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ABSTRACT
Probabilistic Framework For Balancing Smart Grid’s Performance Enhancement

And Resilience To Cyber Threat

Rezoan Ahmed Shuvro, B.S., M.S.

Marquette University, 2020

Critical infrastructures such as smart grids rely heavily on the seamless
interaction between the grid subcomponents, i.e., the communication networks
which transfers information from and to the grid, and the human operators/AI
agents for taking necessary control actions. Smart grids are prone to cascading
failures, which trigger from a few initial the tripping of a few transmission lines or
generators, creating a ripple effect in the entire network, which may, in turn, lead
to a total blackout. Having additional information through the communication
network increases the probability of taking better control actions (e.g., effective
load shedding and other protection mechanisms), which increases the reliability of
the grid. On the other hand, enhancing the smart grid’s communication capability
increases the risk of harm through cyberattack and other faults in the communica-
tion network. A fundamental question is how can we balance the trade-off between
grid’s performance enhancement and robustness to information infidelity? In this
dissertation, we develop a predictive analytic, scalable and tractable Markov-chain
model for cascading failures in smart grids including the role of the human op-
erators, while taking into account the benefits and harm of the communication
network (e.g., supervisory control and data acquisition). The state transition
probabilities of the Markov chain captures the benefits and added vulnerabilities
resulting from the communication network. A detailed mapping between power-
grid states and the operators’ response has been established that allows capturing
a wide range of operator behavior and their probabilities into in the dynamics
of the Markov chain. The model shows the existence of a point of diminishing
returns beyond which the harm of cyber threat and human errors outweighs the
benefits of having information. An optimal level of inter-connectivity is achieved
between the power grid and the communication network minimizing the expected
value of the transmission-line failures.
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Executive Summary

Smart grids rely extensively on communication and sensing to provide informa-

tional data so that it operates reliably. As such, the reliability of the smart

grid is heavily dependent on the interdependence between power grid components

and its associated communication and control networks. The interdependency

with a communication network is an inherent attribute of smart grids, as they

require seamless integration of traditional power-plants, distributed energy re-

sources (DERs) such as wind farms, solar, and micro-grids, as well as operation

and management systems. For example, degradation in the communication and

control networks, resulting from a cyberattack, will impact the ability to prevent or

slow-down successive grid-component failures (such as transmission line failures),

namely, cascading failures in the power grid which often results in blackouts. Con-

versely, power outages can lead to degradation in the communication and control

networks, which, in turn, can further exacerbate the transmission-line and gener-

ator failures in the power grid. Additionally, human operators play an important

role in smart grid operation and reliability, and they introduce a new level of

interdependency between the power grid and the communication and control net-

works through their actions in controlling the grid using the information provided

by the communication network. The system operators’ expertise in dealing with

cascading failures can play a pivotal role during contingencies. For instance, as

the communication and control capabilities are degraded as a result of a cyber

attack, cascading failures in power grids may ensue, which altogether can create

a stressful and intense environment for the operators. This, in turn, increases the

probability of operator errors as they diagnose and implement corrective actions

(for example, through load shedding), which will further exacerbate cascading

failures in the smart grid. Hence, understanding the impact of the dependence

on information on the operation of the smart grid, both negative and positive, of
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information-centric smart grids is critical in predicting the reliability of the smart

grid.

There have been notable efforts on modeling the cascading-failure dynamics

in smart grids. Here we will mention the most relevant works. Buldyrev et al. was

the first to introduce the detrimental effects of interdependency and reported that

failures in one system could collapse the entire interdependent system and lead to

a blackout. Rahnamay-Naeini and Hayat used two interdependent Markov chains

(for the power grid and communication networks) to capture the harm of interde-

pendency. In their work, state-space reduction of the complex interactions of the

power grid and communication components was achieved by choosing the state

variables of the Markov chain inspired by observations made through simulations.

Wang et al. modeled the effect of human error on the reliability of smart grids

using performance attributes such as time to react and stress level of operators.

Korkali et al. showed that cascading-failure risk could be reduced by increasing

infrastructure network interdependence, i.e., increasing the interdependency be-

tween power grids and communication networks. However, the role of cyber threat

on the reliability of communication was not captured, i.e., the harmful effect of

communication was not considered. Hence, a comprehensive model capturing the

benefits and harms of communication, including the role of human error in the

loop has not been studied. This is a crucial driver for this dissertation.

In this dissertation, a stochastic Markov-chain model, namely, Interdepen-

dent Stochastic Abstract State Space Evolution (I-SASE), is developed, which

captures the dynamics of cascading failures in the power grid and the benefits and

risks of information through the communication network. To do this, a previously

developed Markov-chain model is generalized to capture the trade-off between the

benefits of having a robust communication infrastructure and its vulnerability to

cyberattacks. The impact of error probability of system operators’ as they take
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actions to mitigate cascading failures is incorporated into the model as a function

of the state variables of the Markov chain. The model shows that there exists a

point of diminishing return beyond which the effect of cyber threat and human

errors outweighs the benefits of having more information. This is one of the crit-

ical contributions of the model. An optimal level of interdependency minimizing

the expected value of transmission-line failures is achieved between the power grid

and the communication network.

The benefits of the I-SASE model are threefold. First, the model captures

the interdependency and dynamic interactions between the layers of the power

grid, which is more realistic compared to the current literature that does not

include the effect of cyber threat in an analytical model. Second, the model incor-

porates the benefits of having inter-connectivity with a communication network

through effective implementation of load shedding. Meanwhile, the model cap-

tures the harm of having excessive information through cyber threats in addition

to system operator error. Our formulation of this model, therefore, leads to find-

ing an optimal level of inter-connectivity that maximizes the benefits rendered

by information, for a given level of cyber threat and operator error. Third, the

model produces the probability distribution of the size of a blackout analytically,

considering the potential harm from cyber threat and operator error.

The I-SASE model is analytic, scalable, and tractable. It can be beneficial

for the smart grid utilities in their design process to minimize the harm rendered

by cyber threats through communication infrastructure to make the smart grid

robust in the face of cyberattacks. Moreover, smart grid operators can use this

model to design optimal decision strategies to mitigate cascading failures while

maximizing the number of customers served. The model variables and parameters

can be easily scaled to apply this model in other interdependent networks such as

the transportation networks.
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Chapter 1

Introduction

1.1 Motivation

The North-American electric grid is one of the greatest engineering marvels of

the current age and is one of the biggest connected network consisting of three

sub-units: the generating units, the transmission network, and the distribution

units. A basic structure of the electric grid components can be visualized from

Figure 1.1. Transmission lines distribute power from generating units to the cus-

tomers. The operation of modern power grids (i.e., smart grids) is a prime example

of a coupled interdependent system, with highly interdependent subsystems: the

power-grid, the communication network, operation, and the management systems.

Grid operation relies heavily on the communication network for monitoring and

control, while human operators remain key elements in reliable operations of these

systems [9]. The technological advancements in computer-based communication

networks made it indispensable to use the developments in communication to make

the power grid more intelligent. Communication networks in smart grids play an

important role in the reliability of power delivery. Due to the complex nature of

the operation, power grids are prone to large outages initiated from small distur-

bances referred to as cascading failures [10] that often lead to a partial or complete

Figure 1.1: Basic structure of the electric grid [3]
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blackout of the grid. Cascading failure in the power grid is defined as a sequence of

correlated failures of individual components that successively weakens the power

system [11]. Cascading failures can be triggered by a wide range of events, in-

cluding natural disasters, technical error, human error, and intentional sabotage

attacks [12]. The triggers to massive blackouts (due to cascading failures in the

transmission grid) are many, including natural disturbances (ice storms, hurri-

canes, tornadoes, and earthquakes) as well as non-natural events such as human

errors, equipment failures, cyber-attacks, weapons of mass destructions (WMDs),

High altitude Electro-Magnetic Pulses (HEMP), sabotages, and supply shortages

[13, 12]. When the grid is stressed as a result of failures due to natural disas-

ters and attacks, successive failures (in power grid and communication network)

may propagate within and across these networks leading to large-scale cascading-

failures and blackouts. Failures in the power grid can affect the communication

network, which in turn, may affect the power grid, and so on. Further, failures

in the power grid can lead to failures in the communication and control network

and create a stressful environment (with the high possibility of human errors)

to react to the situation and implement corrective actions, which can exacerbate

failures in the grid. Besides, as smart grids move toward becoming progressively

more distributed and information-centric, the concern over cyber-security threats

becomes increasingly alarming. With the advent of smart grids and the integra-

tion of complicated communication networks, the number of massive blackouts is

occurring more frequently than before. A list of top ten power grid outages due to

cascading failures are shown in Table 1.1. The number of people getting affected

by these events and the economic loss is astronomical. From 1965 to 2008, nine

massive blackout events were affecting more than 20 million people, whereas, in

the last decade, there were seven massive blackouts, including the largest one in

India [2].
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Table 1.1: Top 10 power grid outages due to cascading failures in the world [2]

Location People affected (millions) Year
India 620 2012
India 230 2001

Bangladesh 150 2014
Pakistan 140 2015
Indonesia 2019 120
Indonesia 2009 100

Brazil 1999 97
Brazil, Paraguay 60 2009
Italy, Switzerland 56 2003

United States, Canada 55 2003

An overview of the cascading failures was depicted in Figure 1.2. In summary,

the Figure shows that there is a list of power grid operating parameters that con-

trol the grid behavior. On top of that, there are interdependencies between the

power grid layers, such as power-communication interdependency, power-human

interdependency, and so forth. With an initial trigger (for example, transmission-

line failures) resulting from a natural disaster or intentional/unintentional initial

event, there can be a series of events leading to cascading failures. Human opera-

tors are an essential component of the smart-grid, and they introduce a new level

of interdependency between the power grid and the communication and control

networks. Due to the complexity of the network, statistical measures such as the

distribution of line failures are extremely complicated to find, and in this disserta-

tion out prime goal would be to model the interdependencies in smart grids using

a Markov-chain based model and then predict the nature of cascading failures in

the power grid from the initial conditions of the grid during cascade initiation.

1.2 Examples of large blackouts and known causes

Historical data of the power grid failures suggest that various factors related

to these elements can affect the efficient operation of the power grids and con-

tribute to cascading-failure. Various factors related to the elements of the smart
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Figure 1.2: Overview of the cascading failure dynamics in power grids.

grid can affect the efficient operation of the grid and contribute to cascading fail-

ures. For example, the 2003 Northeast blackout in the United States and Canada

occurred due to a combination of transmission-line and generating-unit failures,

communication component and server failures, as well as ineffective and erroneous

human-operator responses as observed in Figure 1.3 taken from the postmortem

report by the North American Electric Reliability Corporation (NERC) on 2003

cascading failures event [3]. Specifically, the alarm software failed, leaving the hu-

man operators unaware of the transmission-line outage, which contributed to the

cascading-failure [14]. After the initial trigger of failure in the transmission-line

due to a combined impact of power grid and communication system disturbances,

cascading-failure evolved in phases throughout the power grid network (as seen

from Figure 1.4) and resulted in more than 55 GW’s of power failure [4]. Figure

1.4 shows the three phases of the cascading failures namely, precursor phase, esca-

lation phase and the cascade phase-out phase [1]. Similar evolution of cascading

failure phases was also observed in July 1996 and August 1996 in the Western

Interconnection [5] as shown in Figure 1.5.

The power blackout in Italy of 2003 is another example of power grid and

communication network interdependency where an unplanned power shutdown
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Figure 1.3: Timeline of the events leading to the start of cascading failures [3].

eventually led failures in the communication network, which in turn initiated a

series of cascading-failures in the power grid [15].

According to the NERC report, the 2011 southwest blackout in the USA was

caused due to human error and poor planning, which affected more than 2.7 mil-

lion customers [16]. In 2015, massive power outages due to a cyber-attack were

observed in Ukraine (affecting 225,000 customers), which used the false-data in-

jection and led to cascading failures [17].

As the power grid becomes smarter through sophisticated sensing, communi-

cation, and control, the combination of the communication-network security, the

intelligent subsystems used to control the grid, and human operators will play

a pivotal role in the reliability and robustness of the power grid. Smart grids

rely heavily on communication networks for monitoring and control, while human

operators play a crucial role in the reliable operations of these systems [9]. Sta-

tistical analysis on outage data shows that among all the outage events between

1984-2006, 10.1% power grid outage events were caused by operator error [12].

Hence, these real-world examples suggest that the communication network

and human operators’ play pivotal roles in the reliability and robustness of the

power grid. The given real-world examples indicate that it is of great importance
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Figure 1.4: Real time rate of cascading-failure for the 2003 Northeast blackout [4].

to study the interdependencies among these coupled systems to understand the

role of such interdependencies so that cascading-failures can be prevented before

massive blackouts.

1.3 Literature review

In this section, we review the works related to this dissertation. Besides, we

also point out the limitations of these works and briefly describe the contributions

of this dissertation where necessary. There have been extensive works on modeling

cascading failure in the power grid. Efforts can be categorized in mainly in three

approaches: (i) network/graph-theoretic approaches (including complex-system

theory) [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] , (ii) power-system simulations

[29, 30, 31, 32, 33, 34, 35, 23, 36, 37, 38, 39, 40, 30, 41, 42, 43] (iii) probabilistic

analytical models [29, 31, 7, 5, 44, 45, 46, 47, 41, 45, 48, 49, 50, 51, 52, 53].

Probabilistic analytical models usually use concepts from branching processes,

regeneration theory, percolation theory, or Markov chains to model the stochastic-

failure dynamics in the power grid. Probabilistic models on cascading failures

[13] in the power grids focus on both failure dynamics in the power grid in a

single, non-interacting environment or considering the interdependence between
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Figure 1.5: Real-time rate of cascading failure for the 1996 blackout [5].

the power grid and the communication network.

One general weakness in all the prior works is the insufficient treatment of the

realistic functional interdependency among cyber threats, human factors, and the

power grid. The prime focus of this study is to address both the benefits and harm

of interdependence of the communication network and find a balance between the

smart grid’s performance enhancement and resilience to the cyber threat.

1.3.1 Prior works on modeling cascading failures in smart grids

Cascading failure dynamics involve several power-grid variables and interde-

pendency between power grid and communication system variables [7, 30], model-

ing cascading failures, and analyzing the severity of cascading failure is a challeng-

ing task. Nonetheless, since the 2003 blackout in North America [54], significant

research efforts have regarded models of cascading failure dynamics in power grids

and strategies to understand and mitigate the risk of cascading failures [13]. A

common approach is to use of probabilistic modeling of cascading failures in the

power grid either as an independent system [32, 5, 55] or in the presence of an
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interdependent system environment [44, 30, 21, 7] (e.g., the interdependency be-

tween the power grid and communication system). Cascading failure analysis

tools, guidelines, and metrics are reported by the Institute of Electrical and Elec-

tronics Engineers (IEEE) cascading failure working group in [11, 56, 57, 58].

A Markov-chain driven probabilistic model named stochastic abstract state

evolution (SASE) was proposed in [5] that captures the dynamics of cascading

failures in a power grid using a reduced state space. The notion of an equivalent

class in [5] allows modeling the large state space of the power grid with infinitely

many variables by using a small equivalent reduced state space. More recently,

in the human-SASE (hSASE) model [1], the authors considered an additional

state-variable to capture the effect of human operator errors on the power grid

dynamics. Both the SASE and hSASE models are capable of determining the

distribution of transmission-line failures and evaluating the blackout size at steady-

state. In [59], a data-driven parametric model is proposed to characterize the

dynamics of the propagation of transmission-line failures of the power grid. This

model can estimate the total capacity loss due to the failure of transmission lines

numerically during cascading failures at any time step. In contrast to [5], multiple

failures per time unit were allowed, and a transition probability was associated

with failures affecting transmission lines having lower capacities [59]. However, this

data-driven model lacks a key feature of previous models as it does not include

the probability of the cascade stopping at any state. Moreover, one standard

limitation in most of the other cascading failure probabilistic models including

[5, 1, 59] is that they can not predict transmission capacity loss/amount of load-

shedding, which is considered to be a critical metric for evaluating the severity of

cascading failure by the IEEE cascading failure working group [58].



9

1.3.2 Prior works on interdependent modeling of cascading failures in

smart grids

During the initial stages of cascading-failure analysis in the power grid, most of

the studies were focused on modeling and analyzing failure dynamics in the power

grid in a single, non-interacting environment [11, 5]. Recently, cascading-failure

studies in interdependent systems are emerging. Notably, Buldyrev et al. reported

a graph-based interdependent network study that showed the coupling impacts be-

tween interdependent networks while analyzing the percentage of failed nodes in

the steady-state [21]. In [30], the authors proposed a two-phase control policy to

mitigate the cascading-failure in the power grid using the interdependency with

the communication network. Carreras et al. coupled with two complex systems

and investigated the effect of coupled system interactions between infrastructure

systems. [31]. The impact of communication topology on the propagation of

cascading-failure in the power grid was analyzed in [60] using graph theory. The

vulnerability of the power grid in a coupled power-communication grid environ-

ment was analyzed in [7], which showed that interconnecting networks could en-

hance robustness. The impact of various initial failures on physical infrastructure

( e.g., power, communication networks) were analyzed in [8].

Our point of interest is in the probabilistic models, which can be further cate-

gorized by the following approaches: Markov-chain based models [5, 45], branching

processes [61], regeneration theory [55], etc. The Interdependent Markov Chain

(IDMC) model [44] by Rahnamay-Naeini et al. captures cascading-failure in a

interdependent system environment (e.g., smart grid). The model considered two

interdependent Markov chains consolidated in a single Markov chain, whose tran-

sitions alternate between transitions in the two interdependent networks while

capturing the interdependencies between the two systems represented by Markov
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chains. As an example, the model considered an interdependent power grid and

communication network, and the IDMC model captures the transitions among

power and communication networks’ state variables.

A communication-power coupling parameter d, which captures the topological

changes in the communication network, was modeled in [62]. In recent work, Wang

et al. presented an analytic framework based on a Markov chain for modeling

the dynamics of infrastructure under contingencies, while capturing the effects of

operators’ behavior quantified by the probability of human error under various

circumstances [1]. To quantify the human error during cascading-failures, the

SPAR-H methodology [63] is used to estimate the human error probability (HEP)

for the human performance status in a probabilistic risk assessment approach [64].

The work presented in [64] captures the coupling between the human factor and

the power grid in their proposed analytic model.

1.3.3 Prior works on the role of communication topology on the reli-

ability of power grids

Most of the studies on cascading-failures have focused on cascading-failures

in a single, non-interacting power systems environment [11]. However, in recent

days, a body of work is emerging in studying the cascading-failures in interde-

pendent systems and specifically, the power and communication networks. These

studies aim to identify the behaviors of interdependent systems and how they in-

teract with each other during a failure event. The efforts can be categorized into

three classes: probabilistic analytical models [52, 61, 44], deterministic analytical

models [47] and analysis of failure scenarios using simulations [29]. Our point of

interest is the probabilistic models, which can be further categorized by the fol-

lowing approaches: Markov-chain(MC) based models [5, 1], branching processes

[65, 61], regeneration theory [44], etc. As mentioned previously, Buldyrev et al.

reported a graph-based interdependent network study that showed the coupling
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impacts between interdependent networks [21]. In [30], the authors proposed a

two-phase control policy to mitigate the cascading-failure in the power grid using

the interdependency with the communication network. Carreras et al. coupled

two complex systems and investigated the effect of coupling on the characteristic

properties of that system [31]. The impact of communication topology on the

propagation of cascading-failure in the power grid was analyzed in [60]. In a re-

cent study, Wang et al. showed the interdependency between the power grid and

human operator response during cascading-failures [1].

1.3.4 Prior works on embedding human errors on cascading failure

modeling

In recent years, a substantial amount of work has been done to understand

the role of interdependencies between smart grid subsystems and the dynamics of

cascading failures [21, 7, 20, 30]. Reviews of models modeling cascading failure

dynamics in power grids were reported in [11, 13]. Bench-marking of quasi-steady-

state cascading outage analysis methodologies were reported in [58]. However,

none of these works includes the role of human error in modeling cascading failures

in power grids. To quantify the human error, Standardized Plant Analysis Risk

- Human (SPAR-H) [66] methodology was used to identify the critical human

operator attributes, performance shaping factors, and their associated levels [63,

67].

Recently, based on grid-operator interviews, Joana et al. [64], proposed HEP

formulation depending on the performance shaping factors (PSF’s) of the grid

operators using the SPAR-H methodology. The probabilities for each of the PSF

levels were calculated based on the smart-grid operator interviews [64]. A notion

of a comprehensive model including the power grids, communication network, and

the role of human operators were introduced in [68]. However, the details of the

state transition probabilities were absent.
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1.3.5 Prior works on predicting cascading failures using machine learn-

ing

A proactive blackout prediction model for a smart grid early warning system

was proposed in [69]. In that work, a support vector machine (SVM) has been

trained with this historical database and is used to predict blackout events in ad-

vance. The critical contribution of that paper is that it captures the essence of the

cascading failure using the probabilistic framework and integration of the SVM

machine learning tool to build a prediction rule, which would be able to predict

the scenarios of the blackout as early as possible. However, their data set includes

only 50 cases, which are then used for training and testing purposed. It is chal-

lenging to learn the complex dynamics of cascading failures in the power grid using

50 test cases only. Also, the authors reported that for specific parameter values,

100% training and testing accuracy was achieved, which is very unlikely and un-

realistic for a sophisticated event like cascading failures. Nonetheless, the paper is

a novel work on proactive cascade prediction using a machine learning approach.

In [70], the authors proposed a machine learning based on Bayes networks to pre-

dict cascading failure propagation. Their model named ITEPV collects power

grid data from simulations, and then their model predicts cascading failure prop-

agation with the highest probability using the machine learning technique. This

paper is another work that focuses on data-driven cascade prediction using a ma-

chine learning approach, but the authors did not describe how they collected the

data, how they simulated power flow, what simulation software they used, which

make reproducibility of the work difficult. A classification problem was formulated

that classifies a cyber attack from other classical disturbances in the power grid

in [71]. The authors used various machine learning algorithms to evaluate clas-

sification performance and tried to find the optimal algorithms under any given
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constraints. The authors observed various measures (accuracy, precision, recall,

and F-Measure) to show that Adaboost+JRipper is the optimal algorithm for

classifying various types of cyber-threats in the power grid. The work is an ini-

tial benchmark for disturbance classification in the power grid. The authors used

the WEKA [72] machine learning framework for implementing various algorithms.

Benchmarking of various deep learning algorithms and comparison of %RMSE

reduction by the different algorithms from existing state-of-the-art for load fore-

casting in smart grid applications was done in [73]. To the best of the authors’

knowledge, no work has been found to classify cascading failures in power grids

as well as predicting essential attributes such as the number of failed transmission

lines and the amount of load shedding for an initial disturbance conditional on the

power grid operating parameters and the topological parameters of the grid. One

of the main reasons is the unavailability of a real-world cascading failure data set.

1.3.6 Prior works on optimizing interdependent system parameters for

enhancing system performance

Probabilistic models on cascading failures [13] in the power grids focus on

both failure dynamics in the power grid in a single, non-interacting environment

[11, 5, 29] or considering the interdependence between the power grid and the

communication network [7, 21, 30, 44]. Two complex systems were coupled to in-

vestigate the effect of coupled system interactions between infrastructure systems

in [31]. Buldyrev et al. reported the detrimental effects of interdependence in a

graph-based study, which showed that failures in one system could collapse the

entire interdependent systems and lead to a blackout [21]. A two-phase control

policy to mitigate the cascading-failure in the power grid using the interdepen-

dency between the power grid and communication networks was proposed in [30].

A Markov-chain based probabilistic model was proposed in [5], which captures the

dynamics of cascading failure in a power grid using a reduced state space. Sub-
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sequently, the authors proposed an interdependent Markov Chain model [44] that

captures interdependence; however, the model only captures the negative aspects

of coupling. In contrast to [21, 44], [7] showed robustness can be enhanced by in-

terconnecting networks. Rather than having an optimal interdependence reported

in [20], the authors in [7] reported that the risk of cascading failures is minimum

when the infrastructure network interdependence is maximum. Although existing

models capture the influence of communication networks, few works capture the

role of human error on cascading failures mathematically. In recent work, Wang

et al. presented a Markov-chain model to capture the interdependence between

human error and cascading failures in power grids [1]. However, the authors did

not consider the role of communication networks. One general weakness in all

the prior works is the insufficient treatment of the realistic functional interdepen-

dency among cyber threats, human factors, and the power grid. The prime focus

of this study is to address both the benefits and harm of interdependence of the

communication network and find a balance between the smart grid’s performance

enhancement and resilience to the cyber threat.

1.3.7 Prior works on modeling initial disturbance leading to cascading

failures

In the last two decades, both single and interdependent models were proposed

by researchers to capture the dynamics of the cascading failure in the power grid.

