; Kalron et al., 2010; Learmonth et al., 

2015; Mofateh et al., 2017; Nogueira et al., 2013; Pau et al., 2018; Saleh et al., 2018; 

Sandroff, Benedict, et al., 2015), leaving static, submaximal postural control tasks 

unexplored. The purpose of this experiment was to examine dual task effects of a 

cognitive motor task in people with MS. The motor task was maintaining force steadiness 
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during a non-fatiguing, submaximal isometric contraction. The cognitive task was 

performing two variations of the Paced Auditory Serial Addition Test (PASAT) 

(Gronwall, 1977) in which participants provided the sum of single digit number presented 

at a specific rate. In one variation, digits were presented at 3-second intervals (PASAT-3) 

and in the other, digits were presented at 4-second intervals (PASAT-4). 

Because PASAT performance is influenced by processing speed (Chiaravalloti et 

al., 2013; Fisk & Archibald, 2001), we hypothesized that all participants would 

experience a negative DTE on cognition with the addition of a motor task consisting of a 

steady, isometric contraction and that this effect would be greater in the PASAT-3 

condition than in the PASAT-4. We hypothesized that cognitive dual task effects would 

be greater in those with MS. We also hypothesized similar negative dual task effects on 

motor performance using coefficient of variation (CV) of force fluctuation as the motor 

outcome of interest. It was hypothesized that all participants would experience a negative 

motor DTE with addition of a cognitive task, the effect would be greater when 

performing the PASAT-3 task than the PASAT-4 task, and the effect would be greater in 

those with MS. 

 

METHODS 

Thirteen people with MS (2 males and 11 females; mean (SD): 48.2 (10.2) years; 

166.0 (7.6) cm height, 77.0 (12.8) kg body mass) and thirteen healthy controls (1 male 

and 12 females; mean (SD): 46.5 (5.5) years; 168.0 (84.1) cm in height, 84.1(16.6) kg in 

body mass) volunteered to participate in the study. Volunteers were eligible to participate 
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if they were between the ages of 18 and 60 and could actively dorsiflex the left ankle 

through a full range of motion against gravity. Volunteers with MS were eligible if 

disease progression was stable for at least six months. Participants were excluded if they 

lacked sufficient visual acuity to see a computer monitor at a distance of 1.0 meter or 

experienced any condition other than MS that impaired normal function of the left ankle. 

The experiment was conducted in a single session at Marquette University. In 

addition to completing experimental procedures, volunteers were oriented to the protocol 

and provided informed consent as approved by the university’s Institutional Review 

Board (Protocol HR-1803022784).  

 

Participants 

Recruitment and Enrollment. Participants were recruited and consecutively 

enrolled in the study as described in Chapter 2. 

Participant Characteristics. All participants completed surveys of depression, 

primary fatigue, and general health using the Centers for Epidemiologic Studies 

Depression Scale (CES-D) (Radloff, 1977), Modified Fatigue Impact Scale (MFIS) 

(Rivito et al., 1997), and Patient-Reported Outcomes Measurement Information System 

(PROMIS) Global Well Being instrument (Hays, Bjorner, Revicki, Spritzer, & Cella, 

2009), respectively. Participants with MS also completed measures of disability and 

quality of life using the Patient Determined Disease Steps Scale (PDDS) (Learmonth, 

Motl, et al., 2013; Rizzo et al., 2004) and the Functional Assessment of Multiple 

Sclerosis (FAMS) (Cella et al., 1996), respectively. 
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Each participant provided his or her age, birth month, birth year, biologic sex, and 

number of years of secondary and postsecondary education completed. Participants with 

multiple sclerosis also provided the month and year of diagnosis, disease subtype, and the 

names of disease modifying medications used at the time the experiment took place. 

Height was measured with a stadiometer and weight measured with a digital scale. 

Multiple Sclerosis Functional Composite (MSFC). All participants completed 

tasks of the MSFC as described in Chapter 2. These tasks included a 9-hole peg test 

(9HPT), 25-foot walk test (25FWT), and Paced Auditory Serial Addition Test with a total 

of 60 stimuli presented every three seconds (PASAT-3). MSFC composite scores were 

calculated for participants with MS by converting individual measures to z-scores and 

comparing to population estimates of those with MS published in the MSFC guidebook.  

 

Cognitive Tasks 

 Symbol Digit Modalities Test. All participants completed the Symbol Digit 

Modalities Test (SDMT) (Western Psychological Services, Torrance, CA). The SDMT is 

considered to be a measure of cognitive processing speed and is a reliable, valid measure 

of cognition in people with MS (Benedict et al., 2017; Strober et al., 2018; Van 

Schependom et al., 2014).  

The SDMT was administered by presenting participants with a worksheet with a 

header consisting of a key for matching nine single digit numbers (1-9) to nine distinct 

symbols. The body of the worksheet contained rows of symbols. Participants were asked 

to identify the digit that corresponded to each symbol. The first ten symbols were practice 
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items and completed with guidance from the investigator. Upon completion of the 

practice items, participants vebalized as many responses as possible in 90 seconds.   

Standard administration of the SDMT includes two presentations of the task. In 

the first, participants write responses on the worksheet. In the second, participants 

verbalize responses. To minimize a learning effect and diminish potential effects of 

sensory or motor impairments in participants with MS, only the second condition (spoken 

responses) was performed in this study. 

 Serial 3 and Serial 7 Participants were instructed to count backward for 30 

seconds starting with a three-digit inter. The starting integer was obtained from a random 

number generator (M. Haahr, 2019). An attentional control task, counting backward by 

one, was performed first. The subsequent 3s and 7s tasks were presented in random order. 

One practice trial up to 10-seconds in length was administered prior to each scored task 

to ensure that participants were aware of the number to be subtracted. One one 30-second 

trial for each level of difficulty (1, 3, or 7) was administered. Responses were 

documented by the investigator and later checked for accuracy. The accuracy rate 

(number of correct responses / 30 s) was calculated to allow comparison the cognitive 

Timed Up and Go (TUGc), a clinical dual-task measure in which counting backward by 3 

is done during a motor task that varies in duration. 

Participants were permitted to respond by stating either the name of the integer or 

sequence of digits. For example, the responses one-hundred nineteen, one-nineteen, and 

one-one-nine, were considered equivalent. Participants were told to “state as many 

correct answers as possible in 30 seconds.” Here is an example of standard instructions 

using the serial 7 task and the starting number 219, “When I say go, count backward by 7 
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starting at two-hundred nineteen. Two – one – nine. Go.” In addition to verbal 

instructions, the examiner held up one, three, or seven fingers to emphasize the task 

during delivery of instructions.  

