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ABSTRACT 

INDIRECT STRUCTURAL BRAIN CONNECTIVITY AND GRAPH ANALYSIS 

ACCOUNTS FOR MOTOR IMPAIRMENT IN STROKE RECOVERY 

Miguel R. Sotelo Munoz, B.S. 

Marquette University, 2020 

In this dissertation project, we demonstrated that diffusion magnetic resonance 
imaging and measures of indirect structural brain connectivity are sensitive to changes in 
fiber integrity and connectivity to remote regions in the brain after stroke. Our results 
revealed new insights into the effects local lesions have on global connectivity—in 
particular, the cerebellum—and how these changes in connectivity and integrity relate to 
motor impairment. We tested this methodology on two stroke groups—subacute and 
chronic—and were able to show that indirect connectivity is sensitive to differences in 
connectivity during stroke recovery. Our work can inform clinical methods for 
rehabilitating motor function in stroke individuals. By introducing methodology that 
extends local damage to remotely connected motor related areas, we can measure 
Wallerian degeneration in addition to providing the framework to predict improvements 
in motor impairment score based on structural connectivity at the subacute stage. 

We used diffusion magnetic resonance imaging (dMRI), probabilistic tractography, 
and novel graph theory metrics to quantify structural connectivity and integrity after 
stroke. In the first aim, we improved on a measure of indirect structural connectivity in 
order to detect remote gray matter regions with reduced connectivity after stroke. In a 
region-level analysis, we found that indirect connectivity was more sensitive to remote 
changes in connectivity after stroke than measures of direct connectivity, in particular in 
cortical, subcortical, and cerebellar gray matter regions that play a central role in 
sensorimotor function. Adding this information to the integrity of the corticospinal tract 
(CST) improved our ability to predict motor impairment. In the second aim, we 
investigated the relationship between white matter integrity, connectivity, and motor 
impairment by developing a unified measure of white matter structure that extends local 
changes in white matter integrity along remotely connected fiber tracks. Our measure 
uniquely identified damaged fiber tracks outside the CST, correlated with motor 
impairment in the CST better than the FA, and also was able to relate white matter 
structure in the superior cerebellar peduncle to motor impairment. Our final aim used a 
novel connectome similarity metric and the measure of indirect structural connectivity in 
order to identify cross-sectional differences in white matter structure between subacute 
and chronic stroke. We found more reductions in indirect connectivity in the chronic 
stroke cerebellar fibers than the subacute group, Additionally, the indirect connectivity of 
the superior cerebellar peduncle at the subacute stage correlated with the improvement in 
motor impairment score for the paired participants. In conclusion, indirect connectivity is 
an important measure of global brain damage and motor impairment after stroke, and can 
be a useful metric to relate to brain function and stroke recovery. 
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1 CHAPTER 1: INTRODUCTION AND BACKGROUND 

 
 

1.1 THESIS STATEMENT 

 
 

The purpose of this study is to develop imaging biomarkers that are sensitive to 

identifying whole brain structural networks that are damaged after subacute and chronic 

stroke, and to determine the influence of these remotely connected gray matter regions 

and white matter connections on subacute and chronic stroke impairment. The brain is 

highly interconnected and remote regions are vulnerable to focal lesions. We believe 

novel imaging techniques that measure structural connectivity via directly and indirectly 

connected pathways could help identify damage to remote regions of the brain and their 

influence on subacute and chronic stroke motor impairment. 

 

1.2 ISCHEMIC STROKE: MOTOR IMPAIRMENT AND RECOVERY  

 
 

1.2.1 ETIOLOGY OF STROKE 
 
 

Stroke contributes to one out of every 20 deaths in the United States and is one of 

the leading causes of long-term disability (Koton et al., 2014). Hemorrhagic stroke is 

caused by a ruptured blood vessel that bleeds into the brain, and ischemic stroke (the 

most common type) is caused by a clogged artery due to plaque and atherosclerosis. In 

general, stroke is divided into three phases: acute (less than one week), subacute (1 week 

– 1 month), and chronic (greater than one month). Although locations can vary, the most 

common artery implicated in ischemic stroke is the middle cerebral artery (MCA) that 

provides oxygen and nutrients to parts of the motor cortex via the superior division, the 
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temporal lobe via the inferior division, and the basal ganglia and the thalamus via deeper 

branches. More specifically, occlusions of small arteries in the deep division of the MCA 

produce lacunar stroke—small but localized lesions to important motor and sensory 

pathways in the basal ganglia.  

Stroke results in extensive local damage, with progressive degeneration outside 

the immediate lesion location; brain imaging allows us to assess the extent of this 

damage. Detrimental neurovascular events ensue immediately following occlusion. An 

estimated 1-2 million brain cells die every minute immediately at the core of the lesion 

(Lo, Moskowitz, & Jacobs, 2005). As a result, a rapid loss of local neurological function 

ensues in the area with reduced perfusion (Koton et al., 2014). Cellular mechanisms such 

as increased extracellular glutamate and intracellular sodium, calcium, and water result in 

further spatial spread of cellular depolarization, depletion of energy stores, and an 

advancement of injury outside the lesion boundary (Lee, Grabb, Zipfel, & Choi, 2000). 

The rapid neurodegeneration motivates acute clinical interventions that aim to resume 

perfusion to the brain to save potentially salvageable tissue. Perfusion-weighted magnetic 

resonance imaging (MRI) and diffusion-weighted MRI can be used to estimate the 

location and volume of potentially salvageable tissue—named the “penumbra”—and 

differentiate it from the lesion core—the irrevocably damaged brain tissue. The penumbra 

can be estimated as the perfusion-diffusion mismatch seen in MRI: the volume with 

reduced perfusion is larger than the area of reduced perfusion and abnormal diffusion, in 

which the volume has impaired perfusion and enhanced oxygen extraction (Chen, 2012).  

 

1.2.2 POST-STROKE IMPAIRMENTS 
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Stroke deficits vary depending on the neuronal structures and the white matter 

bundles affected by the lesion. For example, impairments in language can include aphasia 

(the impairment of how you speak and write, and your understanding of language), 

dysarthria (the impairment of speech caused by weakened and spastic muscles), and 

dyspraxia (the impairment of speech due to the inability to coordinate muscles). These 

are caused by damage to either brain regions specialized in each of these tasks, or the 

damage of white matter bundles connecting to these regions (conductive, or association 

aphasia). 

Similarly, motor impairments depend on the structures that are affected, which 

depends on the artery producing the occlusion; however, a common symptom post-stroke 

and other upper motor neuron diseases is limb spasticity (Carey, Matyas, & Baum, 2018; 

Gracies, 2005). Ischemia involving the middle cerebral artery (MCA) typically involves 

upper limb impairment, given that the tissue that the MCA perfuses includes the upper 

limb portion of the precentral gyrus. Lesions involving the anterior cerebral artery (ACA) 

damage the lower limb. Lesions of the MCA and ACA typically result in more than 

motor impairments, since these arteries perfuse the temporal, frontal, and parietal regions.  

Impairments are also dependent on the hemisphere that is lesioned. For instance, 

damage to the language center in the left hemisphere produces aphasia, while lesions in 

the right hemisphere may result in aprosodia—the impairment in speech expressiveness. 

Similarly, lesions in the parietal network of the right hemisphere—and not the left—

typically result in spatial neglect. This presents itself as the inability to recognize the left 

side of the body. 
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Lacunar lesions are small lesions usually in locations where large arteries divide 

into small-diameter arterial branches. These are typically in the basal ganglia which is fed 

by the MCA. These lesions generally induce pure motor impairments due to the specific 

damage. For example, lesions to the thalamus—a network hub specialized in relaying 

sensory information—produces very specific impairments depending on what nuclei is 

affected.  

Lastly, the cerebellum is a highly interconnected brain structure involved in motor 

and non-motor tasks. In general, lesions to the cerebellum produce impairments in 

coordination of motor or non-motor tasks. Interestingly, ataxic symptoms may occur 

without direct damage to the cerebellum; if fibers involving the cortico-thalamic-

cerebellar, or the cerebellar-cortical loop are damaged, ataxia out of proportion to 

weakness may be observed. 

 

1.2.3 CLINICAL MEASURES OF MOTOR FUNCTION AND IMPAIRMENT 
 
 

Clinical and research measures of motor function and impairment are used in 

post-stroke patients in order to assess the extent of damage to the motor system. One of 

the most commonly used measures is the Fugl-Meyer assessment of motor impairment 

(Fugl-Meyer et al., 1975). It consists of five domains measuring motor functioning, 

sensation, balance, pain, and joint range of motion. Higher scores indicate less motor 

impairment, and the assessment is measured while standing, sitting, and in the laying 

position. This is the primary measure of motor impairment used in this dissertation, and 

we focused our analysis in the upper-motor examinations.  An example examination of 

the upper motor domain is movements of the paretic arm, measuring their ability to flex 
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their shoulder with little synergy. The participant is asked to keep their elbow extended at 

0-degrees, forearm pronated, and flex their shoulder from 0 to 90-degrees. The highest 

score in this particular examination is 2, with points being deducted if synergy is present 

(elbow flexion, trunk movement) or if the movement cannot be completed. In our study, 

the upper-motor FM was assessed (only measuring motor function and range of motion), 

and the maximum score is 66 

In addition to measures of motor impairment, measures of motor function can be 

administered. For instance, the Wolf-Motor Function Test (WMFT) (Woodbury et al., 

2010). This exam times the patient’s ability to perform tasks such as placing the forearm 

on the table in front or to the side of them from a neutral starting position by using 

shoulder abduction. Another, similar task is to further abduct the shoulder to place the 

forearm on top of a box that is on the table in front of them while sitting. This 

examination also measures the patient’s ability to lift a basket, or fold a towel, thus 

assessing their motor function. The examination times these movements, and typically 

are video-recorded in order to assess the mechanisms used by the patient during the 

examination.  The score is out of 75 (15 measurements), with two other measurements 

assigned to strength. 

Another functional score is the Box and Blocks score (Chen, Chen, Hsueh, 

Huang, & Hsieh, 2009). As the name suggests, the examination requires a box and 

blocks. The box opens like a suitcase and when opened there is a subdivider separating 

the box in two. Boxes are placed on one side, and the patient is asked to move one block 

at a time from one side to the other as fast as possible. The time it takes to move all 

blocks from one side to the other is the score. 
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More complex measures of motor dysfunction are measurements of cerebellar 

injury. The Fugl-Meyer assesses dysmetria (uncoordinated movement) by measuring the 

time it takes for the patient to point at their nose and to the examiner’s finger or pen 

placed in front of them three times. It is, however, difficult to measure cerebellar function 

in stroke participants due to the possibility that their hemiplegia and reduced weakness 

may either hide cerebellar dysfunction or produce false observations. The scale for the 

assessment and rating of ataxia (SARA) (Schmitz-Hubsh et al., 2006) is a 40-point scale 

(higher scores indicate more ataxia) that measures the lack of muscle control and 

coordination. Measures include gait, stance, sitting, speech disturbance, finger chase, and 

the heel-shin slide (the latter two are also measured in the Fugl-Meyer). 

Other measures of motor dysfunction include measurements of gait, including the 

six-minute walk test (“ATS Statement: Guidelines for the Six-Minute Walk Test,” 2002) 

which assesses the distance covered during a 6-minute time period, and the Timed Up 

and Go test (Podsiadlo & Richardson, 1991) which assess fall-risk. 

 

1.3 MAGNETIC RESONANCE IMAGING 

 
 

1.3.1 BASICS OF MRI 
 
 

The magnetic resonance imaging (MRI) signal is based on the response a proton 

exhibits in the presence of an outside magnetic field, B0, and radiofrequency impulses. In 

most medical applications, the MR scanner measures the signal from the hydrogen 

proton, partly because this is the most common element in our body, and its nuclear 

magnetization is susceptible to the radiofrequency pulses (described later) the produce a 

signal. For Hydrogen atoms, 7 parts per million become aligned to the outside magnetic 
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field, and this produces a net magnetization vector, M. These aligned protons spin 

parallel to the main magnetic field. The proton’s mass, its gyrometric ratio, and the B0 

field all induce angular momentum on the spinning proton, causing it to precess away 

from the main B0 direction giving M a longitudinal (Mz) and a transverse (Mxy) 

component. The precession frequency is called the Larmor frequency. 

In order to obtain a signal, the vectors must have a net vector in the transverse 

plane. This is because the longitudinal portion of M (Mz) is negligible in the presence of 

the larger B0. By applying an external radio frequency (RF) pulse set to the precession 

Larmor frequency, the protons are tipped to a plane specified by the tip-angle. This is 

because the RF pulse frequency is tuned in resonance to the Larmour frequency, allowing 

the spinning proton to absorb energy from the RF coil, allowing the proton to rotate its 

axis away from the main magnetic field. Assuming the tip angle is 90o, this RF pulse will 

tip protons with the Larmour frequency equal to the RF frequency towards the transverse 

plane. The synchronized precession in the transverse plane produces a sinusoidal signal 

that can be measured, called the transverse magnetization signal, Mxy. According to 

Faraday’s law of induction, this signal produces a magnetic flux through the receiving 

coil, inducing a small electromotive force that the receiver coil (in modern systems, 

typically the same coil as the pulse-generating RF coil) receives as a function of time. 

After absorbing energy from the RF pulse, the precessing protons gradually emit 

energy and their net magnetization becomes out of phase and eventually return to the 

low-energy state (the B0 direction, where the largest contributor to the M vector is Mz). 

The rate at which the protons become out of phase in the transverse plane is defined by a 

T2 time constant, while the rate at which the protons return to point in the Z-direction is 
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defined by a T1 time constant. These constants influence the signal strength and are 

dependent on the tissue where the protons reside. In our application, the tissues are white 

matter, gray matter, and cerebral spinal fluid. Two important parameters in MR imaging 

is the TR (the “repetition time” or the time between consecutive points in a repeating MR 

sequence) and the TE (the “echo time”, or the time between the the RF pulse and the 

center of the read-out gradient, described later) These parameters are engineered in order 

to discern differences in tissue imaging contrast based on either the T1 signal (a T1-

weighted MRI) or the T2 signal (T2-weighted MRI). 

 

1.3.2 SIGNAL ACQUISITION 
 
 

The following text describes a gradient echo pulse sequence (Figure 1.1). In this 

dissertation, a gradient echo was used to obtain T1-weighted images. A gradient in the Z-

direction (Gz) added to B0 will cause protons to spin at different Larmor frequencies 

based on the spatial location in the Z direction. RF pulses are then iteratively (based on 

the TR and the field of view in the Z direction) applied at different resonant frequencies 

based on the Larmor frequency at that particular imaging slice to selectively tip protons. 

A Fourier Transformation can decompose the free induction decay (FID or received 

signal) into a spectrum of frequencies. If no gradient is used, (i.e, if the RF pulse is 

applied to the volume in the presence of a static magnetic field), the resulting frequency 

spectrum will contain one frequency, which is the Larmor frequency. In order to obtain 

spatial resolution, different frequencies are required, each mapping a frequency in the 

frequency space (k-space) to the imaging space. A gradient field, Gr, is applied in 

addition to the static magnetic field. This is applied after the slice is selected (after Gz and 
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the RF are applied), and during the read-out time interval. Gr produces sinusoids 

oscillating at different frequencies, all dependent on the spatially varying gradient. As a 

result, the frequency spectrum of the FID signal contains a spread of frequencies 

encoding space according to the spatial gradient, therefore producing an array of summed 

frequency values that encode space (Figure 1.1). 

In the gradient echo pulse sequence (Figure 1.1), the gradient Gr contains an X 

(Gx) and a Y (Gy) component. In a given imaging slice, the Gx encodes spatial 

information in the X direction in the imaging space by varying frequencies in the X 

direction in k-space. In order to obtain a spatial encoding in the Y-direction, Gy, is 

applied right before the read-out Gx. In the transverse plane, this causes protons spinning 

at the higher magnetic field in the Y-direction to spin faster than those in the lower 

magnetic field in the Y-direction. When the gradient Gy is turned off and the read-out 

gradient Gx is turned on, all protons in one X-slice return to the same frequency; 

however, protons are phase-shifted from each other in the direction of the Y-gradient due 

to the previously applied Gy. These sinusoids contain the same frequencies obtained 

before in addition to phase shifts. The signal obtained by the coil is a sum of frequencies 

encoded in the X-direction, and also phase shifts in the Y-direction. By obtaining the FID 

signal over time (in the read-out direction, Gx) and repeating this for a different Gy 

effectively samples the k-space (frequency space) of the image. An inverse Fourier 

Transform transforms the signal form the k-space into the image space. This is repeated 

for all slices by varying Gz (Figure 1.1). 
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Figure 1-1: Gradient Echo Pulse Sequence Diagram 

a) Pulsed sequence diagram for the typical gradient echo (GRE) pulse sequence. b) k-

space illustration of the frequency and phase encoding (blue), and the read-out (green) 

 

 

1.4 DIFFUSION MRI: AN INDIRECT MEASURE OF WHITE MATTER STRUCTURE 

 
 

1.4.1 THE DIFFUSION MRI SIGNAL 
 
 

The following describes a spin-echo sequence. In this dissertation, a modification 

of the spin-echo sequence was used in order to obtain diffusion weighted MRI. Diffusion 

Weighted Imaging (DWI) is based on Brownian motion, in which water molecules 

randomly diffuse in a Gaussian spatial distribution. DWI is sensitive to the diffusion rate 

of water, and this is linked to signal intensity in sequences that produce DW Images 

(Hagmann et al., 2006). The pioneering work of Hahn, (1949), where he discovered that 

the motion of spins lead to a decrease in signal intensity, and the fundamental equations 

derived by Torrey, (1956) is the foundation of DWI. 
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As previously introduced, a gradient magnetic field causes phase shifts on the 

spins in the direction of the applied gradient. The pulsed-gradient spin echo sequence 

introduced by Stejskal and Tanner, (1965) adds diffusion gradients to the pulse sequence 

diagram described before (Figure 1.2). In addition to the slice selection gradient, the 

frequency-encoding gradient, and the phase-encoding gradient, a diffusion gradient is 

applied in a specified cartesian direction (G), strength (g), pulse duration δ, and time 

between dephasing and rephasing pulses Δ (Figure 1.2). Applying the phase shift 

(dephasing) gradient causes spins to have varying precession frequencies based on spatial 

location (Figure 1.1 and 1.2). Turning off the gradient results in the spins returning to the 

same Larmor frequency; however, each spin has its own spatially dependent phase 

encoding. A second phase shift (rephasing) gradient and a 180-degree inverting pulse is 

then applied that is equal in strength but opposite in direction. All spins that remained 

static in the direction of the gradient will return to their initial state. In other words, a spin 

with a positive phase shift after the first gradient encoding will have its phase shift 

negated after the second gradient encoding. On the other hand, spins that have diffused in 

the direction of the gradient will retain some phase shift. Phase shifts result in less 

synchronous sinusoids in the FID signal, resulting in lower intensity values. Spins that 

have moved a larger distance in the time between the dephasing and rephasing gradients 

will experience a larger signal intensity loss. This procedure is repeated multiple times 

for multiple diffusion gradients. The MRI parameters defining the diffusion gradients (g, 

δ, Δ), and the gyromagnetic ratio γ are often described as the b-value, b (Equation 1.1) 

(Figure 1.2).  

� = γ���(Δ − 	
 �)��     Equation 1.1 
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The FID signal magnitude is described as in Equation 1.2, where �� is the FID 

magnitude of the ith diffusion gradient, where i=0 is referred to as the b0 image (no 

diffusion encoding), and D is the diffusion coefficient. The equation is often solved for D 

to obtain the diffusion coefficient given the baseline signal, the signal acquired, and the 

MRI parameters. 

�� =  ��exp (−��)    Equation 1.2 

Lastly, analogous to k-space, q-space is sampled by repeating the pulsed-gradient 

spin echo sequence; each q-vector represents one phase shift gradient weighting direction 

and strength, and this represents one diffusion weighted image (Hagmann et al., 2006; 

Özcan, Wong, Larson-Prior, Cho, & Mun, 2012). 

 
 

 

Figure 1-2: Pulsed Gradient Spin Echo Sequence Diagram 
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Pulsed gradient spin echo sequence diagram utilized in diffusion imaging. The Diffusion 

encoding parameters determine the b-value weighting. The 180-degree pulse effectively 

reverses the direction of the diffusion encoding, so that the second diffusion encoding 

gradient is equal and opposite in direction. 

 

 

1.4.2 ESTIMATING FIBER ORIENTATION 
 
 

1.4.2.1 WHITE MATTER ANISOTROPY 

 
 

The diffusion signal captured by diffusion imaging depends on the tissue being 

imaged. The brain consists of cortical, subcortical, and cerebellar gray matter, and these 

regions are connected via tightly bound axonal fiber bundles called white matter. In an 

open medium, water molecules will randomly diffuse with a Gaussian spatial 

distribution; however, in the presence of impermeable barriers, the displacement distance 

is reduced, and the distribution would be narrower when compared to unrestricted 

diffusion. Axonal fibers are surrounded by glial cells, and densely packed bundles of 

axons create a diffusion barrier to water molecule diffusion perpendicular to the fiber 

bundles, whereas diffusion is unrestricted parallel to the fiber bundles (Hagmann et al., 

2006). Isotropic diffusion describes water diffusion that is unrestricted during the 

observed time frame. Cerebral spinal fluid exhibits isotropic diffusion, and since water 

diffusion is unrestricted, the diffusion signal is low. Anisotropic diffusion describes water 

diffusion that is restricted in at least one direction. White matter exhibits anisotropic 

diffusion, and hence the diffusion signal would be low in the direction of white matter 

tracks if the b-vector is applied in that fiber bundle orientation. To capture complex fiber 

structures and orientations in the brain, multiple b-vectors are required. Gray matter 

exhibits a combination of iso- and anisotropic diffusion.  
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1.4.2.2 MATHEMATICAL MODELS FOR FIBER ORIENTATION 

 
 

Diffusion models are utilized in order to reduce the high dimensionality of 

diffusion imaging data. The diffusion imaging sequence produces many 3D images, 

containing information about the diffusion profile at any given voxel in 3D space for 

every vector in q-space. This high-dimensionality image is reduced using diffusion 

models that assign a scalar to the anisotropy of the signal, and a separate image 

describing the main directionality of the underlying fiber orientation distribution. Other 

scalars can be obtained, such as the mean diffusivity (MD) which describes the mean 

diffusion in the diffusion signal.  