Our focus is to study probabilistic models which can be further categorized to

Markov-chain based models [45, 5, 1], branching processes [61], regeneration theory

[55]. These models analyze the cascading failures in the power grid based on an

initial event. The interdependent system model [44, 30, 74, 21, 7, 75, 68, 76]

capture the interdependency between layers of the power grid (e.g., power grid,

communication system, and human-operator response) and analyzes cascading

failures in the power grid based on interdependent system environment. A data-
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driven model for simulating the evolution of transmission line failure in power

grids is proposed in [59]. Although failures in the communication layer and human

operator responses are crucial in cascading failure analysis, we ignored their effects

in this paper to simplify our analysis. Bernstein et al. analyzed the power grid

vulnerability due to geographically correlated failures in [34]. Impacts of operating

characteristics on the sensitivity of the power grids to cascading failures are studied

in [77]. In [60], the authors studied the impact of topology in power grids. In [8],

the authors analyze the impact of various initial failures on physical infrastructures

(e.g., communication networks).

1.4 Review of the prior Markov-chain based models used extensively in this disser-

tation

In this section, we review the prior Markov-chain based models used extensively

in this dissertation.

1.4.1 Review of the Stochastic Abstract State-space Evolution (SASE)

model

There are many physical attributes of the smart grids that collectively con-

tribute to cascading failures, including power generation, substation loads, power

flow distribution through transmission lines, the functionality of grid components,

voltage and phase of transmission lines and buses, and so forth. This results in

substantial detailed state space. It is, therefore, essential that effective spate-space

reduction is performed before any scalable and tractable analytical model of cas-

cading failures can be developed. To address the scalability challenge, a method-

ology was developed in [5], where the space of all detailed power-grid states is

partitioned into a collection of equivalence classes. The equivalence relation is

defined through a set of reduced state variables that are deemed to govern the

cascading behavior as determined by extensive analysis of experimental and sim-
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ulation data. The detailed power-grid states in the same class are represented by

a few aggregate state-variables, with the same values. Such partitioning of the

state space (of the detailed state-space of the power grid) implies that detailed

power-grid states in the same class will be indistinguishable as far as the cascading

behavior is concerned. Each class of the power grid states is termed an abstract

state.

Specifically, the physical variables defining each equivalence class are, number

of transmission-line failures, F , the maximum capacity of the failed lines, Cmax,

and a binary variable, I, which depends implicitly (and non-linearly) on all the

detailed variables. It is judiciously introduced to capture the complex event of the

cascade stopping compressively. If the power grid is in a cascading mode, then

I=0, and the cascade will continue. Conversely, the cascading failure terminates

if the power grid is in an absorbing state, namely when I=1. To address the

dynamic nature of cascades, a Markov chain is defined on the reduced state space,

and the transition probabilities have been extracted using physics-based modeling

combined with data analytics. Since the formation of the transition probabilities

is learned from data, they capture the role of the hidden variables that have

been eliminated in the state-space reduction. A key component in the transition

probability matrix is the state-dependent cascading-stop probability, Pstop, i.e.,

the probability that the binary state variable I=1.

The SASE model developed in [5] can effectively predict the underlying dis-

tribution of the blackout can be calculated analytically using the model. The

model was validated using the comparison between the distribution obtained us-

ing Monte Carlo simulation of the grid and the analytical result as shown in Figure

1.6. The simulated distribution and the analytical distribution closely match, i.e.,

the model is able to find the distribution of blackout size analytically using the evo-

lution of the Markov chain which is independent of the simulated result obtained
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Figure 1.6: The analytical and empirical conditional PMF of the blackout size (a)
without stress (b) with stress for Fi=2 and Cmax

i =20MW [5].

Figure 1.7: Probability of reaching a blackout follows historical blackout trends
for (a) with Fi=3 and (b) with Fi=6, and different values of Cmax

i [5].

from Monte Carlo simulations of the smart grid.

Again, the model can predict the evolution of cascading failures for various

state variables and operating condition of the grid as observed in historical black-

out trends in Figures 1.4 and 1.5.

1.4.2 Review of Interdependent Markov-Chain (IDMC) Approach

To model the cascading-failure dynamics, a Markov-chain based Stochastic

Abstract State Evolution (SASE) model was developed in [5]. The state-space of

the Markov chain consisted of two state variables: the number of failures in the

system, xn(n ≥ 1) and a {0, 1}-valued variable termed cascade-stability of the

system, in, for which i = 0 indicates the system is susceptible to further failures

and i = 1 indicates that no further failures are possible, and hence the system

has entered a cascade-stable mode. The SASE model allows us to predict the
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distribution of the failed transmission-lines as a function of time, and also allows

us to calculate the probability distribution of the blackout size. The transition

probability matrix in the SASE model involves physical operating parameters of

the power system, and its entries are state-dependent. The operating characteris-

tics considered in the SASE model are based on power grid simulations, and they

include line-tripping threshold e, power-grid loading level r, and the load-shedding

constraint level θ.

In subsequent work, the SASE model was expanded to the IDMC model in

order to capture cascading-failure in the interdependent system environment (i.e.,

smart grid) [44]. The model considered two interdependent Markov chains consol-

idated in a single Markov chain, whose transitions alternate between transitions

in the two interdependent networks. As an example, the model considered power

grid and communication network, and as the Markov chain progresses, transition

toggles between power grid variables and communication network state variables.

Specifically, the state-space of the IDMC model contains variables of the form

Sn = (xn, in, yn, ln, kn), as compared to Sn = (xn, in) in the SASE model. The

newly- introduced variable yn is defined as the number of failures in the commu-

nication network. Moreover, ln captures the state transition turns between the

two networks, where ln = 0 indicates the last transition has occurred in the power

grid, and ln = 1 indicates the last transition has occurred in the communication

network. Finally, the state variable Kn captures the history of transitions: it indi-

cates whether a failure has occurred in the last transition at time n− 1. However,

the IDMC model does not explicitly capture the role of the dynamic topological

attributes of the communication network.

1.4.3 Review of the human SASE (hSASE) model

Wang et al. developed a Markov-chain based human-stochastic abstract state

evolution (hSASE) model including the role of human error [1], where the space of
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all detailed power-grid states is partitioned into a collection of equivalence classes.

The model captures the cascading failures in the power grid, including HEP into

the state-space of the Markov chain [1]. To calculate the HEP, the authors used

the HEP formulation based on performance shaping factor (PSF) level multipliers

adopted from [64]. However, [1] has the following limitations. First, the mapping

of the human PSFs with the power grid variables is very coarse. Second, the

distribution of the PSFs is not embedded in the dynamics of cascading failures.

Third, the model only considered two PSFs that have a direct correlation with

the propagation of failures (out of the eight available in [64]). Other factors, such

as experience, work process, and procedures, were ignored.

1.5 Benefits and threats of interdependency between power grid layers

Unlike traditional power grids, the interdependency with a communication net-

work is an inherent attribute of smart grids, as they require seamless integration of

traditional power-plants, distributed energy resources (DERs) such as wind farms,

solar, and microgrids, as well as operation and management systems. Increased

interdependency between the power grid and the supporting communication net-

works allows power-grid operators to detect faults and implement robust control

actions to enhance the resilience of the grid. On the negative side of having more

interdependency, degradation in the communication and control networks, result-

ing from a cyber-attack, will impact the ability to prevent or slow-down cascading

failures in the power grid. Higher grid-communication interdependency increases

the exposure to cyber threat: hackers/attackers may intercept communication

networks and alter the control decisions by altering sensor data, injecting false

data, and so forth.

Conversely, power outages can lead to degradation in the information flow

from power nodes to the operators at the control center. Additionally, human

operators are also a critical component of the smart grid, and they introduce a
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new level of interdependency between the power grid and the communication and

control networks. For instance, as the communication and control capabilities

are degraded as a result of a cyber-attack, cascading failures in the power grids

can ensue, which altogether can create a stressful and intense environment for

the operators, which, in turn, increases the probability of operator errors as they

diagnose and implement corrective actions, which further exacerbates the cascade

in the smart grid [13, 10].

Based on the real-world examples provided above, it is of great importance

to study the interdependencies between these coupled systems (e.g., power grid

and communication network) in order to understand the coupling effects so that

cascading-failures can be prevented under stressed scenarios. Understanding the

impacts, both negative and positive, of information-centric smart grids is critical

in predicting the reliability and the resilience of the smart-grid. A robust intercon-

nection strategy is required to balance the trade-off between grid’s performance

enhancement and the resilience of the grid to cyber threat, i.e., maximize the

benefit of supervisory control and data acquisition (SCADA) information while

containing the exposure to the cyber threat which is the main thrust of this dis-

sertation.

1.6 Contribution of this dissertation

The main thrust of this dissertation is to analyze the strong interplay between

the power grid and the corresponding communication and control network, which

plays a pivotal role in the reliability and resilience of the smart grid. The dynam-

ics of the interdependence among smart-grid subsystems such as the power grid,

communication network, and response of human operators are captured during

the propagation of cascading failures.
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1.6.1 Benefits and harm of communication

The first contribution of this dissertation (discussed in detail in chapter 4)

is that a previously developed Markov-chain based model is refined into an in-

terdependent Markov chain model to capture the role of cyber threat from the

communication network and the human-operator error during cascading failures.

The state transitions of the Markov chain are parameterized by the critical op-

erating parameters of the power grid. The calculations assume a generic form of

correlation between the level of and damage from cyber-attacks, on the one hand,

and the level of interdependence on the other hand. The model finds the optimal

level of interdependence, i.e., the trade-off between well-informed control and vul-

nerability to attacks that minimizes the probability of massive cascading failures

in power grids. There is a point of diminishing returns beyond which the harm of

exposure to cyber threat outweighs the benefits of information.

1.6.2 Human error as a function of grid variables

The second contribution of this dissertation is that the role of human fac-

tors associated with the grid operators, e.g., human-error probability (HEP), is

modeled as a function of the grid conditions as well as operators’ training and

experience levels (discussed in detail in chapter 3). Moreover, the HEP is embed-

ded in a previously reported Markov-chain model that generates the probability

distribution of the blackout as a function of time following a trigger. Specifically,

through the HEP, the Markov-chain’s transition matrix includes the dynamics of

detailed smart-grid operator attributes. To derive the grid-state dependent HEP,

three real-valued performance shaping factors (PSFs), representing critical human

attributes of the operators, are mapped to the grid-state variables, thereby cap-

turing the correlation between the evolution of the PSF levels and the propagation

of transmission-line failures. This mapping is established based on a histogram-
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equalization principle [78], which utilizes the experimentally-estimated probability

distribution of the PSF levels while assuming a monotone relationship between the

HEP values and number of line failures. Further, the distribution of the PSF levels

was used to identify the critical combinations of PSF levels that correspond to an

event with high joint probability as well as a high HEP.

1.6.3 Estimating average transmission capacity loss and load loss

The third contribution is the development of an analytical model to predict

the average transmission-capacity loss and load loss during a cascading failure

as a function of time and their steady-state values (discussed in detail in chap-

ter 5). Cascading failures in the power grid are described using a Markov-chain

approach, in which the state transition probabilities depend on the number and

capacities of the failed lines. The transition matrix is characterized by parametri-

cally using Monte Carlo simulations of cascading failures in the power grid. The

severity of cascading failure is estimated using two metrics: the expected number

of transmission-line failures and the amount of load shedding/load loss (inferred

from the average transmission capacity loss) in the steady-state. These two met-

rics provide critical information regarding the severity of a cascading failure in a

power grid (in terms of both the distribution of blackout sizes and the amounts

of load shedding). One of the benefits of this model is that it enables the under-

standing of the effect of initial failures and the operating parameters of the power

grid on cascading failures.

1.6.4 Role of communication topology on the reliability of power grids

The fourth contribution is the modeling of the impact of the power grid and

communication network interdependencies on the reliability of the power grid by

capturing the influence of the communication network on the power grid during the

cascading phenomenon (discussed in detail in chapter 2). Two critical topological
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parameters of the communication network are studied, namely the hop distance

and the node degree, which are used to determine the behavior of the coupling

parameter between the two systems and to quantify the influence of communica-

tion network in the power grid. Finally, numerical results have been carried out

to quantify the impact of communication network failure on power grid reliability

and validate our proposed model.

1.6.5 Impact of initial conditions on grid reliability

The fifth contribution of this dissertation is the analysis of cascading failures

in the power grid under various initial conditions modeled analytically (discussed

in detail in chapter 6). First, Gaussian, circular, and linear stressors are used

as the initial events to model the probability of transmission line failure due to

the stressors. Second, Monte-Carlo simulations are used to analyze the impact

of cascading failures in the power grid based on the initial failure patterns. The

reported results show that upon the occurrence of an initial triggering event, a

combination of parameters (e.g., the number of stressors, the number of failed

transmission lines in each stressor location, the capacity of the failed transmission

lines, the power-grid loading level, the load-shedding constraints at the time of

the stressor event) strongly influence the dynamics of cascading failures and may

lead to massive blackouts.

1.6.6 Predicting Cascading Failures using machine learning algorithms

The sixth contribution of this dissertation is that we classify cascading failures

in a power grid that leads to massive blackouts in power grids using machine learn-

ing algorithms (discussed in detail in chapter 7). Since real-world cascading failure

data is not available, we create a synthetic cascading failure simulator framework

to generate cascading-failure data for various power grid operating parameters.

We include the topological parameters such as edge betweenness centrality, the
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average shortest distance for various combinations of two transmission line fail-

ures in our data set. Then we apply various machine learning algorithms to classify

cascading failures and compare accuracy. Further, we use regressive models to pre-

dict the number of failed transmission line and the amount of load shedding. This

data-driven technique is useful to quickly predict and classify cascading failures

based on the input power grid conditions, and hence power grid design engineers

can use this to increase the robustness of the grid.

1.7 Organization of this dissertation

This dissertation is organized as follows. In chapter 2.1, we first describe our

cascading failure simulator (CFS) framework. There is no straightforward and

publicly available cascading failures analysis tool. However, a widely accepted

MATPOWER [79] tool for power flow simulation are available where power flow

analysis can be done using IEEE standard case studies (case studies can also be

customized). In this dissertation, we have used the MATPOWER power flow tool

for power flow analysis and developed our cascading failure simulator on top of

it. The detailed framework of the simulator, along with the algorithms, will be

discussed in chapter 2.1.

Next, in chapter 2, we model the impact of communication network failures

on power grid reliability and present a naive analytic approach for modeling

cascading-failures in power grids including communication and human operator

impacts.

Then, in chapter 3, we establish a correlation between grid-operators’ perfor-

mance with cascading failures in smart-grids.

Next, In chapter 4, we develop the interdependent cascading failure model.

First, we discuss the interdependencies between coupled layers. Next, we present

a detailed discussion about the modeling of system operator errors and the use of

the distribution of the operators’ performance shaping factor distributions. Here
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we map the human error levels as a function of the state variables of the Markov

chain. Next, we discuss the trade-off between the grid’s performance enhancement

and risks of cyber threats. We then modify this approach to capture the dynamics

of cyber threats using a state variable of the Markov chain.

Further, we refine the base SASE model in chapter 5 to model the dynamics

of transmission capacity and load loss during cascading failures in power grids.

To this point, we have assumed that the initial conditions occur due to various

natural and human-made events but did not model the initial conditions. In

chapter 6, we model the impact of an initial stressor(s) on cascading failures in

power grids.

Next, in chapter 7, we discuss how the cascading failure simulation framework

developed in chapter 2.1 can be used to collect data, which can be used to feed

machine learning models for regression and classification purposes. We use various

machine learning algorithms and make a comparison of the model performance.

Finally, we conclude our dissertation with the summary and future directions

in chapter 8.
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Chapter 2

Multi-layer Markov-chain based cascading-failures model

Recent studies on interdependent systems have considered interactions either

between the power grid and the communication network [7, 21, 30, 44]. There are

also efforts in understanding the role of human operators’ on the reliability of the

power grids [1]. However, the study of these systems considering the interactions

among power grid, communication network, and human operators’ have not been

presented heretofore.

In this chapter, we present a comprehensive three-layer model for capturing

cascading-failure dynamics that take into account the interdependency among the

three-layers’ (i.e., power grid, communication network, and human factors) of the

grid. The Markov-chain based model (SASE and IDMC; described in chapter

1) is used to capture the dynamics of cascading-failures. Precisely, cascading-

failure dynamics in the power grid capture the internal dynamics of the power

grid as well as performance and connectivity degradation’s in the communication

network and the human errors through the Markov chain abstraction. Failures of

communication components can cause a delay in communication, which can affect

critical control signals from supervisory control and data acquisition (SCADA). In

the human-factor layer, operators’ behavior will be affected by the status of both

of the power system and the communication network. When failures occur in the

power system, operators’ may face stress and could make decisions that are not

optimal. Hence, operators’ may take wrong actions or no action to contingencies

in the power system. Any of the sub-optimal choices made by the operators

mentioned above can be considered as human error in the three-layer model.

A critical insight obtained from the proposed three-layer model to the smart
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Figure 2.1: IEEE 118-bus topology (control-center marked). Green and orange
mark defines the clusters we used for simulation in Section 2.4.3 [6].

grid infrastructure is that interdependencies among reliable systems, i.e., systems

with exponentially distributed failure sizes, can make the overall system behave

unreliably, as evidenced by power-law distributions for the overall system while

individual layers’ exhibited exponentially distributed failure sizes. To the best of

our knowledge, a combined interaction among power, communication, and human

layers’ were not considered in any of the previous works relating to the cascading-

failure studies of the power grid. As the critical contribution of this work, we

analyze the coupled interactions among these three-layers’ and develop a compre-

hensive model that captures the complex dynamics of the cascading-failures in the

power grid.

2.1 Simulating cascading failures in power grids

The basic structure of the cascading failure simulation framework was devel-

oped in a prior dissertation work [80]. Due to the dependence of the simulation

framework on the successive works, we first summarize the development of the sim-

ulation framework. The following link contains the simulation codes used in this
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dissertation (https://github.com/rashuvro/Modeling-Cascading-failures-in-smart-

grids-Ph.D.-research-)

2.2 Cascading failure simulation (CFS) framework

We use MATPOWER [79], a package of MATLAB m-files for solving the

steady-state DC/AC power flow optimization problem [81]. It uses the power-

flow distribution framework under the given set of constraints. The standard

power flow or load flow problem involves solving for the set of voltages and flows

in a network corresponding to a specified pattern of load and generation [81].

MATPOWER includes solvers for both AC and DC optimal power flow problems,

both of which involve solving a set of equations of the form g(x) = 0. In this

dissertation, we develop our data set using the DC optimal power flow for sim-

plicity. Here the word optimal refers that the power flow solutions depend on a

set of constraints, and each time the best possible solution is provided satisfying

the set of constraints. Although the AC power flow captures detailed dynamics of

cascading failures in power grids, including the transient effects, the effect on the

number of transmission line failures is found to be incremental [33].

2.2.1 Overview of the CFS framework

We show a flowchart in Figure 2.2 that illustrates the CFS framework used in

this dissertation. We start with some initial number of transmission-line failure

in the power grid initiated from an arbitrary initial event. The initial failures can

be the outcome of a variety of initial incidents ranging from natural disasters to

intentional sabotages. In subsequent work in this dissertation, we will show an

approach for modeling these initial disturbance events. Here, it is important to

note that we fail at least two transmission lines initially because the power grid

is robust against one transmission line failure due to N-1 security considerations.

Various incidents can trigger transmission line failures initially in the power grid,
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Figure 2.2: Flowchart of the cascading failure process in power grid

and we start our simulation using those failed transmission lines. The initial

transmission line failures are randomly distributed over the space of the grid. We

assume to have sufficient knowledge regarding the power grid topology and the

operating parameters before the initial triggering event. We then remove the failed

transmission lines from the system and check whether any islands are formed in

the power grid because of those line failures. An island is a self-sufficient local

network that operates independently when disconnected from the base network,

having a set of generators and loads. Depending on whether any islands are

formed or not, we then solve the DC optimal power flow using MATPOWER

on each island. Note that, in the simulations, if the grids get islanded, we keep

track all the islands (as if they are now individual grids) and run power-flow

simulation in individual islands separately. Then we estimate the probability

cascade stop and its parameters parametrically using the combined data obtained

from all the islanded grids, not from the largest component of the grid. This

approach implicitly captures islanding and its effects in the analytical model. For

example, if a set of initial conditions result in various range of islands in the

simulation, the estimated cascade stop probability would be different. If we have

overloaded lines in the system, we can fail those lines, probabilistically fail a set
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of lines among them (e.g., failing top N lines ranked using overload) or fail one

transmission line per iteration of the power flow. In this dissertation, we use a

similar approach used in [5] for islanding and overloading calculations and share

two algorithms for calculating islanding and overloading in power grids. We repeat

the same process until we end up with a system with no overloaded lines, which

indicates the cascade-end.

This simulation framework is then used to perform Monte-Carlo simulations

[82], which is a renowned computational simulation technique to obtain numerical

results using random sampling. In Monte Carlo simulations, a subset of samples is

chosen randomly from the population and then used to calculate the statistics of

the population such as mean, distribution of the population. In our work, we use

Monte Carlo technique to simulate cascading failures for various initial conditions

of the grid chosen randomly, observe the cascading failure behaviors using the

simulation framework described above, and then use the sample data to estimate

the probability of cascade stop, which is a key parameter that governs the state

transition probabilities of the Markov chain.

2.2.2 Power grid operating parameters and variables for cascading fail-

ures

Based on power grid simulations and prior works, we identify the following

power grid operating parameters that govern the cascading failure dynamics. In

our simulation, we use the IEEE 118-bus system (which is a simple approximation

of the American Electric Power system (in the U.S. Midwest) [83]) as the test case

which contains 186 transmission lines, 118 buses (nodes) and 54 generators.

power grid loading level, r: We define the power grid loading level, r ∈ [0, 1]

as the ratio of the total load demand, and the generation capacity of the power grid.

In the IEEE 118-bus system, the maximum generation is 9966MW. r = 1 indicates

the demand is 9966MW and r ∈ [0, 1] scales the power demand with respect
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to maximum possible generation. In our simulation, we simulate the cascading

failures with various r. Note that a higher value of r increases the stress in the

grid. We observe that for r < 0.5, the power grid is under no stress and can

absorb the impact of two transmission line failures and redistribute the power

flow without any further failures.

load-shedding constraint, θ: The load-shedding constraint is defined as

the ratio of uncontrollable loads (loads that do not participate in load shedding)

and the total load in the power grid denoted by, θ ∈ [0, 1]. This is an important

parameter to ensure the control actions by the power grid operator. θ = 1 indicates

that all the loads are uncontrollable, and the human operators can perform no load

shedding. Again, θ = 0 indicates that the operators can shed any load on the grid.

In this paper, we consider equal load shedding constraints over all the loads in the

grid. Further, we choose θ randomly between [0,1] in our simulations. Similar to

r, a higher value of θ increases the probability of cascading failure in the power

grid.

Capacity estimation error, e: The Capacity estimation error, e ∈ [0, 1] is

defined as the error by the control center in its estimation of the actual capacity

of the lines. In our CFS framework, this parameter is used to calculate overloaded

lines. We used the same approach used in [5] to calculate overloaded lines. When

power flow in a transmission line exceeds (1-e)× capacity, we consider that line as

an overloaded line. We estimate the capacity of a transmission line using power

flow simulation under maximum loads, i.e., when generation equals demand (r=1).

Note that, since we use DC power flow simulation, there are no transient effects,

and we can use the maximum generation without any issues. We quantize the flow

capacity of a transmission line into a set of five capacities {20, 80, 200, 500, 800}

MW [81], and assign this capacity of the transmission line as a constraint of the

MATPOWER power flow optimization problem (discussed later). In this paper,
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we collect cascading failure data using various values of e.

In addition to the parameters mentioned above, we use the optimal power flow

algorithm from MATPOWER, which includes the capability of implementing load

shedding depending on cost. In our simulations, we set the cost of load shedding

ten times higher than the cost of generation to ensure maximum generation before

any load shedding. We track the cumulative amount of load shedding as a critical

grid parameter. We keep track of the number of failed transmission lines and the

maximum capacity of the failed lines during the propagation of cascading failures.

2.2.3 Optimal power flow

We solve the following DC optimal power flow equation 2.1 where F is a vector

of power flow in transmission lines, A is a matrix whose elements can be calcu-

lated in terms of the connectivity of transmission lines in the power grid, and the

impedance of the lines and P is a vector which contains the generator information.

F = AP (2.1)

The optimization cost function and constraints are as follows,

cost =
∑
i∈G

wgi gi +
∑
j∈L

wljlj (2.2)

with the following optimization constraints

(1) Power flow equations (1).

(2) Generator power: 0 ≤ gi ≤ Gmax
i , i ∈ G

(3) Controllable loads: (1-θj)Lj ≤bj ≤ 0,

i ∈ L,lj = bj + θjLj

(4) Transmission line power flow: Fk ≤ Copt
k

(5) Power balance:
∑

i∈G gi +
∑

j∈L lj = 0,
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where gi is the output of each generator, and li is the output at each load. Copt
k

is the capacity of a transmission line, and Gmax
i is the generator capacity.In this

cost function, wgi and wlj are positive values representing the generation cost and

the load-shedding cost for every node, respectively. Controllable loads are defined

using θ parameter. Finally, the power balance is done by the optimizer using a

reference generator, typically the generator with the largest generation capacity

is selected as the reference generator. The output of the MATPOWER contains

power flow through each transmission line satisfying the constraints. If the load is

greater than generation, than the excessive load is curtailed as load shedding. At

this point, one might ask if the MATPOWER gives a power flow solution based

on the set of constraints, then why there will be overloading? The answer is in

the original MATPOWER solution; there is no overloading. However, to simulate

cascading failure in power grids, we introduce a power flow estimation error ∈ [0, 1]

(discussed in detail later in this chapter), which controls the cascading mechanism.