 

Clinical Measures  

 All participants completed clinical measures of balance and mobility. A clinical 

measure of dual task effect, the cognitive Timed Up and Go (TUGc) was also performed. 

  Timed Up and Go (TUG). Participants completed two trials of the Timed-Up-and-

Go (TUG) test (Podsiadlo & Richardson, 1991), a measure with good reliability in 

populations with MS (Learmonth, Paul, McFadyen, Mattison, & Miller, 2012; Nilsagard, 

Lundholm, Gunnarsson, & Denison, 2007). This measure of general mobility (Sebastião, 

Sandroff, Learmonth, & Motl, 2016) requires participants to complete a series of 

functional movements as rapidly as safely possible. Participants were seated in a standard 

chair with armrests. When the investigator gave the command, “Go,” participants rose 

from the chair, walked three meters to a marker taped on the floor, turned, walked back to 

the chair, and resumed a seated position. The time (s) to complete the task was recorded. 

The stopwatch was started when the investigator gave the “go” command and was 

stopped when the participant’s buttocks touched the chair. One practice trial and two 

recorded trials were completed. The average of the two recorded trials was used in 

analyses. 

 Cognitive Timed Up and Go (TUGc). Participants repeated the TUG while 

simultaneously performing a cognitive secondary task of counting backward by three. 
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Participants were given a randomly generated number (random.org) between 20 and 100 

from which the subtraction task began. Instructions were provided as follows using the 

number 28 as the starting point. “When I say go I want you to repeat the task while 

counting backward by 3’s starting at twenty-eight. Two – eight. Go.” As with the other 

serial subtraction tasks, the responses were recorded and later checked for accuracy and 

number of responses. One practice trial and two scored trials were completed and the 

average of these trials reported. 

 Berg Balance Scale (BBS). The Berg Balance Scale, an ordinal measure of 

balance (Berg, Wood-Dauphinee, Williams, & Maki, 1992), was administered to all 

participants by an experienced physical therapist. Each participants total score was 

recorded and included in data analysis. 

The BBS has good interrater and intrarater reliability when used in a population 

with MS (Cattaneo, Regola, & Meotti, 2006; Learmonth et al., 2012).  Each of the 14 

items on the BBS is rated using a 5-point scale with 0 being the lowest possible 

performance and 4 being the highest. BBS scores range between 0 and 56 points with 

higher scores indicating better performances. Tasks primarily address postural control, 

the ability to maintain the center of mass within the base of support.  Most tasks involve 

standing while keeping the feet in a stationary position. The BBS does not assess balance 

while walking. 

 Functional Gait Assessment (FGA). The Functional Gait Assessment, a measure 

of balance during walking (Wrisley, Marchetti, Kuharsky, & Whitney, 2004) was 

administered by an experienced physical therapist.  The FGA is a reliable assessment for 

a population with MS (Cattaneo et al., 2006; Forsberg, Andreasson, & Nilsagård, 2016). 
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 The FGA is an ordinal-scale, activity measure of balance that requires participants 

to complete 10 ambulation tasks over a 6-meter walkway. Tasks include changing gait 

speed, turning the head, closing the eyes, walking backward, navigating obstacles, 

negotiating stairs, and walking with a narrow base of support. Each item is scored on a 4-

point scale with a score of 0 assigned to the lowest possible performance and 3 for the 

highest. Total scores range from 0-30 with higher scores indicating better performances. 

 

Experimental Setup and Measures 

Measures of Force. Experimental tasks were performed using the left ankle 

dorsiflexors. The left ankle was secured to a footplate attached to a force transducer as 

described in Chapter 2. Participants wore flat-soled athletic shoes during testing. Force 

output was measured using a custom strain gauge transducer (Transducer Techniques, 

Temecula, CA), amplified X100 (Grass Telefactor, Model P122, Warwick, RI) and 

digitized with a Power 1401 analog to digital convertor (Cambridge Electronic Designs, 

Cambridge, UK) and sampled at 500 Hz with Spike 2.7 software (Cambridge Electronic 

Designs, Cambridge, UK) at 500 Hz as described in Chapter 2. The experimental setup 

for the ankle is depicted in Figure 2.2. 

Real-time, continuous visual force feedback was displayed over a 15-second 

window on a 27” monitor placed 1-meter in front of the participant. The y-axis display 

remained constant across all targets as increased visual gain has been shown to positively 

affect force steadiness in muscles of the ankle (Prodoehl & Vaillancourt, 2010). 
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Measures of Cognition. The PASAT, a paced addition test of working memory 

and processing speed, was selected as the cognitive task. Two variants of the PASAT 

were administered under single and dual task conditions. In one variant, the PASAT-3, 

digits were presented every three seconds. In the other, digits were presented every four 

seconds (PASAT-4).   

The administration and scoring manual for the MSFC recommends the PASAT-3 

be used to calculate the composite score. It further recommends administrating the 

PASAT with digits presented every two seconds if a greater cognitive challenge is 

desired. The MSFC guidebook provides scoresheets with predetermined digits, two for 

the 3-second PASAT and two for the 2-second PASAT. Thus, commercially available 

recordings for these presentations are available. These recordings include a 10-digit 

practice trial at each speed and two and 60-digit trials at each rate. 

Because we used the PASAT as one component of a dual task experimental in 

which attention was required to complete both the PASAT and motor task, the 2-second 

PASAT was deemed too challenging. Furthermore, we sought to prevent muscular 

fatigue from confounding measures of force fluctuation and desired to shorten the 

duration of the PASAT task used in the dual task conditions. Because commercially 

available recordings for our PASAT variants were not available, we created our own 

recordings Digits were recorded and presented by the same female, human voice for all 

tasks. The digits presented in our tasks were obtained from the MSFC scoresheets. Table 

3.1 summarizes the variants of the PASAT task created for this experiment.          
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Table 3.1. PASAT Variants. 

Condition Items 
Interval 

(s) 

Task 
Length 

(s) 

MSFC Scoresheet Digit 
Presentation 

Experimental  
Task(s) 

PASAT-3 Practice 10 3 30 Form A - Practice Items Single and dual 

PASAT-3 Full 60 3 180 Form A Single 

PASAT-3 Shortened 30 3 90 Form B Dual 

PASAT-4 Practice 10 4 40 Form B – Practice Items Single and dual 

PASAT-4 Full 60 4 240 Form A Single 

PASAT-4 Shortened 30 4 120 Form B Dual 

Note: PASAT-3 = Paced Auditory Serial Addition Test, 3 second interval; PASAT-4 = Paced 
Auditory Serial Addition Test, 4 second interval. Form A and B obtained from Multiple Sclerosis 
Functional Composite guidebook. 