The diffusion tensor model is the most commonly applied diffusion model. It 

results in a 3x3 matrix that applies an ellipsoidal shape to the diffusion in 3D space by 

assuming that the displacement distribution is Gaussian. Another assumption in the 

model is that the diffusion signal at every voxel originates from one fiber bundle; this 

assumption is complicated by the underlying complexity of the brain’s fiber orientations. 

From the matrix, three eigenvectors describe the diffusion shape in three orthogonal 

directions, and the largest eigenvector describes the primary diffusion direction (Basser, 

Mattiello, & LeBihan, 1994). A minimum of six diffusion-weighted images (b-vectors, or 

samples in q-space) are needed in order to model the tensor. The most commonly 

reported value from the tensor model is the fractional anisotropy (FA), which compares 

every eigenvalue (��) with the mean of the eigenvalues (��) (Equation 1.3). 

�� =  �
� �(�����)��(�����)��(� ���)����� ���� � �    Equation 1.3 
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An assumption in the tensor model is that there is only one main fiber direction. 

Although this may be true for larger fiber bundles such as segments of the corticospinal 

tract and the corpus callosum, 63-90% of voxels in the brain are estimated to have 

complex fiber structures such as crossing or kissing fiber bundles (Jeurissen, Leemans, 

Tournier, Jones, & Sijbers, 2013). In the tensor model, crossing fibers of similar size 

would be estimated by the tensor model as a disc rather than an ellipsoid, because there 

would be no dominating eigenvector; there would be no preferential diffusion direction, 

and the tensor would be more isotropic. 

 To capture complex fiber structures, the q-space can be sampled more densely by 

acquiring many diffusion-weighted images (high angular resolution diffusion MRI, or 

HARDI). Every b-vector samples a point in q-space, where the distance between the 

origin and the sample is the b-value; measuring 150 or more diffusion-weighted images 

constructs a “ball” in q-space (if the b-value is kept constant). The resulting 4D diffusion 

image (150 diffusion-weighted images, in addition to the b0 images) can be modeled at 

each voxel with an orientation distribution function (ODF), which is a deformed sphere 

with a radius in a given direction proportional to the sum of the values of the diffusion 

probability density function in that direction (Hagmann et al., 2006).  

One approach to estimate the distribution of fiber orientations in a voxel is using 

constrained spherical deconvolution (CSD) (Tournier, Calamante, & Connelly, 2007) by 

deconvolving the signal obtained during HARDI by the response function; the response 

function assumes the signal of a single fiber bundle.  Another model is the simple partial 

volume model (the ball-and-sticks approach), which is the one we employed in this 

dissertation. This model assumes the diffusion signal comes from two-compartment 
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partial volume model: an anisotropic and an isotropic compartment. The model is then 

expanded to a distribution of fiber orientations by assuming that every subvoxel has only 

one fiber direction, and that the acquired MR signal is the sum of subvoxels. Again, the 

model assumes an isotropic component and an anisotropic component defined by a 

distribution of fiber orientations. For more information, we direct the reader to the 

publication where the model is developed (Behrens, Woolrich, et al., 2003). The major 

parameters obtained from this model include the fraction of the signal contributed by 

anisotropic fiber direction, f, and the dispersion of the main and secondary (in crossing-

fiber voxels) fiber directions. These could in turn be used as surrogate measures of FA 

(Douaud et al., 2009). 

 

1.4.3 ESTIMATING FIBER TRACTOGRAPHY 
 
 

Given the local voxel-level fiber orientation, fiber tractography methods can be 

implemented to obtain a measure of global structural connectivity. Specific fiber bundles 

can be constructed by placing seed points, way points, and end points; additionally, 

stopping criteria are required to prevent fiber tracks from entering implausible regions. 

Seed points initialize a trajectory, and subvoxel steps are iterated in the direction of the 

fiber orientation at the voxel. Subsequently, these fiber tracks enter a new voxel and 

continue in the direction defined by that voxel. If the goal is to construct the corticospinal 

tract, the seed point may be set at the premotor cortex, way points may be defined at the 

posterior limb of the internal capsule, and the end point would subsequently be at the 

pons. Thus, only fiber tracks that touch all three regions would be accepted. Whole-brain 

tractography seeds the entire brain volume (either at the white matter-gray matter 
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interface, or all of the white matter) (Hua et al., 2008). Tractography can be constrained 

further to only include tracks that end in gray matter (Lemkaddem, Skioldebrand, Dal 

Palu, Thiran, & Daducci, 2014; R. E. Smith, Tournier, Calamante, & Connelly, 2012). 

Deterministic fiber tractography projects one fiber trajectory (streamline) along 

the main fiber orientation. Typically, the stopping criteria is an anisotropy threshold 

(based on the tensor model), or the maximum curvature of the track (Mori, Crain, 

Chacko, & van Zijl, 1999). A common limitation to deterministic tractography is its 

inability to map out crossing fibers, specifically those crossing in the pons, or fanning 

fibers specifically those in the corona radiata (Behrens, Johansen-Berg, et al., 2003). 

Probabilistic tractography utilizes complex models that can estimate multiple 

fiber orientations at a voxel, such as CSD or the ball-sticks model. This methodology 

estimates a distribution of possible connections by sampling multiple streamlines; the 

probability of a connection can then be estimated as a normalized sum of fibers crossing 

a voxel. Unlike the deterministic approach which seeds one voxel and generates one 

streamline via a defined fiber orientation, probabilistic tractography—in particular, the 

algorithm employed in FMRIB Software Library (Behrens, Berg, Jbabdi, Rushworth, & 

Woolrich, 2007)—randomly seeds hundreds to thousands of starting points in a sphere 

within the voxel and generates thousands of streamlines via perturbations around the 

primary and secondary fiber orientations. At every step, the streamline trajectory is 

perturbed slightly; however, trajectories are favored in the direction of greatest diffusion 

coefficient. 

Using the ball-and-sticks model, probabilistic tractography utilizes the dispersion 

as a measure of uncertainty—how certain the algorithm is of the fiber orientation. The 
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greater the dispersion, the greater the standard deviation in that particular fiber 

orientation. If two fiber populations are estimated per voxel, two dispersion images are 

estimated, each with 50 perturbations along that fiber orientation. Seeding thus follows a 

unique direction at every iteration. As streamlines enter a new voxel, the streamline 

draws from that orientation distribution, the main fiber orientation, and the dispersion. 

Lastly, with the exception of the fiber curvature angle, probabilistic tractography employs 

other termination criteria as compared to deterministic tractography. Rather than use a 

fiber anisotropy threshold to terminate streamlines and prevent them from entering 

regions with low uncertainty, probabilistic tractography continues to propagate 

streamlines. However, as streamlines enter regions with high uncertainty (low 

anisotropy), streamlines take on a wider distribution of trajectory directions. Thus, the 

probability of any of those streamlines being the true underlying fiber bundle decreases. 

Probabilistic tractography requires more computational power than deterministic 

tractography to map the whole-brain structural connectome due to the thousands of 

streamlines per voxel. Computer parallelization techniques can be employed by splitting 

up the total number of generated streamlines into multiple computer cores, and randomly 

selecting from the orientation distribution in every core so that no two cores produce the 

same results. 

 

1.5 BIOMARKERS OF MOTOR IMPAIRMENT AND RECOVERY 

 
 

1.5.1 WHITE MATTER INTEGRITY 
 
 

As previously stated, measures of diffusion anisotropy and fiber connectivity can 

be used as biomarkers for stroke recovery and rehabilitation. Motor impairment, fine 
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motor control, and hand function is related to FA of the corticospinal tract (Koyama & 

Domen, 2017; Mang et al., 2015; Puig et al., 2010; Schulz et al., 2012; Wen et al., 2016) 

in both chronic and acute stroke (Puig et al., 2011). The FA rests on the assumption of 

one major fiber bundle in the voxel, and although it has been validated in large fiber 

tracks (Budde & Annese, 2013; Budde & Frank, 2012), it is only sensitive to local effects 

of the lesion (Kalinosky, Schindler-Ivens, & Schmit, 2013) and is affected by complex 

fiber structures (Behrens, Woolrich, et al., 2003). Not only will FA be smaller in areas of 

crossing fibers. A decrease in FA might indicate axonal degeneration (Vedantam et al., 

2014). However, an increase in FA might not necessarily mean increased axonal 

integrity; white matter degeneration in perpendicular fibers (Douaud et al., 2011; 

Wheeler-Kingshott & Cercignani, 2009) can artificially increase FA.  

 

1.5.2 WHITE MATTER CONNECTIVITY 
 
 

1.5.2.1 CALCULATING THE CONNECTOME FROM TRACTOGRAPHY 

 
 

A connectivity matrix can be constructed after calculating fiber tracts seeded at 

every voxel. Voxels can be grouped based on anatomical information from gray matter 

gyri segmentation, or using segmentation based on independent component analysis from 

fMRI data. Voxels that share a fiber tract are then considered structurally connected, and 

the sum of the connectivities of all voxels in a region are summed to represent that 

region’s connectivity. Alternatively, the connectome can be kept at the finer resolution of 

the voxel level (Rubinov & Sporns, 2010; Zalesky et al., 2010). Key terms in graph 

analysis are nodes (gray matter regions in our context), edges (white matter tracts), direct 

connections, or level-1 connections (in which two gray matter nodes are connected by a 
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white matter tract), and indirect connections, or level-2 connections (in which two gray 

matter nodes are connected via a third node). A “step” refers to the progression from 

direct to indirect connections (level-1 to level-n). 

 

1.5.2.2 GRAPH ANALYSIS 

 
 

Graph analysis utilizes graph theory and mathematical approaches to solve these 

problems. These calculations are done at the matrix level. Given that a row and column in 

a connectivity matrix denotes two gray matter nodes (assuming the row and column are 

unique), and the white matter tract is represented by a vertex in the matrix, graph 

theoretical parameters can be computed. A direct connection is all nodes connected to a 

node of interest by an edge. In the matrix, a direct connection can be determined by 

obtaining the set of all columns with non-zero entries for every row. An indirect 

connection is a connection that connects two nodes via a third node without forming 

triangles; in other words, a node cannot be an indirect connection if it is already a direct 

connection. This can be calculated in the matrix by first determining all of the columns 

with non-zero entries at every row and looking at that set of rows to identify columns that 

were not present in the first set. Other advanced measures include the clustering 

coefficient which measures the level of connectedness between all direct connections of a 

node, and the shortest path length which measures the minimum number of steps 

connecting given regions. Lastly, the small-world metric measures the level of 

segregation and integration in a graph network. Read Rubinov & Sporns, (2010) for a 

review.  
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Some measures have been developed in the context of human brain connectivity. 

J. J. Crofts & Higham, (2009) developed the weighted communicability as a way to 

increase the sensitivity to disruptions in connectivity in the contralesional hemisphere. 

Indirect connectivity—in which two nodes are connected via an intermediary node—is 

particularly applicable in brain connectivity analyses because regions in the brain are 

either directly or indirectly connected. Typically, direct connections are assigned as 

“level-1” connections, while the immediate indirect connection is the “level-2” 

connection. Direct connections of indirect neighbors (“level-3”) have been found to be 

sensitive to changes in brain connectivity after stroke, with higher sensitivity to global 

damage to connectivity and higher predictability to motor impairment after stroke 

(Kalinosky et al., 2013).  

 

1.6 MOTOR-RELATED PATHWAYS AND RECOVERY 

 
 

The brain is a collection of gray matter regions housing neural bodies that process 

information, and white matter volumes bundling axonal fiber that transfer information. 

Damage to the motor system can be caused by either damage to the gray matter regions 

initiating movement, to regions involved in the coordination of movement, or to white 

matter volume involved in the conduction of motor and sensory information. In other 

words, the motor system is complex and redundant, but also vulnerable. For instance, an 

animal model recently showed that cortical lesions had a greater percent improvement at 

8 weeks than striatal lesions (Karthikeyan, Jeffers, Carter, & Corbett, 2019), potentially 

due to the redundancy in the cortical motor system (Jones & Adkins, 2015; Karthikeyan 

et al., 2019).  
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Complex motor behavior involves connectivity between specialized regions. 

Subcortical regions are involved in complex motor feedback systems that include the 

putamen, the thalamus, and the striatum. With the exception of the sensorimotor cortex, 

cortical structures are thought to play a role in movement initiation. The cerebellum, 

although a smaller structure compared to the cerebrum, is highly connected and is 

involved in posture and temporospatial coordination, among other motor and non-motor 

tasks. Damage to white matter may affect not only the conduction of information from 

connected motor regions, but also information from other regions. Additionally, 

degeneration of myelin sheaths may reduce the speed of conduction, resulting in a 

gradation of motor deficits. 

 

1.6.1 CORTICOSPINAL TRACT 
 
 

The corticospinal tract is the major descending white matter pathway and it is 

associated with motor control. It begins in the motor cortex, descends to the cerebral 

peduncle, and crosses to the other hemisphere via the pons as it connects with lower 

motor neurons in the spinal cord. In stroke, direct damage to it (lesion load) and the 

integrity of it after cortical damage has been associated with motor impairment, strength, 

coordination, and recovery (Koyama & Domen, 2017; Puig et al., 2013; Schulz, Braass, 

et al., 2015).  

 

1.6.2 COMMISSURAL PATHWAYS 
 
 

The corpus callosum is a major commissural pathway that connects cortical 

regions interhemispherically. It can be subdivided in the rostral-caudal direction, and is 
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related to motor, sensory, and cognitive functions as it integrates information from one 

hemisphere to the other. In stroke, it has been related to motor function (Hayward et al., 

2017; Mang et al., 2015), and its damage is related to damage of the corticospinal tract 

(Liu, Qin, Zhang, Zhang, & Yu, 2015). It has also been implicated in interhemispheric 

inhibition—a process in which one hemisphere inhibits the other, primarily during 

unilateral motor tasks (van der Knaap & van der Ham, 2011). 

 

1.6.3 CEREBELLAR PATHWAYS 
 
 

The cerebellum is involved in many aspects of sensorimotor function, such as 

processing error (Seidler, Noll, & Thiers, 2004), timing of complicated movements 

(Boyd & Winstein, 2004), proprioception (Bhanpuri, Okamura, & Bastian, 2013), and the 

coordination of movements involving multiple degrees of freedom (Charles, Okamura, & 

Bastian, 2013). The cerebellum connects to the contralateral supratentorial cerebrum via 

the middle and superior cerebellar peduncles. In particular, the superior cerebellar 

peduncles—the main outflow tract—originate in the cerebellar nuclei and connect to the 

contralateral mid-brain. The middle cerebellar peduncle is the major inflow tract that 

connects the contralateral pontine nuclei to the cerebellar cortex. Its involvement in non-

motor tasks (Schmahmann, MacMore, & Vangel, 2009) emphasizes the cerebellum’s 

importance to the brain’s network and—due to its high connectivity to the brain—its 

connection’s vulnerability to supratentorial lesions.  

 

1.6.4 DIASCHISIS AND NETWORK DAMAGE 
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Diaschisis was first defined in 1914 as the presence of a focal lesion, distal 

reductions in excitability, disconnections between the lesioned core and remote regions, 

and clinically observable progression of the ‘schism’ (von Monakow, 1914; Carrera & 

Tononi, 2014); however, until advancements in non-invasive imaging techniques and the 

implementation of graph analysis on the human brain network, measurement of diaschisis 

was unfeasible. 

Regions remote to the lesion core exhibit loss of connectivity and function after 

stroke, and damage to network hubs produces extensive damage elsewhere in the brain. 

For instance, removing critical regions such as those in the superior parietal and frontal 

lobes causes the largest change in the network’s global efficiency (Iturria-Medina et al., 

2008). Damage to regions remote from the lesion can occur in the absence of direct 

connections. This suggests that damage to areas connecting to a region can be as 

important to network connectivity as damage to the region itself, which can lead to 

disruptive effects on the network and subsequent impairment and recovery post-stroke 

(Borstad et al., 2016; He et al., 2007).  

 

1.6.4.1 FUNCTIONAL DIASCHISIS 

 
 

The brain’s response to focal lesion damage is also dependent on whether the 

brain is at rest or at task. Resting state functional connectivity in MRI shows reduced 

interhemispheric connectivity in people with stroke, and interhemispheric connectivity is 

related to 90-day outcome (Puig et al., 2018). Additionally, the connectivity of the default 

mode network—a resting-state network including the posterior cingulate cortex, medial 

prefrontal cortex, and the posterior inferior parietal lobe—is reduced after focal ischemic 
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lesions in stroke patients (Tuladhar et al., 2013). During unilateral task, activation 

patterns become less localized and exhibit increased activation in the contralesional 

hemisphere (Cramer, Finklestein, Schaechter, Bush, & Rosen, 1999; Du et al., 2018; 

Kalinosky, Vinehout, Sotelo, Hyngstrom, & Schmit, 2019). Additionally, functional 

diaschisis is also task-dependent (Kalinosky et al., 2019; Vinehout, Schmit, & Schindler-

Ivens, 2019). Lastly, functional connectivity shows reduced connectivity between the 

lesioned sensorimotor cortex and the contralesional cerebellum (Kalinosky et al., 2019). 

 

1.6.4.2 CROSS CEREBELLAR DIASCHISIS 

 
 

Other diaschisis terms, such as “cross-cerebellar diaschisis” (Feeney & Baron, 

1986) describe specific remote damage to cerebellar structures following focal damage to 

supratentorial regions. The cerebellum has decreased perfusion after ischemic lesions 

affecting areas in the cortico-cerebellar loop (Förster et al., 2014; Sommer et al., 2016), 

likely the result of reduced excitatory signals from the cortex (Gold & Lauritzen, 2002). 

Similarly, gray matter atrophy has been measured in regions that are structurally 

connected to the primary lesion location (Cheng et al., 2015; Dang et al., 2013; Yassi et 

al., 2015).  White matter tissue is also affected by stroke as oligodendrocytes, a key 

supporting neuroglia of the white matter architecture, are sensitive to ischemia and 

excitotoxicity (Domercq et al., 2007; Husain & Juurlink, 1995), and axonal degeneration 

extends beyond the area of direct injury (Jirjis et al., 2016; Wang et al., 2012).  Thus, 

stroke-induced changes to neural structure extend throughout the brain, including gray 

and white matter structures distant from the injury site. 
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1.6.4.3 INDIRECT CONNECTIVITY TO MEASURE STRUCTURAL DIASCHISIS 

 
 

Imaging techniques can measure resting and task-related diaschisis after stroke by 

measuring functional activity and connectivity, and tissue perfusion. Measuring the 

underlying anatomical and white matter structure mechanisms that could lead to these 

observations requires novel computational techniques. For instance, functional 

connections exist without the presence of structural connections (Honey et al., 2009) 

because two regions can be functional connected via indirect connections. Developing 

measures that assign  the connectome information from direct and indirect connections at 

every region or voxel could reveal white matter pathways associated with motor deficits 

and relate tolocal and global changes in functional connectivity. Initial results are 

promising. Network loss in distant and contralesional areas of the brain can be detected 

via indirect connections (Crofts & Higham, 2009; Griffis, Metcalf, Corbetta, & Shulman, 

2019; Kalinosky et al., 2013).  

 

1.7 SPECIFIC AIMS 

 
 

The purpose of this dissertation is to develop imaging biomarkers that are 

sensitive to identifying whole brain structural networks that are damaged after subacute 

and chronic stroke. We also aim to determine the influence of these remotely connected 

gray matter regions and white matter pathways on motor impairment. Typical analyses 

have related direct white matter pathways to post-stoke motor impairment; however, gray 

matter volume, functional connectivity, and perfusion imaging studies have shown the 

brain exhibits global changes after stroke. Our three aims will implement different 
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imaging biomarkers based on indirect connectivity and complex connectome measures in 

order to identify global changes in brain connectivity after stroke. 

 

1.7.1 AIM I: DETERMINE IF INDIRECT STRUCTURAL CONNECTIVITY CAN DETECT 

CHANGES IN BRAIN NETWORKS AFTER STROKE 
 
 

In order to determine if whole-brain indirect structural connectivity can detect 

changes in brain networks after stroke, we will use diffusion MRI, probabilistic 

tractography, and a region-level implementation of the voxel-wise indirect structural 

connectivity, (VISC), (Kalinosky et al., 2013), to measure how connections to remote 

regions change after stroke. Our hypothesis is that probabilistic tractography and an 

indirect connectivity analysis will be able to detect changes to brain networks after 

stroke, in particular to cerebellar regions. 