A higher power flow estimation error increases the chance of overloaded lines in

the system and hence the probability of cascading failures. Again, the optimal

power flow utilizes dispatchable loads to implement load shedding when the cost

of generation is higher than the cost of serving loads. Here, since the load shed

cost is set higher than the generation cost, load shedding is only performed when

the optimizer fails to satisfy the other optimization constraints since analyzing the

optimal generation and loads are not in the scope of this work.

2.2.4 Algorithms for finding the island and overloaded lines

Recall that we use DC optimal power-flow from MATPOWER, which is used

in many cascading failure analysis papers [32, 29, 7, 5] for simplicity. However,

we use a small failure probability(≤ 0.05) of the neighboring lines, which makes

our model from deterministic to stochastic. We use the following algorithm for

finding the maximum overloaded lines shown in algorithm 1.
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Algorithm 1 Algorithm for finding maximum overloaded lines probabilistically.

Require: α, PF,Capacity
Ensure: FailedIndex
1: for i← 1 to M do
2: Plf (i)← abs(PF (i))/((1− α) ∗ Capacity(i))

3: ProbTest← 0
4: for i← 1 to M do
5: if rand < LinkProb(i) then
6: if (ProbTest < Plf (i)) then
7: ProbTest = Plf (i));
8: FailedIndex = i

return FailedIndex

From the power flow data, overloaded transmission lines can be calculated,

which is used in several previous works [84, 5, 1, 32] to fail transmission lines

in the power grid. We consider a line failure when power flow through a line

exceeds the maximum allowable power flow limit through that transmission line.

Once we find overflow in a transmission line, we fail that line and re-calculate

optimal power flow (OPF) using the remaining transmission lines. We take one or

multiple transmission line failures per time unit to understand the cascading failure

dynamics effectively. One way to choose one transmission line to fail out of all the

overloaded lines is that if multiple transmission lines exceed the capacity threshold,

we fail the line with the maximum deviation from the overflow threshold. Since the

power grid needs to balance generation and load, the overloaded failed transmission

lines can initiate a cascade of failures in the successive time steps.

Algorithm 2 shows our methodology for solving power flow in each of the

islands created during the simulation. Recall that, an island in a power grid is

a self-sufficient grid network containing both load and generators created when

transmission line failure breaks the vast connected network into a small localized

connected network. During each iteration, we calculate the number of islands

formed in the grid and solve power flow simulation at each island using algorithm

2.
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Algorithm 2 Algorithm for solving power flow in each islanded grid

Require: mpc, S, C
Ensure: GD, PF

SG = sparse(AdjMatrix)
[S, c] = graphconncomp(G)
for i← 1 to s do

struct mpc[s]← mpc
[PF,GD] = rundcopf(mpc[s])

return GD, PF

2.3 Influence of communication network on the reliability of the power Grid

In this section, we study the influence of communication network functionality

on the power grid. Specifically, we analyze the impact of power-communication

interdependency on the reliability of the power grid during cascading failures. Two

topological parameters of the communication network are studied, namely the hop

distance and the node degree, which are used to determine the coupling between

the two systems and to quantify the influence of the communication network on

the power grid. We model the power-communication coupling parameter d, which

captures the topological changes in the communication network. We study the

influence of the power grid by analyzing the dependency between communication-

link failures and transmission-line failures. The characterization of the coupling

parameter, d is based on two topological parameters of the communication net-

work, namely the hop distance and the node degree. The IDMC model in [44] refers

to this coupling parameter but considered it as a constant. Instead, we formulate

the coupling parameter d as a linear combination of the minimum hop distance

and the maximum node degree of the failed communication nodes. Our observa-

tions illustrate that a decrease in the minimum hop distance or an increase in the

maximum node degree of the failed communication nodes increases the probability

of cascading failures in the power grid. By characterizing the coupling parameter,

d, we analyze the impact of failures in the communication network on cascading-
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failures in the power grid. Finally, numerical results have been carried out to

quantify the impact of communication network failure on power grid reliability

and validate our proposed work.

We start by adopting the IEEE 118-bus topology used in [6] for the transmis-

sion network of the power grid and use it to extract a topology for the communica-

tion network. In particular, communication nodes are placed at each substation,

and communication links are set along each transmission-line similar to Supervi-

sory control and data acquisition (SCADA) system, which is extensively used as

a communication system in the power grid. Furthermore, there is one or multiple

communication node(s) serving as a control center(s) in the power grid. Similar

topologies of the power grid and communication networks were also considered in

[7]. The control center monitors the health of the power grid and takes supervi-

sory actions based on events to maintain optimal power flow. Figure 2.1 shows the

control center (red circle) we used in IEEE 118-bus system. In this work, we have

chosen the node with the largest node degree as the control center. Under normal

operation, when disturbances occur in the power grid, operators at the control

center can reconfigure the system by re-calculating the power flow and shedding

a certain amount of loads. The load-shedding is usually done either manually or

through an intelligent load-shedding management system over the communication

network to balance the power flow [77].

We examine the dynamics of the communication network topology and its

impact on the cascading-failure by including three key attributes describing the

status of the communication network. The three attributes are the number of

communication-node failures (yn), the maximum degree of the failed communication-

nodes (rn), the minimum hop distance of the failed communication-nodes from

the control center (hn). Specifically, using [44], the state transition probabil-

ity f(sn+1|sn) from state Sn = (xn, in, yn, ln, kn, hn, rn) to the next state Sn+1 =
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(xn+1, in+1, yn+1, ln+1, kn+1, hn+1, rn+1) is expressed below:

f(sn+1|sn) =



1 if in = 1, xn+1 = xn, ln+1 = ln, yn+1 = yn

q(yn) if in = in+1 = 0, ln = 0, xn+1 = xn, yn+1 = yn + 1

1− q(yn) if in = in+1 = 0, ln = 0 , xn+1 = xn, yn+1 = yn

1− p(xn)(1−d(yn,hn,rn))
(kn+(1−d(yn,hn,rn)(1−kn))

if in = in+1 = 0, ln = 1, xn+1 = xn + 1, yn+1 = yn

p(xn)(1−d(yn,hn,rn))
(kn+(1−d(yn,hn,rn))(1−kn))

if in = 0, in+1 = 1, ln = 1, xn+1 = xn, yn+1 = yn

0 otherwise

(2.3)

To this end, we express the communication network state at time n as a function

of yn, rn and hn. The newly introduced variables hn and rn further characterize

the transition probability of the states, which were not considered in [44]. Note

that, q(yn) is the probability of having one additional failure in the communication

network.

Here, the quantity d(yn, rn, hn) indicates the coupling effect from communica-

tion network to power grid, and p(xn) is the probability of transiting to a stable

state from a state with xn transmission-line failures. Note that, f(sn+1|sn) repre-

sents state transitions under different combinations of the state variables (includes

newly added hn and rn) which are consistent with the IDMC model [44]. In the

following section, we model the interdependency function d(yn, rn, hn), which cap-

tures the effects of the communication topology on cascading-failures. This is a

major departure from the model reported in [44], where d was assumed to be a

constant and the role of communication topology was not considered.
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Figure 2.3: Empirical probability distribution, over the number of failed commu-
nication links, of the minimum hop distance of the center node to failed links (left)
and the maximum degree (right) of failed nodes.

2.4 Modeling the communication-power interdependency function

In this section, we model the interdependency function d(yn, rn, hn).

2.4.1 Simulation setup

To evaluate the influence of the communication network on the power grid,

we have developed a coupled communication and power-grid simulator. We con-

ducted extensive Monte-Carlo simulations using MATPOWER [79], a package

of MATLAB m-files for solving the optimal power flow problems. To simulate

cascading-failures in power grids, we have used the approach described in chapter

2.1.

Specifically, the loading ratio, r of the power grid in the simulations, is assumed

0.7. The line tripping threshold, e, and the load-shedding constraint level,θ are

assumed 0.3 and 0.2, respectively. Note that such a power-system operating set-

ting makes the power grid under stress [5]. Now we initially fail a few random

transmission-line failures in the power grid. Next, with probability q(yn) we simu-

late the associated communication-link failures which is adopted from the IDMC

[44] model that includes a general term similar to q(yn). The probability q(yn)

represents the influence of the power grid on the communication network. Fol-

lowing the simulation of the communication link failure, power flow through the
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Figure 2.4: Empirical probability distribution of the communication-link failure
over the minimum hop distance of the failed links (left) and the maximum node
degree of the failed nodes (right).

transmission-lines in the power-grid is re-calculated. The overloaded line is failed

using the line-failure algorithm described in chapter 2.1. In the simulation, we

also assume that failures of communication links that are directly connected to

the control center influence the failure in the power grid. Because, in a physical

grid, the control center cannot send the necessary control signals to optimize the

power flow through the missing communication path [7]. Communication links

that are directly connected to the control center have a higher impact on relia-

bility compared to other communication links as control centers are expected to

monitor and interact with the electric devices remotely in real-time [74]. Hence,

in the simulations, we scale up the probability of transmission-line failures in the

power system based on the number of failed communication links that are directly

connected to the control center. In the next subsection, the results of this simula-

tion will be used to extract an analytical formula for the interdependency function

d(yn, rn, hn).
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2.4.2 Modeling the interdependency as a function of hop distance and

node degree

Simulation results suggest that the communication nodes with higher degrees

or lower hop distances have a greater impact on cascading-failures in the power-

grid than the communication nodes with lower degrees or higher hop distances. In

particular, the probability for the occurrence of cascading-failures in power grids

increases when some communication node with high degrees or small hop distances

from the control center fails. Here we develop a simple form, in conjunction

with certain reasonable assumptions (originated from the results of the optimal

power-flow simulation), to approximately represent the interdependency function,

d(yn, rn, hn), whose range is in the interval [0,1]. The proposed form of d(yn, rn, hn)

is:

d(yn, rn, hn) = wpfailhop (hn) + (1− w)pfaildegree(rn) (2.4)

where w is a weight factor between 0 and 1. In equation (2.4), the terms pfailhop (hn)

and pfaildegree(rn) refer to the probability distribution, which indicates the proba-

bility of a communication-link failure attributed to the minimum hop-distance

state and maximum node-degree state, respectively. These probabilities can be

estimated from the simulation study. Figure 2.3 shows the dependence of the

minimum hop distance (left) and maximum node degree (right) with the number

of failed communication links. We then compute the empirical probability distri-

bution of communication-link failures as a function of the minimum hop-distance

(between the central communication node and the failed communication links)

and the maximum node-degree (of the failed communication nodes), as shown in

Figure 2.4. Note that, in the right Figure of 2.4, when the mean of maximum

node degree was eight, the probability value did not follow the increasing trend

because of lack of enough samples. The observations in Figures 2.3 and 2.4 im-
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Figure 2.5: Hop distance (left) and node degree (right) distribution as a function
of failed communication links.

ply that the interdependency function d on the state variables rn and hn can be

made implicit through the variable yn, i.e., d(yn). Hence, we can express pfailhop (hn)

and pfaildegree(rn) as p̃failhop (yn) and p̃faildegree(yn), respectively. In order to completely

characterize d(yn), we further need to have analytical formulas for p̃failhop (yn) and

p̃faildegree(yn). From Figure 2.4, we observe that the probability of communication-

link failures, attributed to a certain minimum hop-distance (left) and maximum

node-degree (right), respectively, follows a certain trend. Specifically, we can di-

vide the observed behavior in each probability graph into two phases. For the

minimum hop-distance probability (from Figure 2.4 (left)), we observed that at

phase one, the probability of communication-link failure is decreasing from the

maximum. While during phase two, the probability of communication-link failure

is at minimum. Hence, we propose the following formula for p̃failhop (yn):

p̃failhop (yn) = pfailhop (hn) =


a1

h4
n
if 1 ≤ hn ≤ m

ε if hn > m

(2.5)

Here, we introduced the variable a1 to represent the disturbance incurred when

the minimum hop-distance of the communication system at unity. A minimum

hop-distance value, hn = m, indicates a critical value where the probability of
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failure p̃failhop (yn) decreases from a1 to ε and enters from phase one to phase two

(our results suggests ε =0.01).

From Figure 2.4 (right), the probability of failure at maximum node degree

during phase one is minimal and equals to ε. A maximum node degree value,

rn = n, indicates a critical value where the probability of failure p̃faildegree(yn) exceeds

ε (enters from phase one to phase two) and for values rn > n, p̃faildegree(yn) increases

monotonically. Hence, we propose the following formula for p̃faildegree(yn):

p̃faildegree(yn) = pfaildegree(rn) =


ε if 1 ≤ rn < n

a2r
4
n + ε if rn ≥ n

(2.6)

Similar to variable a1 considered for the minimum hop-distance, we introduce

a variable a2 to represent the disturbance incurred from maximum node-degree

of the communication system at unity. With equation (2.5 and (2.6) at hand, we

have completely modeled d(yn).

To this end, the interdependency function d can be approximated by a func-

tion that depends on yn alone. Generally, we note that d(yn) has the maximum

value when the failed communication links have the minimum hop distance hn and

maximum node degree rn for any given communication network. Intuitively, the

lower the value of d(yn), the more stable the power grid is. Specifically, d(yn) = 0

indicates that there is no dependency of communication-network failure on power-

system failures. In contrast, d(yn) = 1 implies deterministic failure in the power

system, i.e., every failure of the transmission-line will cause a failure in the asso-

ciated communication link. Throughout this paper we will assume w = 0.5, i.e.,

equal weights for simplicity.
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Figure 2.6: Blackout size distribution, ten initial random failures each with certain
hop distance of two, four and six.

2.4.3 Simulation of the IEEE 118-bus system including communica-

tion network influence for different case

Using the aforementioned simulator, we have simulated the IEEE 118-bus sys-

tem for different types of failure scenarios and empirically calculated the blackout

distributions for each case. We have simulated the communication topology based

on the following two particular scenarios.

First, we have simulated the blackout distribution in the power grid for ten

initial communication node and power line failures with various hop distances.

From Figure 2.6, we observed that failure in communication nodes with lower hop

distances has higher blackout distribution as failures increase. This observation

signifies that we have a higher probability of cascading-failure when failures occur

at lower hop distances while keeping the node degree of the failed nodes fixed.

Thus, we conclude that the blackout probability increases as the mean of the

minimum hop distance are lower.

Next, we study the cluster failure scenarios. In particular, we will compare the
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Figure 2.7: Blackout size distribution for the two cluster-failure scenarios.

blackout distribution for two clusters (clusters one and two are marked as green

and orange, respectively), as shown in Figure 2.1. Note that both the mean of

the minimum hop and the mean of the maximum degree are higher in cluster two

to those in cluster one. As expected, we can observe in Figure 2.7 that cluster

two is more conducive to cascading-failure than cluster one with higher blackout

distribution during the initial phase of the communication-network node failures.

2.4.4 Simulating the Markov chain of the proposed model

With the proposed interdependency function d, as shown in equation (2.4), in

conjunction with equation (2.5) and (2.6), we simulate the Markov chain of the

proposed model. Our purpose is to validate the IDMC model by comparing its

results to those obtained from the coupled communication and power-grid sim-

ulator. To do so, we study the case with three random initial transmission-line

failures. Note that the topological property of the communication network is em-

bedded in the interdependency function, d since d was extracted from simulation

results using the actual communication network topology. Besides, the topological

property of the power system is embedded in the transition stop probability p(xn)
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Figure 2.8: Blackout distribution (log-log scale) obtained from simulating the
proposed model and the coupled power-to-communication simulator.

(established in the IDMC model [44] as a bowl shape function). In the simulation

of the IDMC model, we simulate the evolution of the two coupled Markov chains

based on the transition matrix f(sn+1|sn), in conjunction with the interdepen-

dency function d proposed in Section V, for 106 iterations. For each iteration, the

evolution stops when it reaches an absorbing state. We then average the black-

out sizes obtained overall iterations to calculate the blackout size distribution. In

Figure 2.8, we compare the blackout distribution of cascading-failures obtained

empirically by simulating the proposed model with the results obtained from the

coupled communication and power-grid simulator. It is clear that the two results

agree in showing a similar trend in the blackout size distribution. Note that the

results obtained from the coupled simulator are not precise when the number of

failed transmission-lines is large (e.g., over 100), which is due to the limited sample

size of large blackouts. All in all, these results validate that the proposed model is

effective in capturing the impact of the interdependency between the power sys-

tem and communication network on cascading-failures in the power-grid. Thus,

we have developed a communication-power interdependency function, d that is
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determined by hop distance from a central node, and the degree of the node in the

communication network. This coupling function captures the influence of the com-

munication networks on the power system under different stress levels of the power

grid during cascading-failures. We have devised a coupled power-communication

simulator and conducted extensive simulations to validate the proposed model-

ing of the coupling function in various cascading-failure scenarios. A key insight

obtained from the simulation results is that the total blackout probability in the

power grid can be significantly impacted by the failures in the communication net-

work when the power grid is under stress. Our simulation results illustrate that

the proposed model is an efficient model to investigate the cascading-failures in the

interdependent power grid. The computational time for simulating the proposed

model is reduced by a factor of 107 to the time using the coupled simulator.

2.5 A Markov-chain based three-layer Model for cascading-failures in smart grids

In this section, we refine the SASE model to capture the influence of the com-

munication network and human operators’ response on the reliability of the power

grid. The Markov chain captures the cascading-failure dynamics in the power grid

in reduced abstract state-space. Each state in the Markov chain corresponds to

a specific state of the power grid. We define the states at which cascading-failure

ends as the absorbing states. When the Markov chain reaches to an absorbing

state, there will be no further failures. The rest of the states of the Markov chain

is termed as cascade-continue states in which cascading-failure will evolve until

it reaches an absorbing state. We also characterize the state transitions for the

Markov chain model in this section using our simulations. Finally, we study the

blackout sizes of the power grid given any initial condition.
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2.5.1 Markov chain based cascading-failure model capturing power,

communication and human factors

Recall that, in the Stochastic Abstract space evolution (SASE) model [5],

cascading-failure evolution was characterized using a Markov chain, which cap-

tures the failure dynamics in the power system. In particular, in the SASE model,

a state Si of the Markov chain consisting of three state variables: the transmission

line failures in the system, Xi, maximum capacity of the failed transmission lines

Cmax
i and a {0, 1}-valued variable termed cascade-stability of the system, Ii, for

which Ii = 0 indicates the system is susceptible to further failures and Ii = 1

indicates that no further failures are possible. Hence, the system has entered a

cascade-stable mode. The operating characteristics considered in the SASE model

[5] are based on power grid simulations, and they include line-tripping threshold,

e, power-grid loading level, r, and the load-shedding constraint level, θ. Power

grid is stressed when the characteristic parameters, r, e, θ are high. Cascade-stop

probability Pstop(Si), was characterized parametrically in the SASE model using

power system simulations [5]. In work by Wang et al., a new state variable for the

Markov chain, i.e., human operators’ response Hi, was introduced [85]. A coupled

parameter g(Hi) was introduced to capture the influence of the human operator

on the power grid. Cascade-stop probability Pstop(Si) was defined parametrically

using an operating characteristic of the power grid while considering the role of

human factors. In the previous section, the power-communication coupling pa-

rameter, d is modeled that influence of the communication network on the power

grid. It has been shown that a decrement in the minimum hop distance or an in-

crement in the maximum node degree of the failed communication nodes increases

the cascading-failure probability in the power grid. To this end, we observe from

[5, 44, 62, 85] that using a Markov chain the coupled interactions between different
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Figure 2.9: State transition diagram for the three layer Markov chain

layers’ of the power grid can be explained efficiently.

In this section, we consider IEEE 118-bus topology, which contains 186 trans-

mission lines. Similar to the previous section, we consider the same topology

for the communication network, which has a one-one mapping between power

and communication nodes. In particular, communication nodes are placed at each

substation, and communication links are set along each transmission line. Further-

more, there is one or multiple communication nodes serving as a control center(s)

in the power grid. The power grid operation control center monitors the health of

the power grid and takes supervisory actions based on various events to maintain

optimum power flow in the power transmission layer. For example, Figure 2.1

shows the IEEE 118-bus topology for the power grids and a marked control center

(red circle) in the IEEE 118-bus system. During contingencies, when power grid

disturbances occur, human operators in the control center can reconfigure the sys-

tem by, for instance, reconfiguring power flow, changing generators’ set points, and
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Table 2.1: Human Operator response levels based on failure in power and com-
munication network

Level Definition Available action time Stress
1 X ≤ 5 and Y ≤ 10 Normal Normal

2
5 < X ≤ 10 and
10 < Y ≤ 30

Low High

3
10 < X ≤ 50
and Y > 30

Extremely low Extreme

4 X > 50 N/A N/A

shedding a certain amount of load. Load-shedding is usually done either manually

or through an intelligent load-shedding management system (while the communi-

cation network plays a key role in implementing the load-shedding decisions) to

balance the power flow [77]. In the three-layers of the Markov chain, we consider

that the absorbing state is associated with the power grid layer because, once a

cascading-failure is initiated, it can stop only when there are no further failures in

the power grid. We evaluate the parameters (Pstop(Si), di and Hi) of the current

state (i.e, i) to calculate the state transition probability (described in the next

sub-section) of the next state of the Markov chain.

2.5.2 State transitions

We consider the state variables, Si = (Xi, Yi, Hi, Ii, Ki) in the three-layer model

to represent an abstract state Si, where Xi is the number of transmission-line

failures in power grid; Yi is the number of communication-link failures; Hi refers

human operator performance level; Ii = power grid stability indicator, a {0,1}

valued binary variable, and Ki is the layer tracking parameter. K is defined as

K = mod(k, 3), k = 0, 1, 2... for the three-layers’ and k increases one step at a time.

At K = 0, the power grid dynamics are evaluated, at K = 1, the communication

network dynamics are assessed, and at K = 2, we estimate the human operator

performance level. We use the coupling parameter, d for communication networks

influence as described in the previous section, and coupling parameter for human
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operation’s influence, g(Hi) from [85].

Figure 2.9 illustrates the state transitions in the three-layers’ characterizing

cascading-failures in the smart grid. We did not consider any healing during cas-

cade propagation, i.e., failures increase monotonically in the power grid (i.e., Xi

is non-decreasing) and have focused on the negative effects of interdependencies

in this work. We consider that when failures trigger in the power grid, failures in

the communication network and the operator response level (leads to human op-

erator error) also increases monotonically during cascading-failures. From Figure

2.9, we observe that, for a transition from Si to Si+1 state, we go through each

layer of the three-layer system using the layer tracking parameter, K (power grid,

communication network, and human operator response) and evaluate the coupling

parameters. We start the coupling parameters with some initial value conditional

on the initial state (for example, if power grid and communication network is op-

erating with no failures, then d = 0 and g(Hi) = 0). We calculate Pstop(Si) with

Xi failures using the following analytic formulation from [5].

Pstop(Si) =


a1(a2L−Xi

a2L
) + ε if 1 ≤ Xi ≤ a2L

ε if 1 < Xi ≤ 0.6L

Q(Xi) if 0.6L < Xi ≤ L,

(2.7)

where L is the total number of transmission-lines, Q(Xi) is a fixed quadratic

function approximating the tail of the family of bowl-shape functions. In our

simulations for the three-layer model we also got similar bowl-shape behavior as

illustrated in Figure 2.10. Without loss of generality Pstop(L) = 1, i.e., there is no

more transmission-line failures when all the transmission lines have failed in the

power grid. Scaling parameters a1, a2 and ε were approximated using the power

grid characteristic parameters (r, e, θ) using the following parametric formulation

obtained from power system simulation presented in [1]:
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a1 = 0.4− 0.25b[r]c0.5 − [e]0.50.1(0.2− [e]0.50.1)− 0.25d[θ]e0.4 (2.8)

a2 = 0.1− 0.05b[r]c0.5 − 0.1[e]0.50.1(0.2− [e]0.50.1)− 0.07d[θ]e0.4 (2.9)

ε = 0.6− 0.4b[r]c0.5 − 0.5[e]0.50.1 − 0.3d[θ]e0.4. (2.10)

Note that, the constants in the scaling parameters a1, a2 and ε are empirically

calculated based on the simulation results (part of the results have been shown

in [6, 5, 1]). When Xi+1 = Xi; Ii = 0; Ii+1 = 1; Ki+1 = 0; the Markov chain

will have a state transition from a cascade-continue state to an absorbing state

with probability P(Si+1|Si) = Pstop(Si) di g(Hi) (marked with solid line in Figure

2.9). Here, we took the Cartesian product among the coupling parameters as all

the three coupling parameters are [0,1] valued probability estimates and Cartesian

the product (which is also [0,1] valued) gives a combined state transition from a

cascade-continue state to an absorbing state. Note that, when there are no failures

in the power grid, d = 1 and g(Hi) = 1.