 

 

Electromyography. Whole muscle surface electromyographic (EMG) activity of 

the tibialis anterior and medial gastrocnemius was obtained using a two-channel Delsys 

Bagnoli handheld EMG unit (Delsys, Natik,MA) as described in Chapter 2. Signals were 

amplified X1000, recorded through the Power 1404 (Cambridge Electronic Designs, 

Cambridge, UK) and sampled a 1 kHz using Spike 2.7 (Cambridge Electronic Designs, 

Cambridge, UK). Threshold for noise was set at 0.005 volts (V).   

 

Experimental Protocol 

The primary aim of this experiment was to determine if the dual task effects of 

cognitive-motor tasks differ between people with MS and healthy controls. Thus, 

experimental tasks included single task measures of cognition, a single task measure of 

motor function, and simultaneous performance of the tasks.  
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Experimental sessions began by obtaining anthropometric data, administering 

questionnaires, and carrying out clinical measures of function, balance, and mobility. The 

three single-task cognitive trials, PASAT-3, PASAT-4, and SDMT, were then presented 

followed by motor steadiness tasks under single and dual task conditions. The order of 

single-task cognitive activities was presented in a randomized, counterbalanced manner 

within each sample as was the presentation order of the motor tasks. For dual-task trials, 

the primary cognitive tasks were variants of the PASAT and the primary motor task was 

maintaining a steady, non-fatiguing, submaximal isometric contraction at 15% MVIC. 

Primary Cognitive Task. In the single task cognitive condition, participants 

completed both the full (60 item) PASAT-3 and full PASAT-4.  An unscored PASAT-3 

or PASAT-4 practice run was performed immediately before each scored trial. 

Participants completed at least one, but not more than three, practice trials. The order in 

which single-task measures of cognition were presented was counterbalanced within each 

sample. These cognitive measures included the full PASAT-3, full PASAT-4, and 

SDMT. PASAT responses were scored by counting the total number of correct responses 

and the number of correct dyads (two consecutive correct responses).  

In the dual task condition, participants completed the 30-item (shortened) versions 

of the PASAT-3 and PASAT-4 while maintaining steady isometric contractions using 

visual feedback. Procedures for the force steadiness task are described in the successive 

section. Participants were provided at least one, but no more than three, practice runs 

using the same 10-item PASAT practice recordings used in the single task condition. 

Each PASAT recording began by identifying the task variant and a 5-second warning 

prior to delivery of the first digit. Participants were instructed to obtain the force target 



97 

 

when the PASAT recording began to play, being as accurate and steady as possible. 

Participants were told that the goal of the task was to “be as accurate and steady as 

possible and provide as many correct answers as possible.” Participants were told to 

focus equal attention on both tasks. Each dual task PASAT run was followed by an 

MVIC to monitor for muscular fatigue. 

Primary Motor Task. The primary motor task was submaximal force steadiness at 

15% MVIC of the ankle dorsiflexors. This force was selected because the first 

experiment revealed 15% MVIC to be the steadiest submaximal isometric force in those 

with MS. During the first experiment, three participants not only completed the 

experimental tasks described in that study, but also performed a 4 minute (240 second) 

hold. Following this hold, MVIC was obtained and compared to the pre-hold measure. 

None of these participants experienced an MVIC decrease of more than 5%. Therefore, it 

was concluded that 15% MVIC was the optimal target for this experiment because it was 

a steady, non-fatiguing force that could be successfully maintained for the duration of this 

dual-task experiment. 

 Participants were positioned in an adjustable chair and prepped for EMG 

recordings of the tibialis anterior and medial gastrocnemius. A 27” monitor displaying a 

15-second interval of real time force feedback was placed 1.0 meter in front of 

participants. MVIC magnitude and associated EMG activity were obtained for the 

purposes of setting target forces and normalizing EMG signal, respectively. Detailed 

experimental setup and procedures for obtaining MVIC are described in Chapter 2. 

 Participants completed a series of steady contractions at 15% MVIC under single 

and dual task conditions. First, each performed two 15-second single task trials preceded 
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by at least one practice trial. Participants were instructed to be as accurate and steady as 

possible during these contractions. Feedback and encouragement were not provided by 

the investigator during the task because it could not also be provided during the dual-task 

condition when the participant was required to attend to auditory stimuli from the 

PASAT and visual force feedback.  

 After determining MIVC and performing two steady 15-second contractions, 

participants completed three additional tasks, a 120 second single-task hold, a 90-second 

dual task hold with 30-item PASAT-3, and a 120-second dual task hold with a 30-item 

PASAT-4. Tasks were presented in a randomized counterbalanced order within groups. 

An MVIC was performed after each task to monitor for fatigue. The protocol for motor 

tasks is shown in Figure 3.1. 

 

Figure 3.1 Experimental Protocol for Motor Tasks. At least three maximum voluntary 
isometric contractions were performed to calculate target force of 15% MVIC and normalize 
EMG. Participants performed one practice trial (not shown) prior to each measured trial. 
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Data Analysis  

Measures of Force. Voltage output from the force transducer was converted to 

torque (Nm) as described in Chapter 2. Absolute (SD) and relative (CV) measures of 

force fluctuation were calculated for all submaximal holds. The 90 and 120-second tasks 

were analyzed in intervals and as a whole. For intervals, each hold was divided into 15-

second intervals and the middle 5-second intervals analyzed for steadiness. This resulted 

in six segments for the PASAT-3 dual task condition and eight segments for the PASAT-

4 and single-task hold. Whole task analysis included all data for the middle 85 seconds of 

the PASAT-3 dual task condition and the middle 115 seconds of both the PASAT-4 and 

single-task isometric hold. For all segments, steadiness was quantified as both the 

standard deviation (SD) of torque and the coefficient of variation (CV). SD was measured 

directly and CV was calculated by dividing the SD by the mean force (CV% = SD/mean 

force x 100%). 

Electromyography. As described in Chapter 2, EMG was ascertained using RMS 

values during the same time periods used to analyze force. An attempt was made to 

calculate coactivation by dividing the agonist RMS value by that of the agonist and 

multiplying by 100%. This was not possible due to inadequate signal to noise ratio in the 

medial gastrocnemius. 

Dual Task Effect. Dual task effects for both motor and cognitive performances 

were calculated for the isometric force steadiness tasks and the TUG. DTE was calculated 

by dividing the difference between dual and single task performance scores by the single 

task score. Negative scores indicate a negative dual task effect, or a dual task cost. 

Positive scores indicate a positive dual task effect, or dual task benefit. 
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 For cognitive tasks, the number of correct responses was the outcome of interest. 