 

1.7.2 AIM II: DETERMINE THE INFLUENCE OF REMOTE WHITE MATTER INTEGRITY ON 

STROKE IMPAIRMENT 
 
 

In order to characterize the role remote white matter connections have on stroke 

impairment, we will scan chronic stroke participants with unilateral lesions. Global 

structural connectivity and integrity will be assessed using probabilistic tractography and 

a novel structurally weighted white matter integrity algorithm that weighs a location’s 

white matter integrity by that of its direct connections. Lastly, white matter tracks 

associated with motor control will be compared to stroke impairment. Our hypothesis is 

that disruption to commissural and cerebellar WM connections will be related to stroke 

impairment. 
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1.7.3 AIM III: IDENTIFY CHANGES IN INDIRECT STRUCTURAL CONNECTIVITY IN THE 

FIRST SIX MONTHS AFTER STROKE 
 
 

In order to identify white matter fiber tracts damaged after stroke and their 

differences in connectivity in subacute and chronic stroke, we will obtain diffusion MR 

scans and sensorimotor impairment measurements for subacute and chronic stroke 

participants. Indirect connectivity, methods to compare network topology, and lesion 

effect simulation based on lesion volumes will be implemented. Lastly, connectivity of 

motor-related white matter fiber tracks will be compared with improvements in motor 

impairment score. Our hypothesis is that the white matter connectivity will be more 

sensitive to neurodegenerative changes in white matter structure during stroke, and that 

the connectivity of cerebellar-cerebral connections in subacute stroke will predict 

improvement in chronic stroke motor impairment. 

 

2 CHAPTER 2: INDIRECT STRUCTURAL CONNECTIVITY IDENTIFIES CHANGES IN 

BRAIN NETWORKS AFTER STROKE 

 
 

2.1 INTRODUCTION 

 
 

In this study, we investigated brain structural connectivity in people with stroke 

using indirect connectivity metrics based on diffusion magnetic resonance imaging 

(dMRI). In general, measures obtained from dMRI in acute stages of stroke might 

provide clinically important tools to predict functional outcomes and personalize 

rehabilitation strategies. In this study, we postulated that dMRI measures of indirect 

connectivity, in which two brain regions are structurally connected through a third region, 

would provide important information about the functionality of the brain after stroke. 
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While the impact of stroke on direct connections has been established, its effects on the 

broader connectome might be particularly important to recovery. Thus, the purpose of 

this study was 1) to provide evidence of changes in indirect structural connectivity after 

stroke, and 2) to relate changes in indirect connectivity to post-stroke impairment.  

The effects of stroke on the brain are not limited to the area of the lesion. 

Ischemic stroke produces both rapid neuronal degeneration at the epicenter and cytotoxic 

cellular reactions that result in injury outside the lesion core (Domercq et al., 2007). 

Effects extend beyond regions adjacent to the lesion as well. For example, the cerebellum 

has decreased perfusion after ischemic lesions affecting areas in the cortico-cerebellar 

loop (Sommer et al., 2016), likely the result of reduced excitatory signals from the cortex 

(Gold & Lauritzen, 2002). Additionally, white matter (WM) degeneration extends 

beyond the area of direct injury, (Jirjis et al., 2016; Wang et al., 2012) and gray matter 

(GM) atrophy has been observed in regions that are structurally connected to the primary 

lesion location (Cheng et al., 2015; Yassi et al., 2015).  Thus, stroke-induced changes to 

the neural structure extend throughout the brain, including gray and white matter 

structures distant from the injury site.  

The functional connectivity of the brain depends on indirect structural 

connections (Sporns, 2011), which could play a key role in functional recovery after 

stroke. In the uninjured brain, indirect connections can account for resting state functional 

connectivity that is unexplained by direct connections (Honey et al., 2009). 

Consequently, our laboratory previously developed a voxel-level measure of indirect 

connectivity (VISC) in order to take into account the effects of indirect connections on 

functional connectivity, resulting in a structural connectivity metric that correlates with 
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motor impairment in people with stroke (Kalinosky et al., 2013). In addition, the VISC 

identified changes in connectivity of voxels distant from the stroke epicenter, reflecting 

the more widespread impact of stroke on brain connectivity through indirect connections. 

While this voxel-based approach provides an unbiased assessment of brain connectivity, 

it can be difficult to relate the results to observations of loss of functional connectivity in 

specific regions of the brain after stroke. As an example, we recently found reduced 

structurofunctional connectivity between the prefrontal cortex and the cerebellum that 

correlates with arm function (Kalinosky et al., 2017). A region-based approach could 

provide additional interpretive information about the impact of structural connectivity on 

brain function. 

In this study, we modified the VISC in order to detect region-specific changes in 

connectivity after ischemic stroke. We integrated probabilistic tractography into an 

indirect connectivity measure and applied the technique to the whole-brain using a 

region-level analysis. We hypothesized that in comparison to direct connectivity and WM 

integrity, measures of indirect connectivity would detect more regions with reduced 

connectivity after stroke, including the cerebellum and other gray matter (GM) nodes 

with high centrality. Additionally, we hypothesized that reduced structural indirect 

connectivity of GM regions combined with WM integrity within the corticospinal tract 

(CST) would better predict stroke impairment compared to either measure alone. 

 

2.2 MATERIALS AND METHODS 

 
 

2.2.1 DATA COLLECTION 
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2.2.1.1 SUBJECT RECRUITMENT 

 
 

Thirteen chronic stroke survivors (at least six months after stroke) (7 female) and 

16 age-matched control participants (8 female, age 63.4, range 47 to 78) participated in 

this study. Each participant provided written consent to the experimental protocol, which 

was approved by the Institutional Review Boards at Marquette University and the 

Medical College of Wisconsin. The inclusion criteria included a minimum age of 18 

(stroke mean age: 66.9, control mean age: 63.4 years), and the ability to independently 

answer questions, follow directions, and provide informed consent. Contraindications 

included claustrophobia, other known brain pathology, and MRI incompatibility. For 

participants with stroke, there were no restrictions with regard to the stroke location or 

severity.   

A measure of upper extremity motor impairment was obtained for stroke 

participants using the Fugl-Meyer (FM, maximum of 66 points) upper extremity motor 

test, (Fugl-Meyer et al., 1975). Lower values indicate greater motor impairment. Table 

2.1 contains information on the study participants. 

 
Table 2-1: Stroke Participant Information 

Stroke participant information, including identification number, sex, age, Fugl-Meyer 

score, lesion location and hemisphere. For the participants that had multiple lesions, the 

larger lesion is listed first. 

Subject 

ID 
Sex Age 

Fugl-Meyer 

(UE, out of 

66) 

Lesion 

Location 

Lesion 

hemisphere 

S02 F 64 55 Cortical L/R 

S04 M 65 64 Cortical R 

S05 M 57 59 Subcortical L 

S07 F 83 36 Pons L 

S08 M 66 62 Subcortical L/R 

S10 M 69 64 Cortical L 
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S12 F 65 47 Cortical R 

S14 M 64 60 Cerebellar L 

S15 F 80 66 Subcortical R/L 

S18 M 66 64 Subcortical L 

S19 F 60 45 Subcortical R 

S20 F 73 29 Subcortical R 

S21 F 57 25 Subcortical R 

M = Male; F = Female; R = Right; L = Left 

 

2.2.1.2 MRI SCANS 

 
 

All MRI scans were performed using a short bore 3T GE Discovery MR750 

scanner. Axial T1-weighted images were acquired using the fast spoiled gradient recall 

(FSPGR) 3D pulse sequence, with the following parameters: TE=3.2ms, TR=8.16ms, flip 

angle=12 degrees, FOV=240mm, at 156x1mm slices with an in-plane axial matrix of 

256x240. Axial diffusion scans were acquired using the Q-ball high angular resolution 

diffusion imaging (HARDI) sequence using a single-shot echo planar imaging (ssEPI) 

protocol, with the following parameters: TE=72.3ms, TR=5700 ms, FOV=256mm at 

59x2.5mm slices with an in-plane axial matrix of 128x128. There were 150 gradient 

directions (b-value=1500 s/mm2) and five b=0 images. 

 

2.2.2 MRI DATA PROCESSING 
 
 

2.2.2.1 IMAGE PRE-PROCESSING 

 
 

Raw Digital Imaging and Communications in Medicine (DICOM) images were 

converted to NIFTI image format (Neuroimaging Informatics Technology Initiative) 

using mricron (Rorden et al., 2007). All preprocessing was done using the FMRIB 

Software Library (FSL) (Jenkinson et al., 2012). MR bias field correction and skull 
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stripping were performed on the raw T1-weighted images. The diffusion images were 

corrected for eddy-currents and skull stripped. Eddy current correction also corrected for 

intra-scan motion using affine registration. Additionally, the fractional anisotropy (FA) of 

each stroke participant was calculated from the HARDI. 

 

2.2.2.2 LESION IDENTIFICATION 

 
 

Lesions were automatically identified using the Lesion Identification with 

Neighborhood Data Analysis (LINDA) algorithm, (Pustina et al., 2016). The algorithm 

requires the lesions to be on the left hemisphere; therefore, prior to pre-processing, all 

raw T1 and diffusion weighted images with right-hemisphere lesions were flipped to the 

left hemisphere, and the diffusion gradient vector file was flipped in the X-direction. One 

participant had a lesion on the left hemisphere of the cerebellum. Most cerebellar afferent 

and efferent connections cross hemispheres to connect to the contralateral cortex (Allen 

& Tsukahara, 1974). Because of this, the stroke participant with the left-cerebellar lesion 

was flipped to reflect a right-cerebellar lesion. 

 

2.2.2.3 IMAGE REGISTRATION 

 
 

Linear registration transformed the diffusion images to the native T1 space in 6 

degrees of freedom, and the T1-weighted images to the 152-MNI brain average space in 

12 degrees of freedom (FSL’s flirt function). Non-linear registration warped the affine-

registered T1-image to the standard 152-MNI space (FSL’s fnirt function). Lesion masks 

alleviated registration in the area of the lesion, and registration quality was assessed 

visually. 
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2.2.2.4 STRUCTURAL CONNECTIVITY 

 
 
2.2.2.4.1 NETWORK NODES 
 
 

Cortical and subcortical volume segmentation was performed on the 152-MNI 

standard brain using the recon-all tool in the Freesurfer image analysis suite, 

(http://surfer.nmr.mgh.harvard.edu/). This produced 34 cortical and 8 subcortical 

volumes in each hemisphere, in addition to cerebral spinal fluid and ventricular 

estimations which were combined to form a ‘non-brain’ volume. A probabilistic atlas of 

the human cerebellum was obtained from FSL which contains 28 cerebellar nodes 

(Diedrichsen et al., 2009). Including 2 brain stem volumes, a total of 114 GM nodes were 

incorporated into the connectome. 

 
2.2.2.4.2 DIFFUSION TRACTOGRAPHY 
 
 

Diffusion direction and orientation estimates were obtained from the eddy-

corrected images using the FSL bedpostx function (Behrens, Woolrich, et al., 2003). 

Three fibers were estimated per voxel, each with a range of diffusivities. Probabilistic 

diffusion tractography was performed using the probtrackx2 function in the 152-MNI 

space. Each voxel from the GM nodes was seeded, and streamline samples were 

randomly drawn from a 1-mm sphere centered at the voxel. The connectivity results from 

all voxels in a given GM node were summed to produce a 114-by-114 connectivity 

matrix. Default parameters were used for the number of steps, step length, curvature 

threshold. Fibers were terminated if the streamline entered a ‘non-brain’ exclusion mask. 
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In order to reduce the processing time and memory load when seeding all voxels 

in the 114 GM nodes (782,454 voxels), processing was parallelized by sending smaller 

jobs to more processors using the --rseed option in probtrackx2. This option randomly 

selects different samples from the orientation distribution function such that no two 

parallel jobs were the same. We determined that sampling 500 streamline fibers per voxel 

was sufficient. This was determined by measuring the effect on the connectivity matrix 

(percent change in the mean degree in the brain) by adding 10 more streamlines per 

voxel. The percent change curve was an exponentially decreasing curve, and it stabilized 

at approximately 0.25% change at approximately 500 streamlines per voxel seeding the 

whole-brain gray matter. We split up the 500 streamlines per voxel into 50 processors, 

each sampling 10 streamlines per voxel—parallelizing this way sped up computation 

time, while calculating 500 rather than the recommended 5000 streamlines per voxel 

reduced RAM. As a result, each subject had 50 connectivity matrices, each with 114 

nodes. 

 

2.2.2.5 POST-PROCESSING 

 
 

MATLAB (R2017a) was used to post-process the network connectivity matrices. 

The resulting 50 weighted and non-symmetric connectivity matrices were summed for 

each subject. The diagonal in the connectivity matrix is zero (a region cannot be 

connected to itself). A weight in the matrix is the probability of one of the 500 

streamlines connecting any two nodes, and the matrix is non-symmetric as a result of the 

probabilistic nature of the tractography (and not due to anatomy nor the raw diffusion 

signal). Thus, the resulting merged matrix was forced symmetric by averaging the matrix 
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by its transpose. Additionally, we normalized the connectivity matrices in order to 

compare connectivities across subjects. The normalization technique has an effect on the 

overall topology – normalizing matrices to maintain the degree of the matrix may over-

emphasize weak connections in matrices with overall low degree and under-represent 

strong connections in denser matrices. We chose to normalize by the average number of 

successful streamlines generated by the edge’s endpoints. We averaged the total number 

of successful streamlines generated by two endpoints, i and j (wi and wj) and used that to 

normalize every edge, Aij in the matrix, A (Equation 1). 

��! = 2 ∗  ��!/(%� + %!)    Equation 2.1 

Data from the probabilistic tractography were used to assemble a weighted 

connectivity matrix and a series of binary connectivity matrices. Probabilistic 

tractography produces dense matrices, with many edges containing low-probability 

connections, and thresholding is used to remove spurious connections. However, 

selecting the threshold may also affect the topology of the matrix. Gong et al., (2009) 

used a range of thresholds and this methodology is less sensitive to the subjective 

selection of thresholds on the matrix topology. Thus, we determined the maximum edge 

for every participant’s normalized and symmetric connectivity matrix, and thresholded to 

maintain connections above a range of 0.5%-5% of the determined maximum in intervals 

of 0.125% (a total of 37 thresholds).  The resulting 37 each had varying sparsities (a 

measure of the densitiy of connections in the matrix). 

 

2.2.2.6 NETWORK PARAMETERS 
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Network parameters were calculated for all 37 connectivity matrices (� for the 

binary matrix, and W for the weighted matrix) for every subject and for all regions, N. 

Measures of direct connectivity (node degree and clustering coefficient) were calculated 

at each GM node, i, using the Brain Connectivity Toolbox, (Rubinov & Sporns, 2010). 

We calculated the node degree, '�, as the total number of edges connected to a node 

(Equation 2.2), where ��! represents the connection between nodes i and j. 

Equation 2.2 

'� = ( ��!!)*  

The clustering coefficient, +�, was calculated as a measure of the extent a node’s 

direct connections are connected to each other; this is a function of the number of 

triangles, ,�, (Equations 3 and 4). � represents the binary connectivity matrix, ,� is a 

measure of the number of triangles, and +� is the clustering coefficient at node i.  

Equation 2.3 

,� = 12 ( ��!!,/)* ��/�!/ 

Equation 2.4 

+� = 10 2,�1�(1� − 1) 

Lastly, the weighted indirect structural connectivity (WISC) is introduced as the 

number of weighted connections to indirect connections. This metric was derived from 

the voxel-wise indirect structural connectivity (VISC) (Kalinosky et al., 2013), which 

was originally designed to amplify lesion-induced effects on prominent white matter 

tracts at the voxel-level in the entire brain. First, a binary indirect connectivity matrix, 2, 
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classifies two regions as being indirectly connected if the ith and jth regions share at least 

one common direct connection, k, but are not directly connected to each other (Equation 

5). The VISC is the sum of the direct connections to the indirect connections, divided by 

the total number of indirect connections (Equation 6, Kalinosky et al., 2013). The 

numerator is the product of indirect connections of node i, Yi (n-columns) multiplied by 

the weighted connectivity matrix, W (n-by-n), and multiplied by a vector of ones (n-rows) 

in order to perform the sum. Similarly, the denominator is the product of the indirect 

connection vector (n-columns) by a vector of ones (n-rows). 

Equation 2.5 

2�! = 3(1 − ��!)(1 − 451 − ��6�6!7,   8 ≠ :*
6;	0, =,ℎ?@%8A?  

Equation 2.6 

BC�+� = ∑ 52�! ∑ B!66∈* 7!∈* ∑ 2�!!∈* =  2�B12�  1  

We calculated the weighted indirect structural connectivity, WISC, at each GM 

region in order to assess its ability to identify connectivity changes to distant GM regions 

after stroke. Our implementation calculated the binary indirect structural connectivity 

matrix, 2, (Equation 5), using the binary direct connectivity matrix, A, for all 37 sparsity 

levels. The WISC calculation in Equation 6 used probability-weighting, B. For every 

region at each of the 37 sparsity levels, the WISC was defined as the sum of the 

probability weights of the direct connections to the indirect connections, divided by the 

total number of indirect connections. The normalized weighted matrix, W, has a 

maximum normalized value of 1. The WISC’s numerator is the sum of normalized 
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connectivity weights of the direct connections of indirect connections; thus, the 

numerator is greater than one. The denominator is the sum of indirect connections. Thus, 

the WISC can have values greater than one. 

 

2.2.3 STATISTICAL ANALYSIS 
 
 

Non-parametric permutation testing was performed at each GM region to test 

whether the stroke group mean for the network parameters (degree, clustering coefficient, 

or WISC) differed from the mean of the control group (FSL’s randomize). This test was 

performed 37 times (once for each sparsity level) for all 114 regions; thus, the p-value 

was corrected twice. For every sparsity level, false-discovery rate corrected for multiple 

comparisons of all 114 regions, which provided corrected p-values. Only regions with 

p<0.0014 were identified as significant (p-corrected=0.05, Bonferroni-corrected for 37 

observations). The resulting 37 images showing regions in which the metric (degree, 

clustering coefficient or WISC) had a statistically lower value in the chronic stroke group 

as compared to the control group were combined into one image for visualization and 

interpretation purposes. 

Single and multiple linear regressions were performed in order to determine the 

correlation between WM integrity of the CST, the volume of GM with reduced 

connectivity, and motor impairment. A Pearson correlation test between the Fugl-Meyer 

score and the FA within the CST was first calculated. The volume of affected GM was 

defined as the total number of regions (vaGM), or number of motor-related gray matter 

regions (vaGMmotor), with a connectivity value (degree, clustering coefficient, WISC) 

significantly lower than the average of the control group.  This was done by assuming a t-
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distribution of the values within the control group, and a critical t-value corresponding to 

an alpha value of 0.05. A Pearson’s correlation was performed between motor 

impairment and the vaGM or vaGMmotor using the three metrics.  Lastly, a multiple linear 

regression was performed between motor impairment and the linear sum of the FA within 

the CST and the vaGM or vaGMmotor using degree, clustering coefficient and WISC. Out 

of the 114 regions used in this study, thirty (30) were selected as motor-related (Table 2-

2). 

 
Table 2-2: Gray Matter Motor Regions 

Thirteen (13) regions are shown here to indicate the total 30 motor-related regions used 

in the regression analysis. There are two sets of cortical and subcortical regions—with 

the exception of the Brain Stem—in addition to the cerebellar I-IV, V, (left and right 

hemisphere).. 

Regions Motor-related function Reference 

Cortical 

Paracentral gyrus 
Part of the sensorimotor cortex; controls motor 

and sensory innervations, mainly lower 
extremity  

(Frigeri, Paglioli, 
de Oliveira, & 
Rhoton, 2015)  

Precentral gyrus 

Contains the primary motor cortex, 
(Brodmann’s area 4), associated with 
movement generation including limb 

movement, speech control 

(Itabashi et al., 
2016)  

Postcentral gyrus 
Contains the primary somatosensory cortex, 
and parts of Brodmann’s areas 1, 2, and 3  

(Caldwell et al., 
2019)  

Superior parietal 
cortex 

Contains Brodmann’s areas 5 and 7, involved 
in spatial orientation and connected with the 
postcentral gyrus. Also involved in working 

memory 

(Manuweera, 
Yarossi, 

Adamovich, & 
Tunik, 2019)  

Subcortical 

Thalamus 
Information hub for every sensation system 
(except olfaction), and motor and language 

systems 

(Sakayori et al., 
2019)  

Putamen 

Involved in motor planning, learning, and 
preparation, in addition to determining 

movement amplitudes and executing simple 
and complex movement sequences. Has been 

implicated in Parkinson’s disease. 

(Marchand et al., 
2008)  

Pallidum 

Mainly an inhibitory structure that counteracts 
excitatory action of the cerebellum and helps 

execute smooth targeted movements. Involved 
in voluntary and involuntary movements. 

Damage here can result in dystonia. Has been 
implicated in Parkinson’s disease. 

(Suryanarayana, 
Hellgren 

Kotaleski, 
Grillner, & 

Gurney, 2019)  

Diencephalon 
Contains part of the pons and lower thalamus 
in this study. Relays motor impulses between 

(Morecraft et al., 
2018)  



41 

 

  

the spinal cord and medulla oblongata and 
cerebellum. 

Brain Stem 

Contains the medulla oblongata and projection 
white matter pathways in this study (such as 
the CST). The gray matter is responsible for 
basic functions such as breathing and eating.  