For Xi+1 = Xi + 1; Ii+1 = Ii = 0; Ki+1 = 0; the Markov chain will be in a

transitory state (marked with dotted line in Figure 2.9) having one new failure in

the power grid, with following transition probability: P(Si+1|Si) = 1 - (Pstop(Si)

di g(Hi)). At this stage, we will update the coupling parameters from each layer

for the state i + 1. The status of the current layer is tracked using the layer

tracking parameter, K. With new failures in the power grid and with K = 0, we

calculate Pstop(Si+1) using equation (2.7) and update the layer tracking parameter

by one step using K = mod(k + 1, 3). At this stage (K = 1), we will evaluate the

failure dynamics of the communication network and calculate the communication-

power coupling parameter (d) in terms of minimum hop distance of the failed

communication lines and maximum degree of the failed communication nodes

using equation 2.4. Now, at K = 1, if Yi+1 = Yi; (i.e. there is no fail in the
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communication network) then di+1 = di and if Yi+1 > Yi; we calculate di+1 using

(2.4) and update the layer tracking parameter by one step using K = mod(k+1, 3).

At this stage (K = 2), we will evaluate the dynamics of the human opera-

tion involved in the cascading-failure process and calculate the operator response

level Hi using the hSASE model [1]. Table 5.1 shows the relationship between

the human operator performance level with the power grid and communication

network. We characterize the relation between human operator response due to

failure in the power and communication network in four levels. Here, level 1 indi-

cates normal power grid operation, and level 4 indicates certain failure dynamics

when operators’ cannot stop the cascading-failure due to an excessive number of

failures that have happened already. But the authors in [1] did not consider the

role of communication topology while calculating human operator response. Using

the definition from Table 5.1 (which includes failure in power grid and communi-

cation network), we then calculate the HEP using the following formula developed

in [64] (interested readers can refer to [63] [64] where human error probabilities

and their interactions with performance shaping factors (PSF) and nominal HEPs

(NHEP) were described in detail)

HEP (Hi) = NHEP
2∏
i=1

PSFi. (2.11)

In our model, two PSFs have been considered (available action time and stress

level of the operator) for calculating HEP (Hi). When Hi+1 = Hi, then there is

no change in human operator performance level and If Hi+1 > Hi; the human

operator stress level is increased and we calculate the new performance level, Hi+1

using g(Hi+1) = 1− b.HEP (Hi+1). Here, b is a free scaling parameter [1].

To this end, we have completely evaluated the three coupling parameters that

influence each other. Now, based on whether there will be any new failures in
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Figure 2.10: Cascade-stop probability with and without the influence of commu-
nication and human response.

the power grid or not, we again go to an absorbing or transitory state using

the state transition probability and calculate the coupling parameter for the new

state again. This loop of state transition and updating the coupling parameters

continues until the Markov chain goes into an absorbing state.

2.6 Simulation Results

Using our parametric formulation of the state transition dynamics, we now

perform Monte-Carlo simulation with the Markov chain. We consider the IEEE

118-bus power grid topology, which contains 186 transmission lines. We consider

two failures in the power grid and communication network initially (to negate the

N-1 security effect). We assume that if a communication node is failed, the links

connected to that communication node will fail too. The stress level in the power

grid is determined using the power grid characteristics parameter, r (power grid

loading ratio), e (capacity estimator error), θ (load-shedding constraint), which

was introduced in the SASE model [5]. We take blackout size distribution as

the critical parameter to assess the model, which is a widely adopted metric for

assessing cascading-failures [61, 31, 5]. It refers to the blackout probability of

certain transmission lines after the Markov chain enters into an absorbing state
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Figure 2.11: Blackout size (log-log scale) with and without the impact of commu-
nication and human operator influence.

under given initial condition ( number of initial failures and power grid operating

characteristic parameters, etc.).

First, Cascade-stop probabilities (with and without the consideration of the

coupling from a communication network and human factors) as a function of

the number of failed transmission lines are shown in Figure 2.10. At this state

of the Markov chain, there will be no further failures, and cascading-failures in

the power grid will stop. The cascade-stop probabilities were calculated when

the power grid is under stress (r = 0.95, e = 0.25, θ = 0.25). From Figure

2.10, it can be observed that cascade stop probability shows bowl shape for both

the cases, which we discussed already in the previous section. However, when

the communication network and human operator response were considered, we

observed low cascade-stop probability as compared to the power-grid-only scenario

for the transmission lines [5]. It illustrates poor human operator performance, and

failure in the communication network can lead to greater blackout size.

Figure 2.11 represents the impact of blackout size for three cases (with no influ-

ence, moderate influence, and strong influence from a communication network and
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Figure 2.12: Blackout size (log-log scale) comparison when the grid is not in stress
(r = 0.5, e = 0.1 and θ = 0.1 was considered for no stress scenario).

human operator into the power grid). Here, we considered the coupling parameter

d and H as 0.5 for moderate influence and 0.9 for high influence case. We observe

that without any influence, the blackout size follows an exponential distribution,

while for high deterministic influence, the blackout size follows a power-law dis-

tribution. The results obtained from the coupled simulator are not precise when

the number of failed transmission lines is large (e.g., over 100), which is due to

the limited sample size of massive blackouts.

Figures 2.12 and 2.13 represent the probability of blackout when the power

grid is under no stress and under stress, respectively (stress is regulated using the

characteristic parameters of the power grid). We consider four cases, i.e., power

grid only, power and communication coupling, power and human operator response

coupling, and all three-layers’ coupling to analyze the failure propagation and for

blackout size calculation. We observe that blackout size increases significantly

when the power grid is stressed and influenced by the communication network

and human operator response. It is visible from our simulation results that the

blackout size becomes more substantial when the power grid is in stress, and there

are influences from a communication network and human operators’. Figure 2.13
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Figure 2.13: Blackout size (log-log scale) comparison when the grid is under stress.
(r = 0.8, e = 0.2 and θ = 0.2 was considered for stressed scenario).

suggests that blackout size for the three-layer follows power-law distribution after

certain power grid operating parameters, although, for the single and two-layer

interactions, it shows the exponential distribution. From Figure 2.13, we can

see that blackout size distribution for all three-layer (black), and power grid and

communication influence (green) starts leaning to power-law when the number of

transmission line failure is around 50 while in the other two cases it’s exponential.

This is because of the higher influence of communication node failure then human

error. So, blackout sizes can result in reliable (exponential) and unreliable (power-

law) behavior due to different characteristic parameters’ and coupling between the

3-layers.

In this chapter, we discussed the role of communication and human operator

response level in the cascading failure dynamics in smart grids. However, the

detailed state transition probabilities of the Markov chain are not captured in this

work, which is a major drawback of the work. Again, as each layer of the grids is

considered to have an individual Markov chain, as the network grows, scalability

and tractability becomes a major concern with the IDMC approach, Which leads
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us to develop an alternative solution to be discussed in the next two chapters.
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Chapter 3

Correlating grid-operators’ performance with grid variables in

smart-grids during cascading failures

In this chapter, the role of human factors associated with the grid opera-

tors, e.g., human-error probability (HEP), is modeled as a function of the grid

conditions as well as operators’ training and experience levels. Moreover, the

HEP is embedded in a previously reported Markov-chain model that generates

the probability distribution of blackout as a function of time following a trigger.

Specifically, through the HEP, the Markov-chain’s transition matrix includes the

dynamics of detailed smart-grid operator attributes. To derive the grid-state de-

pendent HEP, three real-valued performance shaping factors (PSFs), representing

key human attributes of the operators, are mapped to the grid-state variables,

thereby capturing the correlation between the evolution of the PSF levels and

the propagation of transmission-line failures. This mapping is established based

on a histogram-equalization principle, which utilizes the experimentally-estimated

probability distribution of the PSF levels while assuming a monotone relationship

between the HEP values and number of line failures. Further, the distribution of

the PSF levels was used to identify the critical combinations of PSF levels that

correspond to an event with high joint probability as well as a high HEP.

3.1 Introduction

Human operators play a pivotal role in mitigating the propagation of cascading

failures. Human operator error (HEP) during propagation of failures can increase

the probability of a large blackout astronomically. Historical data analysis of large

power-grid blackouts strongly indicates operator error as a critical initiator of
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cascading failures. The 2003 Northeast blackout in the United States and Canada

occurred due to a combination of transmission-line and generating-unit failures,

communication components, and server failures, and ineffective and erroneous

human-operator responses [4]. Hence, studying the interplay between the power

grid and the smart-grid operators during cascading failures is critical in predicting

the reliability of the smart-grid. [15].

In this chapter, we propose a Markov-chain based cascading failure model,

including human operator actions and decisions in the loop. The joint probability

of three PSFs (available time, stress, and complexity of the problem) is used to map

the grid operators’ response levels with the grid states of the Markov chain. The

other five PSFs (experience of the operators, work process, fitness, ergonomics, and

procedures), which are not affected by the propagation of failures, is used as a fixed

initial parameter of the Markov chain for calculating the HEP, i.e., three PSFs

will have varying PSF levels (depending on the grid state of the Markov chain)

multipliers, and five PSFs will have a fixed PSF level and the associated multipliers

during the propagation of failures. Then, the calculated HEP from the PSFs in a

grid state is used to evaluate the probability of cascade stopping (in the Markov

chain), including the role of human operators. Notably, this incorporation of

the correlated and uncorrelated PSFs using our proposed methodology drastically

changes the state transition probabilities of the Markov chain compared to [1],

which now captures the detailed dynamics of the role of smart-grid operators

during cascading failures in the power grid. Finally, we identify a set of critical PSF

level combinations from all the possible events consisting of various combinations

of PSF levels. We show that only considering the HEP without considering the

distribution of the PSFs can be misleading, as in most cases, a combination of PSF

events will lead to high HEP but with very small/zero probability of occurrence.
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3.2 Markov chain based cascading failure model including operator in the loop

3.2.1 State variables and transition matrix of the Markov chain

Using a similar approach reported in [5, 1], the detailed power-grid states in the

same class are represented by a few aggregate state variables. The state variables

defining each equivalence class are the number of transmission-line failures, Fi,

the maximum capacity of the failed lines Cmax
i and a human-factor variable, Hi,

which captures the status of operators’ performance (using PSFs) controlling the

power grid. Notably, the reduced state variables also include a critical variable,

Ii, to capture the complex event of the cascade stopping: if the power grid is

in a cascading mode, then Ii = 0 and the cascade will continue. Conversely, the

cascading failure terminates if the power grid is in an absorbing state, namely when

Ii = 1. The state-dependent cascading-stop probability, Pstop, is parametrically

expressed in terms of power-grid loading level, r, capacity-estimation error, e, and

load-shedding constraint, θ [5].

The transition matrix of the Markov chain is a 2M |C| × 2M |C| matrix, where

M is the total number of failed transmission lines and |C| is the cardinality of the

set of capacities, which in this work is five, and 2 accounts for the binary variable

I. In our model, we do not consider any healing capability, thus, transmission-

line failure, Fi, increases monotonically with one failure per unit step. The state

transition probability, f(Sj|Si), from state Si = (Fi, C
max
i , Hi, Ii) to the next state
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Sj = (Fj, C
max
j , Hj, Ij), is defined below

f(Sj|Si) =



1 if Fj = Fi, C
max
j = Cmax

i , Ij = Ii = 1,

Pstop(Si)g(Hi)

if Fj = Fi, C
max
j = Cmax

i , Ij = 1,

P (Sj|Si)

if Fj = Fi + 1, Cmax
j ∈ C, Ij = 0,

0 otherwise.

(3.1)

Here Pstop(Si) is the probability of cascade-stop at state Si, and the human

factor variable is mapped explicitly using the Fi and Cmax
i , which is described in

the following section. We adopt the formulation of Pstop(Si) from [1] and P (Sj|Si)

from [5] (for details see [5, 1]). Note that g(Hi) = 1−HEP(Hi) is a function that

translates HEP for a specific human operator response into the transition matrix

of the Markov chain. Next, we describe the formulation of HEP.

During the initial triggering phase (precursor phase) of the cascading failures

in the power grid, the status of several power-grid operating parameters (i.e.,

loading level, the capability to implement load shedding, etc.) is critical to trig-

ger cascading failures and to determine the size of the blackout. In addition to

these power-grid operating parameters, the human operator attributes during the

initiation of a cascade play a critical part. For example, in most of the contin-

gency scenarios, operators are equipped with diagnostic procedures to devise a

mitigation strategy, have sufficient time to analyze the problem, and implement

actions accordingly. In [64], the authors used , Standardized Plant Analysis Risk-

Human Reliability Analysis (SPAR-H) methodology to calculate the HEP for a

given context.The SPAR-H methodology is a simplified approach to human error

quantification that accounts for individual performance-shaping factors that affect
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perception, processing and response to events in complex environments [63].Co-

author Dr. Abreu interviewed system operators from New England and the South

East, and took note of the narratives of the emergencies that happened during

their shift, which is then applied to the SPAR-H methodology to each task and

calculated dependency between the cognitive and action-based tasks. Then they

calculated the final failure probability and compared the empirical evaluation of

error probability with what actually occurred. Using Monte Carlo methods and

the SPAR-H equations, final estimation of the HEP and the frequency associated

with each level was calculated. Detailed step by step SPAR-H description of the

process can be found in [86]. Here the HEP is formulated using the PSFs of the

operators. The PSF multiplier values for a specific operator context was listed in

Table 1 of [64]. Note that, during the cascade triggering phase, each operator deal-

ing with the scenario can possess a specific set of attributes. The probability that

an operator will take a good/bad decision depends on the specific set of attributes.

These attributes refer to various PSF levels in Table 1 in [64]. Specifically, the

human operator attributes were divided into eight different PSFs, each containing

a set of PSF levels. Each PSF level is associated with a multiplier value, which is

used to calculate the HEP quantitatively using (4.2) (adopted from [64]).

HEP =
NHEP

∏8
i=1 PSFi

NHEP(
∏8

i=1 PSFi − 1) + 1
(3.2)

Here NHEP represents the type of operation (diagnosis or action, having a mul-

tiplier for each type) performed by the operators. Further, the distribution of the

PSFs (calculated based on grid-operator interviews) are obtained from Table 3 in

[64].
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3.2.2 Mapping between PSFs and the Markov chain state-space

A key objective of this work is to find a data-driven mapping between power

grid states and the PSFs using the distribution of the PSFs. The operator at-

tributes can be characterized using various combinations of the PSF levels, and

depending on the combinations, the HEP during the initial triggering phase of a

cascading failure event can vary between zero and one. The PSFs such as available

time, stress, and complexity are correlated with the grid conditions. Specifically,

it is intuitive that as the failures propagate, available time to react for an operator

would be less, the stress on operators to mitigate the contingency would be high,

and the complexity of the problem would become more complicated. On the other

hand, performance shaping factors such as ergonomics, the fitness of the operators,

availability of the procedures, experience of the operators, and work processes do

not change during the propagation of the failures. Although these factors do not

correlate with the propagation of failures, they are critical and plays a significant

role in quantifying the HEP. For example, from Table 1 in [64], when the available

time is inadequate, or the operator is unfit to work, the human error probability

is one, which indicates that an unfit worker or an operator with inadequate time

would certainly make an error.

As described in the related works, Wang et al. used two PSFs (available time

and stress) and coarsely mapped grid states with the operator levels (Table 2 in

[1]). However, as the operators’ response is quantized in four operating levels

only (each associated with different PSF multipliers as shown in Table 2 in [1]),

there is a limited variation of the human error probability. To overcome this

serious limitation, we use all the eight PSFs reported in [64] and their associated

multipliers for calculating the HEP. Specifically, we judiciously use the three PSFs

(available time, stress, and complexity) that are correlated with the propagation of
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failures to define the operator response levels using the power-grid state variables.

Note that available time, stress, and complexity has four, three, and four PSF

levels, respectively. Thus, we have forty-eight (4×3×4) distinct combinations of

these PSF levels, i.e., forty-eight distinct operators’ response levels compared to

only four responses in [1]. The distribution of each PSFs is available in [64].

The joint probability mass function of the PSF’s is calculated using the following

equation:

F(PSF1, ...,PSFn) = P{PSF1 ≤ psf1, ...,PSFn ≤ psfn} (3.3)

Here psf1, ..., psfn represents the PSF levels for an individual PSF. In this work,

we assume that the PSFs are uncorrelated, i.e., the likelihood that a PSF is in-

dependent of the other PSFs. Thus, we can calculate the joint probability mass

function from their marginal mass functions using the following equation:

F(PSF1, ...,PSFn) =
n∏

i=1

F(PSFi) (3.4)

Using (3) and (4), we calculate the joint probability for each of the forty-eight

combinations of PSFs. To map these events into the state space of the Markov

chain, we first determine the size of the Markov chain from the state variables.

Similar to [5, 1], we use the IEEE 118-bus system, which has 186 transmission

lines. The flow capacity in transmission lines is quantized to obtain a set of five

transmission line capacities, C ={20MW, 80MW, 200MW, 500MW, 800MW},

and each transmission line is assigned with capacity according to their power-flow

capacities. Including the binary absorbing/continuity variable, the state space

of the transition matrix is 1860×1860 where the index of a specific state of the

Markov chain can be calculated as using, (Fi − 1)|Cmax
i |+ 2(Cmax

i − 1) + Ii + 1.

To map the forty-eight operator response levels to 1860 grid states, we use the
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Table 3.1: Mapping of Operator response levels with PSF levels and grid variables
(nominal PSF levels considered for the other PSFs)

Operators response available time stress complexity HEP joint probability grid state(Fi,C
max
i ), index

level 1 expansive time nominal obvious diagnosis 0.0000 0.0000528 (1,20), 1
level 2 expansive time high obvious diagnosis 0.0000 0.0000248 (1,20), 1
level 3 expansive time extreme obvious diagnosis 0.0001 0.000024 (1,20), 1
level 4 expansive time nominal nominal 0.0001 0.0000924 (1,20)-(1,80), (1-3)
level 5 extra time nominal obvious diagnosis 0.0001 0.001584 (1,200), 5
... ... ... ... ... ... ...

level 47 barely time high moderately complex 0.5025 0.008442 (185,500), 1847
level 48 barely time extreme highly complex 0.7163 0.001386 (185,800), 1849

Table 3.2: Detailed Grid variable and HEP mapping

F=1 F=2 F=3 ... F=185 F=186
Cmax = 20 0.0000 0.0010 .0010 ... 0.5025 1
Cmax = 80 0.0001 0.0010 0.0010 ... .5025 1
Cmax = 200 0.0002 0.0010 0.0010 ... .5025 1
Cmax = 500 0.0006 0.0010 0.0010 ... .5025 1
Cmax = 800 0.0010 0.0010 0.0010 ... .7163 1

histogram equalization technique [78]. First, we calculate the HEPs for the oper-

ator response levels. Then we sort HEP from low to high. We assume that HEP

increases monotonically with the grid index, i.e., more failures in the grid, and the

higher value of maximum capacity will increase HEP. Then we multiply the joint

PSF probability with 1850 (maximum StateIndex10 for IEEE 118-bus system)

and round it to the nearest integer value to map the operator response levels to

the grid StateIndexes as shown in Table 5.1. Finally, when all the transmission

lines fail, i.e., for the last ten StateIndexes, the HEP of one is assigned since all

the lines have failed already. Note that we only take the odd grid StateIndexes

since the even states represent the absorbing states. Finally, if multiple operator

responses are mapped to a single grid state (due to very low joint probability), we

assign the average HEP (of those response levels) for that state. With this, the

detailed grid state mapping with HEP is complete, and a snapshot (with nominal

multipliers of the five uncorrelated PSFs) is shown in Table 3.2.

At the starting state, the grid operators would be attributed to various PSF
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Figure 3.1: HEP distribution and joint probability of PSFs

levels along with the power-grid operating parameters. The five PSFs that are

uncorrelated to the propagation of failures would remain unchanged during the

cascading failures. However, the other three PSFs would change PSF levels fol-

lowing the power-grid state variables. Compared to [1], this approach will allow

the inclusion of the detailed operator PSF levels, which in turn will allow having

various HEPs, which was only four in [1].

3.3 Results

In this section, we share the results and capabilities of this model.

3.3.1 Critical PSF combinations that lead to high HEP

A striking observation from the distribution of the PSFs (adopted from Table

3 in [64]) is that not all the combinations of PSFs are equally likely to occur. For

example, all the operators reported that their fitness was nominal, which implies

that although there are three distinct PSF levels for fitness (nominal, degraded

fitness, unfit), the probability of human operator attribute with a degraded fitness

or unfit is zero. This observation is very significant in the sense that not all the

32400 events (a combination of PSF levels, each giving a HEP) have a non-zero

probability of occurrence. In fact, using Table 3 of [64], we observe that from the
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32400 events, only 3888 events have a non-zero probability of occurring (represents

88% of all the events). Thus, calculating HEP without considering the distribution

of the PSFs can be misleading, since the PSF distributions are non-uniform. From

the HEP values calculated using equation (4.2) for all the 32400 events, we can

observe that 61% events have human error probability greater than 0.9. However,

the joint distribution (considering independence between PSFs) of the PSFs using

the PSF distributions tells that only 12% of the total events have a non-zero

probability of occurrence. We plot the HEP (left vertical axis) and the probability

of the event occurring (right vertical axis) with the PSF index (calculated using

combinations of PSF multipliers) in Figure 3.1 Note that, to visualize the HEP

and the probability of the event occurring against various combinations of PSF

levels in two dimensions, we use the following equation to transform the eight-

dimensional PSF levels into a two dimensional PSF index using the table 1 in [1].

The coefficient values in the following equation depends on the number of PSF

levels. In total, when the maximum PSF levels are considered for all the PSFs the

total number of events will add up to 32400 as mentioned above.

index = 10800(fitnessi − 1) + 2160(availabletimei − 1) + 432

(proceduresi − 1) + 108(ergonomicsi − 1) + 36(stressi − 1)

+9(complexityi − 1) + 3(experiencei − 1) + workprocessi

(3.5)

Observe that the grey colored bar plot in Figure 3.1 represents HEP calculated

using equation (4.2), where the PSF multiplier values are taken from Table 5.1

of [64]. Clearly, the grey bar, which represents the HEP is one for many indexes

(≥0.9 for %61 cases), which seems exaggerated. However, the blue bar plot reveals

that only a handful of those events have a non-zero probability of occurrence. The

combination of HEP and distribution of PSFs can be used to identify the critical

combination of PSF events that have a high probability of occurring with a high
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Figure 3.2: Comparison of blackout size between the proposed model and hSASE
model [4].

HEP. We have shown an example of the critical combination of PSF events in Table

3. Here we have considered events that have HEP ≥ 0.01 and the probability

of that event occurring ≥ 0.01. Table 3 reveals that there are only 12 events

filtered using these criteria. This information is critical because it indicates that,

in general, the probability of an event with high HEP is unlikely. Hence, using

this approach, one can quickly identify the combinations of the PSF events (with

a high HEP) that are highly likely to occur.
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3.3.2 Comparison of blackout size with hSASE model [1]

We show a comparison between the blackout size distributions obtained using

the proposed and the hSASE model in Figure 3.2. We simulate the Markov chain

numerically for both cases with the same initial conditions (Fi=2, r=0.85, e=0.2,

θ=0.2). In our proposed model, we consider the detailed mapping of HEP with the

grid variables, as shown in Table 3.2. Observe that, in Figure 3.2, the blackout

size distribution in the proposed model is exponential in contrast to power-law

distribution in the hSASE model. Since the hSASE model considers a coarse

mapping between operator attributes and grid variables without considering the

distribution of the PSFs, HEP is generally higher when the number of transmission

line failures in the power grid is high. For example, in the hSASE model, the

authors considered an inadequate time for the operators’ when the number of

transmission line failures was greater than fifty for the IEEE 118-bus system. In

contrast, in the proposed model, even if there are high transmission line failures in

the power grid, HEP is less than one. HEP is one only when all the transmission

lines have failed, and there is nothing an operator can do. Else, operator response

levels are mapped accordingly using the joint probability of the PSFs. In Figure

3.2, we have used nominal PSF multipliers for the five uncorrelated PSFs as an

initial condition and then mapped HEP with grid variables. For this setting,

the blue plot (hSASE) shows power-law, while the Orange plot (proposed model)

shows exponential behavior. Changing the uncorrelated PSFs from nominal to

high or extreme would increase the initial HEP, and hence the more drastic impact

of human error is observed. This capability is not available in [1] since it does not

consider the uncorrelated PSFs. This approach is more realistic because even

if there are a high number of transmission line failures due to cascading, grid

operators often successfully save the remaining lines by implementing effective
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strategies. Thus, the proposed work adds more fidelity compared to the hSASE

model.
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Chapter 4

Balancing Smart Grid’s Performance Enhancement and Resilience

to Cyber Threat

The strong interplay between the power grid and the corresponding communi-

cation and control network plays a pivotal role in the resilience of the smart grid.

In this work, the dynamics of the interdependence among smart-grid subsystems

such as the power grid, communication network, and response of human operators

are captured during the propagation of cascading failures. A previously devel-

oped Markov-chain based model is refined into an interdependent Markov chain

model to capture the role of cyber threat from the communication network and

the human-operator error during cascading failures. The state transitions of the

Markov chain are parameterized by the critical operating parameters of the power

grid. The calculations assume a generic form of correlation between the level of

and damage from cyber-attacks, on the one hand, and the level of interdepen-

dence on the other hand. The model finds the optimal level of interdependence,

i.e., the trade-off between well-informed control and vulnerability to attacks that

minimizes the probability of massive cascading failures in power grids. There is

a point of diminishing return beyond which the harm of exposure to cyber threat

outweighs the benefits of information.