Because higher scores indicated better performance, the following equation was used to 

calculate DTE on cognition using the number of correct PASAT responses, number of 

PASAT dyads, and accuracy rate (accurate responses/s) for the TUGc. 

𝐷𝑇𝐸 % =  
(𝑑𝑢𝑎𝑙 𝑡𝑎𝑠𝑘 − 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑎𝑠𝑘)

𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑎𝑠𝑘
 × 100% 

Conversely, lower scores on motor variables indicated better performances. Thus, the 

following equation was used to calculate DTE on motor performance using the time 

required to complete the TUG (s) and CV (%) of torque of a steady, submaximal 

contraction. 

𝐷𝑇𝐸 % =  
− (𝑑𝑢𝑎𝑙 𝑡𝑎𝑠𝑘 − 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑎𝑠𝑘)

𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑎𝑠𝑘
 × 100 

 

Statistical Analysis 

Data were analyzed using IBM Statistical Package for Social Sciences, Version 

26, an online calculator for effect size (Ellis, 2009), and an online calculator for Fisher’s r 

to z transformation to determine significance of group differences in correlation 

coefficients (Lowry, 2019). Alpha was set to .05. Data are expressed as mean and 

standard deviation, 𝑋 ഥ (SD), in the text and mean and standard error of the mean, 𝑋 ഥ (SE), 

in figures. Variability of distributions was checked with Levene’s Test for Equality of 

Variance for comparison of two samples and Mauchly’s Test of Sphericity with three or 

more samples. When sphericity was violated with an epsilon value of .75 or greater, the 
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Huynh-Feldt correction was applied. When sphericity was violated with an epsilon value 

below .75, the Greenhouse-Geiser correction was applied.   

Effect sizes were calculated for pairwise comparisons using calculated using 

Hedges’ g when standard deviations were similar between groups and Glass’ Δ when 

Levene’s test revealed differences in variance between groups (Lakens, 2013). Effect 

sizes for pairwise comparisons made with the Mann Whitney U test are reported as r2. 

These nonparametric effect sizes were calculated in Excel, first by determining the value 

of r (𝑟 =  


√
), then squaring the value (r2). Partial eta squared (ηp2) was used to report 

significance for ANOVA. 

Participant characteristics were compared between groups using independent t-

tests and Mann-Whitney U for ordinal data.  Analyses of variance (ANOVA) with 

repeated measures on within subjects factors were used to analyze force fluctuation (CV), 

cognitive performance (correct PASAT responses and dyads), and dual task effects for 

motor and cognition. The between-group factor in all analyses was disease status (MS, 

control). When the F-statistics attained significance, post hoc comparisons were made 

using independent and dependent t-tests to examine differences in DTE. 

Associations between DTE and other variables were explored using Pearson’s 

product moment correlation coefficients (r) for normally distributed ratio and interval 

level data and Spearman’s rank correlation coefficient when an ordinal measure was 

explored. 
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RESULTS 

 Participant Characteristics. MS and controls were similar in age, BMI, wellbeing 

(PROMIS), and maximal ankle dorsiflexion torque. All participants completed high 

school and at least one year of college. The MS group had higher mean scores of 

depression and fatigue and performed poorer on physical activity and cognitive measures. 

See Table 3.2. 

MS-specific characteristics are reported in Table 3.3. Our sample had a mean 

MSFC score of 0.31, indicating that they functioned slightly better than the population of 

people with MS. The PDDS mean of 1.92 indicates that those in our sample perceived 

that they had mild to moderate MS-related disability that did not limit walking ability. 

Clinical Measure of Dual Task Effect. Motor and cognitive DTEs were calculated 

using two common clinical measures, the TUG motor task and Serial 3 backward 

counting task. The DTE of cognition on motor performance was calculated using the 

amount of time (s) required to complete the TUG under single and dual task conditions. 

Because the lengths of time for each TUG trial differed, it was not possible to provide a 

single task cognitive trial of an identical duration.  Therefore, DTE on cognitive 

performance was reported as the rate of accurate responses per second, allowing a 

relative comparison between the single and dual task conditions.  

Both the control and MS groups provided a similar number of responses during 

the TUGc task (Serial 3) [t(24) = .77, p = .448]. People with MS were slower in 

performing the TUG and TUGc and also experienced a greater negative motor dual task 
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effect. Controls performed better for the single task condition of counting backward by 1, 

3, and 7 and also had a greater accuracy rate during the dual task TUGc. See Table 3.4. 

 

Table 3.2. Participant Characteristics 

Variable 
MS 

(n=13; 2 males) 
Control 

(n=13; 1 male) 
p  Effect size 

Age, yr 48.23 (10.19) 46.46 (5.53) .587  

Height, cm 165.98 (7.55) 169.49 (8.81) .286  

Mass, kg 76.96 (12.75) 84.07 (16.557) .232  

BMI, kg/m2 28.11 (5.50) 29.11 (4.19) .608  

College completed, yr 6.08 (3.35) 9.27 (3.21) .020* 0.94 

PROMIS 37.46 (6.63) 42.08 (5.95) .064  

CESD 8.92 (5.35) 4.23 (4.30)  .018* 0.22† 

MFIS Total 35.54 (12.55) 9.92 (11.35)  <.001* 0.56† 

   MFIS Physical 16.38 (7.70) 3.38 (5.50)  <.001* 0.52† 

   MFIS Cognitive 16.69 (7.63) 6.08 (5.68) .002* 0.38† 

   MFIS Psychosocial 2.46 (1.90) 0.46 (0.78) .003* 0.33† 

25FWT, s 5.54 (1.69) 3.75 (0.39) .003* 1.41 

9HPT, s 21.71 (4.20) 17.56 (1.32) .002* 1.29 

PASAT-3, n 48.08 (8.91) 56.08 (2.90) .008* 1.17 

PASAT-3, dyad 39.00 (12.67) 51.23 (5.85) .006* 1.31 

SDMT 48.77 (8.40) 64.15 (10.57) <.001* 1.56 

BBS 52.23 (5.64) 56.00 (0.00) <.001* 0.73† 

FGA 21.08 (5.204) 29.46 (0.66) <.001* 0.72† 

Ankle dorsiflexion MVIC, Nm 13.54 (6.07) 15.08 (5.45) .503  

Note: Values expressed as mean (SD); * p < .05; Effect size reported in Hedges’ g or r2(†).BMI = Body 
mass index, PROMIS = Patient Reported Outcomes Measurement Information System Global Items, 
CESD = Center for Epidemiologic Studies Depression Scale, MFIS = Modified Fatigue Impact Scale, 
25FWT = 25-foot Walk Test, 9HPT = 9-hole Peg Test, PASAT-3 = Paced Auditory Serial Addition Test, 3 
second interval, SDMT = Symbol Digit Modalities Test, BBS = Berg Balance Scale, FGA = Functional 
Gait Index, MVIC = Maximum voluntary isometric contraction 
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Table 3.3: MS-Specific Participant Characteristics.  