(Nicholls & 
Paton, 2009)  

Cerebellar 

I-IV 
Reciprocal connections with primary motor 

cortex and exhibits somatotopic organization. 
Mainly lower extremity 

(Diedrichsen & 
Bastian, 2013)  

V 
Reciprocal connections with primary motor 

cortex and exhibits somatotopic organization. 
Mainly lower extremity 

(Diedrichsen & 
Bastian, 2013)  

VI 

Complex limb movements, showing bilateral 
activation for unilateral hand movements. May 
have connections with cortical secondary motor 

areas. The vermis part is associated with eye 
movements 

(Buckner, 
Krienen, 

Castellanos, 
Diaz, & Yeo, 

2011)  

VIII 
Form part of the secondary motor cortical-

cerebellar loop, similar to anterior lobe regions 
(Diedrichsen & 
Bastian, 2013) 

 
 

2.3 RESULTS 

 
 

2.3.1 CHRONIC STROKE LESION DISTRIBUTION 
 
 

Thirteen chronic stroke participants were recruited; most lesions were near the 

internal capsule area and inferior parietal lobe (7 participants), one was near the pons, and 
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another in the left cerebellum. Four participants had predominantly cortical lesions. A 

summary of the lesion locations is shown in Figure 2.1.  

 

 

Figure 2-1: Stroke Lesion Distirbution 

Heat map showing the lesion distribution of 13 chronic stroke participants in the right 

sagittal, frontal coronal, and the neurological axial view (green cross-hair shows 

location). The color bar on the right indicates one subject had a lesion in the brain stem 

and the cerebellum (dark red), and six participants had lesions near the internal capsule 

region (bright yellow). 

 

 

2.3.2 CONTROL GROUP VARIATION IN WISC  
 
 

The variation of WISC within the control group was calculated in order to ensure 

that our measure of indirect connectivity was consistent in neurologically intact 

participants. At each sparsity level (for the 37 binarizing thresholds), the WISC at each of 

the 114 regions was summed to obtain a whole-brain WISC. The whole-brain WISC 

decreased exponentially as the network sparsity increased. The within-group standard 

deviation also decreased as the matrix sparsity increased; however, the coefficient of 

variation was similar (12.7% at the lowest sparsity level, and 14.4% at the highest 

sparsity level). 
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2.3.3 INDIRECT CONNECTIONS REVEAL LARGER EXTENT OF CONNECTIVITY POST STROKE 
 
 

The WISC identified broad regions of indirect connectivity loss in participants 

with stroke compared to controls in regions in, around, and far from the lesion (p-

corrected<0.0014). The WISC identified regions with reduced connectivity directly 

affected by the lesion (see Figure 2.2, rows 1 and 4). These regions included the 

ipsilesional precentral gyrus, rostral-middle-frontal gyrus, the post-central gyrus, 

superior-parietal gyri, regions in the temporal lobe, the ipsilesional pallidum and 

putamen, and bilateral caudate nucleus. The WISC also identified regions with reduced 

connectivity neighboring the lesion distribution. In particular, cortical gyri in the 

ipsilesional superior-frontal lobe, anterior and posterior segments of the cingulum, and 

the bilateral diencephalon were identified. Perhaps most important, however, was that the 

WISC identified regions with reduced connectivity far from the lesioned volume 

including the contralesional post-central gyrus, the brain stem, and cerebellar regions on 

both hemispheres, including the right (contralesional) region IX, and the left region VIIb. 

Graph metrics of direct connectivity also differed between the stroke and control 

groups, but to a lesser spatial extent (p-corrected<0.0014). When compared to 

neurologically intact participants, the degree indicated reduced connectivity in stroke 

only in the ipsilesional cortical gyri, including the precentral gyrus, the rostral-middle-

frontal gyrus, the superior-parietal gyrus, and parts of the bilateral caudal anterior 

cingulate gyrus (Figure 2.2, row 2). The clustering coefficient indicated lower 

connectivity in the anterior and posterior cingulate gyrus, the superior temporal gyrus, 

and the ipsilesional diencephalon (Figure 2.2, row 3). 
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Figure 2-2: Indirect and Direct Connectivity Changes after Stroke 

Regions with statistically significant (p-corrected < 0.0014) reduction in indirect (red) 

and direct (blue and green) connections. WISC identified reduced connectivity in the 

cortical, subcortical, and some cerebellar regions, while measures of direct connectivity 

identified reduced connectivity only in cortical regions. The fourth row shows the lesion 

distribution (n=13). 

 

 

2.3.4 MEASURES OF CONNECTIVITY AND INTEGRITY PREDICT MOTOR IMPAIRMENT 
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The average fractional anisotropy within the CST (FACST) significantly correlated 

with motor impairment (R2=0.52, p<0.05); the vaGM calculated by the WISC and degree 

trended, but did not significantly (p<0.1) correlate with motor impairment (R2=0.24, 

R2=0.16, respectively). When only counting the volume of affected motor-related gray 

matter (vaGMmotor), the reduction in gray matter connectivity calculated by WISC 

significantly correlated with motor impairment (R2 = 0.31, p<0.05), while reduced 

connectivity of gray matter identified by degree did not significantly correlate with motor 

impairment (Table 2.3). 

Adding vaGM or vaGMmotor to regression of FACST with motor impairment 

produced a significant improvement (p<0.05) in the correlation, suggesting connectivity 

analyses can improve prediction of motor impairment. As shown in Figure 2.3 (top) and 

Table 2.3, using the FACST and the vaGM as independent variables, the multiple 

regression with motor impairment improved by 27% (R2=0.66, p<0.05) when using the 

degree, and by 37% (R2=0.71, p<0.05) when using the WISC. When only including 

motor-related regions in the analysis, the multiple regression of the FACST and the vaGM-

motor with motor impairment improved the correlation by 12% (R2=0.58, p<0.05) when 

using the degree, and by 33% (R2=0.69, p<0.05) when using the WISC (Figure 2.3, 

bottom), although the improvement in the model was only significant when adding the 

WISC (p<0.05). As a reference, four stroke participant’s vaGM is shown in Figure 2.4. 

These participants were selected due to their lesion location (subcortical, cortical, brian 

stem, and cerebellum). 

 
Table 2-3: Multiple Linear Regression With Motor Impairment 

The adjusted R2
 and p-values are listed for single linear regression (FACST and 

Connectivity) and multiple linear regression (MLR) (FACST + Connectivity) with the 
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upper extremity Fugl-Meyer. The connectivity values are the WISC and the Degree in the 

volume of affected GM (vaGM) and volume of affected motor-related GM (vaGMmotor). 

The p-value for the slope coefficients in the multiple linear regression are listed for the 

FA and the Connectivity measures. Significant models (p<0.05) are underlined, and MLR 

models with significant contributions of Connectivity values are highlighted (*) 

FACST Connectivity FACST + Connectivity 

R2 
p-

value 
Measure R2 

p-

value 
R2 

p-

value 

FACST 

p-

value 

Connectivity 

p-value 

0.52 0.003 

WISC 

vaGM 
0.24 0.05 0.71 0.001 0.002 0.02 * 

Degree 

vaGM 
0.16 0.1 0.66 0.002 0.002 0.04 * 

WISC 

vaGMmotor 
0.31 0.03 0.69 0.001 0.003 0.02 * 

Degree 

vaGMmotor 
0.05 0.22 0.58 0.005 0.003 0.13 

 

 

 

Figure 2-3: White Matter Connectivity and Integrity Correlations with Fugl-Meyer score 

Multiple linear regression results with motor impairment, using the FA within the CST 

(FACST) and the volume of affected gray matter (vaGM) as the independent variables. The 

R2 and p-values are displayed for the full model fit, and Ŧ indicates the addition of the 
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connectivity measure significantly improved the model. The Fugl-Meyer is shown in the 

y-axis and the predicted Fugl-Meyer is shown in the x-axis. The columns show 

the vaGM calculated by the WISC (left) and the Degree (right). The rows show the total 

number of affected regions (vaGM) and the total number of motor-related affected 

regions (vaGMmotor) 

 

 

 

 
Figure 2-4: Four stroke participants and their respective volume of affected gray matter 

measured by WISC 

Four stroke participant examples and their volumes of affected gray matter (vaGM) 

calculated by the WISC. This is calculated as the number of regions with a reduced WISC 

compared to the t-distribution created by the control participants in our cohort. In blue is 

the lesion location, and red shows the vaGM. Stroke participant label is shown in the top 

left corner of each figure. Figures panels show the sagital, coronal, and axial view from 

left to right. 

 

 

2.4 DISCUSSION 

 
 

The purpose of this study was to provide evidence of changes in indirect 

structural connectivity after stroke, and to relate changes in white matter integrity and 

connectivity to motor impairment. Direct connectivity metrics were only able to identify 

changes in connectivity within the lesion distribution and in the motor cortex adjacent to 

the lesion. In contrast, indirect connectivity identified regions within, near, and far from 

the lesion distribution. In particular, regions in the parietal and frontal lobe, subcortical 
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regions, and the cerebellum saw reduced indirect connectivity after stroke. Additionally, 

WM integrity within the CST and the measures of indirect connectivity significantly 

predicted motor impairment. 

 

2.4.1 REDUCED STRUCTURAL CONNECTIVITY IN MOTOR NETWORKS 
 
 

2.4.1.1 THE FRONTO-PARIETAL AND SUBCORTICAL NETWORK 

 
 

Our study found reduced structural connectivity in regions important to 

sensorimotor function such as the ipsilesional fronto-parietal cortex and subcortical 

regions after stroke. Measures of direct connectivity were reduced in the precentral gyrus, 

rostral-middle-frontal gyrus, the superior-parietal gyrus, and parts of the cingulum. In 

contrast, indirect connectivity detected reduced connectivity in the aforementioned 

regions, in addition to the bilateral postcentral gyrus and the superior frontal gyrus 

(Figure 2.2). These findings suggest that regions in the frontal and parietal lobes are hubs 

in the brain connectome, and that connectivity of these regions can be altered by stroke, 

regardless of lesion location. This is consistent with a centrality and vulnerability analysis 

using diffusion MRI measures of connectivity, where iteratively removing critical regions 

such as those in the superior parietal and frontal lobes cause the largest change in the 

network’s global efficiency (Iturria-Medina et al., 2008). 

Indirect connectivity can be sensitive to changes in connectivity to network hubs. 

Our results indicate that indirect connectivity is reduced in cortical and subcortical 

regions both directly and indirectly affected by the lesion, (Figure 2.2). This suggests that 

damage to areas connecting to a region can be as important to network connectivity as 

damage to the region itself, which can lead to disruptive effects on the network and 
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subsequent impairment and recovery post-stroke (Borstad et al., 2016; He et al., 2007). In 

a similar analysis, the caudate nucleus and thalamus have a reduced direct connectivity 

(Bosnell et al., 2011), and reduced weighted communicability after subcortical stroke (J. 

Crofts et al., 2011). The latter also found reduced connectivity in the bilateral caudate 

nucleus, mirroring our results, (Figure 2.2). Our study is unique in demonstrating that 

changes in connectivity in the contralesional hemisphere extend to sensorimotor cortical 

regions, and that these changes occur after lesions in areas other than the internal capsule.   

 

2.4.1.2 CEREBELLAR REGIONS 

 
 

Our measures of indirect connectivity indicated changes in connectivity to the 

cerebellum in people with supratentorial lesions (Figure 2.2). While the subject with the 

cerebellar lesion likely reduced the stroke group’s average WISC in the cerebellum, the 

differences in direct connectivity, measured using degree, were not significant. Instead, it 

is likely that reduced WISC in the brain stem and cerebellum is caused by a reduced 

number of indirect connections from supratentorial brain structures. 

Diffusion MRI changes beyond the lesion site have been found in supratentorial 

WM tracks. For example, fiber pathways directly above and below the main lesion 

volume degenerate after stroke (G. Liu et al., 2015), and similar observations have been 

reported after spinal cord injury (Jirjis et al., 2016). Perfusion and gray matter thickness 

studies suggest that the cerebellum changes shape and connectivity after stroke (Sommer 

et al., 2016) and diffusion MRI measures of WM connectivity support the idea that focal 

ischemic lesions produce progressive degeneration of major WM tracks (Kalinosky et al., 



50 

 

  

2013; Schulz, Frey, et al., 2015). Our approach using indirect connectivity could have the 

sensitivity needed to detect changes to cerebellar connectivity after supratentorial stroke. 

Two studies highlight changes in cerebellar connectivity after stroke and their 

relationship with post-stroke impairment. Kalinosky et al., (2017) developed a novel 

structurofunctional metric that weighted functional BOLD connections by their residual 

WM connectivity, and found that cerebellar-prefrontal cortical connectivity correlates 

with arm function after stroke. Additionally, Schulz et al., (2015) found a positive 

correlation between the WM integrity of the major cerebellar tracts and residual motor 

output and fine-motor control. The lack of additional evidence of losses in connectivity to 

the cerebellum may be due to complex fiber organization in the pons and the cerebellum. 

Our results highlight the importance of calculating indirect connections from the entire 

connectivity matrix (Kalinosky et al., 2013) because it amplifies remote-region 

connectedness and highlights vulnerability of connectivity to a focal lesion. 

 

2.4.2 WM INTEGRITY AND CONNECTIVITY PREDICT MOTOR IMPAIRMENT 
 
 

We found that a multiple linear regression model of WM connectivity and 

integrity better predicted motor impairment, and that using indirect connectivity 

performed better than direct connectivity. The linear model of WM integrity within the 

corticospinal tract (FACST) moderately but significantly correlated with motor 

impairment, which is consistent with prior studies (Koyama & Domen, 2017; Mang et al., 

2015; Schulz et al., 2012; Wen et al., 2016). Adding the total number of regions with 

significantly reduced WISC or degree to the model significantly improved the ability to 
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predict motor impairment and better explained the variance seen in post-stroke 

impairment (Figure 2.3, top). 

It should be pointed out that adding the number of motor-related regions with 

reduced connectivity significantly improved the regression model of upper extremity 

motor impairment for only the measure of indirect connectivity (Figure 2.3, bottom). 

Indirect connections could be more sensitive to loss in connectivity to motor-related 

regions, as shown in Figure 2.2 and 2.3.  Stroke induces changes in integrity in the CST 

and changes in the connectome. By measuring direct and indirect connections, the WISC 

was able to identify significant losses in connectivity in motor-related regions in the 

cortex and subcortical regions, and these changes in connectivity better predicted motor 

impairment in a multiple linear regression model. In a similar study, Mang et al., (2015) 

used hierarchical regressions using the integrity of WM tracks and transcranial magnetic 

stimulation to predict motor impairment. Integrity of the CST and indirect connectivity 

both appear to be important motor function and the combination may be a useful imaging 

marker of functional recovery. 

 

2.4.3 LIMITATIONS AND FUTURE DIRECTIONS 
 
 

The current study utilized an anatomical and tractography-based parcellation to 

establish gray matter nodes for connectivity analysis, which could have impacted the 

results. The effects of node selection should be taken into consideration when interpreting 

results (Zalesky et al., 2010). Although the reproducibility of connectivity measures 

across time scales, tractography techniques, and scanners is high, (Meskaldji et al., 2013; 
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Welton, Kent, Auer, & Dineen, 2015), node selection, processing techniques, and 

interpretation should be considered carefully.  

A voxel-based approach for calculating indirect connectivity is appealing due to 

its objective classification of network nodes (Kalinosky et al., 2013); however, there are 

computational constraints and methodological considerations to account for. For instance, 

at fine parcellation resolutions some nodes may have little to no connectivity, resulting in 

a sparse and noisy connectivity matrix. Unless more streamlines are calculated, which 

would further increase the computational burden, the connectivity matrix may not be 

reproducible (Zalesky et al., 2010). Additionally, probabilistic tractography algorithms 

could be sensitive to artificial increases in connectivity probabilities (Carrera & Tononi, 

2014) due to decreases in probabilities elsewhere (J.J Crofts, et al., 2010). During fiber 

track estimation, a decrease in anisotropy, or an increase in dispersion, in the lesion 

would decrease the number of tracks passing through the lesion volume and might 

artificially increase the number of tracks to alternative routes. However, our study did not 

find increases in connectivity or graph measures in the stroke group when compared to 

the neurologically intact individuals. 

It is difficult to interpret increases or decreases in graph metrics when 

probabilistic tractography is used. Probabilistic tractography implemented in FSL 

calculates probabilities of a single fiber connecting two regions, and thus the edge 

number in the connectivity matrix should not be interpreted as the number of fibers 

connecting two regions (Behrens et al., 2007). Although subjective, employing 

techniques that binarize connectivity matrices based on pre-selected probability 

thresholds could be the preferred method of comparing connectivity graphs; in this case, 
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the existence of connections is assessed.  However, we point out that the selection of the 

thresholds may influence our results. We used a range of thresholds in order to account 

for this; stronger and more reliable connections would be represented more frequently 

regardless of the threshold used. Another approach would be to use principle component 

analysis in order to find the most reliable network per participant. 

Probabilistic tractography might underestimate the number of indirect connections 

in a region.  For example, cerebellar output from the dentate nucleus ends at the 

contralateral thalamus where a second set of axons send efferent signals to the cortex 

(Allen & Tsukahara, 1974). However, probabilistic tractography could directly connect 

the cerebellum to the cortex; the low anisotropy and high uncertainty in a voxel diverges 

downstream streamlines and reduces their individual probabilities. Similarly, 

unconstrained probabilistic tractography potentially increases the number of incorrect 

connections to a seed region. For example, our approach connects the right cerebellar 

hemisphere to the left and the right thalamus. This might explain why the right cerebellar 

lesion caused bilateral changes in connectivity in the supratentorium (Figure 2.2). A way 

to mediate these methodological issues would be to add waypoint constraints for each of 

the 114 seed regions; however, this would impose a bias on our reconstructed fiber tracks 

based on our subjective selection of waypoint regions. We addressed these issues by 

selecting a range of probability thresholds that preserved physiologically relevant 

streamlines. Future implementations could employ more objective methods of 

thresholding. 

A limitation to WISC is that the calculation is sensitive to either a loss in direct 

connections to indirect connections, or due to an increase in indirect connections (see 
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Equation 2.6). However, our implementation of VISC counts the probabilities of the 

direct connections to indirect connections (the degree of the indirect connections). 

Therefore, this number, the numerator of the WISC calculation, increases faster as more 

indirect connections (the denominator) are added. This slight modification to the VISC 

makes a decrease in the WISC due to an increase in the denominator less likely. 

 

2.5 CONCLUSION 

 
 

The major finding of this study is evidence of the ability of indirect connectivity 

to uniquely identify remote changes in brain connectivity after stroke, and its ability to 

explain variance in post-stroke impairment. When compared to measures of direct 

connectivity, our indirect connectivity analysis detected changes in connectivity in 

contralesional cortical areas, ipsilesional subcortical regions and the thalamus, brain 

stem, and cerebellum. These areas are regions with high centrality in the brain, are near 

large white matter tracks that connect, and are clinically important in behavior and 

sensorimotor function. The clinical implication of our study is that changes in structural 

connectivity extend beyond the lesion volume, and that these changes in connectivity can 

be used along with white matter integrity to predict motor impairment. This highlights the 

need to analyze white matter connectivity when considering the effects of stroke on the 

brain, and adds evidence that suggests the fronto-parietal lobe, subcortical regions, and 

the cerebellum are important nodes in the brain’s connectome. The methodological 

implications of our study emphasize the need to calculate indirect connections in order to 

capture global effects of a brain lesion on the connectome.  
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3 CHAPTER 3: WHITE MATTER INTEGRITY AND CONNECTIVITY IN MOTOR PATHWAYS 

RELATE TO MOTOR IMPAIRMENT AFTER STROKE 

 
 

3.1 INTRODUCTION 

 
 

In this study, we combined measures of white matter (WM) connectivity and 

integrity to characterize the relationship between WM structure and upper extremity 

motor impairment after stroke. Measures of WM orientation obtained from DWI can 

characterize global connectivity of the brain, which could provide neuroimaging tools to 

prognosticate clinical outcomes of stroke rehabilitation.  Developing and testing 

algorithms that can integrate both WM integrity and connectivity could help detect subtle 

changes in WM structure distant from the lesion that may predict motor impairment.  

Thus, the purpose of this study was to 1) develop a novel biomarker that informs a 

voxel’s local WM integrity by its global connections, to 2) provide evidence of changes 

in global connectivity and integrity after stroke, and to 3) relate these changes in WM 

structure to post-stroke motor impairment. 

Traditional stroke neuroimaging tools of brain WM structure do not take into 

account the effect a focal lesion has on global brain connectivity.  Although stroke 

produces local damage within the lesion volume and surrounding penumbra, cellular, 

WM, and gray matter (GM) degeneration occurs outside the lesion core (Cheng et al., 

2015; Förster, Kerl, Goerlitz, Wenz, & Groden, 2014; Jirjis et al., 2016; Lee, Grabb, 

Zipfel, & Choi, 2000; Sommer et al., 2016; Wang et al., 2012; Yassi et al., 2015).  The 

most common diffusion measure of post-stroke WM integrity is the fractional anisotropy 

(FA) (Basser et al., 1994), and integrity within the corticospinal tract (CST) has been 

related to post-stroke function, strength, impairment and recovery (Koyama & Domen, 
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2017; Mang et al., 2015; Puig et al., 2010; Schulz et al., 2012; Wen et al., 2016). 