A schematic of an interdependent smart-grid system that integrates the power-

grid, the communication network, and the human-operators, as well as cyber at-

tackers in the loop is shown in Figure 4.1 (with details of each variable and param-

eters described subsequently). In this chapter, we refine a previously developed

single-layer Markov-chain based analytical cascading failure model to an interde-

pendent Markov chain model. We term it as the model for Cascading Failures in
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Figure 4.1: An interdependent smart grid that integrates the power-grid, the
communication network (with cyber attackers), and the grid operators.

Interdependent Stochastic Abstract State-space Evolution (I-SASE). The I-SASE

model can capture the benefits of having more information through the capability

of implementing load shedding during contingencies. However, with more power-

communication interdependence, the grid becomes vulnerable to cyber-attacks

through the communication channels. We use the model to find the optimal inter-

dependence between the power grid and communication network that minimizes

the risk of massive blackouts by taking the potential risk of a cyber-attack into

account.

4.1 I-SASE Analytic Framework

The I-SASE model analytic framework depends on the three layers of the smart

grid. In this section, we discuss the role of each layer on the dynamics of cascading

failures.

4.1.1 Influence of the communication network on the propagation of

cascading failures

Figure 4.2 shows the interdependence between the power grid and the com-

munication network used in our model. We consider that the power grid and the

communication network can have different topologies; however, one power node

can be connected with one communication node to share the grid information to
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Figure 4.2: A schematic diagram showing the inter-connectivity between the power
grid and the communication network in smart grids

the control center, i.e., if the power grid has N nodes (buses) then we can have

a maximum N power-communication interconnections, Nmax
pc . Increased inter-

dependency through the interconnections gives additional information and hence

reliability through informed control. Power-communication interconnections, Npc,

aids human operators to actuate system-wide control actions to mitigate the risk

and spread of cascading failures [7]. However, interconnections come at the price

of higher infrastructure cost as well as the cost to minimize the risk of cyber

threat through the interconnections. Thus, the security risk of the system can be

minimized by integrating better security policies that require higher costs. In real-

world scenarios, SCADA networks connect many, but not all, nodes in a power

network over communication networks using fiber-optic, microwave, and telephone

communication channels combined [7]. Hence, in practice, Npc ≤ Nmax
pc .

Note that Figure 4.2 (left) and 4.2 (right) show four interconnections between

the power grid and communication network in two different ways. With this

connectivity structure at hand, we discuss the role of the communication net-

work during the propagation of failures. The ratio of power-communication in-

terconnections and maximum number of power-communication interconnections

is k = Npc/N
max
pc ∈ [0, 1]. A higher value of k indicates strong interactions be-

tween the power grid and communication network. While some of the similar
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interdependent models consider that failure in a power node initiates failure in

the communication network with some probability [44], in this chapter, we do

not consider failures in the communication network directly rather we capture the

influence of disturbance in power grid on communication network indirectly. We

consider that transmission line failures in the power grid can trigger the corre-

sponding power node (bus) failure and when all the transmission lines that are

connected to a power node fail, we consider the corresponding power node as failed.

When a power node fails, we assume that the corresponding interconnection has

also failed. Thus, with power node failures, less information on the grid will be

available to the control operators. Here we assume that the intra-interactions in-

side a communication network is uncorrelated with any incident in the power grid.

The communication nodes are protected using back up power provided through

batteries. Thus, failures in the power node do not necessarily initiate failures in

the communication node. Note that the study of intra-interactions inside a com-

munication network (see Figure 4.2), failures in communication nodes, and their

influence on the power grid are beyond the scope of this work.

Similar to [5], we consider θ ∈ [0,1] as the load-shedding constraint, i.e., the

ratio of uncontrollable loads (loads at which load shedding cannot be performed)

and the total load in the power grid. In [5], the authors consider θ as a fixed

parameter. However, in this work, we consider θ as a dynamic parameter that is

inversely correlated with k, i.e., when k = 1, θ = 0 and when k = 0, θ = 1. This

indicates that, when Npc = Nmax
pc , there are no load-shedding constraint. On the

contrary, when Npc = 0, we cannot implement any load-shedding in the power

grid. Load-shedding constraint increases with failures of power-communication

interconnections since communication sensors cannot send measurement data and

control signals cannot be sent through the failed power-communication intercon-

nections. To capture the dynamics of load-shedding constraints during cascading
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failures, we define θ as

θi = θini +
klFi
Nmax
pc

, (4.1)

where θini = 1-k. Here Fi is the number of failed transmission line in the power

grid due to contingency, and l = N/M, where N is the number of power nodes

(buses) and M is the number of transmission lines. At this point, intuitively we

can correlate that increasing power-communication interconnections causes θini to

decrease. Thus, having a maximum level of power-communication interconnections

would increase flexibility to implement necessary control actions by the power grid

operators during contingencies.

However, power-communication interconnections couple the power grid and

communication network into a single large network, which causes the network to be

susceptible to attacks. The probability of human operator errors due to additional

information processing, the vulnerability of the communication network, noise in

the communication channel, probability of intentional cyber-attacks increases with

the number of Npc. This assumption is very intuitive and yet realistic since having

more interconnection increases the likelihood of exposure to the entire network. To

capture this phenomenon, we introduce a cybersecurity threat parameter, ψ, which

captures the vulnerability of a single large network. The parameter ψ depends on

the number of interconnections (Npc), and a large number of interconnections

would imply more opportunities for attackers to breach the security of the data.

Therefore, the parameter ψ can be modeled reasonably as

ψi = λk

(
1− exp(γlFi)− 1

exp(γNmax
pc )− 1

)
, (4.2)

where γ ∈ [0,1] is a constant that shapes the exponential function, and λ ∈

[0,1] is a constant used to capture the probability of cyber threat due to added
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(a) θ (b) ψ

Figure 4.3: (a) Changes in load shedding constraint and (b) the probability of
cyber threat due to power failures and k=0.6.

interdependence between power and communication network. Note that when

there are no failures in the power grid, ψi = λk, i.e., the probability of cyber

threat depends on the Npc and λ. When failures propagate in the power grid

during a cascade, the probability of a cyber threat decreases as the size of the

power grid decreases due to failures in the power nodes and Npc. Note that the

assumed linear and exponential relationships for θi and ψi can be any arbitrary

monotone function, respectively.

4.1.2 Influence of the human operators’ on the propagation of cascad-

ing failures

Human operators play a pivotal role in mitigating the propagation of failures.

During everyday operation, operators/engineers need to tackle various contingen-

cies to improve the reliability of the grid. A key part of the job of a power grid

operator is working under stress and time constraint. In most cases, power grid

operators can implement control mechanisms according to the prescribed plan to

minimize the effect of any contingencies. However, human operator error during

propagation of failures can increase the probability of a large blackout exponen-

tially. Wang et al. introduced a Markov chain framework to integrate the proba-
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bility of human errors into the state-space of the Markov chain transition matrix.

Specifically, the authors [1] quantize human operator errors in four distinguishable

levels and use the state variables of the Markov chain to define the transition be-

tween human operator error levels. This work used a previous work [64] by Abreu

et al., where they used eight performance shaping factors (PSFs) to define the

attributes of human operation and used the Standardized Plant Analysis Risk -

Human (SPAR-H) methodology to calculate the human error probability analyti-

cally. Abreu et al. calculated the probability distribution of the PSFs empirically

using grid operator interviews.

In this chapter, we use an earlier reported work from chapter 3 that repre-

sents the role of operators’ performance shaping factors (PSFs), and human-error

probability (HEP) as a function of the smart grid operating conditions, such as

available time, complexity, and human performance attributes, e.g., stress, train-

ing, and working environment. Specifically, the Markov-chains transition matrix

includes the dynamics of the smart-grid operator attributes through the HEP.

The mapping between grid conditions and operator response levels utilizes the

probability distribution of the PSF levels and is established based on a histogram-

equalization principle, assuming a monotone relationship between the HEP values

and number of line failures. The work allows one to calculate the HEP for each

grid state of the Markov chain conditional on the PSFs (see [87] for details).

4.1.3 State variables of the Markov chain

Similar to the SASE model [5], the state space of the I-SASE model is defined

as Si = (Fi, C
max
i , Ii); where Fi, C

max
i , Ii are the states variables of the Markov

chain. Here, Fi is the number of transmission-line failures at state Si. To be

consistent with [5], we also allow one transmission-line failure in our Markov chain

at a time, i.e., during cascading failure we consider a minimal time interval such

that only one new failure can occur in that period. The variable Cmax
i represents
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the maximum capacity of the failed transmission lines at the current state, and

Ii is the cascade stability indicator. In this work, we also use the same set of five

capacities used in [5]. In addition to the load shedding constraint (θ) parameter,

we use two additional parameters; the power grid loading level, r, which is defined

as the ratio of the total load demand and the generation capacity of the power grid

[5] and the capacity-estimation error, e, which represents the error (at the control

center) in estimating the actual capacity of the transmission lines. A higher value

of r is indicative of stress on the power grid from [5]. In our Markov-chain model,

parameter e is used to determine overloaded lines, a parameter that naturally

affects cascading failures profoundly.

4.1.4 Probability transition matrix

The transition matrix of the Markov chain is a 2M |C|×2M |C|matrix, where M

is the total number of failed transmission lines and |C| is the cardinality of the set

of capacities. In our model, the number of transmission-line failure, Fi, increases

monotonically with one failure per unit time since no healing of the nodes/lines

were considered. Hence, the transition matrix P is a row-stochastic upper diagonal

matrix. The state transition probability, f(Sj|Si), from state Si = (Fi, C
max
i , Ii)

to the next state Sj = (Fj, C
max
j , Ij), is defined below:

f(Sj|Si) =



1 if Fj = Fi, C
max
j = Cmax

i , Ij = Ii = 1,

Pstop(Si)(1− ψi)(1− hi)

if Fj = Fi, C
max
j = Cmax

i , Ij = 1,

P (Sj|Si) if Fj = Fi + 1, Cmax
j ∈ C, Ij = 0,

0 otherwise.

(4.3)

Here Pstop(Si) is the probability of cascade-stop at state Si, and P (Sj|Si) is
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the probability of a new transmission-line failure. The parameters ψi and hi

capture the role of cyber-security threat and human operator error, respectively.

Cascading failures stop when the Markov chain reaches to an absorbing state, i.e.,

the chain reaches a terminal state with Pstop(Si) = 1. Note that Pstop(Si) is the key

parameter that dominates the dynamics of I-SASE model and the characterization

of Pstop(Si) was discussed extensively in [5].

Following [5], Pstop(Si) is defined as a weighted combination of Pstop(Fi) (proba-

bility of cascade-stop with Fi failures) and Pstop(C
max
i ) (probability of cascade-stop

with capacity Ci) as follows,

Pstop(Si) = wPstop(Fi) + (1− w)Pstop(C
max
i ), (4.4)

where we use w = 0.5. Note that Pstop(Fi) has a bowl-shape pattern with three

distinguishable phases each defining three phases of a cascading failure as [5]

Pstop(Fi) =


a1(a2M−Fi

a2M
) + ε if 1 ≤ Fi ≤ a2M,

ε if a2M < Fi ≤ 0.6M,

Q(Fi) if 0.6M < Fi ≤M,

(4.5)

where Q(Fi) is a fixed quadratic function approximating the tail of the family of

bowl-shape functions (see Figure 4 in [5]). Moreover, Pstop(M) = 1, i.e., there are

no more transmission-line failures if Fi = M . Following the formulation shown in

[1], a reasonable parametric model for the scaling parameters a1 and a2 and ε is

a1 = max(0.02, 0.4− 0.25brc0.5 − [e]0.50 (0.2− [e]0.50.1)− 0.25θi) (4.6)

a2 = max(0.01, 0.1− 0.05brc0.5 − 0.1[e]0.50.1(0.2− [e]0.50 )− 0.07θi) (4.7)

ε = max(0.01, 0.6− 0.4brc0.5 − 0.5[e]0.50 − 0.3θi). (4.8)
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Similarly, power-grid simulations show that Pstop(Ci)is high (low) when the ca-

pacity of the failed transmission line is low (high). Hence, Pstop(Ci) is defined

as

Pstop(Ci) = max

{
a3

(max{C} − Cmax
i

max{C}

)4

, a4

}
. (4.9)

Following the power grid simulations described in [5, 1], a reasonable parametric

model for the scaling parameters a3 and a4 is

a3 = max
(
0.02, 0.4− 0.2brc0.5 − [e]0.50 (0.2− [e]0.50.1)− 0.3θi

)
(4.10)

a4 = max
(
0.01, 0.1− 0.06brc0.5 − 0.1[e]0.50 (0.2− [e]0.50 )− 0.06dθie

)
(4.11)

Note that, the constants in the scaling parameters a1, a2, ε,a3, and a4 are em-

pirically calculated based on the simulation results (part of the results have been

shown in [6, 5, 1]).

Transition probabilities, P (Sj|Si) of the Markov chain, are calculated as fol-

lows:

P (Sj|Si) =


Pcont(Si)(1− Phc(Si)) if Cmax

j = Cmax
i ,

Pcont(Si)Phc(Si)
w(Cmax

j )∑
m:Cm>Cmax

i
w(Cm)

if Cmax
j > Cmax

i ,

(4.12)

where Pcont(Si) = 1− Pstop(Si)(1− ψi)(1− hi) and

Phc(Si) = min
(
1, α(Fi + β)3

)
, (4.13)

where α and β are constants. Moreover, Phc(Si) is the transition probability

to a state with higher capacity and the w(Ck)’s are capacity weight parameters

calculated from power grid simulations in [5] . We adopt the formulation of the
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human-error probability from [87] and ψi using (4.2), and after each failure in the

power grid, we update the parameter θi parameter using (4.1).

4.2 Results

The parametric model in [5] is tuned to the IEEE 118-bus topology. In the

following calculations, we use the same topology with 118 power nodes and 186

transmission lines.

4.2.1 Pstop(Si) and blackout size distribution for various k

Cascade-stop probabilities (for k=0.1, k=0.5 and k=0.9) and the distribution

of blackout size (for k=0.1, k=0.5, and k=0.9) as a function of the number of

failed transmission lines are shown in Figure 4.4 and 4.5, respectively. Note that

in Figure 4.5 the hump at the tail of the distribution for k=0.9 indicates the heavy

tail nature of the distribution for high power-communication inter-connectivity.

The cascade-stop probabilities were calculated for the same initial conditions with

two transmission line failures by simulating the Markov chain. From Figures 4.4

and 4.5, it can be observed that for k=0.5, the cascade stop probability is higher

compared to the other two cases, and the blackout size distribution is less severe

when k=0.5. This indicates that when power-communication interdependency is

either very high or very low, there is an added probability of a large blackout.

4.2.2 Optimal power-communication interdependency

From the I-SASE model formulation, it can be observed that with transmission

line failures in the power grid, the parameters θ and h increases, and ψ decreases.

This is intuitive but informative. Failures in the power grid reduce the capability

of implementing load-shedding during cascade propagation. Also, failures in the

power grid increase the probability of human-operator error. On the other hand,

failure in the power grid reduces the communication-power interdependency since

the corresponding power-communication interconnection also fails. Due to this in-
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Figure 4.4: Cascade stop probability for k = 0.5 and 0.9. For k = 0.5, Pstop is
high initially compared to k= 0.9, which indicates that the probability of a large
cascade for k = 0.5 is lower. To visualize the effect of cascade stop probability,
the y-axis is truncated from [0,1] to [0,0.2]

Figure 4.5: Distribution of the blackout size for k = 0.1, k = 0.5 and k = 0.9. For
k = 0.1 and k = 0.9, blackout size distribution shows heavy tail, which indicates
a power law distribution as compared to an exponential distribution for k = 0.5.
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Figure 4.6: Optimal power-communication interdependency with and without cy-
ber threat. Without cyber threat, E[Fi|S0] increases with k with minimum at k
= 1. Including the cyber-security parameter, ψi, E[Fi|S0] is minimum when k =
0.5.

verse nature, there exists an optimal power-communication interdependency that

minimizes the expected number of transmission line failures given an initial con-

dition, E[Fi|S0] subject to 0 ≤ θ, ψ, h ≤ 1 and for a given grid condition during

cascade initiation. In Figure 4.6, we plot the average transmission line failures

for various k with and without considering the effect of cyber threat. Here we

consider r = 0.6 and e = 0.1 for all the cases. It is clearly visible from Figure 4.6

that the optimal power-communication interdependency is when k = 0.5 (24 line

failures in the square marked blue line). However, when we do not consider the

cyber-threat effect, the average transmission line failures were minimum (5 in the

triangle marked orange line) when the power-communication interdependency is

maximum, i.e., k = 1, which was also reported in [7].

A comparison of the effect of various levels of power-communication interde-

pendency on cascading failures between [7] and I-SASE model is shown in Figure

4.7. Figure 4.7 (a) is adopted from [7] and 4.7 (b) using the I-SASE model. the

Y-axis in Figure 4.7 (a) represents the % of loads served after the cascade ends.
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f represents various % of initial line failures. The ideal case (represented by the

black line) represents scenario when communication failures does not effect power

failures. The vulnerable case (represented by the blue line) represents the work in

[21], where failure in power has deterministic impact on communication. The in-

termediate case (represented by the red line) represents the work by Korkali et al.

where failures in communication fails power nodes probabilistically. If we follow

the red line in 4.7 (a), we can see that as the interdependency is increased, the %

of loads served after the cascade ends increases and maximum is found when the

interdependence is one. In Figure 4.7 (b) we show the results obtained using the

I-SASE model. We assume a linear correlation between the % of average survived

lines with % of load served. If we don’t consider cyber threat (represented by

the orange line), we also obtain the similar result as reported in [7]. However,

our model has the additional capability of capturing the harm of excessive com-

munication and cyber threat. If cyber threat is considered, then we see that the

% of average survived lines increases initially (represented by the grey line) with

increase in interdependence, however, there exists a point of diminishing return

beyond which the harm of communication outweighs the benefits of communica-

tion.

The knowledge of this trade-off between benefits and risks of having more

information (optimal power-communication interdependence) can be used as a

useful design parameter to mitigate cascading failures in the smart grid.

4.2.3 Role of operators performance on the propagation of cascading

failures

Note that in the transition matrix of the I-SASE model, the role of human-

operator error is captured through parameter hi (multiplying hi with Pstop(Si)).

The model in [87] correlates the human error probability with the states of the

Markov chain, i.e., for every transitory state of the Markov chain, we have an
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(a) (b)

Figure 4.7: Comparison of the effect of various levels of power-communication
interdependency reported in [7] and I-SASE model (a) % of served loads after cas-
cade ends for various interdependency levels (adopted from [7]) (b) % of survived
lines for various interdependency levels using I-SASE model

associated human error probability which is governed by the PSFs of the operator.

Failures in the power grid increase HEP monotonically, and the formulation is

described extensively in [87]. In Figure 4.8, we show the role of human operator

error on cascading failures. We simulate the Markov chain considering two line

failures and the same initial values of the r, e, k parameters as in the previous

section. In Figure 4.8, we show two plots, one with extreme PSF levels (orange)

and the other with nominal PSF levels (blue). Note that although the other

parameters of the Markov chain are same, various initial PSF levels can exist

due to the different level of experience of the operator, ergonomics, work process,

operating procedure availability, and so forth. In addition, during the propagation

of failures, PSFs such as available time, stress, and complexity changes, which

make the HEP dynamic and state dependant. Observe from the distribution of

the blackout size in Figure 4.8 that, for nominal PSFs (24 lines failures on average),

the effect of cascading failures is less severe compared to the extreme PSFs (32

lines failures on average).

4.3 Cyber threat and operator error aware stochastic model for cascading failures

In this section, we refine the I-SASE model further, which captures the benefits

and risk of information through the communication network. Specifically, we
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Figure 4.8: Distribution of the blackout size for Nominal and extreme HEP and
k=0.5, Fi=2. E[Fi|S0] for nominal and extreme HEPs are 24 and 32 lines respec-
tively.

introduce the cyber threat variable as a state variable of the Markov chain to

capture the detailed dynamics of the affect of cyber threat.

4.3.1 State variables of the Markov chain

We consider the following three state variables of the Markov chain: Fi, the

number of transmission line failures at state Si; C
max
i , the maximum capacity

of the failed transmission liens at state Si; Ψi, the level of cyber threat in the

communication network, and Ii, a binary variable indicating whether the state is

an absorbing or transitory state in a Markov chain. Thus the state space of the

model is defined using Si = (Fi, C
max
i ,Ψi, Ii). Index of a state is defined using

2|C||Ψ|(Fi − 1) + 2|Ψ|Cmax
i + 2(Ψi − 1) + Ii + 1, where |C| is the cardinality of

the set of capacities and |Ψ| is the cardinality of the set of cyber threat models.

For example, in IEEE 118- bus network, the total number of transmission line,

M = 186, considering |C| = 5 and |Ψ| = 5, there are 5580 distinct states of the

Markov chain. Similar to [5], we consider one failure transitions in the Markov

chain, i.e., the overall duration of the cascading failures is divided in such a short

time (∆T ) such that only one failure is allowed. In addition to the state variables,
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three power grid parameters are used to define the transition probabilities of the

Markov chain. We also consider the three parameters used in [5] to model the

state transitions, the ratio between the load and the maximum generation in the

grid, r; the uncertainty in the flow of information, i.e., the error in estimating

the power flow in transmission lines namely capacity-estimation error,e and the

constraint over implementing load shedding in the grid, θ. However, we also

consider the dynamics of system operator error and a cyber threat for modeling

the state transitions, which is not considered in [5]. In that sense, our model is

a generalization of [5], and if we consider fixed parameter values for r, e, θ and do

not consider cyber threat and operators’ error, our model collapses to the original

SASE model.

4.3.2 Effect of interdependency among the various layers of the power

grid

Interdependence between power grid and the associated communication net-

work can lead to three scenarios contributing cascading failures: (1) effective hand-

ing of information can minimize cascading failures, (2) increased communication

capability also adds vulnerability to the grid in the form of cyber-attacks and (3)

the incorrect actions of the system operators dealing with cascading events can

lead to further escalation of the event. In the following subsections, we describe

the interactions among various layers of the power grid and model their influence

on cascading failures.

The information on the grid is conveyed to the control center through the

communication network infrastructure. The topology of the grid and the commu-

nication network are not necessarily identical. However, power grid nodes ( i.e.,

substations) are equipped with communication facilities to send (receive) informa-

tion (instructions). Not necessarily all the grid nodes are connected individually

to communication networks. Supervisory control and data acquisition, a com-
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puter system (SCADA) networks connect power and communication nodes using

different mediums (e.g., fiber, microwave) and use this interconnection to collect

information of all the nodes of the grid [7]. Figure 4.12 shows two such examples

of inter-connectivity between the power grid and communication network. With

this setting, we consider maximum inter-connectivity when all the power grid has

an associated interconnection, i.e., if the grid has N nodes (buses), then there can

be a maximum of N power-communication interconnections, Nmax
pc . Power-grid

system operators use these interconnections, Npc, to send appropriate control ac-

tions to maintain stable health of the grid [7]. Intuitively, the maximum number of

interconnections should maximize the availability of all the information. However,

in practice, due to constraints on communication infrastructure cost and cost of

hardening the communication network from cyber threats, Npc ≤ Nmax
pc . We refer

level of power-communication inter-connectivity, k as the ratio between power-

communication interconnection to it’s maximum,i.e., k = Npc/N
max
pc ∈ [0, 1], where

a higher value to k indicates stronger inter-connectivity. Failure of interconnec-

tion is considered as loss of information. While some literature considers a direct

effect of failures in the communication network on the power grid [44, 7] during

cascading events, others argue that the effect of failures in the communication

network is independent of failures in power grid and are uncorrelated. In this

work, we consider that loss of information during cascading failures is initiated

from power node failures. Communication nodes are equipped with backup power

through batteries. Since cascading failures happen in a short duration in time,

the probability of a communication node failure due to a transmission line/ power

node failure is highly unlikely, i.e., the intra-connectivity within the communi-

cation network is independent of any incidents in the power grid. Transmission

line failures increase the probability of a power node (bus) failure. When all the

transmission lines associated with power nodes fail, we consider the failure of a
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Figure 4.9: A flowchart for mapping HEP with the state variables of the Markov
chain

power-communication interconnection.

System operators influence on the reliability of power grids

From preventive maintenance to protective actions, system operators are actively

involved in managing the health of the grid and mitigating any risk that can lead

to an outage scenario. However, errors in the decision during contingencies by

the system operators can lead to a larger blackout than usual. System operators

have to deal with contingencies under time constraints, stress, and the complex-

ity of the problem varies significantly. Again, factors such as experience, work

process, procedures, ergonomics, fitness can affect the capability of making an

appropriate decision during contingencies. Following the work in [64, 1], in earlier

work, we have developed a model to map the operators’ error probability with

the grid states of the Markov chain [88]. First, the model finds the human-error

probability (HEP) as a function of operators’ performance shaping factors (PSFs),

and the grid operating conditions, such as available time, complexity, and human
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performance attributes, e.g., stress, training, and working environment. Then, a

mapping between grid conditions and operator response levels is established uti-

lizing the probability distribution of the PSF levels. The mapping is established

based on a histogram-equalization principle, assuming a monotone relationship

between the HEP values and the number of line failures. We show a summarized

flowchart of the steps used to map the operators’ error probability with the state

variables of the Markov chain in Figure 4.9 (discussed in chapter 3). Three real-

izations (representing nominal, medium, and extreme PSF values from [64]) of the

system operator’s error probability against the indexes of the state are plotted in

Figure 4.10. Note that for nominal PSFs, the human error probability is mostly

zero as opposed to one for extreme along with the index of the state. For the

medium PSFs, the error probability monotonically increases to one with the state

index. Depending on the independent PSF factors, the human error probability

plot varies between nominal and extreme scenarios along with the state index.