Variable 
MS 

(n=15; 5 male) 
MS Duration, months 161.22 (106.28) 

MSFC 0.31 (0.35) 

PDDS 1.92 (1.66) 

FAMS Total 172.15 (28.17) 

   FAMS Mobility 19.38 (4.70) 

   FAMS Symptoms 23.62 (4.81) 

   FAMS Emotional Well-Being 25.38 (3.80) 

   FAMS General Contentment 22.00 (5.07) 

   FAMS Thinking and Fatigue 19.54 (6.53) 

   FAMS Family/Social Well-Being 23.46 (5.13) 

   FAMS Additional Concerns 38.77 (7.36) 

MSFC = Multiple Sclerosis Functional Composite, PDDS = Patient Determined Disease Steps, 
FAMS = Functional Assessment of Multiple Sclerosis 

 

Motor Dual Task Effect. Force fluctuation, expressed as CV (%), was examined 

using repeated measures ANOVA with MS as a between subjects factor and a within 

subjects factor of task (85 second single task contraction, 115 second single task 

contraction, PASAT-3 dual task contraction, and PASAT-4 dual task contraction). 

Significance with associated large effects was observed for the within subject factor of 

task [F(3,72) = 5.43, p = .002, ηp2 = .18] and between subjects effect of MS status 

[F(1,24) = 11.37, p = .003, ηp2 = .32]. There was no interaction of MS and task (p = .998). 
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Table 3.4: Clinical Measure of Dual Task Effect. Comparisons of single and dual task 
performance between MS and control for TUG and TUGc. 

Variable Task MS Control p Effect size 

TUG, s Single 8.02 (2.65) 5.42 (0.59) .004* 1.31 

TUGc, s Dual 9.69 (3.03) 6.09 (0.84) .001* 1.57 

DTE motor, %  -21.79 (13.84) -12.31 (8.02) .043* 0.81 

      

Serial 3, n/s Single 0.29 (0.16) 0.51 (0.15) .001* 1.37 

TUGc, n/s Dual 0.37 (0.11) 0.64 (0.13) <.001* 2.17 

DTE cognitive, % Dual 0.73 (1.14) 0.30 (0.27) .212  

      

Backward 
Counting by 1, n/s 

Single 0.76 (0.19) 0.91 (0.15) .037* 0.88 

Serial 7, n/s Single 0.16 (0.10) 0.26 (0.13) .027* 0.84 

Note: Values expressed as mean (SD). Effect size reported as Hedge’s g.  
TUG = Timed Up and Go; TUGc = Timed Up and Go Cognitive; DTE = Dual Task Effect; n/s = 
number of correct responses per second 
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Figure 3.2 Coefficient of Variation in Single and Dual Task Conditions. CV for submaximal 
isometric steadiness task shown in the single task condition and two dual task conditions. In all 
conditions, those with MS were less steady than controls. 

 

 For controls, there was a difference in CV between the single task and PASAT-3 

dual task [t(12) = -4.66, p = .001, g = 1.70], but not the single task and PASAT-4 dual 

task [t(12) = -1.42, p = .182]. For those with MS, there was no difference in CV between 

the single task condition and the PASAT-3 dual task condition [t(12) = -1.56, p = .145] or 

PASAT-4 dual task condition [ t(12) = -0.28, p = .786]. Thus, controls were steadier than 

those with MS for all tasks and experienced a significant increase in fluctuation for the 

more challenging cognitive task, but not for the less challenging task. Within the MS 

group, force fluctuation did not change in any condition. The magnitude of the force CV 

was the same for the single task, PASAT-3 dual task, and PASAT-4 dual task conditions. 

Force fluctuation values for both groups across the three conditions is shown in Figure 

3.2. Only the 120-second contraction, corresponding to the length of the PASAT-4, is 

illustrated as there were no within group differences for CV for the 90-second single task 
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contraction and 120-second single task contraction [Control t(12) = -.57, p = .580 and MS 

t(12) = .42, p = .679]. 

The DTE on motor performance was calculated using the CV of torque produced 

across the three tasks. DTE was calculated for the PASAT-3 using CV from the middle 

85-second interval of the task. DTE was calculated for the PASAT-4 using CV from the 

middle 115-second interval of the task. To determine if performance varied over the 

duration of the task, each trial was divided into 15-second segments and DTE calculated 

for the middle 5-second interval of each segment. There were no within subjects effects 

for interval on the six segments of the PASAT-3 for controls or those with MS [F(5,120) 

= 2.15, p = .064]. The same within subjects finding was observed for the eight segments 

of the PASAT-4 for both controls and those with MS [F(3.64, 87.18) = 0.70, p = .584]. 

Because there were no within group differences among these segments, the data were 

analyzed using the entire 85-second segment during which the PASAT-3 was performed 

and the 115-second segment during with the PASAT-4 was performed. For each 

condition, data were analyzed five seconds after the presentation of the first PASAT 

digit. 

 All participants experienced a motor task cost, or negative dual task effect on 

force fluctuation, with the addition of the cognitive task. However, the magnitude of this 

effect was not equivalent in all circumstances. Within group comparisons of DTE 

between the PASAT-3 and PASAT-4 dual task conditions revealed that the negative DTE 

was significantly greater for the PASAT-3 and PASAT-4 [t(12) = -4.61 , p = .001 , g = 

1.71 ]. In contrast, this within group difference for the MS group was not statistically 

significant [t(12) = -1.75 , p = .106]. Furthermore, between group differences of DTE for 
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the PASAT-3 and PASAT-4 dual tasks were not significantly different as reported in 

Table 3.5. 

 

Table 3.5. Dual Task Effect on Motor Performance 

Dual Task Condition 
DTE % 

p  
MS Control 

PASAT-3 -42.66 (43.85) -29.47 (20.42)  .340 

PASAT-4 -24.58 (39.17) -6.67 (20.37) .156 

Note: Values expressed as mean (SD) 
DTE= Dual task effect  

 

 

Cognitive Dual Task Effect. The effect of the force steadiness task on cognition 

was calculated for the PASAT-3 and PASAT-4 using both the number of accurate 

responses and the number of correct dyads. Each task involved presentation of 30 digits. 

The highest possible score when using the total number of correct responses was 30. The 

highest when using dyads was 29. Controls performed better than those with MS for all 

tasks and the effect sizes were large (Table 3.6). Moderately strong to strong correlations 

existed between the 30-item PASAT-3 used in the dual task condition and the 60-item 

PASAT-3, included in the MSFC composite score, but these correlations were different 

within each group [MS r (11) = .96, p = < .001; Control r (df) = .64, p = .019. The 

significance of the difference between the two correlations was high [Fisher’s r to z = 

2.40, p = .016].  