However, there are three main limitations to using FA: 1) it does not explain all variance 

in post-stroke outcome, 2) it is affected by complex fiber structures (Behrens et al., 

2003), and 3) it is only locally sensitive to lesion volume (Kalinosky, Schindler-Ivens, & 

Schmit, 2013). 

Measures of global connectivity could provide additional information about 

changes in WM structure after focal lesions.  For example, weighted communicability 

was found to be sensitive to changes in WM connectivity in the contralesional 

hemisphere after stroke (Crofts et al., 2011).  Additionally, our lab recently developed a 

measure of indirect connectivity that related to upper extremity motor impairment 

(Kalinosky et al., 2013).  We also developed a measure of connectivity that weighs the 

BOLD functional MRI signal from a voxel by its structural WM connections (Kalinosky, 

Berrios Barillas, & Schmit, 2017), and it was shown to correlate with post-stroke motor 

function of the arm.  Identifying damaged WM tracks after stroke (Yeh et al., 2013) could 

be used as regions of interests for correlation analyses with post-stroke impairments (Li 

et al., 2017).  Thus, DWI measures of WM connectivity and integrity could identify 

damaged WM tracks distant from the lesion volume, and relate these changes in 

connectivity to function.  

In this study, we developed a novel measure of brain structure in order to identify 

global changes in WM integrity and connectivity after stroke, and we related these 

changes to motor impairment.  Using voxel-level probabilistic tractography, we 

calculated the average FA of connected voxels to estimate changes in post-stroke WM 

structure with the aim of extending local changes in WM integrity along connected 
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pathways.  We compared our combined measure of WM structure with measures of WM 

integrity (FA) and connectivity (degree), and related WM structure to motor impairment.  

We hypothesized that our measure would detect a larger volume of affected white matter 

after stroke, and that this would relate to post-stroke motor impairment in the CST in 

addition to commissural and cerebellar pathways associated with sensorimotor function. 

 

3.2 METHODS 

 
 

3.2.1 DATA COLLECTION 
 
 

3.2.1.1 SUBJECT RECRUITMENT  

 
 

Thirteen chronic stroke survivors (>6 months after stroke) (10 female, average 

age 63.2) and sixteen age-matched control participants (8 female, average age 63.4) 

participated in this study.  Each participant provided written consent to the experimental 

protocol, which was approved by the Institutional Review Boards at Marquette 

University and the Medical College of Wisconsin.  The inclusion criteria included a 

minimum age of 18 (mean age 64.4 years for the stroke group, 63.4 years for the 

neurologically intact group), and the ability to independently answer questions, follow 

directions, and provide informed consent. Contraindications included a history of 

multiple strokes, history of claustrophobia, other known brain pathology, and MRI 

incompatibility.  This cohort is similar to those in chapter two, with the exception that 

stroke participants with history of multiple lesions were removed. Participants in the 

neurologically intact group were age- and sex-matched to the stroke group.   
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A measure of upper extremity motor impairment was obtained for stroke 

participants using the Fugl-Meyer (FM, maximum of 66 points) upper extremity motor 

test, (Fugl-Meyer et al., 1975). Lower values indicate greater motor impairment. Table 

3.1 contains information on the stroke study participants. 

 
Table 3-1: Stroke Participant Information 

Stroke participant information, including identification number, sex, age, lesion location, 

lesion hemisphere, and the Fugl-Meyer upper extremity motor score (out of 66). For the 

subjects that had multiple lesions, the larger lesion is listed first. M = Male; F = Female; 

R = Right; L = Left 

Subject 

ID 
Sex Age 

Lesion 

Location 

Lesion 

hemisphere 

Fugl-

Meyer ( 

/66) 

C01 M 65 Cortical R 64 

C02 M 57 Sub Cortical L 59 

C03 F 83 Brain Stem L 36 

C05 M 69 Cortical L 64 

C06 F 65 Cortical R 47 

C07 M 64 Cerebellum L 60 

C09 F 62 Sub Cortical L 64 

C11 F 60 Sub Cortical R 45 

C13 F 73 Sub Cortical R 29 

C14 F 57 Sub Cortical R 25 

C15 M 58 Sub Cortical L 26 

C16 F 42 Sub Cortical L 19 

C18 F 67 Cortical R 9 

 
 

3.2.1.2 MRI SCANS 
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All MRI scans were performed using a short bore 3T GE Discovery MR750 

scanner.  Axial T1-weighted images were acquired using the fast spoiled gradient recall 

(FSPGR) 3D pulse sequence, with the following parameters: TE=3.2ms, TR=8.16ms, flip 

angle=12 degrees, FOV=240mm, at 156x1mm slices with an in-plane axial matrix of 

256x240.  Axial diffusion scans were acquired using the Q-ball high angular resolution 

diffusion imaging (HARDI) sequence using a single-shot echo planar imaging (ssEPI) 

protocol, with the following parameters: TE=72.3ms, TR=5700 ms, FOV=256mm at 

59x2.5mm slices with an in-plane axial matrix of 128x128.  There were 150 gradient 

directions (b-value=1500 s/mm2) and five b=0 images. 

 

3.2.2 MRI DATA PROCESSING 
 
 

3.2.2.1 IMAGE PRE-PROCESSING 

 
 

Raw Digital Imaging and Communications in Medicine (DICOM) images were 

converted to NIFTI image format (Neuroimaging Informatics Technology Initiative) 

using mricron (Rorden et al., 2007).  All preprocessing was done using the FMRIB 

Software Library (FSL) (Jenkinson et al., 2012). MR bias field correction and skull 

stripping were performed on the raw T1-weighted images. The diffusion images were 

corrected for eddy-currents and skull stripped. Additionally, the fractional anisotropy 

(FA) of each stroke participant was calculated from the HARDI. 

 

3.2.2.2 LESION IDENTIFICATION 

 
 

Lesions were automatically identified using the Lesion Identification with 

Neighborhood Data Analysis (LINDA) algorithm, (Pustina et al., 2016). The algorithm 
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requires the lesions to be on the left hemisphere; therefore, prior to pre-processing, all 

raw T1 and diffusion weighted images with right-hemisphere lesions were flipped to the 

left hemisphere, and the diffusion gradient vector file was flipped in the X-direction.  One 

participant had a lesion on the left hemisphere of the cerebellum.  Most cerebellar 

afferent and efferent connections cross hemispheres to connect to the contralateral cortex 

(Allen & Tsukahara, 1974).  Because of this, the stroke participant with the left-cerebellar 

lesion was flipped to reflect a right-cerebellar lesion. 

 

3.2.2.3 IMAGE REGISTRATION 

 
 
3.2.2.3.1 BRAIN TEMPLATE CREATION 
 
 

All study participants’ diffusion images were registered to a template space in 

order to statistically compare WM integrity and connectivity metrics in the same space; 

however, for visualization purposes we display our final results in MNI standard space.  

The template space was selected as the control participant with characteristics (as 

determined by registration) closest to all other control participants. The template space 

was determined by non-linearly registering all control participant’s FA images to each 

other in order to determine the most representative brain using tbss_2_reg  (S. M. Smith 

et al., 2006).  Afterwards, all control participants’ T1-weighted images were non-linearly 

registered to the target space using ANTs’  (Advanced Normalization Tools) SyN 

algorithm (Avants et al., 2008).  The final brain template image was calculated as the 

average warped T1-weighted image of all control participants in our target space (Figure 

3.1-a). The transform that warps our template space to MNI space was obtained using the 

ANTs’ SyN algorithm. 
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Figure 3-1: Template Space and Registration to Diffusion Space 

Panel a shows two T1-weighted images: our study’s template space (top) and a stroke 

participant (C02) warped into the template space. The green cross-hair indicates the 

coronal and sagittal slice, in addition to a representative voxel. Panel b shows the stroke 

participant’s diffusion space with the corresponding location of the representative voxel 

(enlarged on the right). Note: when applying a transform on an image, the single voxel in 

template space has been interpolated into 4 voxels (shown in red), whereas applying a 

transform on a list of physical points results in a single warped voxel (shown in blue) 

 

 

3.2.2.3.2 REGISTRATION TO TEMPLATE SPACE 
 
 

Each participant’s diffusion image was linearly registered to its T1-weighted 

image using FSL’s linear registration (flirt) using 6 degrees of freedom. Linear and 

diffeomorphic non-linear registration warped each participant’s T1-weighted image onto 

template space using ANT’s SyN algorithm with Gaussian regularization, histogram 

matching, and lesion masking.  The diffusion-to-structural, and the structural-to-template 

transforms were concatenated, and the final result was a set of invertible linear and non-

linear transforms that mapped every physical point in diffusion space to template space.  

An example stroke participant warped into the template space is shown in Figure 3.1-a. 
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3.2.2.4 STRUCTURAL CONNECTIVITY 

 
 
3.2.2.4.1 TRACTOGRAPHY MASKS 
 
 

Our WM seed mask was determined as the maximum overlap of all of our control 

participants’ WM volumes.  Each control participant’s WM and cerebral spinal fluid 

(CSF) volumes were obtained using fast in FSL. After warping to template space, 

binarizing, and adding the volumes, a threshold of 16 (our total number of control 

participants) determined the maximum overlap.  

The CSF mask prevented streamlines from entering non-brain areas, and a gray 

matter (GM) mask was created in order to only include streamlines that connect gray 

matter regions and ignore streamlines that prematurely end within the WM (R. E. Smith 

et al., 2012).  Our GM mask was estimated in MNI space, which includes cortical and 

subcortical volumes obtained from Freesurfer (Fischl et al., 2004, 2002), and cerebellar 

GM volumes obtained from FSL (Diedrichsen et al., 2009). The CSF and GM masks 

were warped into each participant’s diffusion space. 

A common tractography approach is to iteratively seed a voxel in the template 

space, warp seed points to the native diffusion space and perform tractography, and warp 

the final result back to template space (Kalinosky et al., 2013).  At the time of this study, 

a method to convert ANT’s warps into the format FSL requires for tractography had not 

been developed. We therefore warped our entire WM mask to each participant’s diffusion 

space, seeded and performed tractography in native space, and warped the final result 

back to template space after tractography. 
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We observed that warping a single voxel from our template image to a single 

participant’s diffusion image did not result in a one-to-one mapping of physical points in 

diffusion space due to image voxel interpolation and smoothing (Figure 3.1-b).  In order 

to decrease the variability in the number of seed voxels in each participant’s diffusion 

image, we transformed a list of physical seed points from the target space to diffusion 

space, resulting in a one-to-one mapping of physical point (ImageMath and 

antsApplyTransformsToPoints functions in ANTs).  Our in-house MATLAB (R2017a) 

package then converted the list of transformed physical points in diffusion space into 

transformed voxel locations in native diffusion space. 

 
3.2.2.4.2 DIFFUSION TRACTOGRAPHY AND CONNECTIVITY 
 
 

Diffusion direction and orientation estimations were obtained from the eddy-

corrected images using the FSL bedpostx function (Behrens, Woolrich, et al., 2003).  

Three fibers were estimated per voxel, each with a range of diffusivities. In addition to 

the seed (white matter) and the exclusion (CSF) masks, an inclusion (gray matter) mask 

was specified in our tractography algorithm, similar to the anatomically constrained 

tractography (ACT) algorithm described in Smith et al., (2012).  Probabilistic 

tractography was performed using the probtrackx2 function (Behrens et al., 2007) in each 

participant’s native diffusion space, with distance correction.  We estimated 2,500 

streamlines per voxel, split into 50 cores using the –rseed option in probtrackx2.  The 

output was 50 sparse connectivity matrices that represent the probability of connectivity 

between every WM voxel seeds.  The average size of our connectivity matrix was 

roughly 200,000 voxels. 
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An in-house MATLAB package combined the 50 sparse connectivity matrices for 

each participant, and the final matrix was forced symmetric.  Typically, the weights of 

the connectivity matrix can either be binarized (all connection weights forced to equal 

one) or normalized between a value of zero and one.  Although probabilistic tractography 

can increase the number of true positive fiber connections, it also produces false positives 

(Maier-Hein et al., 2017) which could justify the use of a normalization technique and 

appropriate thresholding (Gong et al., 2009).  On the other hand, normalization 

procedures that can control for the topology of the network have not yet been developed 

satisfactorily (Meskaldji et al., 2013; van Wijk, Stam, & Daffertshofer, 2010; Zalesky et 

al., 2010), and our methodology further complicated this issue; although we attempted to 

standardize the number of seed voxels in order to keep the number of nodes in our 

connectivity matrices consistent, every participant still had a different-sized matrix.  For 

this study, we performed all connectivity measures on a binary and symmetric 

connectivity matrix.  Thus, our connectivity matrix represents the volume of possible 

connections to a voxel, rather than the volume of the most probable connections. 

 

3.2.2.5 POST-PROCESSING - DIFFUSION BIOMARKERS 

 
 

The ‘normalized’ degree, 1�, (Rubinov & Sporns, 2010) was calculated using our 

in-house MATLAB package as the sum of all values of columns, :, in our connectivity 

matrix, G, divided by the number of voxels, H (Error! Reference source not found.).  

1� = 	* ∑ G�!!)*     Equation 3.1 

Additionally, the FA was calculated from our HARDI data at each voxel, 8, 
(section Error! Reference source not found.).  Lastly, the structurally-weighted 
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fractional anisotropy (SWIFT) was defined as the average FA of connected voxels. This 

was accomplished by matrix-multiplying the binary connectivity matrix with the FA 

image in vector form (Figure 3.2).  The resulting vector was then divided by the number 

of direct connections, H1�, to produce the average FA of direct connections (Error! 

Reference source not found.).  This algorithm was developed independently from 

Buchanan et al., (2014), where they similarly averaged the FA across streamlines to 

create an FA-weighted brain network based on 84 regions. 

�BC�I� = 	*6J ∑ G�!!)* ∙ ��!     Equation 3.2 

 
 

 

Figure 3-2: Structurally-weighted Fractional Anisotropy Calculation 

After warping the seed image, a single voxel, i (centered at the cross-hair), seeded 

probabilistic tractography to create a list of possible direct connections, j, which then 

populated a connectivity matrix, A. The SWIFT was then calculated by matrix-

multiplying a ‘degree-normalized’ connectivity matrix by a vectorized FA 

image.  Similarly, the product of a binary connectivity matrix and the vectorized FA 

image was divided by the degree (Equation 3.2). 
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3.2.3 STATISTICAL ANALYSIS 
 
 

We performed non-parametric permutation tests (FSL’s randomize, threshold-free 

cluster enhancement) in order to compare the chronic stroke group with the control 

group. Lesion volumes were removed from the analysis.  The resulting images were then 

thresholded (p-corrected<0.05) to show volumes where the stroke group had significantly 

reduced values in our three biomarkers, and then warped to MNI space for visualization 

purposes. 

In order to determine the relationship between our biomarkers (FA, degree and 

SWIFT) and stroke impairment (Fugl-Meyer score), we conducted a Pearson correlation 

test between the Fugl-Meyer score and the volume of affected WM (vaWM), defined as 

the number of voxels less than the critical t-value (Kalinosky et al., 2013), assuming a t-

distribution of the values in the control group and a critical t value corresponding to an 

alpha of 0.025. The vaWM for each biomarker was then considered a possible predictor 

of Fugl-Meyer.  

 

3.2.4 POST HOC CORRELATION WITH MOTOR IMPAIRMENT IN TRACKS OF INTEREST 
 
 

In order to identify which WM tracks were damaged after stroke, we calculated 

the lesion load of our stroke group significantly reduced FA, degree, and SWIFT volumes 

on predefined WM ROIs (henceforth to be referred to as “percent WM damage”, Figure 

3.3).  This is the overlap of the damage in connectivity after stroke (measured by the FA, 

SWIFT, and the Degree) with a WM ROI. We also identified the contribution of each 

WM ROI—normalized by its size—to the overall volume of significantly reduced FA, 
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degree, and SWIFT (henceforth to be referred to as “percent contribution”, Figure 3.3).  

The percent contribution is the overlap a white matter track has on the volume of reduced 

integrity/connectivity. Supratentorial WM ROIs were obtained from the Laboratory of 

Brain Anatomical MRI at John Hopkins University (Hua et al., 2008; Wakana et al., 

2007), and the cerebellar tracts were obtained from the Neurosurgical Centre Nijmegen in 

The Netherlands (van Baarsen et al., 2016).  This analysis produced four WM ROIs, and 

the vaWM within these were then correlated with the Fugl-Meyer scores. 

 

 

 
Figure 3-3: Percent WM Damage and Percent Contribution Calculation 

Visual representation of ‘percent WM damage’ and ‘percent contribution’ 

calculations noted in Table 2. In red (transparent) is the statistically reduced SWIFT, FA, 

and degree depicted in Figure 3.4 (p-corrected < 0.05). In blue and green are 

representative white matter tracks depicted in Figure 3. The ‘percent WM damage’ is the 

overlap the volume of reduced white matter integrity/connectivity (red) has on 

a particular white matter track (blue, for instance). In this example, 75% of 

the blue white matter track has reduced integrity. The ‘percent contribution’ is 

the overlap a white matter track has on the volume of reduced integrity/connectivity. In 

this example, 80% of the volume of reduced integrity resides in the blue white matter 

track, while 20% resides in the green white matter track. 
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3.3 RESULTS 

 
 

The thirteen (13) stroke participants in our analysis included five participants with 

lesions in the internal capsule and the putamen, three participants with lesions in the 

parietal lobe, one brain stem lesion, and one cerebellar lesion (Table 3.1 and Figure 3.4). 

The volume with reduced degree detected a 44.3% damage of the ipsilesional 

anterior thalamic radiation (ATR), and the volume of reduced FA detected a 17.4% 

damage of the ipsilesional cortico-spinal tract (CST).  The volume of reduced SWIFT 

detected a 48.8% damage of the ATR and 53.1% of the CST, in addition to 33.1% of the 

corpus callosum (CC) and 19.1% of the contralesional superior cerebellar tract (SCP) 

(Table 3.2).  Thus, for our post hoc analysis we used the ipsilesional ATR and CST, the 

CC, and the contralesional SCP; these tracts are shown in the second column of Figure 

3.4.  

It should be noted that the SWIFT detected a 49.1% and 36.4% damage in 

association tracts.  However, we focused our results and interpretation on projection and 

commissural fibers because their contribution accounted for 84.4%, 76.3%, and 73.9%, 

of the total volume of reduced connectivity (degree), integrity (FA), and SWIFT, 

respectively. 

 
Table 3-2: White Matter ROI based on Percent Damage and Percent Contribution 

Percent WM damage and percent contribution is indicated for three biomarkers (SWIFT, 

FA, Degree) across  WM ROI’s.  Bolded numbers indicate our selected WM tracks for 

our WM ROI analysis.  ATR-l, ATR-r: left / right anterior thalamic radiation; CST-l, 

CST-r: left / right corticospinal tract; CC: corpus callosum; SCP-r: right superior 

cerebellar peduncle; MCP-r: right middle cerebellar peduncle; ICP-r: right inferior 

cerebellar peduncle; Association fibers include the superior, inferior longitudinal 

fasciculus, uncinated fasciculus, and the inferior fronto-occipital fasciculus. 

  SWIFT FA Degree 
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  %WM 

damage 

% 

contribution 

%WM 

damage 

% 

contribution 

%WM 

damage 

% 

contribution 

Projection 

Fibers 

ATR-

l 

48.8 15.0 8.1 18.2 44.3 42.3 

ATR-

r 

27.0 8.3 0.6 1.4 0 0 

CST-l 53.1 16.3 17.4 39.1 13.8 13.1 

CST-r 23.6 7.3 0.1 0.1 0 0 

Commissural 

Fibers 

CC 33.1 10.1 4.7 10.6 4.3 4.1 

Cerebellar 

peduncles 

SCP-r 19.1 5.9 0.9 2.0 25.7 24.5 

MCP-

r 

16.9 5.2 0.9 2.0 0 0 

ICP-r 18.8 5.8 1.3 2.9 0.4 0.4 

Association 

Fibers 

Left 49.1 15.1 9.4 21.2 16.3 15.6 

Right 36.4 11.2 1.0 2.3 0 0 

 
 

3.3.1 THE FA AND DEGREE DETECT ISOLATED DAMAGE TO PROJECTION FIBERS 
 
 

Our analysis revealed extensive WM changes in projection and commissural 

tracts after stroke (p-corrected<0.05).  Ignoring the lesion location, 39.1% of the volume 

of reduced FA was in the CST; this can best be seen in Figure 3.4, where reduced FA 

(red, column 4) outlines the left CST (blue, column 2).  The ATR has an 18.2% 

contribution. Interestingly, the FA also identified parts of the corpus callosum as seen in 

the sagittal view (10.6% contribution).  The FA also revealed a sparse collection of 

voxels in the contralesional cerebellum as having reduced integrity; however, this only 

accounted for about 6% of the total volume of reduced FA (Table 3.2).  The volume of 
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reduced degree was mostly concentrated along the left ATR (42.3% contribution), which 

is mostly concentrated in the thalamus. The left CST was also identified by the degree 

(13.1% contribution). 

 

3.3.2 THE SWIFT HIGHLIGHTS LOSS OF INTEGRITY IN PROJECTION, COMMISSURAL, AND 

CEREBELLAR FIBERS 
 
 
 

Similar to the FA and degree, the SWIFT revealed an extensive loss of integrity in 

major projection and commissural fibers; however, the SWIFT detected damage along 

these projection fibers, extending superiorly to WM voxels that neighbor the primary 

motor cortex.  This contrasts with the FA where only sparse clusters of voxels were 

detected within the CST (Figure 3.4).  Bilaterally, the SWIFT also identified homologous 

WM volumes in the non-lesioned hemisphere, although to a lesser extent. 