Note that Wang et al. used a separate state variable for human factors [1]. The

benefit of using the proposed mapping is that the operator’s error probability can

be calculated as a function of the state variables of the Markov chain. So, the

need for a human factor state variable is redundant, which ensures a significant

reduction in the state-space of the transition matrix. The operators’ error prob-

ability affects the transition probabilities of the Markov chain through the load

shedding constraint.

Influence of cyber threat on the reliability of the power grid

A major enhancement of our proposed model compared to the existing model is

its capability to capture the dynamics of cyber threats. The single giant network

made of the power grid and the associated communication network makes the en-

tire network susceptible to cyber attacks. Attackers can use the communication

network as a medium to get into the grid network and eventually initiate cascad-
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Figure 4.10: Human error probability mapped with state indexes of the Markov
chain for various operators’ PSFs

.

ing failures by manipulating data, false data injection, and changing the system

parameters. Increasing k would increase communication capability in the grid

but, at the same time, increase the risk of cyberattacks. To capture this critical

attribute of the grid, we introduce the state variable Ψ, which can be categorized

to indicate the various cyber threat profile for the grid. For example, we con-

sider three distinct cyber threat level,Ψ ∈ [Ψ1,Ψ2,Ψ3] in this work to capture the

scenarios from low, medium and high cyber risk. Monotone cyber transitions are

considered in this work, i.e., with more transmission line failures, cyber transitions

from low to high are considered not vice versa.

4.3.3 Transition matrix of the Markov chain

The transition matrix of the Markov-chain developed following the approach

in [5, 1]. The state-space of the Markov chain is a 2M |C||Ψ| × 2M |C||Ψ| ma-

trix. In the subsequent calculations we consider |C| = 5 and |Ψ| = 3 i.e., five

types of transmission line capacities and three levels of cyber threat (low, medium

and high).In our model, we did not consider any healing of the failed lines dur-

ing the propagation of cascading failures, i.e., the number of failed lines increases
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Figure 4.11: Schematic diagram of the state transitions of the Markov chain

monotonically until it reaches to an absorbing state. There are three types of

transitions allowed in the Markov chain, from a transitory state to another tran-

sitory state with the same capacity, higher capacity, or an absorbing state. We

show the various types of transitions of the Markov chain using figure 4.11. When

an absorbing state is reached, cascading failures end for that iteration. For tran-

sitioning between transitory states, we allow one additional failure per unit time,

i.e., from Fi toFi+1 there are |C||Ψ| possible transitions within the Markov chain.

Due to the monotonic assumption of the line failures, the transition matrix P is

a row-stochastic upper diagonal matrix. The transition probabilities from state

Si = (Fi, C
max
i ,Ψi, Ii) to state Sj = (Fj, C

max
j ,Ψj, Ij), is given below:
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f(Sj|Si) =



1 if Fj = Fi, C
max
j = Cmax

i ,Ψj = Ψi,

Ij = Ii = 1,

Pstop(Si)

if Fj = Fi, C
max
j = Cmax

i ,Ψj = Ψi,

Ij = 1, Ii = 0,

P (Sj|Si) if Fj = Fi + 1, Cmax
j ∈ C,

Ψj ∈ Ψ, Ij = 0,

0 otherwise.

(4.14)

Here Pstop(Si) and P (Sj|Si) represents the probability of cascade stop at state

Si and cascade to continue at state Sj from Si respectively and M is the total

number of transmission lines in the grid. We refine Pstop(Si) from [5] as follows to

include the effect of cyber threat:

Pstop(Si) =
(
wPstop(Fi) + (1− w)Pstop(C

max)
i

)
(1− kφi(Ψi)) (4.15)

Here φi(Ψi) represents cyber threat probability for any given state and is defined

as follows:

φi(Ψi) = λk

(
1− exp(γlFi)− 1

exp(γNmax
pc )− 1

)
, (4.16)

Note that the term 1 − kφi(Ψi) is high when k is low indicating cyber threat

has low effect on cascade stop probability and cascading failures. On the contrary,

When k is high, 1− kφi(Ψi) is low , which indicates that higher inter-connectivity

yields higher probability of cyber threat that reduces the probability of cascade

stopping. Again, in both cases, 1 − kφi(Ψi) decreases from k to zero for zero

line failures to complete blackout respectively indicating that line failures fails

power-communication inter-connectivity, which in turn reduces the cyber-threat
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probability. The other term in Pstop(Si), which is a linear combination of state vari-

ables Fi and Cmax
i is adopted from [5], where Pstop(Fi) and Pstop(C

max
i represents

the probability of cascade stop with Fi failures and capacity Cmax
i respectively.

The formulations were developed based on extensive cascading failure simulations

over the IEEE 118 bus grid. Note that Pstop(Fi) has a bowl-shape pattern defining

three phases of a cascading failure and Pstop(Ci) has an exponentially decreasing

pattern that is high (low) when the maximum capacity of the failed transmission

line is low (high).

Pstop(Fi) =


a1(a2M−Fi

a2M
) + ε if 1 ≤ Fi ≤ a2M,

ε if a2M < Fi ≤ 0.6M,

Q(Fi) if 0.6M < Fi ≤M,

(4.17)

Pstop(Ci) = max

{
a3

(max{C} − Cmax
i

max{C}

)4

, a4

}
. (4.18)

The parameters a1, a2,a3, a4, ε defines the shape of the cascade stop probability.

Parametric relationships between the parameters and the operating parameters of

the grid were established in [1]. In both [5, 1], a fixed load-shedding constraint

parameter, θ ∈ [0,1] was considered, which is the ratio of loads where load shed-

ding is restricted and the total load of the grid. Intuitively, the constraint of load

shedding is negatively correlated with the level of inter-connectivity, i.e., increas-

ing the level of interconnectivity increases the availability of information, which

in turn decreases the constraint on load shedding. With power node failures, the

corresponding interconnection is also lost, which increases the constraint on imple-

mented load-shedding in the grid. To capture this dynamical behavior, we differ

from fixed θ in [5] and define θ as

In the proposed model, we consider load shedding as a dynamic parameter that
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depends on three components: the level of inter-connectivity, system operators’

error probability, and the number of line failures. We define load shedding, θ for

any state as follows:

θ = min(1,HEP(Fi, C
max
i ,Ψi) +

(
1− k +

klF

Nmax
pc

)
, (4.19)

The parameters a1, a2,ε and a3, a4 are kept as same as defined in (4.6) - (4.8)

and (4.10) - (4.11) respectively.

In equation 4.19, l = N/M, where N is the number of power nodes (buses) and

M is the number of transmission lines. Transition probabilities, P (Sj|Si) of the

Markov chain, are calculated as follows:

P (Sj|Si) =



Pcont(Si)(1− Phc(Si)) u(Ψj)∑
l:Ψl≥Ψl

u(Ψl)

if Cmax
j = Cmax

i ,

Pcont(Si)Phc(Si)
w(Cmax

j )∑
m:Cm>Cmax

i
w(Cm)

u(Ψj)∑
l:Ψl≥Ψl

u(Ψl)

if Cmax
j > Cmax

i ,

(4.20)

where Pcont(Si) = 1− Pstop(Si) and

Phc(Si) = min
(
1, α(Fi + β)3

)
, (4.21)

where α and β are constants. Moreover, Phc(Si) is the transition probability

to a state with higher capacity and the w(Ck)’s are capacity weight parameters

calculated from power grid simulations in [5] . We adopt the formulation of the

human-error probability from [88] and ψi using (3), and after each failure in the

power grid, we update the parameter θi parameter using 4.19.

Now, for any given initial condition, we can calculate the limiting distribution
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of the failed transmission lines for a given initial state. Let, π0 be a vector that

denotes the initial state S0 of the Markov chain. Next, let the vector π(S0) =

(π
(S0)

i , i = 1, ..., 2M |C||Ψ|) represents the limiting distribution of the Markov chain

starting from the state S0, where π
(S0)

i is the steady-state probability of the state

Si. Hence, π(S0) = π0 lim
k→∞

Pk. The conditional probability that a power grid

eventually reaches a steady-state with Fi failures from an initial state S0 is defined

as

p(Fi|S0) =

|C||Ψ|∑
n=1

π
(S0)
2(Fi−1)|C||Ψ|+2n. (4.22)

For a more detailed understanding regarding cumulative transmission-line fail-

ure probability and blackout size, we refer the reader to [5]. Using the distribution

of blackout sizes, we can calculate the expected number of transmission-line fail-

ures, E[Fi|S0], given the initial condition, S0 as follows,

E[Fi|S0] =
M∑
Fi=1

Fip(Fi|S0). (4.23)

4.4 Results

In this section, we share the capabilities of the I-SASE model using the IEEE

188-bus topology used in [5]. Since the SASE [5] and hSASE [1] models are already

validated using power grid simulations over IEEE 118 and IEEE300 bus test cases

and published in IEEE transactions on power systems previously, in this work we

do not show additional validation to save space. For validation of the original

SASE model, interested readers are suggested to read [5]. However, a comparison

between the proposed model with a SASE and hSASE model is shown here to share

the dissimilarities between observed outcomes along with additional capabilities.
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Figure 4.12: Expected transmission line failures for various inter-connectivity, and
cyber threat level. We considered Fi=2, Cmax=20, r =0.7, e=0.1 and nominal
human error level. We can observe a point of diminishing return when cyber
threat is considered.

4.4.1 Optimal power-communication inter-connectivity

One benefit of the proposed I-SASE model compared to the existing literature

is that it finds an optimal level of inter-connectivity between the power grid and

the associated communication network given human error probability and level

of cyber threat. We use the expected value of transmission line failures as a

measure of grid reliability, which can be calculated using equation (14). Increasing

interconnectivity reduces constraint on load shedding but increases cyber threat

probability. Thus, Due to the convex nature of the problem, there exists an optimal

inter-connectivity that minimizes E[Fi|S0] subject to 0 ≤ θ,Ψ, HEP ≤ 1 and for

a given grid condition during cascade initiation. Again, increasing the number

of transmission line failures reduces inter-connectivity, which in turn, increases

load shedding constraint, system operators’ error probability but reduces cyber

threat. Initially, increasing the level of inter-connectivity reduces the constraint

on load shedding, which reduces the expected value of transmission line failures.

As we increase inter-connectivity, cyber threat starts to play its role, and there
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Fi=2, Cmax
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exists a point of diminishing return beyond which the cyber threat dominates over

capability to implement load shedding. We plot the E[Fi|S0] against the various

level of inter-connectivity for different cyber threat level in Figure 5. Here we also

plotted E[Fi|S0] when the cyber-threat probability is zero, i.e., without considering

any cyber threat (marked by the red line). Notice that when cyber threat is not

considered, increasing inter-connectivity decreases E[Fi|S0], and the optimal value

of inter-connectivity is one, which matches the observed behavior in [7]. When

cyber threat and nominal system operator error probability is considered, for the

chosen initial condition (Fi=2, Cmax
i =20, r =0.7, e=0.1), we observed optimal

inter-connectivity at 80%.

4.4.2 Comparison with similar models

Recall that our proposed model is a generalization of the SASE model in [5].

Thus, if we exclude the effect of cyber threat and system operator errors, the model

collapses to the SASE model. In that case, θ is a fixed parameter and does not

change with the dynamics of the power grid. We have plotted E[Fi|S0] calculated

using SASE model against the various level of inter-connectivity in Figure 4.12.
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Note that when SASE model is considered (without cyber threat and operators’

error), inter-connectivity level and load shedding constraint parameters are fully

correlated. We can observe in Figure 4.12 that when inter-connectivity level is

high, the line plots for SASE (purple) and without cyber threat (red) is a close

match but not for when inter-connectivity level is low. The reason for this is that,

for without cyber threat (red) case, system operators’ error is considered, which

created the difference between the two plots. However, when inter-connectivity

level is high, load shedding capability increases significantly which supersedes the

effect of operator error.

4.4.3 System operators’ role on cascading failure

Recall that in Figure 4.10, we plotted operators’ error probability against state

indexes, which is monotone in nature. Error in operators’ decision-taking adds

more constraint on load shedding capability, which reduces the probability of cas-

cade stopping and hence increases E[Fi|S0]. The effect of various operator perfor-

mance scenarios can be visualized in Figure 4.13. We observe that an exponential

distribution for nominal HEP during a heavy tail distribution of extreme HEP.

4.5 Summary of this chapter

In this chapter, a cyber threat and system operator error aware Markov chain

based model is presented for analytically predicting cascading failures in the power

grid. Such a model is a significant enhancement and more realistic compared to

the existing models for analyzing cascading failures probabilistically. During the

propagation of cascading failures, the capability of the system operators, and

the reliability of the available information can impact the dynamics of cascad-

ing failures significantly, which has been captured effectively in this model. Both

benefits and harm of interdependency between power grid layers were captured

through the dynamic load-shedding parameter and the cyber threat variable. Sys-
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tem operators’ error in taking the right actions at the right time was captured

through load shedding constraints. Using this I-SASE model, statistics such as

the distribution of transmission line failures conditional on initial condition in the

steady-state, Expected values of the transmission line failures can be predicted,

which can be useful to utilities for designing the grid. Additionally, an optimal

power-communication inter-connectivity level given initial conditions of the grid

can be calculated, which also can be a useful measure of reliability for the grid.

One drawback of the model is that due to the unavailability of full grid network

simulation data, the analytical model for cyber threat transitions could not be

calculated analytically. Future efforts in validating the model in a live testbed

would be crucial before implementing the model in a live grid network.
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Chapter 5

Dynamics of Transmission Capacity and Load Loss during Cas-

cading Failures in Power Grids

In this chapter, an analytical model is proposed to predict the average transmission-

capacity loss and load loss during a cascading failure as a function of time and

their steady-state values. Cascading failures in the power grid are described using

a Markov-chain approach, in which the state transition probabilities depend on the

number and capacities of the failed lines. The transition matrix is characterized

parametrically using Monte Carlo simulations of cascading failures in the power

grid. The severity of cascading failure is estimated using two metrics: the ex-

pected number of transmission-line failures and the amount of load shedding/load

loss (inferred from the average transmission capacity loss) in the steady-state.

These two metrics provide critical information regarding the severity of a cascad-

ing failure in a power grid (in terms of both the distribution of blackout sizes and

the amounts of load shedding). One of the benefits of this model is that it enables

the understanding of the effect of initial failures and the operating parameters of

the power grid on cascading failures.

5.1 Introduction

In this chapter, we propose a model based on a Markov-chain to characterize

the dynamics of cascading failures and calculate the severity of a cascade using two-

widely used metrics, i.e., the number of failed transmission-lines and the amount

of load shedding/load loss (calculated from the average transmission capacity loss)

during cascading failures.

The contribution of this work is three-fold. First, we construct the transition
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matrix of the reduced state space using a realistic setting derived from power flow

simulations using MATPOWER [79]. While in the SASE model [5], the allowed

transitions in the next state were either to the same capacity or to a higher ca-

pacity of the transmission lines, here we consider transitions to any capacity in

the next state. As a result, the calculation of the steady-state probabilities is

more detailed compared to the SASE model. Second, our approach of calculating

the transition matrix allows us to calculate the average transmission capacity loss

(ATCL) by using a recursion technique. Third, we use numerical simulations to

show that there is a linear correlation between the amount of load shedding and

the cumulative capacity of the failed transmission lines during cascading failures.

Hence, by using linear regression, we can infer the amount of load shed from an an-

alytical calculation of ATCL. Most probabilistic models consider the distribution

of the transmission-line failures as a metric of severity [13]. Using our model, we

obtain the distribution of the blackout size and calculate the amount of load loss,

which has been identified as the two critical metrics for evaluating the severity of

a cascade in [58]. We name this model cSASE (capacity-SASE) to emphasize its

predictive capability of tracking ATCL loss during a cascading failure.

5.2 cSASE model

5.2.1 Review of the simulation framework

The cSASE model is driven by numerous cascading failure simulations per-

formed on the IEEE 118-bus system to understand cascading failure behavior.

We use MATPOWER, a package of MATLAB, which provides a solution to the

steady-state DC power-flow optimization problem. MATPOWER [79] has been

used in several previous works [5, 1, 32] to analyze cascading failures in power

grids. Most of the state-of-the-art probabilistic models on cascading failures use

the DC power flow model for its simplicity yet effectiveness [29, 7].
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In what follows, we consider a failure of a transmission line occurs when the

power flow through the transmission line exceeds the maximum allowable power-

flow limit of that transmission line. This maximum allowable power-flow limit is

the capacity of that particular transmission line. Once the flow on a transmission

line exceeds the capacity, we fail that line and re-calculate the power-flow again

using the remaining transmission lines and repeat this process until we find no

overloaded transmission lines. In our simulations, we consider one transmission-

line failure occurs at each unit time. If multiple transmission lines exceed the

capacity threshold, we fail the line with the maximum deviation from the overflow

threshold. Since the power grid needs to balance generation and load, the failure of

the overloaded transmission lines can lead to a cascade of failures in the successive

time steps. To provide further context, similar to [5], we consider three power-

grid operating parameters. Namely, we define the power grid loading level, r ∈

[0,1], as the ratio of the total load demand and the total generation capacity.

The load-shedding constraint θ ∈ [0, 1] is defined as the ratio between the total

uncontrollable load (loads that do not participate in load shedding) and the total

load in the power grid. The capacity estimation error, e ∈ [0, 0.5], quantifies the

error by the control center in estimating the actual capacity of the lines. Note that

simulation results show that transmission-line failures increase with the r, e, and θ

parameters. Further, in our simulations, in addition to variations and randomness

in the initial failure, hidden failures are modeled by adding a small probability

of failure for the lines adjacent to failed lines. From the simulations, we observe

that depending on the grid topology, power grid operating parameters, and initial

disturbances, the severity of the cascading failure varies from no cascading failures

to complete power grid blackouts (a blackout occurs when a significant portion of

the grid is failed).
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5.2.2 State variables of the Markov chain

The state of the cSASE model is defined as Si = (Fi, Ci, Ii), where Fi, Ci, Ii are

the state variables of the Markov chain. Here, Fi is the number of transmission-

line failures at state Si. To stay consistent with the simulation, we allow one

transmission-line failure in our Markov chain at a time, which corresponds to set-

ting a time step as the time needed for only one line failure to occur. Ci represents

the capacity of the latest failed transmission line. Based on the simulation, we

group the IEEE 118-bus system into 5 possible power-flow capacities; namely, C

={20MW, 60MW, 120MW, 200MW, 332MW} representing the quantized power-

flow capacities based on transmission line) associated with the 186 transmission

lines of the IEEE 118-bus topology. For a different topology, the set of power

flow capacities may be different in size and contain different values. When a new

transmission line fails at state Sj, the capacity of that line would be Cj ∈ C. To

capture this phenomenon, we consider every possible one-step transition in the

transition matrix from the previous state. Hence the main difference with the

SASE model is that we keep track of the capacities of the lines that fail at any

time, instead of the maximum capacity of the failed lines up to that point.

5.2.3 Formulating the transition matrix

The transition matrix of the Markov chain is a 2M |C| × 2M |C| matrix, where

M is the total number of transmission lines and |C| is the cardinality of the set

of capacities (five in this work) and 2 accounts for the binary variable I. In our

model, we do not allow failed lines to recover. So, the number of transmission-line

failure, Fi, increases monotonically at a rate of one failure per unit time. Since, Fi

increases monotonically with no healing capabilities, the transition matrix P is a

row-stochastic upper diagonal matrix. The state transition probability, f(Sj|Si),
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from state Si = (Fi, Ci, Ii) to the next state Sj = (Fj, Cj, Ij), is defined below

f(Sj|Si) =



1 if Fj = Fi, Cj = Ci, Ij = Ii = 1,

Pstop(Si) if Fj = Fi, Cj = Ci, Ij = 1,

P (Sj|Si) if Fj = Fi + 1, Cj ∈ C, Ij = 0,

0 otherwise.

(5.1)

Here, Pstop(Si) is the probability of the cascading stopping at state Si, and

P (Sj|Si) is the probability of a new transmission-line failure with capacity Cj given

the Fi transmission-line failures with latest capacity loss of Ci. We introduce the

marginal probability, PCi
Fi

, which is the probability of a transmission-line failure

with capacity Ci when the number of failed line is Fi. Based on our set of power

flow capacities C and power grid simulations with 5000 random simulations over

the IEEE 118-bus system, we obtain the following probabilities of transmission-line

failures: P 20
1 = 0.898, P 60

1 = 0.076, P 120
1 = 0.020, P 200

1 = 0.005, P 332
1 = 0.001. We

use this set of marginal probabilities as the initial input to our model. Consider an

initial event with one or more transmission-line failures, i.e., with a known Fi and

Ci. A cascading failure stops when the Markov chain reaches an absorbing state

(no additional failures), i.e., for a state with Pstop(Si) = 1. Note that, Pstop(Si) is

a key parameter of the Markov chain model and the characterization of Pstop(Si)

was discussed extensively in [5].

Here, Pstop(Si) is defined as a linear combination of Pstop(Fi) (the probability of

cascade-stop with Fi failures) and Pstop(Ci) (the probability of cascade-stop with

capacity Ci). We adopt the formulation of Pstop(Fi) from [5]. However, power-

grid simulations show that Pstop(Ci) is high (low) when the capacity of the failed

transmission line is low (high). Hence, Pstop(Ci) is defined as
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Table 5.1: α, β, γ for different values of Fi, r, e, θ

Fi r e θ α β γ
2 0.7 0.4 0.1 44.33 -1.37 -1.19e-05
2 0.85 0.45 0.2 4159.02 -2.84 -1.95e-05
3 0.6 0.3 0.2 2919.47 -2.69 -1.08e-05
3 0.85 0.45 0.2 2167.98 -2.63 -2.32e-05
4 0.85 0.45 0.2 2048.77 -2.60 -1.44e-05
5 0.85 0.45 0.2 1620.52 -2.51 -7.2e-06

Pstop(Ci) = max

{
a3

(Ci −max{C}
max{C}

)4

, a4

}
. (5.2)

Here a3 and a4 are scaling parameters for Pstop(Ci) in addition to a1 and a2 for

Pstop(Fi), which are modeled parametrically using power grid simulations [5].

We formulate P (Sj|Si) using Pstop(Si) (defined above) as

P (Sj|Si) =

(
α(Cj)

β
(
1 + γCi(Cj − Cth)

))(
1− Pstop(Si)

)
. (5.3)

The parameters α, β, γ and Cth are calculated as done in [89]. Here, Cth is a

threshold in capacity values, where transmission lines with capacity lower than Cth

are more vulnerable to failure in the next step. For the chosen set of capacities,

a value of Cth = 41MW was observed from power grid simulations similar to [89].

For reproducibility, we list the values of α, β, γ calculated from the fitted power

grid simulation data for different values of r, e, θ and initial Fi in Table 1. This

completes the calculation of f(Sj|Si) in (1) for all Si, Sj .

5.2.4 Calculating the average transmission capacity loss in the steady

state

ATCL is a piece of critical information for measuring the severity of the cascad-

ing failure and regarding the reliability of the power grid. NERC defines a large

cascading failure that occurs in the power grid when the total load loss exceeds
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300MW[32]. Next, we define our approach of calculating the ATCL, which will

allow us to calculate the load loss during cascading failure.

We introduce the following recursion to calculate the average transmission

capacity loss during cascading failures in the power grid as

ATCFj
= ATCFi

+ ACLFj
, (5.4)

where ACLFi
is the ATCL in the current state with Fi failures, and ATCFj

is

the average total capacity (ATC) loss with a total of Fj failures during cascading

failures. To calculate ACLFj
, we need the marginal probabilities of initial line-

failures with capacity Ci at the current state. After the occurrence of an initial

event, we calculate the marginal probability at successive steps as follows,

P
Cj

Fj
=
∑
Ci∈C

P (Cj |Ci)P (Ci), (5.5)

where P (Cj|Ci) = P (Sj|Si) is obtained using (5). Here, P (Cj|Ci) equals P (Sj|Si)

because of our definition of the transition matrix in (1). Note that, P (Cj|Ci)

depends on the particular bowl shape of Pstop(Si) and varies with Fi and Ci.

Then, we calculate ACLFj
as follows

ACLFj
=
∑
Cj∈C

CjP
Cj

Fj
. (5.6)

Now, for any given initial condition, we can calculate the distribution of the

failed transmission lines for various operating conditions (r, e, θ) of the power grid.

Let, π0 be a vector that denotes the initial state S0 at time k = 0. Then π =

πi, (i = 1, ..., 2M |C|) represents the limiting distribution, i.e., πi = π0 lim
k→∞

Pk.