Post hoc testing revealed that the DTE on cognition was not different between 

groups for the PASAT-3 regardless of scoring method [number correct t (24) = 0.39, p = 



109 

 

.970; dyads correct t (24) = .467, p = .645]. However, the converse was observed for the 

PASAT-4 conditions. When using the number of correct PASAT-4 responses to calculate 

the effect on cognition, controls experienced a lower DTE [-4.39 (5.38)] than those with 

MS [-11.47 (7.75); t (24) = 2.71, p = .012, g = 1.18]. The same was observed when using 

dyads to determine the DTE on cognition during the PASAT-4 [Controls: -9.64 (12.11); 

MS: -25.21 (15.51); t (24) = 2.85, p = .009, g = 1.08]. Thus, those with MS did not 

perform as well as controls on PASAT tasks under dual task conditions, but the relative 

decrement in performance, determined by comparing the single and dual task PASAT 

scores, was not different between groups for the PASAT-3. The DTE on cognitive 

performance was lower for controls for the PASAT-4. The scoring method (number 

correct or number of dyads) did not affect the findings. 

Table 3.6. PASAT Scores for Single and Dual Task Conditions 

Task 
Accurate Responses (n)  Accurate Dyads (n) 

MS Control p 
Effect 
Size 

 MS Control p 
Effect 
Size 

Single 
PASAT-3 

24.92 
(4.63) 

29.0 
(1.35) 

.009* 3.02†  
20.62 
(7.33) 

27.23 
(2.59) 

.008* 2.55† 

Single 
PASAT-4 

26.69 
(3.55) 

29.38 
(0.77) 

.019* 3.49†  
23.15  
(6.19) 

27.77 
(1.59) 

.021* 2.91† 

Dual 
PASAT-3 

21.62 
(3.86) 

26.31 
(2.69) 

.001* 1.37  
14.85 
(6.45) 

22.31 
(5.28) 

.004* 1.44 

Dual 
PASAT-4 

23.69 
(4.09) 

28.08 
(1.38) 

.002* 3.18†  
17.54 
(6.32) 

25.00 
(2.92) 

.001* 1.47 

Note: Values expressed as mean (SD), * p < .05, Effect size in Hedges’ g or †Glass’s Δ  

 

 

The DTE of the motor task on cognition was determined in two ways. First, it was 

calculated using the number of correct PASAT responses. A second calculation was 
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made using the number of accurate dyads. These four dual task cognitive conditions 

(PASAT-3 number, PASAT-3 dyad, PASAT-4 number, PASAT-4 dyad) were examined 

using a repeated measures ANOVA.  A main effect of condition on dual task cognitive 

effect was observed [F (1.29, 30.91) = 4.67, p = .003]. 

Summary of Dual Task Effects. Figure 3.3 shows the dual task effects for both groups 

for all study measures. For force steadiness tasks, both groups experienced mutual 

inhibition, also called cognitive-motor interference. Both groups had impaired 

performances of both the motor (force steadiness) task and the cognitive (PASAT) task 

when performing two tasks simultaneously. However, both groups experienced a mild 

cognitive-priority tradeoff when performing the dual task version of the TUG. Whereas 

the motor performance was impaired and all participant walked slower, the cognitive 

performance improved slightly. 
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Figure 3.3 Summary of Dual Task Effects. For the TUG dual-task (circles), participants 
experienced a slight cognitive-priority tradeoff as cognition improved at the expense of walking 
speed. Dual tasks involving force steadiness and PASAT resulted in mutual inhibition as 
performances of both tasks declined.  Although controls performed better on all tasks, the only 
significant difference in dual task effects was the dual task effect on cognition for the PASAT-3. 
PASAT scoring method (dyad or n correct) did not alter the significance of the findings. 

 

 

Muscle Activation. As described in Chapter 2, an attempt was made to calculate 

muscle coactivation for the ankle by dividing the normalized magnitude of the tibialis 

anterior EMG by the normalize value of the medial gastrocnemius during the same 

periods analyzed for dual task effect. Coactivation could not be calculated because 

surface EMG measures for the medial gastrocnemius did not exceed the threshold for 

noise in both controls and those with MS.  
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Salient Associations. Associations between cognitive measures and years of 

college were explored because the number of years of college was different between the 

control and MS groups. In both groups, there were no significant associations between 

years of college and DTEs [Controls: PASAT-3 (r = .00PASAT-4; MS PASAT-3 

PASAT-4], backward counting accuracy rate (1, 3, and 7), or PASAT-3 (single responses 

or dyads). In the control group only, there were moderate relations between years of 

college and the PASAT-4 [number accurate, r = .56, p = .045 and dyads, r = .61, p = .027. 

There were no significant associations between PASAT-4 scores in any condition in 

those with MS.  

  

 

DISCUSSION  

 The design of this study is novel in MS research. It is the first to report reciprocal 

cognitive and motor dual task effects of for low-force isometric contractions necessary 

for performance of typical activities of daily living. It is also unique in that other 

published dual cognitive-motor task studies typically present a cognitive task at a single 

level of difficulty while we manipulated the interval at which stimuli were delivered in 

our task. Finally, we specifically instructed participants to devote equal attention to both 

tasks, whereas most dual task studies in MS have not reported specific prioritization 

instructions given to participants. 

 The purpose of the study was to examine dual task effects of cognitive-motor task 

performance in people with MS. We hypothesized that both controls and those with MS 

would experience motor and cognitive dual task costs and that these costs would be 
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greater in the MS group. We also hypothesized that additional time allotted for cognitive 

processing would lessen the negative effect exerted on cognition by addition of the motor 

task.  

 Consistent with our hypothesis, all participants experienced a dual task cost that 

negatively affected motor performance (Table 3.5). Contrary to our hypotheses, the 

magnitude of this dual task effect was not greater in people with MS and the negative 

effect of the more challenging cognitive task (PASAT-3) did not affect groups equally. 

Within the control group, there was a greater DTE on motor with the more challenging 

cognitive task. Within the MS group, the negative motor DTE was not different between 

the more and less challenging cognitive tasks. Between group comparisons of motor dual 

task effects revealed no significant differences between controls and people with MS at 

either level of cognitive challenge, possibly due to a ceiling effect. Although motor DTE, 

the relative change in performance between single and dual task conditions, was not 

different between groups, the MS cohort experienced greater force fluctuation in all three 

conditions (single task, PASAT-3, PASAT-4). This shows that people with MS 

experience a greater absolute decrement in motor performance when dual-tasking, but 

that the relative decline between single and dual task conditions is not different from 

what is experienced by controls regardless of the task difficulty selected in this 

experiment. Despite this, people with MS are still less steady than controls at all levels of 

force. 