In a similar way, the SWIFT extended the volume of damage from the FA to 

highlight changes in integrity along the corpus callosum (Figure 3.4).  The CC accounted 

for 10.1% of the total volume of changes in SWIFT after stroke.  Although this is similar 

to that of the FA (10.6%), the SWIFT detected 33.1% damage to the CC, while the FA 

only detected 4.7% damage. In other words, roughly 10% of the group-level reduction in 

the FA and the SWIFT was found in the CC; however, the SWIFT was more sensitive to 

detecting reduction in WM integrity in the CC as seen by the percent WM damage.  

Lastly, the SWIFT extended the affected area relative to the FA highlighting 

changes along the contralesional SCP.  Similarly, the degree indicated changes in 25.7% 

of the contralesional SCP, which accounted for 24.5% of the degree’s total volume of 

reduced connectivity (Table 3.2).  As seen in Figure 3.4, however, the extent of overlap 
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between volume differences in degree and the SCP is supratentorial (thalamic afferents) 

and not within the cerebellum. In contrast, the SWIFT was able to detect changes in 

integrity within the cerebellum’s efferent portion of the SCP. 

 

 

Figure 3-4: SWIFT, FA, and Degree changes after Stroke 

Volume of significantly reduced (translucent red, p-corrected < 0.05) SWIFT (column 3) 

FA (column 4) and Degree (column 5) in stroke vs control. The lesion distribution is 

shown in column 1 with brighter colors indicating a higher lesion prevalence (n=13). 

The four WM ROIs from Table 2.2 are shown in column 2 (CC: green; ATR-l: light-blue; 

CST-l: blue; SCP-r: yellow). Column 2 shows right and left hemisphere, in addition to a 

cross hair indicating sagittal, coronal, and axial views. 

 

 

3.3.3 SWIFT CORRELATES WITH UPPER MOTOR IMPAIRMENT 
 
 

Our measure of upper extremity stroke motor impairment significantly (p<0.05) 

and negatively correlated with whole-brain vaWM integrity (FA: R2=0.55, SWIFT: 

R2=0.63), but not with measures of connectivity (degree) (Figure 3.5). 
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Figure 3-5: Regression of SWIFT, FA, Degree with Motor Impairment 

Scatter plots displaying correlations between the upper extremity motor impairment 

(FM, Fugl-Meyer, out of 66), and the whole-brain volume of affected white matter for the 

SWIFT (top left), FA (top right), and the Degree (bottom left), with the linear model 

shown as a dashed line.  A summary table displaying the R2 value and the model’s 

significance is shown on the bottom right. 

 

 

The WM ROI analysis revealed that the SWIFT correlated better with motor 

impairment than FA in supratentorial projection fibers and the efferent cerebellar tracts, 

while the FA correlated better than the SWIFT in the corpus callosum (Figures 3.5 and 

3.6).  The SWIFT’s vaWM correlated with the Fugl-Meyer better than the FA within the 

CST (R2=0.82, R2=0.58, respectively), (top row, Figure 3.6).  The FA’s vaWM correlated 

slightly better with the Fugl-Meyer than the SWIFT within the corpus callosum (bottom 

row, Figure 3.6), (R2=0.53, R2=0.41, respectively).  Although the linear model was 

significant for the FA, the correlation might be driven by two samples, as can be seen by 

the scatter plot on the bottom right of Figure 3.6.  
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Figure 3-6: SWIFT and FA in CST and CC Regression with Motor Impairment 

Scatter plots displaying correlations between the upper extremity motor impairment 

(FM), and the volume of affected white matter within the left corticospinal tract (CST, 

top) and the corpus callosum (bottom) for the SWIFT (left scatter plots) and the FA (right 

scatter plots). Summary results are displayed within the scatter plots (R2 and p-values). 

The WM ROIs are shown in MNI space on the left two brain images, in red. The vertical 

and horizontal green lines indicate the coronal, sagittal, or axial views for that image 

pair. The left and right hemispheres are indicated in the bottom-right axial image. 

 

 

Within the SCP, only the SWIFT significantly correlated with motor impairment 

(R2=0.57), (Figure 3.7).  Additionally, the SWIFT significantly correlated with the Fugl-

Meyer within the ipsilesional ATR (R2=0.43).  Although the correlation of the FA with 

the Fugl-Meyer was not significant (p=0.08), the correlation was moderate to low. 
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Figure 3-7: SWIFT and FA in SCP and ATR Regression with Motor Impairment 

Scatter plots displaying correlations between the upper extremity motor impairment 

(FM), and the volume of affected white matter within the right superior cerebellar 

peduncle (SCP, top) and the ipsilesional anterior thalamic radiation (ATR, bottom) for 

the SWIFT (left scatter plots) and the FA (right scatter plots).  Summary results are 

displayed within the scatter plots (R2 and p-values).  The WM ROIs are shown in MNI 

space on the left two brain images, in red. The vertical and horizontal green lines 

indicate the coronal, sagittal, or axial views for that image pair. The left and right 

hemispheres are indicated in the bottom-right axial image. 

 

 

3.4 DISCUSSION 

 
 

3.4.1 WHITE MATTER INTEGRITY PREDICTS MOTOR IMPAIRMENT 
 
 

3.4.1.1 PROJECTION FIBERS 

 
 

All three biomarkers used in this study detected reduced WM structure in the 

ipsilesional projection fibers after stroke.  The degree revealed loss in WM connectivity 

in areas primarily outside the lesion distribution, in particular the anterior thalamic 

radiation (ATR).  The FA, on the other hand, more closely outlined the CST.  The unique 
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contribution of the SWIFT was that it identified damage to both these WM projection 

tracks (Figure 3.4).  

To our knowledge, this is the first study to implement degree at the voxel level as 

a measure of structural centrality.  A striking result was that over 40% of the volume of 

damaged degree was in the ATR (Table 3.2).  Damage to the ATR after stroke has been 

associated with deficits ranging from memory deficits (Ghika-Schmid & Bogousslavsky, 

2000) to the ability for basic movement (Tamari, Umeki, Goto, & Kawano, 2018) and 

semantic and phonological fluencies (Li et al., 2017).  The thalamus is a highly 

interconnected hub in the brain; it projects to the frontal lobe and is involved in 

behavioral functions ranging from cognition to sequential motor planning and basic 

movement. The ability of the voxel-wise degree to detect changes in integrity of a track 

with high centrality underscores its usefulness in stroke brain imaging. 

Additionally, our study found reduced integrity and connectivity in the CST. 

Damage to the CST after stroke and its relation to impairment and function has been 

reported using lesion load (Habegger et al., 2018; Lam et al., 2018), FA (Koyama & 

Domen, 2017; Mang et al., 2015; Puig et al., 2010; Schulz et al., 2012; Wen et al., 2016), 

and fiber count (Maraka et al., 2014). The correlations between the FA and the Fugl-

Meyer within the CST are consistent with these prior studies.  We also found that the 

SWIFT within the CST correlated with motor impairment (R2=0.82, Figure 3.6).  The 

ability of our metric to better predict motor impairment may be due to the weighting of 

WM integrity by its direct connections.  This is especially true for stroke participants 

with lesions surrounding the CST, but with normal appearing WM.  The SWIFT 

extended local, lesion-induced reductions in integrity along major WM tracks.  The 
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ability of the SWIFT within the CST to better predict the Fugl-Meyer may be due to the 

CST being a major, highly-connected WM track with projections to the main lesion 

distribution. 

 

3.4.1.2 COMMISSURAL FIBERS 

 
 

Our study found reduced WM integrity in the CC (Figure 3.4) and the vaWM 

within the CC (SWIFT and FA) correlated with the motor impairment (Figure 3.6).  

Although the regression with the FA might be driven largely by two data points, our 

results are consistent with other reports of a correlation between the FA within the CC 

and post-stroke impairment and function (Hayward et al., 2017; Mang et al., 2015).  The 

extent of damage to the CC is reportedly related to lesion location (Koh et al., 2018), 

especially when there is damage to the CST (Cunningham et al., 2015; J. Liu et al., 2015) 

and the internal capsule (J. Crofts et al., 2011).  It has also been associated with track 

degradation over time due to processes such as Wallerian degeneration (Gupta et al., 

2006).  The lesion distribution for our stroke participants and our finding of callosal 

damage supports these findings.  

Damage to the CC can induce changes in sensorimotor functional connectivity, 

contributing to poor recovery after stroke (X. Yu et al., 2018). The influence of the CC on 

post-stroke motor function and impairment may be due to interhemispheric inhibition 

(see van der Knaap & van der Ham, (2011), for a review).  For instance, Murase et al., 

(2004) found that interhemispheric inhibition of the ipsilateral primary motor cortex to 

the homologous region in the contralateral side was facilitatory in neurologically intact 

participants, but detrimental and persistent in stroke participants during movement of the 
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paretic hand.  In contrast, interhemispheric inhibition was similar in stroke participants to 

neurological controls when moving the non-paretic hand (Duque et al., 2005). 

 

3.4.1.3 CEREBELLAR EFFERENT FIBERS 

 
 

A unique property of the SWIFT was its ability to detect areas of reduced 

integrity within the cerebellum.  Although the FA detected reduced integrity in small 

clusters of cerebellar WM, the SWIFT identified a much larger region of affected tissue 

(SCP, Figure 3.4). Detecting a larger region of affected WM—although less specific—

can be more sensitive to detecting subtle changes to WM after stroke.  Additionally, the 

SWIFT within the SCP significantly correlated with motor impairment (Figure 3.7). 

The cerebellum is involved in many aspects of sensorimotor function (Bhanpuri et 

al., 2013; Boyd & Winstein, 2004; Charles et al., 2013; Seidler et al., 2004), and direct or 

indirect damage to the cerebellum can result in ataxia and deficits in muscle control and 

coordination.  Ataxic hemiparesis has been reported after lesions to the posterior limb of 

the internal capsule, pons, corona radiate, and the thalamus (Fisher, 1978; Marek et al., 

2015; Schonewille, Tuhrim, Singer, & Atlas, 1999). Additionally, changes to the 

cerebellum after a supratentorial lesion, (cross cerebellar diaschisis), (Feeney & Baron, 

1986), have been observed in perfusion (Förster et al., 2014; Sommer et al., 2016), 

metabolism (Kushner et al., 1984), gray matter volume (Dang et al., 2013), and 

electrophysiological studies (Gold & Lauritzen, 2002).  It is possible that the chronic loss 

of afferent activation to neurologically intact brain regions (Lewerenz & Maher, 2015) 

and mechanisms such as Wallerian degeneration lead to a long-term loss of connectivity 

and integrity in normal appearing WM.  A measure that weighs a voxel’s WM integrity 
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by its direct connections may be sensitive to these subtle changes in WM integrity distant 

from the lesion. 

Changes in cerebellar connections after supratentorial lesions can be detected 

using diffusion imaging. For instance, Schulz et al., (2015) related the loss of integrity of 

the efferent cerebellar WM tracts to general motor output and fine motor skills. 

Additionally, Kalinosky et al., (2017) related a combined measure of structural and 

functional connectivity in cerebellar-prefrontal cortex connections with fine motor 

control after stroke. Similarly, our study found that a combined measure of integrity and 

connectivity within the contralesional SCP correlated with motor impairment. Although 

the SWIFT within the SCP correlated with motor impairment, this should be interpreted 

carefully.  With the exception of a six-point coordination and speed examination, the 

Fugl-Meyer measure of stroke upper extremity motor impairment is not a measure of 

cerebellar function.  It is possible that the correlation of the SWIFT to the Fugl-Meyer 

motor impairment within the SCP may be driven by the voxels near the thalamus.  Future 

studies that correlate WM connectivity with measures of cerebellar dysfunction, such as 

ataxia out of proportion to weakness, could reveal the influence cerebellar WM integrity 

has on post-stroke motor impairment and function after stroke. 

 

3.4.2 LIMITATIONS AND FUTURE DIRECTIONS 
 
 

A limitation to this study is the small sample size in both groups. With the small 

sample size, lesions variability would complicate damaged WM track identification. We 

mitigated this by 1) normalizing lesion location, and 2) removing participants with 
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multiple lesions in both hemispheres. An ideal biomarker would not require a careful 

selection of participants based on the number of lesions they have. 

The Fugl-Meyer assessment was performed by three different examiners. This 

may have introduced variability; however, the effect is expected to be minimal due to the 

high inter-rater reliability of the Fugl-Meyer assessment (Sanford, Moreland, Swanson, 

Stratford, & Gowland, 1993). 

A considerable limitation to the study was connectivity matrix normalization.  We 

performed whole-brain tractography in the native diffusion space. Although the number 

of physical points was kept consistent in each subject, the resulting number of voxels 

depended on brain size.  A future implementation of this algorithm would convert the 

ANTs diffeomorphic warp into an FSL-warp.  The FSL software would then seed and 

display tractography results in a template space. By standardizing the number of seeds, 

the connectivity matrix could be normalized by sparsity level or degree; however, these 

solutions could modify the topology of the matrix by enforcing non-significant 

connections in stroke participant’s networks (van Wijk et al., 2010).  Thresholding at a 

probability level could be a better alternative; however, this requires careful 

normalization that maintains the original topology, and can be implemented at the whole-

brain scale.  Fulfilling the second point requires each voxel (row in the connectivity 

matrix) to have the total number of attempted streamlines from that voxel; however, that 

information is not readily available.  Even with a probability-weighted connectivity 

matrix, one cannot interpret a higher probability of connectivity between two voxels as a 

“stronger” connection, due to the possibility that less streamlines were propagated in one 

direction, therefore artificially preferring another direction (Carrera & Tononi, 2014). 
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Due to not being able to normalize our connectivity matrix adequately, a 

binarized matrix was used.  This produced a connectivity matrix of possible connections, 

rather than of probable connections.  As a result, the SWIFT at a given voxel may be 

influenced by false positive connections. The SWIFT detected reduced integrity in the 

contralesional projection fibers (Figure 3.4).  Although changes in integrity and gray 

matter structure have been reported in the contralesional hemisphere after stroke 

(Dacosta-Aguayo et al., 2014; Grefkes & Ward, 2014; Yassi et al., 2015), it is possible 

that the reduced SWIFT in the contralesional projection fibers is due to false connections. 

With adequate normalization and probability thresholding, the SWIFT could be the 

average FA of probable connections. Normalizing and thresholding a connectivity matrix 

while maintaining the topology of the network remains an unsolved problem. Future 

studies dedicated to developing a normalization and thresholding technique could provide 

a way to improve the SWIFT calculation by controlling seed placement, normalizing and 

thresholding the connectivity matrix, and weighing the SWIFT by probability of 

connectivity. 

 

3.5 CONCLUSION 

 
 

The major contribution of this study is the development of a combined measure of 

WM integrity and connectivity, and its ability to identify damaged WM tracks and better 

relate these changes to post-stroke motor impairment. When compared to FA and degree, 

the SWIFT identified damaged projection, commissural, and cerebellar fibers. 

Additionally, the SWIFT vaWM related with motor impairment within these identified 

fiber tracks to a greater extent than the FA and degree. The methodological implication of 
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our study is the development of a biomarker more sensitive to WM damage and post-

stroke impairment than typical measures of WM integrity. Our study also adds to the 

clinical understanding of post-stroke WM damage and motor impairment; we corroborate 

evidence of global and remote changes in WM structure after focal lesions which are 

related to motor impairment, particularly in fiber tracks connecting hubs such as the 

fronto-parietal lobe, thalamus, and the cerebellum.  

 

4 CHAPTER 4: INDIRECT CONNECTIVITY IDENTIFIES DIFFERENCES IN CEREBELLAR 

CONNECTIVITY BETWEEN SUBACUTE AND CHRONIC STROKE 

 
 

4.1 INTRODUCTION 

 
 

In this study, we investigated the differences in white matter structure in people 

with subacute and chronic stroke and compared them to neurologically intact individuals 

using direct and indirect connectivity metrics based on diffusion magnetic resonance 

imaging (dMRI). Measures of indirect connectivity are sensitive to global damage to 

white matter (WM) structure (Kalinosky et al., 2013), may better relate to functional 

connectivity (Honey et al., 2009), and could be useful diagnostic biomarkers for post-

stroke outcome, rehabilitation, and recovery. In this study we postulated that measures of 

WM structure and indirect connectivity would detect larger reductions in brain 

connectivity in motor pathways in people with chronic stroke than in subacute stroke 

when compared to control participants, reflecting a progressive degeneration in white 

matter integrity. 

Stroke recovery has been associated with network changes in functional 

connectivity and white matter integrity in the corticospinal tract; however, it is not well 



82 

 

  

understood how structural connectivity changes during the first six months after stroke. 

For instance, interhemispheric functional connectivity measured by fMRI during the first 

week after stroke has been related to motor outcome, impairment severity, and motor 

recovery (Chi et al., 2018; De Bruyn et al., 2018; Park et al., 2011; Puig et al., 2018). 

Additionally, the activation of the contralesional cerebellum at three months post stroke 

is related to stroke recovery (Small, Hlustik, Noll, Genovese, & Solodkin, 2002).  The 

primary finding in stroke longitudinal studies using dMRI is a degeneration in FA during 

the first 2-12 weeks, and a stabilization after that (Groisser, Copen, Singhal, Hirai, & 

Schaechter, 2014; Liang et al., 2008; Thomalla, 2005; Thomalla et al., 2004; C. Yu et al., 

2009). Although the time-course of MR-related signal intensities has been defined during 

the normal time-course after stroke (Allen, Hasso, Handwerker, & Farid, 2012), the effect 

of local degenerative changes on structural connectivity—a measure that could help 

describe changes in network connectivity after stroke—is not yet well understood.  

Direct and indirect structural connectivity—in which regions are connected via an 

intermediate region—relates to motor impairment after stroke (Crofts et al., 2011; 

Kalinosky et al., 2017) and may provide the key to explaining changes in functional 

connectivity and motor outcome post stroke because two regions may be functionally 

connected even if they are not directly connected by structural paths (Honey et al., 2009). 

In order to ascertain the local and global changes in connectivity after stroke, indirect 

structural connectivity and probabilistic tractography are necessary. This is particularly 

important when estimating the connectivity of long-distant connections, such as those to 

the cerebellum. However, structural connectivity has only been simulated in the 

acute/subacute stage of stroke based on connectome deletion based on lesion location 
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(Kuceyeski et al., 2014). Although diffusive and microstructural changes in the lesion 

volume occur during reperfusion and normal recovery (Allen et al., 2012), and lesion 

volume growth has been reported in the early hours and days after stroke (Rocha et al., 

2019; Schwamm et al., 1998) lesion volumes defined at the late-acute / subacute stage 

and subsequently in the chronic stage do not change dramatically because infarcts do not 

enhance after 1-6 weeks (Allen et al., 2012). This motivates studies that estimate fiber 

tractography in the subacute and chronic stage, rather than simulating the connectome 

based on lesion location.  

Our main goal is to identify differences in direct and indirect structural 

connectivity between people with subacute and chronic stroke. Understanding changes in 

structural connectivity after stroke is important to the development of prognostic 

indicators of functional recovery after stroke. Thus, the purpose of this study is to 

compare the structural connectivity of subacute and chronic stroke participants, with the 

aim of developing the analyses needed for a longitudinal study. We hypothesize that 

indirect structural connectivity will be more sensitive to differences between subacute 

and chronic stroke than measures of white matter integrity due to white matter 

degeneration. We also hypothesize that cerebellar white matter connections will exhibit a 

reduction in connectivity and play an important role in recovery, reflecting 

neurodegenerative changes in connectivity remote from the lesion, and its importance in 

motor recovery. 

 

4.2 METHODS 

 
 

4.2.1 DATA COLLECTION 
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4.2.1.1 SUBJECT RECRUITMENT  

 
 

The study enrolled ten subacute stroke participants, and screened potential data 

from 29 chronic (>6 months) stroke and 32 neurologically intact participants obtained 

from other studies in our laboratory. Each participant provided written consent to the 

experimental protocol, which was approved by the Institutional Review Boards at 

Marquette University and the Medical College of Wisconsin. Inclusion criteria for the 

subacute stroke participants included a minimum age of 18 and the ability to 

independently answer questions, follow directions, and provide informed consent. 

Contraindications included a history of multiple strokes, history of claustrophobia, other 

known brain pathology, and MRI incompatibility.  Participants in the neurologically 

intact group were age- and sex-matched to the stroke group.   

This study aimed to collect longitudinal imaging and behavioral data from people 

with stroke at the subacute (2 weeks) and chronic (>6 months) stage. Out of the ten 

recruited participants, four completed the study and one subacute scan was excluded due 

to poor imaging quality in the cerebellum. The subacute stroke group consisted of nine 

stroke survivors (6 female, average age 62) measured on average 14 days after stroke 

admission date (standard deviation 3.5 days). In addition to the four paired (participants 

also in the subacute group) chronic stroke participants, we assessed the lesion location of 

29 chronic stroke participants and selected a cohort with lesion distributions most similar 

to the subacute group. This was done by iteratively calculating a Dice coefficient (Zou et 

al., 2004) between each subacute stroke lesion and the 29 chronic stroke lesions. A Dice 

coefficient of 25% was heuristically chosen as a threshold, and the chronic stroke 
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participants meeting this criterion were included. Ten out of the 29 chronic stroke 

datasets were included in our chronic stroke group, resulting in a total of 14 participants 

in the chronic stroke group (10 female, average age 62). Out of the 32 neurologically 

intact participants, 13 were excluded due to improper imaging of the cerebellum in the 

diffusion scan, resulting in 19 participants (10 female, average age 61). 