The conditional probability that a power grid eventually reaches a state with Fi
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(a) Number of line failure (b) Transmission capacity loss

Figure 5.1: Expected number of line failure and expected transmission capacity
loss for different total number of transmission lines M and initially failed transmis-
sion lines F . Here, Ci is the capacity of the latest transmission line failed among
F transmission lines and r = 0.85, e = 0.45, θ = 0.2.

failures from an initial state S0, is defined as

p(Fi|S0) =

|C|∑
i=1

π2(Fi−1)|C|+2i. (5.7)

For a more detailed understanding regarding cumulative transmission-line fail-

ure probability and blackout size, we refer the reader to [5]. We then calculate the

expected number of transmission-line failures, E[Fi|S0], given the initial condition,

S0 as follows,

E[Fi|S0] =
M∑
Fi=1

Fip(Fi|S0). (5.8)

Finally, we can calculate the expected total capacity loss for any given initial

condition, S0, using

E[ATCFi
|S0] =

M∑
Fi=1

ATCFi
p(Fi|S0). (5.9)
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5.3 Results

5.3.1 Expected number of transmission-line failures and average trans-

mission capacity loss

In Figures 5.1(a) and 5.1(b), we show the trend of the expected number of

line failures and ATCL during a cascading failure for various initial conditions.

One great advantage of the SASE model is its scalability, and we can also scale

the cSASE model for any grid topology. We consider fixed α, β, γ, r, e, and θ

for the snapshots in Figures. 5.1(a) and 5.1(b). We increase the initial number

of failed transmission lines proportionally as we increase M . Figures 5.1(a) and

5.1(b) show the expected line failure and ATCL increase with an increase in F,Ci,

and M . Similarly, we calculate the expected line failures using the SASE model.

The expected number of line failures in the SASE model is significantly high

compared to the cSASE model (for F = 4 and M = 200, expected line failure

is 26 in the SASE compared to 17 in the cSASE). The reason is that in the

SASE model, a transition to line failures with lower capacity in the Markov chain

state space is not allowed. Once a high-capacity transmission-line fails, there is

no transition to a low-capacity transmission line failure in the next step. In the

cSASE model, we allow all possible one-step transitions. Namely, even if there is

a high capacity transmission-line failure at the current state, a low capacity line

may fail at the next step. This difference causes the Pstop(Si)’s to be higher in the

cSASE compared to the SASE model.

5.3.2 Predicting load loss from average transmission capacity loss

We perform extensive cascading failure simulations on the IEEE 118-bus sys-

tem using various power grid conditions. We randomly select the value of r from

the vector {0.5, 0.6, 0.7, 0.8, 0.9}, e randomly from the vector {0.05, 0.1, 0.15,
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0.2, 0.25}, θ randomly from the vector {0.05, 0.1, 0.15, 0.2, 0.25}, and set Fi=2

for each iteration of the simulation. The purpose of taking vectors for different

operating parameters is to generate different combinations of initial operating con-

ditions randomly with two transmission line failures. Note that, in simulation, we

use the DC optimal power flow algorithm, which is capable of implementing load

shedding based on the cost of generation and load. In the simulation, we set the

cost of load shedding ten times higher than the cost of generation. Similar to

[5], we use dispatchable loads in the MATPOWER solver. To do that, we add

additional buses to separate buses with both load and generation in the IEEE 118-

bus system and connect the new buses with the added negative generators that

result from the dispatchable load (two or more generators cannot be added in the

same bus in MATPOWER solver). As described earlier, we fail one transmission

line in each step of the cascade and redistribute the power flow. At the same

time, the MATPOWER solver implements load-shedding if required. We collect

measurement data containing cumulative transmission capacity of the failed lines

and the cumulative amount of load shed (load loss) from 76280 cascading failures

simulations from MATPOWER. Then, we calculate the average load shed for a

various cumulative capacity of the failed lines, which is plotted in Figure. 5.4.

Observe that the amount of load shed is linearly correlated with the cumulative

capacity of the failed transmission lines. The red line in Figure 5.2 shows the lin-

ear trend line calculated using linear regression with the slope coefficient and the

y-intercept being 0.1378 and - 33.461, respectively, for our data set. We see from

Figure 5.2 that the load shed variance is higher for the higher values of the cumu-

lative capacity of the failed transmission lines due to low sample sizes for each bin.

The linear relationship between the amount of load shed and cumulative capacity

of the failed lines allows for a calculation of the amount of load shed from the

cumulative capacity of the failed transmission lines analytically. This observation
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Figure 5.2: Predicting average load shed from cumulative transmission capacity
of the failed transmission lines.

Figure 5.3: Expected transmission capacity loss during cascading failures for dif-
ferent M , F (red indicates a cascade). Here Ci = 20MW i, r = 0.85, e = 0.45,
and θ = 0.2.

is critical since the Markov chain simulation, and we obtain the ATCL for a given

initial condition. This allows us to use (i.e., the amount of load shed = 0.1378 ×

ATCL - 33.461) linear regression to get the amount of load shed from the ATCL.

5.3.3 Critical initial conditions for various grid sizes

We show the ATCL for various initial conditions (Ci = 20MW, r = 0.85, e =

0.45 and θ = 0.2) and number of transmission lines (F ) in Figure 5.3. We use

a threshold of 300MW for ATCL (which corresponds to a small amount of load

loss), above which we consider a cascading failure event. Note that the ATCL

value was chosen arbitrarily to classify cascade events. The table in Figure 5.3

shows the severity of cascading failure for different values of M and F (e.g., the

red-colored zones indicate a cascade). Observe that, when the total number of
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Figure 5.4: P (Fi ≥ 40) and ATCL for various r, e = 0.45, θ = 0.2. For r ≥ 0.65,
probability of a cascade increases with r.

transmission lines in the power grid M is 100, ATCL is less than 300MW only

for initial F = 2. Hence, when M ≤ 100, an initial failure with more than two

transmission-lines will lead to a cascading failure on average. On the other hand,

when M = 500, power-grids are resilient to cascading failures even though there

are five initial failures. Note that the results in Figure 5.3 are dependent on the

topology of the power grid.

In Figure 5.4a, we show show the cumulative probability of 40 or more transmission-

line failures, P (Fi ≥ 40) for various r and in Figure 5.4b the average transmission

capacity loss for various r. Here the parameters a1, a2, a3, a4, α, β, and γ are ap-

proximated from power grid simulation data and curve fitting. Figure 5.4 shows

that the cumulative probability of 40 or more line failures increases sharply when

r > 0.65. ATCL also jumps from 184MW (r = 0.65) to 313MW (r = 0.7). This

indicates the critical load level for this particular setting. This critical load level is

critical in the cascading-failure analysis because beyond this level, failures follow

a power-law distribution rather than an exponential distribution. Thus the proba-

bility of having a large cascade is higher beyond this critical load level. Note that

this critical load level varies with the power grid topology as well as the values of

a1, a2, a3, a4, α, β, and γ, i.e., Pstop(Si) and P (Sj|Si).
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Chapter 6

Damage of initial assets can have different consequences

Cascading failures in the power grid are heavily dependent upon the initial

stressor event that induces failures in the power grid and initiates a chain of

events. A stressor event can be a natural disaster or human-made sabotage attack

or error. Power grid parameters such as the number of failed transmission lines,

the capacity of the failed transmission lines, the loading level in the power grid,

the ability to implement load-shedding, collectively affect the cascading behavior

following an initial event. Moreover, the geographical correlation among failures

during an initial event can amplify cascading failures [8, 90, 34]. A combination of

parameters determines the initial failures of the power grid due to the occurrence

of an initial stressor event and can lead to blackouts of various sizes in the power

grid. Therefore, to model the dynamics of the cascading failure in the power grid,

it is essential to investigate the impact of power grid parameter responses upon

an initial stressor event. In this chapter, we study the influence of the initial

conditions that conduce the cascading failures in the power grid. We formulate

the impact of stressor(s) events analytically using Gaussian, circular, and linear

degradation functions, which result in initial failures in the power grid. We per-

form simulations on the IEEE 118-bus and IEEE 300-bus topology using a power

flow simulator to observe the impact of initial stressor(s) event and power grid

parameters on cascading failures in the power grid. Simulations show that there

is a linear relationship between initial failures in the power grid and stressor(s)

intensity. Then, we observe the impact of the number of initially failed trans-

mission lines and the total capacity of the initially failed transmission lines on

cascading failures in the power grid. Moreover, we use the power flow simulator
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Figure 6.1: Gaussian, circular and linear attacks mapped into a 2-D topological
space. Failures in the power grid depends on the intensity of the stressor(s). Initial
transmission line failures in the power grid calculated after an attack is simulated
[8].

to investigate the impact of power grid loading level and load-shedding during

the initial event. Our simulation results show that a combination of power grid

parameters influence cascading failures drastically. These parameters include the

number of failed transmission lines, the total capacity of the failed transmission

lines, number of geographical stressor(s) locations, failed transmission lines in each

stressor location, the intensity of the stressor(s), the power grid loading level, the

load-shedding constraints. Increasing the values of these parameters during an

initial event increases the probability of cascading, i.e., increases the probability

of blackout-size in the power grid. Simulation results suggest that the initial con-

dition of the power grid during a stressor(s) event is very crucial; hence, this work

paves a way to study and minimize the impact of cascading failures with carefully

designing the grid considering these effects.

6.1 Modeling the initial failures due to the stressor(s) and impact of the stressor(s)

on cascading failures in power grid

In recent years, researchers contributed significantly to model the cascading

failures in the power grid. To the best of our knowledge, most of the works done

on the probabilistic modeling of cascading failures consider arbitrary initial failures
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and then focus on modeling the propagation of failures. However, fewer efforts

are made to observe the impact of various initial conditions that lead to cascading

failures, which is the crucial contribution of this chapter. We map the intensity of

stressor(s) events with failures in the power grid. No notable extensive analysis has

been done to show the correlation between the status of power-grid parameters

during an initial stressor(s) event and failures in the power grid that leads to

cascading failures. Our work can map the correlation between an initial stressor

event and cascading failures in the power grid; thus, this work can investigate the

cascading failure behavior of the power grid more realistically compared to other

works. In this section, we map the initial transmission line failures in the power

grid with stressor intensities.

6.1.1 Modeling the initial failures due to stressor(s)

Multiple stressors can occur in one geographical location, or they can spread

over different geographical areas. These stressor(s) events can range from natural

disasters (e.g., tornado, cyclone, earthquake) to intentional human-made attacks

(e.g., use of weapons of mass destruction (WMDs), High altitude electromag-

netic pulses (HEMPs), cyber-attack in the communication layer of the power grid.

These events can lead to initial disturbances in the power grid, which may include

the transmission line failures, generator loss, or failures in the communication sys-

tem. These initial failures can act as a trigger for initiating cascading failures

in the power grid. In this chapter, we have used spatially-homogeneous stres-

sor(s) centers, which enables us to model multiple stressor(s) events at the same

time. The spread of these stressors can vary depending on the intensity of the

stressor(s). We use Gaussian, circular, and linear degradation functions, which

can reasonably characterize various real-world stressor(s) [8]. The intensity of the

Gaussian stressor degrades according to the Gaussian function as the spatial dis-

tance from the location of occurrence increases. The intensity of the function has
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(a) IEEE 118-bus topology (b) IEEE 300-bus topology

Figure 6.2: IEEE 118-bus and 300-bus topology

a peak at the mean of the degradation function. Two parameters entirely describe

a circular degradation function: radius of the circle (r) and the intensity of the

stressor at the center (I). The main difference between a Gaussian and a circular

stressor is in their degradation function. For a Gaussian stressor, the intensity of

the stressor degrades at e−d
2
, while for the circular stressor, it degrades with 1/d2.

For the Gaussian case, d is the minimum distance from the stressor center to the

point where intensity needs to be measured (e.g., Bus location, transmission line

fault). Similarly, for the circular case, d is the distance from the stressor center

to the point of intensity measure. Linear stressor(s) can be used to model natu-

ral disasters like tornadoes, which can occur in any geographical location with a

shallow radius but having almost equal strength over the region it spreads. Figure

6.1 shows a realization of these three types of degradation functions over physical

infrastructure. Attacks with the same intensity can lead to a different impact on

the power grid (e.g., different transmission line failures) depending on the nature

of the attack.

We denote the stressor(s) event by W and the stressor intensity at any point

(xi, yi) from the center of the stressor(s) with Iw(xi, yi) ≥ 0 (attack intensity is

either zero or a positive number and cannot be negative). The shape of a stressor

can be either Gaussian, circular, linear, or a combination of any of these over the
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power grid topology. The stressor intensity degrades with distance from the center.

To calculate the probability of line failures due to a stressor event, we divide each

of the power grid transmission lines into N points (N can be infinity large, i.e.,

the distance between two adjacent points can be close to zero) and measure the

stressor intensity at those points after the occurrence of a stressor event. We then

take the maximum intensity calculated in those N points. We assume that if the

maximum intensity at any point over the line crosses a certain threshold, then the

line will fail. Here, we assume N to be sufficiently large. An alternative approach

to calculating the maximum stressor intensity on a transmission line can be to

calculate the minimum distance between the transmission line and the stressor

center. Since the stressor intensity degrades over distance, it is intuitive that

minimum distance from the stressor center would result in maximum intensity,

with the peak intensity being at the center of the stressor(s). Hence, the maximum

stressor intensity on a transmission line would be inversely proportional to the

minimum distance between the transmission line and the stressor center. For

a single stressor event occurred in a geographical location, we define the failure

probability of a transmission line as:

p((Bi, Bj)|W = w) = min

(
max

k∈1,...,N
Iw(xk, yk), 1

)
, (6.1)

where p((Bi, Bj)|W = w) denotes the failure probability of a transmission line of

the power grid, (Bi, Bj) is the transmission line from Bith bus to Bjth bus, and

(xk, yk) is the location of the kth point on (Bi, Bj). For multiple stressor events

occurring at the same time, the total stressor intensity at (xk, yk) is

p((Bi, Bj)|W = (w1, ..., wL)) = min

(
(
L∑
i=1

max
k∈1,...,N

Iwi
(xk, yk)), 1

)
, (6.2)
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(a) For Gaussian stressor(s)
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(b) For circular stressor(s)
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(c) For linear stressor(s)

Figure 6.3: Average number of failed transmission lines in IEEE 118-bus topology
due to to Gaussian, circular and linear stressor(s) with various intensities.
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(a) For Gaussian stressor(s)
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Figure 6.4: Average number of failed transmission lines in IEEE 300-bus topology
due to to Gaussian, circular and linear stressor(s) with various intensities.

where L denotes the number of stressors.

We calculate the total number of failed transmission lines in the power grid

due to the occurrence of the stressor(s) using the measured individual transmission

line probability. Similarly, we can calculate the bus (node) failure probability due

to multiple stressor events using the following equation.

p((Bi)|W = (w1, ..., wL)) = min

(
(
L∑
i=1

Iwi
(xk, yk)), 1

)
(6.3)

Now, considering the fact that initial failures of a network component does

not depend on other components [90], the joint failure probability of the power

grid transmission lines due to stressor(s) event can be represented using the prod-

uct of their individual failure probabilities. Therefore, for a power grid with M
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transmission lines we have

p
(

((B1, B2), ..., (BM−1, BM))|W = w
)

=
∏

(Bi,Bj)∈V

p((Bi, Bj)|W = w), (6.4)

where V is the collection of all transmission lines in the power grid. Depending on

the geographical position and the intensity of the stressor(s), we obtain different

initial transmission lines failures. Figure 6.3 and Figure 6.4 shows a plot of the

average number of failed transmission lines due to the stressor(s) with Gaussian,

circular, and linear degradation functions with various intensities. We obtain the

average number of failed transmission lines using Monte-Carlo simulations over the

IEEE 118-bus topology (186 transmission lines, Figure 6.2(a)) and IEEE 300-bus

topology (411 transmission lines, Figure 6.2(b)) with 1000 sample realizations. In

each sample realization, we generate stressor(s) at random locations (uniformly

distributed) and calculate the intensity of stressor at every bus and transmission

line using (6.1) and (6.2). Then we take the expectation of transmission line

failures over the total realizations with a stressor(s) intensity for the three degra-

dation functions. In both IEEE 118-bus and 300-bus cases, we can see that the

expected number of failed transmission lines increases linearly with the increase in

stressor(s) intensity. Again, it can be observed that for a particular stressor type

and same attack intensity, for the IEEE 300-bus system, we get higher average

failed lines compared to the IEEE 118-bus system. Aforementioned is because,

for the IEEE 300-bus system, node density over the geographical region is higher

compared to the IEEE 118-bus system. From Figures 6.3 and 6.4, it is visible that

with the same stressor intensity, circular stressor creates the worst impact on both

the IEEE 118-bus and IEEE 300-bus topology. On the contrary, Gaussian stressor

has the least impact since Gaussian stressor(s) intensities decay at a faster rate

(e−d
2
)compared to a circular stressor(s), which degrades with 1/d2 where d < r.
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As shown above, the expectation of transmission line failure in the power grid

has a linear relationship with stressor(s) intensities, i.e., the number of line failures

increases linearly with the stressor(s) intensity for Gaussian, circular and linear

degradation functions. With this relationship at hand, we now have a model that is

capable of giving the initial failures in a power grid due to a stressor(s) event with

various intensities. This is important because now we can predict the impact of

a real-world natural disaster or human-made attacks. In the next section, we will

use the obtained initial failures due to stressor(s) in optimal power flow simulator

(MATPOWER) [79] and analyze cascading failures in the power grid.

6.1.2 Simulation framework

We use the MATPOWER [79] based CFS framework in our cascading failures

analysis, which we described already in the previous chapters. It uses power-flow

distribution framework and can give overloaded transmission lines, which was used

in several previous works [84, 5, 1]. We consider a line failure when power flow

through a line exceeds maximum allowable capacity through that line. Once we

find an overflow in a transmission line, we fail that line and re-calculate optimal

power flow (OPF) using the remaining transmission lines. In our simulations, we

take one transmission line failure at a time. If multiple transmission lines exceed

the capacity threshold, we fail the line with maximum capacity. We take 1000

random realizations and calculate associated transmission line failure probabilities

due to the stressor(s) using (6.1) and (6.2). We use the same intensity of the

stressor(s) for one turn of 1000 realizations and calculate the average number of

failed transmission lines.

6.1.3 Impact of stressor(s) event on cascading failures

We use Gaussian, circular and linear stressor(s) over the IEEE 118-bus topol-

ogy (Figure 6.2(a)), and consider these stressor(s) as initial events that may lead
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to cascading failures in the power grid. We only show the results using the IEEE

118-bus topology here for space constraint. We perform Monte-Carlo simulation to

analyze the impact of the stressor(s) on cascading failures in the power grid based

on OPF analysis. Since transmission line failures increase linearly with stressor

intensity, one stressor event can generate multiple transmission line failures if the

stressor intensity is high. However, the line failures will exhibit clustering (failed

lines will be close to each other). On the contrary, multiple stressors can initiate

multiple failures, and the stressor locations can be distributed randomly (inhibi-

tion). Here, we define that a cascading failure event occurred if more than five

percent additional transmission lines are failed after an initial stressor(s) event.

If, Fthreshold is the threshold for a cascading event, Finitial and M are the number

of initially failed transmission lines and total number of transmission lines respec-

tively then, Fthreshold = Finitial + 0.05M . For a realization, if the total number of

line failure exceeds Fthreshold, we consider that as a cascading failure event. For

example, if three transmission line fails due to a stressor(s) event, then we say a

cascading failure event occurred if more than twelve transmission line fails for the

IEEE 118-bus case, which has 186 transmission lines. From Figure 6.5, it is visible

that inhibition of failures generates more cascading failure events than clustering,

i.e., if the transmission line failures are randomly distributed, then there is a higher

likelihood of cascading failures in the power grid. The reason for low cascading

due to clustering is that the power grid has a better control mechanism to mitigate

the impact of localized failures using load-shedding or islanding, as the location

of the failed lines is very close to each other. Most of the probabilistic models

consider random failures distributed over the power grid [5, 1, 7]. However, if the

failed transmission lines are distributed (can be the result from multiple stressor

events occurring at the same time in various locations), that in turn increases the

probability of cascading failure in the power grid.
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Figure 6.5: Number of failed transmission lines when one stressor location with
multiple failures (blue) and considering randomly distributed failed transmission
lines (green) where a stressor event contribute one transmission- line failure (we
pick the line with maximum intensity to fail).

Figure 6.6 shows the simulation result for attacks with multiple transmission

line failures. We can see that for the same number of transmission line failures, if

we increase the number of attack points, the power grid becomes more cascade-

prone than the previous case. Here, in Figure 6.6, we use linear curve fitting (blue,

red, green, and orange lines represent various stressor(s)) to show the impact of

inhibition clearly.

6.2 Impact of initial failures due to a stressor event

We now apply our initial failure model in MATPOWER OPF simulator to

calculate the impact of stressor(s) events on cascading failures in the power grid.

Simulations using the other IEEE topologies follow the same pattern.

6.2.1 Impact of number of failed transmission lines and capacity of the

failed transmission lines

We define percentage of additional transmission lines lost due to the cascading

failures as ∆M/(M −Minitial), where ∆M = additional transmission lines lost due

to cascading; M = total transmission lines of the power grid; Minitial = number
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Figure 6.6: Number of cascading failure event in a power grid with different num-
ber of attack points and number of transmission line failures.

of transmission lines failed due to initial event. Similarly, percentage of additional

capacity lost due to the cascading failures as ∆C/(Ctotal − Cinitial), where ∆C =

additional capacity lost due to the cascading; Ctotal = total capacity of the power

grid; Cinitial = total capacity of the initially failed lines. Figure 6.7 represents

the impact of various initially failed transmission lines of fixed total capacity and

the total capacity of the failed transmission line during an initial event using

OPF simulations. In Figure 6.7(a), we keep the total capacity of the failed lines

as constant and then increase the number of failed transmission lines. We take

randomly distributed line failures for 1000 samples in each case. These initial

line failures are generated using random stressor events over the IEEE 118-bus

topology. Our simulation results suggest that if the total capacity of the failed

lines is fixed, an increase in the number of line failures makes the power grid

more cascade-prone. In Figure 6.7(b), a similar type of simulation is done with

a fixed number of failed transmission lines (randomly chosen from the 186 lines)

while varying the total capacity of the failed lines. The results suggest that the



126

0 2 4 6 8 10

Number of initially failed lines

0

10

20

30

%
 o

f 
A

d
d

it
io

n
a

l 
lin

e
 l
o

s
t 

d
u

e
 t

o
 c

a
s
c
a

d
in

g

(a) varying number of initially failed lines

0 500 1000 1500

Total capacity of initially failed lines

2

2.5

3

3.5

4

4.5

p
e

rc
e

n
ta

g
e

 o
f 

A
d

d
it
io

n
a

l

 c
a

p
a

c
it
y
 l
o

s
t 

d
u

e
 t

o
 c

a
s
c
a

d
in

g

(b) varying total capacity of the ini-
tially failed lines

Figure 6.7: Relationship between the number of initially failed transmission line
due to a stressor event with a percentage of additionally failed lines due to cascad-
ing when the total capacity of the failed transmission lines are fixed, and the total
capacity of the initially failed transmission lines with additional capacity lost due
to cascading when the number of the failed transmission lines are fixed.

percentage of additional capacity lost due to cascading failures increases if the

total capacity of the initially failed lines is increased. Thus, we conclude that both

numbers of initial line failures and the total capacity of the failed lines during a

catastrophic event can lead to the cascading failures in the power grid.

6.2.2 Impact of power grid loading level and load-shedding constraint

on cascading failures in power grids

Power-grid loading level, l ∈ [0,1], is defined as the ratio of the total demand

and the generation capacity of the power grid. The ratio of the uncontrollable

loads (loads that do not participate in load shedding) and the total load in the

power grid is termed the load-shedding constraint, denoted by θ ∈ [0,1]. Here,

the stress of the power grid increases as we increase l, and θ = 0 implies no load

shedding constraint while θ = 1 indicates no load shedding can be implemented.

To observe the impact of l and θ, we consider a fixed number of initial trans-

mission line failures in our simulation. We observe that when the power grid is

highly stressed, it is more cascade-prone than when the grid is nominally stressed.

Figure 6.8 shows a linear relationship between the average number of failed trans-
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Figure 6.8: Dependence of the average number of failed transmission lines on
power grid operating parameters ( l and θ).

mission lines and the operating parameters. We can also observe that there is a

critical operating point for both land θ (approximately 0.8 and 0.2 for l and θ in

our case). We observe a sharp increase in average cascading failures beyond this

critical parameter setting. Similar observations were found in [5, 1].
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Chapter 7

Predicting cascading failures in power grids using machine learn-

ing algorithms

Although there has been significant progress in modeling cascading failures in

power grids, few works involved using machine learning algorithms. In this chap-

ter, we classify cascading failures in the power grid that lead to large blackouts in

power grids using machine learning algorithms. Since real-world cascading failure

data is not available, we create a synthetic cascading failure simulator framework

to generate cascading-failure data for various power grid operating parameters.

We include the topological parameters such as edge betweenness centrality, the

average shortest distance for various combinations of two transmission line fail-

ures in our dataset. Then we apply various machine learning algorithms to classify

cascading failures and compare accuracy. Further, we use regressive models to pre-

dict the number of failed transmission line and the amount of load shedding. This

data-driven technique is useful to quickly classify cascading failures based on the

input power grid conditions. Hence, power grid design engineers can use this to

increase the robustness of the grid.