 We observed a similar pattern of effects when examining the dual task impact of 

the motor task on cognitive performance. As with force fluctuation, those with MS did 

not perform as well as controls on PASAT tasks for both single and dual task conditions. 



114 

 

Additionally, in MS, the DTE on cognitive performance with addition of the motor task 

was no different between groups when stimuli were presented at a faster pace (PASAT-

3). However, controls were better able to take advantage of extra processing time 

afforded during the PASAT-4 and experienced lower a lower DTE on cognition than the 

MS group. 

The clinical measure of dual task effect, TUGc, also revealed different effects of dual 

tasking on cognitive and motor performances. Under single task conditions, controls 

performed better than the MS group. Controls completed the mobility component in less 

time and had a better rate of accurate responses per second. Interesting, both groups 

experienced a cognitive improvement (dual task benefit) and motor decrement (dual task 

cost) with dual tasking. Unlike the laboratory measure of force fluctuation that had a 

fixed length, subjects were able to alter the length of the TUG by walking slower, 

allowing more time to provide cognitive responses. Thus, both those with and without 

MS traded off motor performance for a cognitive benefit in the TUG even though the 

instructions emphasized that the goal of the task was to walk as quickly as safely possible 

and provide as many correct responses as possible. This is consistent with dual task 

studies of gait and cognition in MS in which participants walk slower and spend more 

time in a relatively stable period of double limb support under dual task conditions (Allali 

et al., 2014; F. Hamilton et al., 2009; Kalron et al., 2010; Sandroff, Benedict, et al., 

2015). 

 The advantage of reporting the rate at which accurate answers are delivered is that 

a direct comparison can be made between tasks of different lengths. However, in this 

study the greatly different lengths of the TUGc and 30-second Serial 3 task may have 
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confounded our result. Caution should be used when interpreting our TUGc findings. Our 

data suggest cognitive facilitation with the addition of the mobility task. However, a 

relevant limitation to our methods is the discrepancy between the duration of the 

cognitive task in the TUGc and in the dual task counting backward trial. It is possible that 

the TUG findings do not indicate improved cognitive performance while walking, but 

rather suggests a cognitive priority tradeoff, an unconsciously selected strategy that 

improves gait stability and increase opportunities to engage in the cognitive task.  

 Opportunities exist to further determine how dual cognitive motor tasks affect 

those with MS. Prior works using gait as a motor task have shown inconsistent findings, 

with some reporting greater negative motor effects of an added cognitive task in MS (F. 

Hamilton et al., 2009; Kalron et al., 2010; Mofateh et al., 2017; Pau et al., 2018; 

Sandroff, Benedict, et al., 2015)  and others reporting no difference (Learmonth et al., 

2015; Nogueira et al., 2013; Saleh et al., 2018). Our findings are consistent with a recent 

systematic review by Learmonth (Learmonth et al., 2017)  that examined 13 controlled 

studies in MS that reported both cognitive and motor DTEs. All but two studies reported 

95% confidence intervals spanning zero indicating that both healthy controls and those 

with MS experienced similar negative dual task effects. Learmonth concluded that 

differences in cognitive motor interference (CMI), the decrement of both cognitive and 

motor performances, was minimal between healthy controls and those with MS.  We also 

observed negative dual task effects on cognition and motor performances, but these 

effects were similar between groups. 

Although our control group completed more college, there was no association 

between this variable and the SDMT or any variant of the PASAT.  This suggests that the 
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constructs of these variables differ. Whereas the PASAT is considered a measure of 

processing speed and working memory (Archibald & Fisk, 2000; Chiaravalloti et al., 

2013), it is likely that years of higher education is more strongly influenced by 

aphysiological factors. Therefore, it is likely that this different did not confound our 

observations. 

 Participants also differed from controls on health-related measures. The MS group 

had greater scores of depression, but the effect size was small. They also had higher 

levels of fatigue. It is difficult to control for these differences because both depression 

(Flachenecker et al., 2002; Greeke et al., 2017) and fatigue (Fisk et al., 1994; L. Krupp, 

2006) are common in MS. Furthermore, our sample with MS is representative of the 

typical population used to standardize the MSFC composite score. Our participants with 

MS fared slightly better than the population estimate on overall function indicated by the 

MSFC score (z-score) of 0.31. 

 In summary, people with MS performed poorer on both clinical and laboratory 

measures of cognition and motor function than matched controls. Dual task effects on 

motor performance were not different between groups. Dual task effects on cognition 

were not different between groups except for the PASAT-4 in which those with MS 

experienced a greater DTE. This suggests that participants with MS prioritized the motor 

task over the cognitive task with the laboratory-based measure and prioritized the 

cognitive task over the motor task in the clinical measure.  
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CHAPTER 4. DISCUSSION 

 This dissertation shows that isometric force steadiness is impaired in the upper 

and lower extremities of people with MS at very low forces under single task conditions, 

that people with MS experience decrements of cognitive and motor performance when 

dual tasking, and that these negative dual task effects are comparable to what is 

experienced by healthy controls. 

 There are limitations to the experiments performed. First, the MS samples in both 

experiments reported minimal MS-related disability using the PDDS and the mean MSFC 

scores indicated that our participants functioned only slightly better than the standard 

population used to calculate MSFC z-scores. Thus, the results may not translate to those 

who are more disabled. Second, we did not evaluate sensory function. Therefore, it is 

possible that undetected impairments in visual processing or somatosensory processing 

could confound the results, especially with regard to visual processing of force feedback 

required to perform the motor steadiness tasks. Finally, even though we had adequate 

statistical power to measure most variables, it is possible that our small sample sizes 

lacked sufficient power to detect smaller differences that may have been present in some 

measures. 

 This dissertation is the first to document isometric force fluctuation of upper and 

lower extremities in MS and found that there was no significant association between 

upper and lower extremity force steadiness across a range of forces in the same 

participants. This contrasts to findings of a study by Coghe and colleagues (2019) who 

also examined the association of MS-related impairment in the upper and lower 

extremities. Coghe reported kinematic profiles of people with MS performing motor tasks 
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with the upper and lower extremities and found that both limbs became more impaired as 

MS progresses and that these upper and lower limb impairments were moderately related. 