A measure of upper extremity motor impairment was obtained for stroke 

participants using the Fugl-Meyer (FM, maximum of 66 points) upper extremity motor 

test, (Fugl-Meyer et al., 1975). Lower values indicate greater motor impairment. Table 

4.1Error! Reference source not found. contains information on the stroke study 

participants. 

 
Table 4-.1: Paired stroke samples. subacute and chronic stroke demographics 

Subacute subjects are listed along with their gender, time post stroke and between scans, 

the Fugl-Meyer upper extremity (out of 66) and the age at the first scan. For those who 

completed the study, the respective information is also provided 

Subject Gender 

Time 

Post 

Stroke 

(days) 

Time between 

scans (days) 

FM-UE at 

scan 1 

FM-UE at 

scan 2 Age  

101 F 18 NA (Deceased) 29 NA 63 

102 F 17 242 6 45 59 

103 F 16 NA 47 NA 72 

104 M 8 282 56 64 67 

105 F 13 198 12 29 73 

106 F 18 201 20 25 56 

107 M 11 NA 55 NA 68 

108 F 13 NA 45 NA 48 

109 M 12 NA 5 NA 52 

 
 

Table 4-.2: Chronic stroke participant demographics 
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Subjects 102, 104, 105, 106 are chronic stroke participants from Table 4.1. The age, 

gender, and Fugl-Meyer are listed for all chronic stroke participants in this study 

Subject Gender Age FM-UE 

102 F 60 45 

104 M 67 64 

105 F 73 29 

106 F 57 25 

C01 M 65 64 

C02 M 57 59 

C03 F 83 36 

C06 F 65 47 

C15 M 58 26 

C16 F 42 19 

C18 F 67 9 

C19 F 60 23 

C21 F 69 NA 

C23 F 45 NA 

 

 

 

Figure 4-.1: Stroke Lesion Distribution: Subacute and Chronic 
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Lesion distribution for the subacute and chronic stroke subjects used in this study. The 

chronic stroke subjects were selected to best match the subacute stroke (lesion-matched). 

Yellow/white indicates high lesion prevalence. Red/orange indicates low lesion 

prevalence. Lesion distribution was concentrated in internal capsule 

 
 

4.2.1.2 MRI SCANS 

 
 

All MRI scans were performed using a short bore 3T GE Discovery MR750 

scanner.  Axial T1-weighted images were acquired using the fast spoiled gradient recall 

(FSPGR) 3D pulse sequence, with the following parameters: TE=3.2ms, TR=8.16ms, flip 

angle=12 degrees, FOV=240mm, at 156x1mm slices with an in-plane axial matrix of 

256x240.  Axial diffusion scans were acquired using a q ball high angular resolution 

diffusion imaging (HARDI) sequence using a single-shot echo planar imaging (ssEPI) 

protocol, with the following parameters: TE=72.3ms, TR=5700 ms, FOV=256mm at 

59x2.5mm slices with an in-plane axial matrix of 128x128.  There were 150 gradient 

directions (b-value=1500 s/mm2) and five b=0 images.  

 

4.2.2 MRI DATA PROCESSING 
 
 

4.2.2.1 IMAGE PRE-PROCESSING 

 
 

A series of standard pre-processing steps were applied to the acquired images. 

Raw Digital Imaging and Communications in Medicine (DICOM) images were converted 

to NIFTI image format (Neuroimaging Informatics Technology Initiative) using mricron 

(Rorden et al., 2007).  MR bias field correction and skull stripping were performed on the 

raw T1-weighted images using N4BiasFieldCorrection (Tustison et al., 2010), and 

ROBEX (Iglesias, Liu, Thompson, & Tu, 2011), respectively. Preprocessing for diffusion 
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images was done using the FMRIB Software Library (FSL) (Jenkinson et al., 2012), 

including eddy-currents correction, skull stripping, and fractional anisotropy (FA) 

estimation. 

 

4.2.2.2 LESION IDENTIFICATION 

 
 

Lesions were automatically identified using the Lesion Identification with 

Neighborhood Data Analysis (LINDA) algorithm, (Pustina et al., 2016). For stroke 

participants, all raw T1 and diffusion weighted images with right-hemisphere lesions 

were flipped to the left hemisphere, and the diffusion gradient vector file was flipped in 

the X-direction.  Lesion masks alleviated registration in stroke participants. 

 

4.2.2.3 IMAGE REGISTRATION TO TEMPLATE SPACE 

 
 

All study participants’ diffusion images were registered to a template space in 

order to statistically compare WM integrity and connectivity metrics in the same space; 

however, for visualization purposes we display our final results in MNI standard space.  

The template space creation was previously described (chapter 3). All registration was 

done with the antsRegistrationSyN.sh tool using the ANTs (Advanced Normalization 

Tools) SyN algorithm (Avants et al., 2008). Each participant’s diffusion image was 

rigidly registered to its T1-weighted image using a rigid transform (ANTs). Rigid, affine, 

and deformable non-linear registration warped each participant’s T1-weighted image 

onto template space using gaussian regularization, histogram matching, and lesion 

masking  The diffusion-to-structural, and the structural-to-template transforms were 

concatenated, and the result was a set of invertible linear and non-linear transforms that 
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mapped diffusion space to template space. The final diffusion-to-template warps were 

converted from the ANTs format to FSL format using c3d from ITK-SNAP (Yushkevich 

et al., 2006). 

 

4.2.2.4 STRUCTURAL CONNECTIVITY 

 
 
4.2.2.4.1 DIFFUSION TRACTOGRAPHY AND CONNECTIVITY 
 
 

We used WM seeding, GM waypoints, and CSF exclusionary masks to perform 

tractography. Prior to tractography, WM, GM and CSF masks were created to constrain 

the tracts. Our WM seed mask was previously defined (chapter 3) as the maximum 

overlap of all control participants’ WM volumes. Similarly, a CSF mask prevented 

streamlines from entering non-brain areas, and a gray matter (GM) mask was created in 

order to only include streamlines that connect gray matter regions and ignore streamlines 

that prematurely end within the WM, similar to the anatomically constrained tractography 

(ACT) algorithm described in Smith et al., (2012). Unlike the aforementioned study, all 

masks were kept in template space. 

Sparse connectivity matrices for data subsets were obtained using probabilistic 

tractography. Diffusion direction and orientation estimations were obtained from the 

eddy-corrected images using the FSL bedpostx function (Behrens, Woolrich, et al., 2003).  

Three fibers were estimated per voxel, each with a range of diffusivities. Probabilistic 

tractography was performed using the probtrackx2 function (Behrens et al., 2007), 

seeding in template space with distance correction.  We estimated 2,500 streamlines per 

voxel, split into 50 cores using the –rseed option in probtrackx2.  The output was 50 
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sparse connectivity matrices that represent the probability of connectivity between every 

WM voxel seed.  

An in-house MATLAB package merged the 50 sparse connectivity matrices for 

each participant, and the final matrix was forced symmetric by averaging the merged 

matrix with its transpose.  Probabilistic tractography produces erroneous tracts, and these 

are typically removed by thresholding based on probability weight, or by carefully 

selecting waypoints. Since we are performing whole-brain tractography, the latter was 

not an option.  Prior to thresholding, each merged and symmetric connectivity matrix was 

normalized by multiplying by the number of seed voxels and dividing by the total number 

of successfully completed streamlines (waytotal). The approach was adapted from 

chapter 3. The waytotal divided by the number of seed points gives an approximation of 

the average number of successfully completed streamlines, and we normalized the 

merged and symmetric matrix by dividing by this number. In this study, the number of 

seed voxels was the same. We heuristically removed all streamlines that had a cumulative 

probability below 0.25. This was determined by selecting thresholds and extracting 

corticospinal, corpus callosum, and superior cerebellar peduncle tractography-based fiber 

tracks from the symmetric and normalized connectivity matrix of five randomly selected 

control participants, and selecting the threshold that qualitatively best minimized aberrant 

pathways. This resulted in a symmetric, normalized, and thresholded matrix. 

 
4.2.2.4.2 TEMPLATE MATRIX CREATION AND LESION EFFECT SIMULATION 

 

  
A template matrix was calculated in order to simulate the effects of lesions on the 

connectivity matrix, and to calculate a new measure called the connectome similarity 
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metric (COSMIC). Every control participant’s symmetric, normalized, and thresholded 

matrix was binarized at connections greater than zero. The 19 control participant 

binarized connectivity matrices were then summed; the entries in the sum matrix were 

between 0 (no connectivity found in any control participant) to 19 (all 19 participants 

showed connectivity in that pair of voxel nodes). We thresholded the matrix to include 

the 75% overlap (connectivity in that pair of voxel nodes found in 14 of the 19 control 

participants). The weighted template connectivity matrix was the average of the 19 

control weighted matrices in that 75% overlap span. Since the input binary matrices that 

created the template matrix were already thresholded to reduce aberrant tracks, 

thresholding the template matrix was not necessary. However, we still dissected for, the 

connectivity matrix the CST, CC, and the SCP in order to ensure the connectivity matrix 

had the right topology.  

The connectivity matrices calculated from probabilistic tractography were 

compared to simulated connectivity matrices calculated from artificial lesions placed in 

the weighted template connectivity matrix (lesion effect simulation, LES). We aimed to 

compare the simulated connectivity losses to the subacute and chronic stroke data to 

determine whether simple anatomical information about a lesion can account for most of 

the loss in connectivity. Alternatively, degeneration outside of the lesion location could 

further influence connectivity measurements, especially in chronic stroke. The simulated 

connectivity matrix for LES was calculated by identifying the nodes of the template 

connectivity matrix residing in the lesion volume, and zeroing all edges connected to 

those nodes. 
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The analysis on the connectome from the connectivity matrices derived from 

tractography and from LES focused on the network defined by the template connectivity 

matrix. In other words, we ensured the comparison between the connectivity matrices for 

the subacute and chronic stroke groups and the LES matrices measured the same 

topology by only analyzing the set of connections determined by the template matrix.  

The template connectivity matrix masked out every participant’s tractography-derived 

connectivity matrix by zeroing out every edge that was not included in the template 

connectivity matrix. This was done in order to ensure that networks can be compared 

across groups (comparing stroke and controls, and subacute and chronic stroke) and 

across methods (comparing the connectivity results between the fiber tractography 

connectivity matrix and the LES connectivity matrix). In this way, the focused on 

network connectivity reductions when compared to controls. 

 

4.2.2.5 POST-PROCESSING – WM STRUCTURE MEASURES 

 
 

White matter integrity and connectivity were assessed at the voxel level. The 

fractional anisotropy (FA) was calculated from HARDI data at each WM voxel, 8, 
(section Error! Reference source not found.) as a surrogate measure of local WM 

integrity. Similarly, the volume fractions for the first and second sticks from the ball-

sticks model were used as a surrogate measure of WM integrity. This aimed to assess 

changes in WM integrity at the voxel level in the primary and secondary fiber directions.  

Using the connectivity matrices obtained from LES (subacute and chronic stroke) 

and tractography (controls, subacute and chronic stroke), we calculated the structurally 

weighted fractional anisotropy (SWIFT) as an indicator of white matter integrity, the 
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weighted degree as a measure of direct connectivity and network centrality, and the voxel 

wise indirect connectivity (VISC) for indirect connectivity. We also compared each 

connectivity matrix to the template matrix using a novel measure, the connectome 

similarity metric (COSMIC), which is based on a correlation of the connectivity matrices 

and assesses network overlap. A description of each metric follows.   

As previously described, (chapter 3), the structurally-weighted fractional 

anisotropy (SWIFT) was defined as the average FA of connected voxels, (Equation 4.1), 

where 1� is the number of directly connected voxels, and G is the binary connectivity 

matrix. The SWIFT aimed at measuring global, tract-specific WM integrity.  

�BC�I� = 	6J ∑ (G�!!)* ∙ ��!)    Equation 4.1 

The ‘weighted’ degree, 1�, (Rubinov & Sporns, 2010) was calculated using in-

house MATLAB algorithms as the sum of all values of columns, :, in our weighted 

connectivity matrix, G, (Equation 4.2). This is our measure of direct connectivity. 

1� = ∑ G�!!)*      Equation 4.2 

The voxel-wise indirect connectivity (VISC, Equation 4.3) (Kalinosky et al., 

2013) was implemented as a measure of indirect connectivity. This sums the total number 

of direct connections of indirect connections, L�, divided by the number of indirect 

connections, and has been shown to be sensitive to global damage to WM connectivity. 

MC�+� = ∑ 5NJO ∑ POQQ∈R 7O∈R ∑ NJOO∈R =  SJTUSJU     Equation 4.3 

Lastly, the connectome similarity metric (COSMIC, Equation 4.4) was calculated 

as the correlation between every participant’s weighted matrix, GVPWX�Y�VPZX, and the 

template weighted matrix, GX[\V]PX[, calculated at every node (voxel). The aim of this 
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measure is to summarize the overlap in the connectome between every participant and a 

template matrix. Every node has a summary value between 0 and 1 based on its 

correlation to the template matrix. Since it is a correlation, it is not affected by 

differences in magnitude in the connectivity weight. Additionally, it is a more specific 

measure of direct connectivity; rather than count the number of direct connections, as it 

determines whether the network’s connectome at a node is similar to that of the template 

node.  

^=A_8^� = ^=@@(G�VPWX�Y�VPZX, G�X[\V]PX[)    Equation 4.4 

 
 

4.2.3 STATISTICAL ANALYSIS 
 
 

The mean measures outlined in section 4.2.2.5, excluding stroke lesion volumes, 

were calculated in the whole-brain WM, corticospinal tract (CST), contralesional superior 

cerebellar peduncle connecting the ipsilesional thalamus with the contralesional 

cerebellum (SCPr), and the corpus callosum (CC). These were selected due to their 

involvement in motor function, and because they were identified as being damaged by 

stroke and correlated with motor impairment in a prior study (chapter 3). The CST and 

CC masks were obtained from the Laboratory of Brain Anatomical MRI at John Hopkins 

University (Hua et al., 2008; Wakana et al., 2007), and the SCPr was obtained from the 

Neurosurgical Centre Nijmegen in The Netherlands (van Baarsen et al., 2016). 

All statistical analyses were done in R (3.6.1). Our aim was to find differences in 

WM integrity and connectivity in subacute stroke, chronic stroke, and neurologically 

intact participants. We first performed four 1-factor MANOVAs (whole-brain, CST, 

SCPr, CC) to assess whether there were differences in variances between the three groups 
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in any of the six dependent variables: FA, Degree, Cosmic, VISC, F2, SWIFT. The four 

ROIs were not treated as factors because our hypothesis assessed whether there were 

differences in the means in any of the dependent variables in any of these non-

overlapping regions. At a significance of 0.0125 (p<0.05, Bonferroni-corrected by four 

regions), all MANOVAs passed. We later ran 24 1-factor ANOVAs (four regions, six 

dependent variables) to assess whether there was a significant difference in variance 

between the groups. The only measures that did not reach significance (p<0.05) is the F2 

and FA in the right SCP. For the comparison analysis in the next paragraph, the mean 

FA, Degree, Cosmic, VISC, and F2 in the whole-brain-WM, CST, SCPr, and CC were 

compared between the control, chronic, and subacute groups—with the exception of the 

F2 and FA in the rSCP since it did not reach significance in the ANOVA test. 

The group comparison tested the hypothesis that the mean value of the dependent 

variable was significantly different between two groups in the four regions of interest. 

The control group was separately compared with the subacute and the chronic stroke 

groups using an unpaired t-test. Given that there were four overlapping (paired) 

participants in the subacute and chronic stroke groups, our post-hoc analysis implemented 

the partially-overlapping t-test approach in Derrick et al., (2017). The approach is an 

interpolation between the paired and the unpaired t-test. Significant differences in means 

were defined at p < 0.0125 (p-uncorrected = 0.05, Bonferroni-corrected by four regions 

of interests). 

In order to aid in the interpretation of the partially-overlapping t-test results, non-

parametric permutation tests (FSL’s randomize, threshold-free cluster enhancement) were 

performed in order to compare the chronic stroke and subacute stroke group with the 
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control group. Lesion volumes were removed from the analysis.  The resulting images 

were then thresholded (p-corrected<0.05 by FDR) to show volumes where the stroke 

group had significantly reduced values in our connectivity and integrity measures. 

Additionally, the paired stroke participants (those subacute participants with a subsequent 

chronic stroke scan) were qualitatively compared to denote changes over time in lesion 

size and shape.  

Lastly, the change in the upper extremity Fugl-Meyer score between subacute and 

chronic stroke scans (6 months) was correlated with the WM integrity and connectivity 

measurement values at the subacute stage. 

 

4.3 RESULTS 

 
 

Nine subacute stroke, fourteen chronic stroke, and nineteen control participants 

were analyzed in this study. The lesion distributions for the subacute and chronic groups 

were concentrated in the internal capsule (Figure 4.1). The Dice coefficient between the 

subacute and the chronic stroke lesion distributions was 70%. The Dice coefficient 

between the paired (same participants measured six months apart) subacute and chronic 

stroke lesion was also 70%. 

 

4.3.1 FIBER TRACTOGRAPHY COMPARED TO LESION EFFECT SIMULATION IN STROKE 
 
 

Lesion effect simulation (LES) indicated reduced connectivity in stroke only in 

the corticospinal tract when compared to the control group. There were no differences 

between subacute and chronic stroke groups. In contrast, fiber tractography suggested 

differences between both stroke groups and the control group in the CST, CC, and SCP. 
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Additionally, tractography was able to identify differences between the subacute and 

chronic stroke groups in the three tracts of primary interest (Figures 4.2, 4.3, 4.4). 

 
 
 

Figure 4-.2: COSMIC Fiber Tractography vs Lesion Effect Simulation 

Mean COSMIC in the whole-brain, CST, SCP, and Corpus Callosum for Control 

(dark-gray) Subacute (gray) and Chronic (light-gray) groups calculated using fiber 

tractography (left) and lesion effect simulation (LES) (right). Significance between 

subacute and chronic are shown (*). Non-significance between control and stroke are 

shown (N.S) (assume significance between control and stroke if otherwise not stated). 

Significance is not tested in the LES plots (right) 
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Figure 4-.3: VISC Fiber Tractography vs Lesion Effect Simulation 

Mean VISC in the whole-brain, CST, SCP, and Corpus Callosum for Control 

(dark-gray) Subacute (gray) and Chronic (light-gray) groups calculated using fiber 

tractography (left) and lesion effect simulation (LES) (right). Significance between 

subacute and chronic are shown (*). Non-significance between control and stroke are 

shown (N.S) (assume significance between control and stroke if otherwise not stated). 

Significance is not tested in the LES plots (right) 
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Figure 4-.4: Degree Fiber Tractography vs Lesion Effect Simulation 

Mean Degree in the whole-brain, CST, rSCP, and CCfor Control (dark-gray) 

Subacute (gray) and Chronic (light-gray) groups calculated using fiber tractography 

(left) and lesion effect simulation (LES) (right). Significance between subacute and 

chronic are shown (*). Non-significance between control and stroke are shown (N.S) 

(assume significance between control and stroke if otherwise not stated). Significance is 

not tested in the LES plots (right) 

 

 

4.3.2 DIFFERENCES IN WM INTEGRITY IN STROKE 
 
 

The FA and the bedpostx F1 group results were similar to each other in the 

selected WM tracts because F1 measures the strength of the primary fiber direction and 

the FA within the selected white matter tracts (with the exception to the SCP at the 

decussation) are large WM tracks with one primary direction. We used the FA for 

subsequent analysis, and did not use F1. There was a significant decrease in all WM 

integrity measures (FA, SWIFT, and F2) in the subacute and chronic stroke groups’ 

whole-brain WM volume and the CST when compared to the control group (FA and F2 
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illustrated in Figures 4.7 and 4.8). The partially-overlapping t-test identified significant 

differences in WM integrity between the subacute and chronic stroke groups in the 

whole-brain WM volume (Figures 4.7, 4.8, and 4.9). Interestingly, only the strength of 

the second fiber direction (F2) showed discernable differences between subacute and 

chronic stroke in the CST (Figure 4.8). 

Out of the three WM ROIs, the control group had significantly higher average 

WM integrity values than the chronic group in the CST and the CC; additionally, only the 

SWIFT  indicated significantly reduced WM integrity in the rSCP between the chronic 

stroke and control groups, similar to what we found in chapter 3 (Figures 4.7, 4.8, and 

4.9).  Interestingly, there were no significant differences in WM integrity values between 

the subacute stroke and the control groups in the CC. Similarly, the differences between 

the subacute and chronic stroke groups in the CC did not reach significance. 