In this chapter, we classify and predict cascading failure based on critical power

grid attributes like power-flow capacity, edge betweenness centrality, demand loss,

power grid loading, estimation errors, constraints on load-shedding. The contribu-

tion of this chapter is three-fold. First, we develop a cascading failure framework

(CFS) using MATPOWER [79], a widely used power-flow simulator and gener-

ate synthetic cascading failure data using the IEEE 118-bus topology. Second, a

comparison using different classifiers is shown to evaluate the classification per-

formances. The objective is to do exploratory data analysis on labeled data using
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various supervised machine learning algorithms and identify the best algorithm

based on accuracy. Third, we use a linear regression technique to calculate the

number of transmission line failures, and the amount of load shed for any given

initial condition.

7.1 Power grid operating parameters and model features

Based on power grid simulations and prior works, we identify the following

power 49 grid operating parameters that govern the cascading failure dynamics. In

our simulation, we use the IEEE 118-bus system (which is a simple approximation

of the American Electric Power system (in the U.S. Midwest) [83]) as the test case

which contains 186 transmission lines, 118 buses (nodes) and 54 generators.

Power grid loading level, r: We define the power grid loading level, r ∈ [0, 1]

as the ratio of the total load demand, and the generation capacity of the power

grid. In the IEEE 118-bus system, the maximum generation is 9966MW. r = 1

indicates the demand is 9966MW and r ∈ [0, 1] scales the power demand with

respect to maximum possible generation. In our simulation, we define a vector

r = {0.5, 0.6, 0.7, 0.8, 0.9} and simulate the grid against various r. Note that a

higher value of r increases the stress in the grid. We observe that for r < 0.5, the

power grid is under no stress and can absorb the impact of two transmission line

failures and redistribute the power flow without any further failures.

Load-shedding constraint, θ: The load-shedding constraint is defined as

the ratio of uncontrollable loads (loads that do not participate in load shedding)

and the total load in the power grid denoted by, θ ∈ [0, 1]. This is an important

parameter to ensure the control actions by the power grid operator. θ = 1 indicates

that all the loads are uncontrollable, and the human operators can perform no load

shedding. Again, θ = 0 indicates that the operators can shed any load on the grid.

In this chapter, we consider equal load shedding constraints over all the loads in

the grid. Further, we consider a vector θ = {0.05, 0.1, 0.15, 0.2, 0.25} and choose
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Figure 7.1: Correlation among the features

value of θ randomly from the vector. Similar to r, a higher value of θ increases

the probability of cascading failure in the power grid.

Capacity estimation error, e: The Capacity estimation error, e ∈ [0, 0.25]

is defined as the error by the control center in its estimation of the actual capacity

of the lines. In our CFS framework, this parameter is used to calculate overloaded

lines. We used the same approach used in [5] to calculate overloaded lines. When

power flow in a transmission line exceeds (1-e)× capacity, we consider that line as

an overloaded line. We estimate the capacity of a transmission line using power

flow simulation under maximum loads, i.e., when generation equals demand (r=1).

Note that, since we use DC power flow simulation, there are no transient effects,

and we can use the maximum generation without any issues. We quantize the flow

capacity of a transmission line into a set of five capacities {20, 80, 200, 500, 800}

MW [81], and assign this capacity of the transmission line as a constraint of the

MATPOWER power flow optimization problem (discussed later). In this chapter,

we collect cascading failure data using various values of e.
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Fixed failure probability of neighboring lines, fp: To include the effect

of hidden failures and localized failures [13], we introduce a parameter namely, the

fixed failure probability of neighboring lines, fp in our CFS framework that fails

the first layer adjacent lines of a failed line with a small probability. We consider a

vector, fp = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06} and choose the value of fp randomly

from that vector. Since this is a probability, it adds uncertainty on line failures,

i.e., the total number of transmission line failure after a cascading failure ends

is not deterministic for a given initial condition because this parameter ensures

that there is a small equal probability of adjacent line failures for any specific line

failures.

Edge betweenness, B and average shortest path, Sp: We keep track

of the average edge betweenness of the initially failed lines as a model feature,

which is defined as a measure of centrality based on shortest graph distance [91].

Since we are failing two transmission lines initially, we take the average of the

edge betweenness as a model feature. Additionally, we track the average shortest

path between two of the initially failed transmission lines as a model feature.

The shortest path is calculated using Dijkstra’s algorithm [91]. In this chapter,

to obtain the average shortest path between the two transmission lines, first, we

calculate the distance between two starting buses (from the bus) and the two

ending bus (to the bus) and then take the average distance between them. The

rationale for tracking these two features is to capture the role of power grid physical

topology, although, in [7], the authors mentioned that the role of power grid

topology in cascading failures in power grids is not explicit due to the dynamics

of power flow.

Flow capacity of the initially failed lines, Cflow: We keep track of the sum

of the flow capacities of the initially failed lines. Intuitively, failing transmission

lines with higher capacity yields more transmission line failures in the successive
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stages due to the sudden difference between load and generation.

Cumulative installed capacity of the failed lines, CCfail: We keep track

of the cumulative installed capacity of the failed lines. Note that, installed capacity

of a transmission line the quantized capacity chosen from the set of five capacities.

Number of Islands, Nislands: Finally, we include the number of islands

formed due to cascading failures in power grids as model parameters. Since islands

are formed as a result of failures of transmission lines that breaks the power grid

into small self-sufficient microgrids, it is intuitive that the probability of a large

cascade is very high if the number of islands is very high.

On top of these features, we track the following two output labels.

Number of failed lines, Nfail: We track the number of failed transmission

lines after the cascade ends as an output label. We classify the number of failed

lines, into three distinct classes (no, small, and large cascade) for classification.

Amount of Load shed, CLS: We use the optimal power flow algorithm

from MATPOWER, which includes the capability of implementing load shedding

depending on cost. In this work, we set the cost of load shedding ten times

higher than the cost of generation to ensure maximum generation before any load

shedding. We track the cumulative amount of load shedding as a critical grid

parameter.

In general, the stress of the power grid increases as we increase the operating

parameters. From the simulations, we observe that depending on the topology,

power grid operating parameters, and initial disturbances, the severity of the cas-

cading failure varies from no cascading failure to a complete blackout of the power

grid. The correlation among the features is shown in Figure 7.1. Observe that the

correlation among the topological parameters B and Sp with the number of failed

lines and the amount of load shed is very less. The correlation plot is handy to

visualize the correlation between the features.
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Figure 7.2: Comparison of the overall accuracies for predicting cascading failure
in power grids using machine learning algorithms

7.2 Results

In this section, first, we discuss the statistics of the dataset and then implement

machine learning algorithms to predict cascading failures in power grids.

7.2.1 Description of the data

Based on our CFS framework, we have performed over seventy-six thousand

iterations using the IEEE 118-bus test case to collect synthetic data. In each

iteration, we randomly fail two transmission lines. We randomly select r, e, θ, pn

from the vectors defined earlier. We also calculate the topological parameters such

as edge betweenness centrality, shortest distance as defined. We store the power

flow through the initially failed transmission lines in a column. CFS framework

output provides us the number of transmission line failures after cascade ends, the

amount of load served, and load shed, number of islands formed, etc. We calculate

and store the input-output parameters for all the iterations.
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(a) no cascade (b) small (c) large cascade

Figure 7.3: Comparison of the accuracies for predicting cascading failure in power
grids using machine learning algorithms for the three classes of cascades.

7.2.2 Analysis on cascading failure prediction

We have used the dataset obtained from MATPOWER simulation to perform

classification using the python Scikit-learn library [92]. In the dataset, we contain

the number of transmission line failures after the cascade ends. As mentioned

above, we quantize the number of failed transmission lines in three classes: no

cascade(number of transmission lines failures ≤10), small cascade (10 <number

of transmission lines failures < 25), and large cascade (number of transmission

lines failures≥ 25). We split the dataset for training(70%) and testing(30%) pur-

poses. We have used nine features, as described above. We have used the following

machine learning classification algorithms [93, 94]: logistic regression, k-nearest

neighbors (KNN), decision tree, random forest, support vector machine (SVM),

AdaBoost. The precision, recall, and f1-scores are calculated using [92] for all the

algorithms and shown in Figure 7.2. It can be observed that all the classification

algorithms have a relatively higher accuracy of classification with SVM and ran-

dom forest having the best precision. Next, we show the individual cascade type

classification accuracies in Figure 7.3. We can observe that the classification of

no cascade has higher precision compared to the classification of high cascades.

This is because high cascades have low test samples compared to no cascades.

For KNN, we further calculate the optimal k that yields the lowest error rate and

observed that k = 9 gives the highest accuracy.



135

Figure 7.4: Predicting the number of line failures using Linear Regression

Figure 7.5: Predicting the cumulative amount of load shed using Linear Regression

7.2.3 Linear regression to predict the number of transmission line fail-

ures and the amount of load shed

We then use linear regression [93] to predict the number of cascading failure

and the amount of load shed which is shown in Figures 7.4 and 7.5 respectively.

Observe that, the scatter plot of Figure 7.4 shows that the relationship between the

test data and the predicted values are linear, which indicates that linear regression

is a reasonable model to predict the number of line failures. The error(deviation)
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Table 7.1: Prediction error

Metric Error (number
of failed lines)

Error (amount
of load shed)

mean absolute error 1.9 82.92
mean square error 7.07 15334.84
root mean square error 2.66 123.83

of the predicted values from the actual value is reported in Table 7.1. Note that

the error is relatively small. However, from Table 7.1, we also observe that the

error for predicting the amount of load-shed is relatively large. Also, in Figure 7.5,

it is visible that the plot is not linear, which indicates that linear regression is not

a good model for predicting the amount of load shedding. Note that, some of the

analytical models [5] also predicts the distribution of the number of line failures

from simulated data, while in our work, we only predict the number of line failures

and the amount of load shed from given data without finding the distribution of

the line failures.

7.3 Predicting cascading failures with a new dataset of modified features

We have used the before mentioned cascading failure simulation framework to

generate a new dataset with a modified feature. The rationale to generate the new

dataset with new features is to prune a few features from the previous dataset and

add a few new features to observe the performance. Here it is worth mentioning

that most of the features described above are engineered features calculated from

the regular features of the smart grid.

7.3.1 Features of the new data set

Following is a brief summary of the features of the new dataset:

Similar to the earlier work, We keep track of the Power grid loading level, r,

Load shedding constraint, θ, Capacity estimation error,e.

Failed lines, Cmax, Cmin, Installed capacity: We keep track of the initially
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Figure 7.6: box plot of the output variables with different r

failed lines, the maximum, minimum, and cumulative capacity of the initially

failed lines as features of the model.

Average degree, average distance: We track the average degree and distance of

the network after removing the initially failed lines as topological features of the

grid.

Human operator error probability: We use our work in [64] to calculate the

human operator error probability, randomly drawn from the distribution of the

operator attributes as a feature for the model.

Number of failed lines due to cascade: We track the number of failed trans-

mission lines due to cascade after the cascade ends as an output label.

Amount of load shed: We use the optimal power flow algorithm from MAT-

POWER, which includes the capability of implementing load shedding depending

on the cost. Here, we set the cost of load shedding ten times higher than the cost

of generation to ensure maximum generation before any load shedding. We track

the cumulative amount of load shedding as a critical grid parameter.

From Figure 7.6, we can see that the number of failed lines almost remains the

same as the load increase. However, the amount of loadshed increases significantly,

which indicates that the additional load demand is mostly shaded, and fewer line

failures are triggered due to this additional load demand. To capture the effect
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Figure 7.7: Number of islands formed after the initial failures

of cascading failures (triggered by file failures and loadshed), we use the following

target variable. Cascading effect: We take the linear combination of the number

of failed lines and the amount of load-shed as the output variable we want to

predict. The variable is scaled between [0,1]. We use the variable values directly

for the regression task. For the classification task, we first calculate the median of

the cascading effect and sue the left half of the median as no cascade (class zero)

and the right half as cascade (class one) for classification.

7.3.2 Data cleaning

The dataset was mostly clean, but we checked the following steps to ensure

the cleanliness of the data.

• There are no missing values, null values, outliers in the dataset.

• We removed one duplicate column

• We renamed the columns for better understanding

We further checked the dataset with pandas info and describe the method and

found everything consistent.
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Figure 7.8: Histogram of the failed lines due to cascade

7.3.3 Statistical Analysis

We did statistical analysis such as colinearity analysis for pruning features, cor-

relation analysis, histogram analysis for understanding the behavior of the dataset.

In figure 7.7, we show the number of islands triggered after the initial failed

lines of the grid. Since the number of islands triggered is very few, we did not

consider it as a feature.

From the histogram of the cascading effect in Figure 5, It can be observed

that the histogram is bimodal. The first pick indicates a zone where no additional

transmission liens were failed due to cascade, and no loads were shed, i.e., for the

set of feature values, no cascading occurred. Similarly, the second pick represents

that the average cascading effect occurred at 0.35.

The histogram of load-shedding in Figure 7.9 is slightly skewed to the left,

which is intuitive. This indicates the probability of a large cascading failure oc-

curring is less. This also indicates that MATPOWER optimal power flow (OPF)
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Figure 7.9: Histogram of the load-shedding

is curtailing the loads efficiently to minimize the greater risk of a cascading failure.

From figure 7.10, we can visualize that there is no pattern of correlation be-

tween the cascading effect and installed (cumulative) capacity. Also, the installed

capacity is not a categorical value. Considering this, we remove this feature from

the dataset.

We did not consider generation, served load, and load demand as features of

the dataset to avoid collinearity, which can be visualized in Figure 7.11.

We plot the correlation among features in Figure 9. We can observe a strong

correlation between the cascading effect and Capacity estimation error. A moder-

ate correlation between cascading effect and load-generation ratio, load-shedding

constraint, Human error probability, alpha(negative correlation). Low/minimal

Correlation between cascading effect and Cmax, Cmin, Degree, distance, and ini-

tially failed lines.

From Figure 7.13, the histogram of the cascading effect shows bimodal nature.

The first peak is due to no line failure scenarios, and the second peak captures the
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Figure 7.10: Cascading effect vs installed capacity

Figure 7.11: Generation and served load vs load shedding, demand vs r
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Figure 7.12: Correlation between features for the new dataset

Figure 7.13: Histogram of the cascading effect
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average effect of line failures and load shedding.

7.3.4 Results and In-depth analysis using machine learning

We have used the following algorithms for regression:

• Linear regression/ Ridge/Lasso regression

• Random Forest regression

• Support vector regressor

We have used the following algorithms for classification:

• Logistic regression

• KNN (k nearest neighbor)

• Random forest

• Decision tree

• Support vector machine

• Adaboost

The following metrics are used for evaluating the regression performance:

• r-squared score.

• mean absolute error (MAE)

• mean square error (MSE)

The following metrics are used for evaluating the classification performance:

• Accuracy

• Precision
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Figure 7.14: Steps used for modeling

• Recall

• F1-score

We show the steps used during the modeling phase in Figure 7.14

We split the data set for training (80%) and testing (20%) purposes. The pre-

cision, recall, and f1-scores are calculated using scikit-learn for all the algorithms

and shown in Figure 7.15. It can be observed that all the classification algorithms

have a relatively higher accuracy of classification with random forest having the

best accuracy. Next, we show the individual cascade class classification accuracies

in Fig. 12. The purpose of the classification task here is to find the boundary

between the cascade and no cascade zones for the given input space. Here also we

can see that random forest works best.

The hyperparameters used to get the best accuracy, precision, and recall are

given in Table 7.2.

For the regression task, we also obtained the best r-squared error using random

forest regression, which is shown in Figure 7.17. The mean squared error is also
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Figure 7.15: Classification accuracy

Figure 7.16: Classification accuracy for No cascade/cascade prediction

Table 7.2: Hyperparameters

Model Hyperparameters
Decision tree criterion: entropy, min samples leaf: 10,

min samples split: 5
KNN algorithm: auto, leaf size: 1,

n neighbors: 10, weights: distance
Adaboost algorithm: SAMME.R,

learning rate: 0.5, n estimators: 200
Random forest criterion: gini, min samples leaf: 5,

min samples split: 5, n estimators: 50
Logistic regression C: 10 (penalty =‘l2’)
SVM C: 5, kernel: rbf
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Figure 7.17: Regression on cascading effect

Figure 7.18: Prediction and test data

reported.

Figure 7.18 represents the trend of the linear trend between predicted vs. test

values.

Comparing the performance of various models, we select a random forest model

for regression and classification tasks. Finally, we have generated 10000 data using

the cascading failure simulation framework for testing the model, and we have

achieved an 89% accuracy for classification and an r-squared score of 0.90.
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Chapter 8

Summary and future works

In this dissertation, a cyber threat and system operator error aware Markov

chain based model is presented for analytically predicting cascading failures in the

smart grid. Such a model is a significant enhancement and more realistic compared

to the existing models for analyzing cascading failures probabilistically. During

the propagation of cascading failures, the capability of the system operators, and

the reliability of the available information can impact the dynamics of cascading

failures significantly, which has been captured effectively in this model. Both ben-

efits and harm of interdependency between power grid layers are captured through

the dynamic load-shedding parameter and the cyber threat variable. System op-

erators’ error in taking the right actions at the right time is captured through load

shedding constraints. Using this I-SASE model, statistics such as the distribution

of transmission line failures conditional on initial condition in the steady-state, ex-

pected values of the transmission line failures can be predicted, which can be useful

to utilities for designing the grid. Additionally, an optimal power-communication

inter-connectivity level given initial conditions of the grid can be calculated, which

also can be a useful measure of reliability for the grid.

First, in chapter 2, we showed that while studying the cascading-failures in

power grids, it is very crucial to analyze the inter-dependency between power,

communication, and human interaction, compared to studying the single non-

interacting power grid. We showed that the power grid can be negatively influ-

enced when the power grid is under stress, when the human operator is stressed,

and when the communication system has failures. A combination of these in-

teractive systems combined with power grid operating parameters can lead to
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catastrophic cascading-failures, which are not captured in non-interacting power

grid models. We showed that the blackout size in the power grid from a small

initial failure could be significantly impacted when the communication network

and control operation is not normal. We conclude that under nominal stress level,

power grid behaves as a reliable (follows exponential distribution) system during

cascading failure even with dependencies from human or communication network;

however, if we consider interdependencies from both communication and human

operators’ and increase stress level, power grid becomes unreliable (follows power-

law distribution).

In chapter 3, we have refined a previously-reported Markov chain model to

enhance capturing the correlation between the operators’ performance attributes

with key grid-states, e.g., the number of failed transmission lines and the max-

imum capacity of the failed lines. The HEPs are determined from eight PSFs.

Next, the mapping is created to generate a HEP in terms of the grid states and

is embedded into the Markov chain transition matrix to capture the role of op-

erator error using the distribution of the PSFs. Next, a set of critical PSF level

combinations are identified using the distribution of the PSF levels that have a

high probability of occurrence. Then, the blackout size, including the human er-

ror conditional on initial grid conditions, is estimated, and a comparison of results

with the existing hSASE model is shown. The use of the distribution of the PSFs

is that it allows the capture of the detailed role of the human operator into the

cascading failure dynamics. This work is valuable to understand the role of grid

operator performance and the impact of operators’ error on the reliability of smart

grids.

Then, in chapter 4, we present a stochastic Markov-chain based model (I-

SASE model) that captures the dynamics of cascading failures in the power grid,

including the role of power-communication interdependency and human operator
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error. The study of cascading-failure dynamics in a coupled environment, includ-

ing power, communication, and human operator response, significantly enhances

the understanding of cascading-failure dynamics. A combination of these interac-

tive layers, along with grid parameters, can lead to catastrophic cascading-failures

which are not captured in single-layered power grid models. The benefits of inter-

dependency are captured by having a higher capability of implementing load shed-

ding during contingencies. On the other hand, strong interdependency increases

the probability of cyber-attacks through communication channels and can affect

the operators’ decision-making capability. Particularly, with the I-SASE model,

one can calculate the probability distribution of the number of transmission-line

failures in the steady-state as well as can measure the effect of operator error on the

propagation of cascading failures. I-SASE model shows that for every fixed grid

operating conditions, there exists an optimal level of interdependency between the

power grid and the supporting communication infrastructure. The power grid be-

comes less resilient to contingencies above and under the optimal interdependency

as opposed to similar models that suggest that maximum power-communication

interdependency ensures maximum resilience to cascading failures.

In chapter 5, a novel way to calculate the average transmission capacity loss

(ATCL) analytically during a cascading failure is shown. The model captures the

distribution of the transmission-line failures at the steady-state as well as the total

transmission-capacity loss. We find a linear correlation between the cumulative

capacity of the failed transmission lines with the amount of load-shedding (load

loss) is shown. Our model is used to infer the amount of load shed from the

ATCL. The model incorporates some operational attributes of the power grid,

such as the ratio of the load and the total generation capacity, a constraint on

implementing load-shedding and error in estimating the true capacity flow in the

transmission lines, which makes the model useful from a practical perspective
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by power engineers. Notably, with this model, we can calculate the probability

distribution of the number of transmission-line failures and the total capacity

of the failed transmission lines as a function of time and at the steady-state.

This formulation allows us to identify the operating characteristics as well as the

initial conditions (initial line failures and their capacities) that result in cascading

failures.

In chapter 6, we analyze the impact of the initial stressor event that leads to

cascading failures. We have formulated the initial failures in the power grid with

various attack types (Gaussian, circular and linear) and simulate using IEEE 118-

bus and 300-bus topology. Our simulations suggest that the number of initially

failed transmission lines is linearly proportional to attack intensity. We observe

that cascading failures in the power grid are correlated with different power grid

parameters during an initial stressor(s) event. These parameters include transmis-

sion line failures, the capacity of the failed transmission lines, number of stressor

locations, power grid operating parameters such as power grid loading level, load-

shedding constrain during an initial stressor event. All these initial conditions

eventually determine the blackout-size during a cascading event. Although sev-

eral models can be found analyzing cascading failures in the power grid, most of

them consider arbitrary initial conditions to model the cascading failure behavior.

Our work captures the impact of initial conditions during a stressor(s) event and

analyzes cascading failures phenomenon from the stressor event that occurred.

Future works may include capturing the impact of continuous time-varying degra-

dation functions and identify critical operating settings for the power grid for such

degradation functions.

In chapter 7, we have used machine learning algorithms to predict cascading

failures in power grids and also used linear regression to predict the number of

transmission line failures as well as the cumulative amount of load shedding given
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an initial operating condition. First, a CFS framework is developed, which enables

us to simulate cascading failure dynamics on the power grid under given initial

disturbances (i.e., transmission line failure) and power grid operating setting. Our

simulator is built over MATPOWER power flow simulations and runs on any stan-

dard IEEE test system case data. Our simulator can effectively generative labeled

cascading failure data set under different settings, which is used as an input to

machine learning models. Our results suggest that cascading failure prediction

can be made using machine learning with high accuracy. However, we showed a

simple exploratory data analysis in this work. Complex data-driven modeling to

find the distribution of line failures, distribution of load shedding, and critical line

identification is missing, which can be a valuable extension of this work. Further,

future works include extending the capability of the simulator to include generator

dynamics, AC power flow solver, including communication failures, human oper-

ator error so that analysis of frequency and transient instability can be analyzed,

and smart grid dynamics can be captured.

Future works on continuous improvements of the model and validation in a real

grid would be crucial. We have also developed a Markov decision process based

on optimal load-shedding policy using the SASE model for mitigating the risk of

cascading failures in our research group. Future works would include developing

the optimal load-shedding policy using the I-SASE model, capturing the human

operators’ error and cyber threat. We have used the D.C. optimal power-flow

model for calculating the transition probabilities of the Markov chain. Although

effective and widely adopted for modeling cascading failures, D.C power flow is a

simple approximation of the complex power flow dynamics and omits the effect of

transients. Validating the model using A.C. power flow and refining the transition

probability formulations to capture the transient effects can be scope for further

works in this direction. Further, we have not considered the role of distributed
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energy resources (DERs) such as wind farms, solar, and microgrids, as well as

operation and management systems. With the significant advent of renewable

energy resources in the smart grid, the operation and management of the grid is

becoming more and more complex. Inherent intermittent nature of the renewables

can significantly change the critical and non-critical operating points of the smart

grids. In addition, variable loads during a contingency was not captured in the

model. Hence, for completeness of the model, capturing the generator dynamics,

variable loads and the role of renewable energy resources into the model would

be a significant improvement on enhancing the capability of the model. Further,

the model is mainly developed to capture the interdependence between the power

grid and the associated communication network in smart grids. The model can be

generalized so that analysis of the interdependencies between any interdependent

networks (e.g., transportation networks) of any size can be done. One drawback

of the model is that due to the unavailability of full grid network simulation

data, the analytical model for cyber threat transitions could not be calculated

analytically. Also, the cyber security model approximated here is very naive.

Detailed modeling efforts are needed to understand the dynamics of cyber attacks

on cascading failures more precisely. Future efforts in validating the model in a

live testbed would be crucial before implementing the model in a live grid network.

Again, works can be done to Understand the role of cyber-threat awareness in the

decision process of system operators. With the advent of complex communication

capability, AI-based decision support tools are gaining more popularity primarily

due to the level of complex calculations and rule-based decisions it can manage

in no time to reduce human error. On the other hand, too much dependence on

AI-based tools would lead to a catastrophe in unforeseen events. A study is needs

to be done to find the optimal level of interaction between system operators and

the AI-based automated decision support systems.
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