Coghe’s findings suggest that diffuse MS-related changes in the CNS may produce motor 

impairments in various body segments. Our methods contrasted with Coghe in that we 

measured force fluctuation by performing relatively simple, identical tasks in the same 

muscle groups and Coghe recorded kinematic profiles of two different complex tasks, 

one discrete (moving the hand to the mouth) and one continuous (gait). It was also the 

first to examine effects of cognitive tasks presented with different levels of difficulty. 

This illustrates challenges of measuring associated impairment of the upper and lower 

limbs. Future research, especially in those minimally impaired by MS, should consider 

whether experimental tasks are discrete and heavily dependent upon feedforward control 

or continuous and more dependent upon feedback control, as well as the cortical 

representation for the body segments involved in performing the tasks. For example, fine 

motor tasks of the hand present challenges as the hand and wrist have a greater cortical 

representation in the motor and somatosensory cortices than lower extremity segments 

creating challenges for direct comparison. Additionally, gait tasks primarily involving 

lower limbs present challenges because control of gait is mediated by central pattern 

generators that lessen the attentional demand of walking.  

 Our variants of the PASAT task may have lacked sensitivity in detecting 

impairments and our participants, especially the healthy controls, may have experienced a 

ceiling effect of this task. We measured cognitive performance by counting accurate 

responses. However, future studies of dual task effects could be aided by use of a 
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cognitive task that allows measurement of not only accuracy, but also response speed, 

especially in people with MS who are known to have impairments in processing speed  

(Archibald & Fisk, 2000; DeLuca et al., 2004; Demaree et al., 1999; Moccia et al., 2016). 

This would provide a richer description of cognitive effects and determine if variability in 

timing of responses is associated with variability in motor task performances.  

An n-back task of working memory in which cognitive demand is manipulated 

across conditions would be such a task and has previously been used in people with MS 

to document impairments in accuracy and response speed (Parmenter, Shucard, Benedict, 

& Shucard, 2006; Parmenter, Shucard, & Shucard, 2007). In a typical n-back task, 

participants view a monitor that briefly displays letters. Participants attend to each visual 

stimulus and reporting if it had been previously presented at a specified interval. 

Responses are collected via a key press in which one key is pressed if the stimulus was 

previously seen at the specified interval and another pressed if the stimulus was not. This 

application of the n-back would be useful in presenting different levels of cognitive 

difficulty, measuring accuracy, and measuring response timing. The modified PASAT 

used in this dissertation was able to present different levels of difficulty and measure 

accuracy. However, it was unable to measure response timing.  

 Interestingly, this dissertation initially sought to use the n-back task in lieu of the 

modified PASAT. Unfortunately, the visual processing demands of continually 

monitoring force feedback during dual task conditions while concurrently monitoring 

visual displays of n-back stimuli were deemed too demanding for our dual task paradigm. 

An attempt was made to substitute recorded stimuli (letters) for the n-back task. This was 

problematic because the spoken names of the letters of the English alphabet sound 
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similar. For example, the spoken names of letters such as B, C, D, and G are all 

predominated by the long-e vowel sound. Presenting vowels was undesired as 

participants could use them to aid memory by phonologically linking individual stimuli 

and presenting words was undesired because participants could create a narrative that 

aided performance. A final consideration was made to deliver n-back stimuli via 

monosyllabic nonsense words. Further exploration revealed that humans can more easily 

distinguish less frequent sounds (kw) from more common sounds (th). Because the aims 

of this dissertation did not include development and validation of a new measurement, it 

was decided that variants of the PASAT would be used. However, availability of a valid 

auditory n-back task would be a useful component of dual task experiments that require 

visual processing of another stimulus. 

 From a mechanistic perspective, both muscle function and cortical function could 

be examined in more detail while varying the conditions under which the tasks are 

performed. As force fluctuation is associated with variability in motor unit discharge 

rates, we could replicate this study replacing our single-channel surface EMG recordings 

for intramuscular single motor unit recordings or an array of surface EMG electrodes that 

allow recording over a large area of muscle (Drost, Stegeman, van Engelen, & Zwarts, 

2006; Merletti, Holobar, & Farina, 2008). It would be especially interesting to apply 

these techniques while replicating our tasks at the very low force targets in which we 

observed increased CV in our MS group.  

Furthermore, because muscle fatigability is a common symptom of MS, it would 

be beneficial to measure motor unit discharge rates during fatiguing contractions as 

recent findings suggest that dual task abilty is impaired during fatigue in people with MS 
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using a choice reaction time task during a fatiguing finger flexion task (Wolkorte, 

Heersema, & Zijdewind, 2014). 

 While motor unit discharge rates may explain the final common output of the 

motor steadiness task, it is influenced by visual processing of force feedback and cortical 

processing of the voluntary goal-directed changes in neural drive to the muscle that result 

in force production. It is well established that humans heavily weight visual processing 

and that visual perturbations result in alterations of postural control (Shumway-Cook & 

Woollacott, 2012; Woollacott & Shumway-Cook, 2002). Although the effect of the 

quantity of visual feedback (Prodoehl & Vaillancourt, 2010) has been explored in motor 

tasks, the complexity of the visual environment has not. If visual processing is 

responsible for influencing the intention to alter force production and ultimately affect 

neural drive, it could mean that the environment in which we conducted our experiments 

influenced steadiness. One way to explore this would be to present force feedback via 

goggles that block all other visual stimuli. To manipulate visual complexity, force 

feedback could be displayed in three ways, against a plain background, framed by a 

complex pattern such as a checkerboard, and framed by a complex background with 

motion such as a scrolling checkerboard.  

 To better understand cortical contributions to dual task performances, fMRI could 

be a useful tool. A study exploring cortical areas associated with force steadiness in 

healthy adults has been published (Yoon et al., 2014). However, it is not known if these 

areas are influenced by secondary cognitive tasks. In MS research, lesion mapping, as 

opposed to calculating total of lesion load, provides insights into MS-related dual task 

impairment (Ruggieri et al., 2018) . Thus, static and functional imaging techniques may 
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aid in understanding of cortical behavior during dual task performance and possibly 

reveal associations between areas involved in dual task steadiness and lesion location in 

MS. 

 Another consideration in dual task studies of MS is the mode and difficulty of 

each task. Consistent with other research paradigms, cognitive dual tasks in this 

dissertation primarily tapped the central executive and phonologic loop, leaving the 

visuospatial component of working memory unexplored. A study of dual tasking using 

two cognitive tasks employed a design in which visuospatial working memory was 

measured using a task in which participants needed to attend to and recall spatial 

orientation of lines while performing an additional cognitive task. Determining optimal 

modes and dosages of motor and cognitive tasks would be of great clinical relevance. 

 In summary, this dissertation provides novel insights into isometric force 

steadiness and dual task performance in people with MS. The findings provide exciting 

opportunities to expand clinically relevant research. 
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