Nonparametric permutation testing revealed significantly reduced FA in inferior 

portions of the CST and the anterior CC in the subacute stroke group when compared to 

the control group (Figure 4.5). Differences between the subacute and control groups in 

the F2 parameter were minimal in our three WM ROIs (Figure 4.5). The chronic stroke 

group had a greater extent of reduced WM integrity in the CC and the CST when 

measured by FA and F2 (Figure 4.5). 
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Figure 4-.5: Nonparametric testing in FA and F2 between stroke and control 

Control vs Subacute (top) and Control vs Chronic (bottom) nonparametric permutation 

results in FA (A) and F2 (B). Superior cerebellar peduncle (green), corticospinal tract 

(blue) and corpus callosum (yellow) are shown. Statistically significant differences 

shown in red. 
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Figure 4-.6: Nonparametric testing in SWIFT between stroke and control 

Control vs Subacute (top) and Control vs Chronic (bottom) nonparametric permutation 

results in SWIFT. Superior cerebellar peduncle (green), corticospinal tract (blue) and 

corpus callosum (yellow) are shown. Statistically significant differences shown in red. 
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Figure 4-,7: Comparison between partially-overlapping and Paired Samples for FA 

Comparison between partially-overlapping (left) and paired samples (right) for FA. 

Control (dark-gray), Subacute (gray), and chronic (light-gray) group means in whole-

brain, CST, and CC are shown for the FA. Significance between subacute and chronic 

are shown (*). Non-significance between control and stroke are shown (N.S) (assume 

significance between control and stroke if otherwise not stated) 
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Figure 4-.8: Comparison between partially-overlapping and Paired Samples for F2 

Comparison between partially-overlapping (left) and paired samples (right) for F2. 

Control (dark-gray), Subacute (gray), and chronic (light-gray) group means in whole-

brain, CST, and CC are shown for the F2. Significance between subacute and chronic 

are shown (*). Non-significance between control and stroke are shown (N.S) (assume 

significance between control and stroke if otherwise not stated) 
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Figure 4-.9: Comparison between partially-overlapping and Paired Samples for SWIFT 

Comparison between partially-overlapping (left) and paired samples (right) for SWIFT. 

Control (dark-gray), Subacute (gray), and chronic (light-gray) group means in whole-

brain, CST, SCPr, and CC are shown for the SWIFT. Significance between subacute and 

chronic are shown (*). Non-significance between control and stroke are shown (N.S) 

(assume significance between control and stroke if otherwise not stated) 

 

 

4.3.3 DIFFERENCES IN WM CONNECTIVITY IN STROKE 
 
 

The lesion effect simulation (LES) approach only found discernable group 

differences between the control group and the two stroke groups in the CST when using 

COSMIC and VISC; there were no significant differences between the chronic and 

subacute stroke groups when the effects of a lesion were simulated (Figures 4.2, 4.3, and 

4.4). 

Using fiber tractography, there were significant differences between the control 

group and the chronic and subacute stroke groups in the whole-brain WM volume for 
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COSMIC and VISC (Figures 4.11 and 4.12). The chronic stroke group had significantly 

reduced COSMIC and VISC in the CST, rSCP, and CC when compared to the control 

group. In contrast, the CST had significantly reduced COSMIC and VISC in the subacute 

stroke group when compared to the control group; the VISC also identified reduced 

connectivity in the CC (Figures 4.11 and 4.12).  

Although the chronic stroke group had significantly reduced connectivity in the 

rSCP and the subacute stroke group did not when compared to the control group, only the 

VISC found reduced WM connectivity in the rSCP in chronic stroke compared to 

subacute stroke (Figure 4.12). Interestingly, the partially overlapping t-test found reduced 

COSMIC in the chronic stroke compared to subacute stroke in the CST, and VISC in the 

CC (Figure 4.11). 

Nonparametric permutation testing revealed significantly reduced COSMIC in the 

CST only, and reduced VISC in the bilateral CST and CC in the subacute stroke group 

when compared to the control group (Figure 4.10). The chronic stroke group had a 

greater extent of reduced WM connectivity in the CC and the CST when measured by 

COSMIC and VISC. The volumes of reduced COSMIC and VISC in the chronic stroke 

group were similar to each other (Figure 4.10). 

 



107 

 

  

 
Figure 4-.10: Nonparametric testing in COSMIC and VISC between stroke and control 

Control vs Subacute (top) and Control vs Chronic (bottom) nonparametric permutation 

results in COSMIC (A) and VISC (B). Superior cerebellar peduncle (green), 

corticospinal tract (blue) and corpus callosum (yellow) are shown. Statistically 

significant differences shown in red. 
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Figure 4-.11: Comparison between partially-overlapping and Paired Samples for 

COSMIC 

Comparison between partially-overlapping (left) and paired samples (right) for 

COSMIC. Control (dark-gray), subacute (gray), and chronic (light-gray) group means in 

whole-brain, CST, SCP, and Corpus Callosum are shown for the COSMIC. Significance 

between subacute and chronic are shown (*). Non-significance between control and 

stroke are shown (N.S) (assume significance between control and stroke if otherwise not 

stated) 
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Figure 4-.12: Comparison between partially-overlapping and Paired Samples for VISC 

Comparison between partially-overlapping (left) and paired samples (right) for VISC. 

Control (dark-gray), subacute (gray), and chronic (light-gray) group means in whole-

brain, CST, SCP, and Corpus Callosum are shown for the VISC. Significance between 

subacute and chronic are shown (*). Non-significance between control and stroke are 

shown (N.S) (assume significance between control and stroke if otherwise not stated) 

 

 

4.3.4 PRELIMINARY OBSERVATIONS IN SUBACUTE AND CHRONIC STROKE 
 
 

In the limited sample size (n=4), an increase in the FA between the subacute and 

the chronic scans in the rSCP trended with an increase in upper extremity Fugl-Meyer. 

Additionally, an increase in the upper extremity Fugl-Meyer was related to the baseline 

subacute COSMIC in the CC and the whole-brain WM, and the VISC in the rSCP. 

 

4.4 DISCUSSION 
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We found reduced indirect structural connectivity and white matter integrity in 

subacute and chronic stroke when compared to age-matched neurologically intact 

controls, indicating a loss of white matter structure in the whole-brain white matter, CST, 

SCP, and CC following an ischemic event. We found reduced connectivity and WM 

integrity in the whole-brain WM in chronic stroke when compared to age-matched and 

lesion-matched subacute stroke. Additionally, the overlap in connectome spatial map 

(COSMIC) in the CST, and indirect connectivity (VISC) in the SCP and CC were 

reduced in chronic stroke when compared to subacute stroke. The results suggest a 

chronic degeneration in white matter structure during the first six months after stroke. 

Additionally, the preliminary results on paired subjects suggest cerebellar connectivity 

may relate to improvement in motor impairment score. 

 

4.4.1 FIBER TRACTOGRAPHY IS MORE SENSITIVE TO DIFFERENCES IN CONNECTIVITY 

COMPARED TO SIMULATED ANALYSES 
 
 

As hypothesized, connectivity analysis based on fiber tractography was better 

able to discern differences in connectivity between stroke and control, and differences 

between subacute and chronic stroke, when compared to connectivity analysis based on 

lesion effect simulation (LES). Although LES detected differences in stroke and control 

in the CST—one of the major pathways of the brain—this is mostly due to direct damage 

to the CST (Figures 4.2, 4.3, and 4.4). Direct damage to the CST has been shown to relate 

to motor recovery and improvement (Habegger et al., 2018; Koyama & Domen, 2017; 

Lam et al., 2018; Schulz et al., 2012); however, it does not explain the complete variance 

in motor abilities after stroke.  
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Probabilistic fiber tractography propagates local and systemic changes fiber 

integrity and orientation uncertainty, extending reductions in connectivity along remote 

fiber tracts. In particular, we report reduced structural connectivity in the cerebellum and 

corpus callosum—in addition to the corticospinal tract—after chronic stroke compared to 

control and subacute stroke participants (Figures 4.10, 4.11, and 4.12). The differences 

between chronic and control participants is consistent with voxel and region-level 

diffusion MRI analyses (Crofts et al., 2011; Griffis et al., 2019; Kalinosky et al., 2017, 

2013). These changes in connectivity are partly attributable to local degenerative changes 

in white matter integrity following focal injury, as reported in rat models (Jirjis, Valdez, 

Vedantam, Schmit, & Kurpad, 2017; Motovylyak et al., 2019). 

These results suggest using lesion-based LES in a longitudinal stroke analysis 

after the lesion size and shape has stabilized would not be sensitive to tracing changes in 

connectivity over time (Figures 4.2, 4.3, and 4.4). By estimating structural connectivity 

based on fiber tractography rather than fiber simulation, we are able to detect 

commissural and cerebellar fibers with reduced connectivity after stroke, in addition to 

the CST. Although fiber tractography in pathologic brains may have shortcomings 

(Kuceyeski, Maruta, Relkin, & Raj, 2013), future studies that longitudinally track 

changes in fiber connectivity should not depend on simulation, especially if the lesion 

morphology is maintained. 

 

4.4.2 EVIDENCE OF FIBER DAMAGE AND CHRONIC DEGENERATION 
 
 

Our major finding was the cross-sectional difference in indirect structural 

connectivity between chronic and subacute stroke (Figure 4.12), indicative of Wallerian 
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degeneration of major white matter pathways. Similarly, the whole-brain white matter 

integrity measures showed reduced integrity at the chronic stage when compared to the 

subacute stage (Figures 4.7, 4.8, and 4.9). Although there were no statistically significant 

differences between the two groups in white matter integrity in specific tracts, differences 

in the overlap in connectome spatial map (Figure 4.11) and in indirect connectivity 

(Figure 4.12) suggest these markers may be more sensitive to changes in white matter 

structure during subacute stroke recovery. 

 

4.4.2.1 GLOBAL DIFFERENCES IN WHITE MATTER INTEGRITY 

 
 

Wallerian degeneration is the microstructural process that degenerates a distal 

axon after proximal injury to an axonal fiber or neuronal body. It begins with axonal 

breakdown and ends in the clearance of tissue debris (Qin et al., 2012). In a rat model for 

spinal cord injury, damage measured by FA was shown over 7 days after spinal cord 

injury (Yung et al., 2019). Additionally, a decrease in the longitudinal diffusion 

coefficient was found throughout the spinal cord during the 25-week recovery period 

(Ellingson, Kurpad, & Schmit, 2008), suggesting axonal and demyelination (DeBoy et 

al., 2007).  

Wallerian degeneration has also been measured in humans after stroke; however, 

the findings are mixed. The primary finding is a degeneration in FA during the first 2-12 

weeks, and a stabilization after that (Groisser et al., 2014; Liang et al., 2008; Thomalla, 

2005; Thomalla et al., 2004; C. Yu et al., 2009).  Additionally, Puig et al., (2010) found 

reduced FA in the CST in the affected hemisphere compared to the unaffected 

hemisphere at day 30 and not three days after stroke. This is consistent with the clinical 
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finding that outcomes of motor impairment increase in the short term and stabilize after 

three weeks (Yang et al., 2019). Progressive degeneration in white matter tracts and gray 

matter volume was also observed in (Duering et al., 2015), where cortical regions with 

the highest probability of connectivity to the lesioned volume saw the most change in 

cortical volume 6 months post stroke, associated with a degeneration of those connecting 

fiber tracts. Additionally, Haque et al., (2019) saw ongoing degeneration in areas not 

immediately in the lesioned volume following stroke. 

In contrast, Ferris et al., (2017) did not find changes over time in the FA 30 and 

90 days after a transient ischemic attack, and no differences between the lesioned and 

healthy hemisphere at 90 days. One potential reason why Ferris and colleagues did not 

find differences over time in the FA is because transient ischemic attack is a temporary 

blockage of blood perfusion. Interestingly, Lin et al., (2018) found reduced FA in the 

CST at three months post-stroke, and an increase in the 3-12 month period. These 

findings suggest there is an initial drop in FA over time during the first three months after 

stroke, and a subsequent increase that tracks recovery. 

Our results only found significant (p<0.025, corrected) differences in WM 

integrity between the cross-sectional subacute and chronic groups in the whole-brain 

white matter; the un-corrected SWIFT found an increase in connectivity-weighted WM 

integrity in the SCP in the chronic stroke group when compared to the subacute group 

(p<0.1 uncorrected), (Figure 4.9). General trends showed an increase in FA in the CST, 

and a drop in the CC (Figure 4.7), which is consistent with results found in a rat model 

for stroke (van Meer et al., 2012). Differences in cross-sectional chronic and subacute 

stroke in white matter integrity did not reach significance partly due to the variability in 
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time between imaging and stroke onset (24% coefficient of variance, Table 4.1)  MR 

intensities change dynamically during subacute and subacute stroke recovery, (Allen et 

al., 2012), and the variability may be in part due to the subacute images being imaged at 

different time-points.  

As a final note, we detected significantly reduced global white matter integrity in 

the chronic stroke group when compared to the subacute group. The non-parametric 

results show a larger extent of white matter degeneration in the chronic group in the 

anterior portion of the corpus callosum than the subacute group when compared to the 

control group (Figure 4.5, 4.6). This is consistent with the trend seen in the partially-

overlapping t-test between the chronic and subacute group, where the chronic group had a 

lower (non-significant) FA in the corpus callosum (Figure 4.7). Further analysis is 

required to find other white matter tracts with reduced integrity that could help explain 

the global drop in FA in the chronic group. 

 

4.4.2.2 INDIRECT CONNECTIVITY CAN DETECT TRACK DAMAGE DURING STROKE 

 
 

A unique contribution of this study is the use of voxel-level measures of structural 

connectivity in this cross-sectional stroke analysis, and the measured reduction in 

connectivity map overlap (COSMIC) and indirect connectivity (VISC) in white matter 

tracts with relatively unchanged integrity.  

Connectivity differences in stroke may be in part due to the global reduction in 

white matter integrity seen in chronic stroke compared to subacute stroke. The global 

reduction in FA is accompanied by an increase in the dispersion (uncertainty) in the first 

and second fiber directions. Global tractography, in the presence of a global increase in 
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dispersion, reduces the probability of connection at the voxel level. In other words, 

seeding a voxel in the CST in the presence of globally increased uncertainty decreases the 

probability of connection to other voxels, and applying a threshold reduces the set of 

possible connections. Thus, this contributes to the reduced connectome similarity and 

indirect connectivity at the whole-brain level and in the three tracts of interest. 

Interestingly, the degree did not detect differences between both stroke groups 

(Figure 4.4). This supports the hypothesis that measures of indirect and complex 

connectivity are more sensitive to remote changes in connectivity after stroke than 

measures of direct connectivity. In the same manner, decreasing the set of possible 

connections also decreases the set of indirect connections. By reducing the set of direct 

connections to all direct connections (indirect connectivity), indirect connectivity 

accentuates local reductions in connectivity at the global scale. 

We measured a reduced COSMIC in the CST in chronic stroke compared to 

subacute stroke (Figure 4.11). This is in part explained by a reduced strength of the 

second fiber (F2) in the chronic stroke group compared to the subacute stroke group 

(Figure 4.8). Changes over time in the parallel and perpendicular fiber directions in the 

CST have previously been reported (Groisser et al., 2014), and changes in the diffusivity 

in these fiber orientations has been theorized to be due to neurite beading, in which 

cytotoxic edema induce restrictions in neuronal membranes and restricts diffusion (Baron 

et al., 2015). 

The SCP and CC saw reduced indirect connectivity in chronic stroke compared to 

subacute stroke. The lesion distribution is concentrated near the internal capsule, and 

direct damage to the CST can lead to downstream reductions in indirect connectivity in 
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remote tracts, in particular those tracts in close proximity to the CST. For instance, the 

CC has been shown to have damage following direct damage to the CST (Cunningham et 

al., 2015; Liu et al., 2015). Additionally, the cerebellum has reduced structurofunctional 

connectivity following stroke (Kalinosky et al., 2017), and damage to the cerebellum 

following supratentorial lesions to the cortico-cerebellar loop has been reported in 

perfusion and gray matter volume studies (Cheng et al., 2015; Dang et al., 2013; Förster 

et al., 2014). Thus, measures of structural connectivity that assign whole-brain network 

changes at the voxel level are sensitive to disruptions in connectivity to fiber tracts not 

directly impact by the lesion (Kalinosky et al., 2013). 

 

4.4.3 IMPLICATIONS FOR LONGITUDINAL STUDIES: SUBACUTE STROKE CEREBELLAR 

CONNECTIVITY AND MOTOR RECOVERY 
 
 

The FA in the CC and the VISC in the SCP at the subacute stage related to the 

improvement in upper extremity motor impairment score for our four paired stroke 

participants. The sample size is very small; R2 and p-values are not provided for this 

reason. However, the preliminary results suggest indirect cerebellar connectivity may 

relate to improvements in motor score. White matter integrity of cerebellar efferent and 

afferent fibers (Schulz, Frey, et al., 2015), and cerebellar connectivity to prefrontal areas 

(Kalinosky et al., 2017) have been related to fine motor control. Additionally, cerebellar 

activation has been related to subacute stroke recovery (Small et al., 2002). Given that 

indirect connectivity can detect remote regions affected by stroke, using indirect 

structural connectivity may improve our ability to relate the cerebellum’s impact on 

subacute stroke recovery. 
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4.4.4 STUDY LIMITATIONS 
 
 

The main limitation of this study is the low sample size in the paired analysis. We 

used the partially overlapping t-test results to draw conclusions about white matter 

connectivity during stroke recovery; however, our results may be driven by those 

participants that were not paired in the subacute and chronic groups. We believe our 

results can be used to draw conclusions about changes in white matter connectivity 

during the first six months after stroke because the differences in the mean between 

subacute and chronic stroke in white matter integrity and connectivity in the paired 

analysis resembles that of the partially overlapping t-test results (Figures 4.7, 4.8, 4.9, 

4.11, 4.12).  

Another limitation is normalizing and comparing connectivity matrices across 

different populations. We seeded in template space and performed tractography in 

diffusion space. However, probabilistic tractography produces aberrant streamlines and 

these need to be removed. We first heuristically determined a threshold based on the 

normalized matrix that best removed aberrant streamlines in the corticospinal tract, the 

corpus callosum, and the cerebellar tracts for our control participants. This was later 

applied to all controls and stroke participants.  Lastly, we masked out the template 

network from all participants in order to normalize our analysis on loss of connectivity in 

the template network.  

Even with normalization, one cannot interpret a higher probability of connectivity 

between two voxels as a “stronger” connection, due to the possibility that less streamlines 

were propagated in one direction, therefore artificially preferring another direction 

(Carrera & Tononi, 2014). In the same way, lower probabilities may be difficult to 
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interpret. That is why we employed the connectome similarity metric (COSMIC). This 

measure correlates networks to determine deviations in network topology, and is not 

sensitive to differences in network weights. 

 

4.5 CONCLUSION 

 
 

The major finding of this study is evidence of reduced indirect connectivity after 

stroke, and reduced connectivity in chronic stroke compared to subacute stroke. In 

addition to the corticospinal tract, the corpus callosum and superior cerebellar peduncle 

saw reduced connectivity indicating a degeneration of motor-related white matter tracts 

remote from the lesion. Additionally, the paired analysis suggests the superior cerebellar 

peduncle may relate to improvement in motor impairment scores. The clinical implication 

of our study is that changes in structural connectivity extend beyond the lesion volume, 

and that these changes in connectivity can be used along with white matter integrity to 

predict motor recovery after stroke. The study highlights the need to analyze indirect 

white matter connectivity when considering the effects of stroke on the brain and adds 

evidence that suggests the cerebellum is an important node in the brain’s connectome. 

Lastly, the results of this study motivate future studies that aim to measure changes in 

structural connectivity during subacute stroke recovery.  

 

5 CHAPTER 5: INTEGRATION OF RESULTS 

 
 

5.1 SUMMARY OF RESULTS 

 
 

5.1.1 BRIEF SUMMARY 
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The purpose of this dissertation was to identify whole-brain structural networks 

that are damaged after subacute and chronic stroke, to develop imaging measures of 

white matter integrity and whole-brain connectivity that are sensitive to these changes, 

and to determine the influence of these remotely connected gray matter regions and white 

matter connections on subacute and chronic stroke impairment.. 

In chapter two, we improved on a measure of indirect structural connectivity in 

order to detect remote gray matter regions with reduced connectivity after stroke. In a 

region-level analysis, we found that the weighted indirect structural connectivity (WISC) 

was more sensitive to remote changes in connectivity after stroke than measures of direct 

connectivity. The WISC identified reductions in connectivity in cortical, subcortical, and 

cerebellar gray matter regions that play a central role in sensorimotor function. 

Additionally, the white matter integrity of the corticospinal tract, and the volume of 

affected gray matter regions detected by the WISC correlated better with motor 

impairment than those measures did individually.  

In chapter three, we developed a unified measure of white matter structure that 

extends local changes in white matter integrity along remotely connected fiber tracks in 

order to understand the relationship between white matter integrity, connectivity, and 

motor impairment. Our measure, the structurally-weighted fractional anisotropy (SWIFT) 

uniquely identified the corpus callosum and the superior cerebellar peduncle as having 

altered white matter structure after stroke. Additionally, the SWIFT within the 

corticospinal tract predicted a larger variance in post-stroke motor impairment than the 

FA. Lastly, it also was able to uniquely relate white matter structure in the superior 

cerebellar peduncle to motor impairment.  
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Finally, in chapter four we used a novel connectome similarity metric (COSMIC) 

and the measure of indirect structural connectivity (VISC) in order to identify cross-

sectional differences in white matter structure between subacute and chronic stroke. We 

found whole-brain reductions in white matter structure in both stroke groups when 

compared to neurologically intact participants. Interestingly, the chronic group had more 

reductions in indirect connectivity in the cerebellar fibers than the subacute group, and 

the COSMIC—a measure of connectome similarity—found similar results in the 

corticospinal tract. Additionally, the VISC of the superior cerebellar peduncle at the 

subacute stage trended with the improvement in motor impairment score for the paired 

subacute/chronic stroke participants. 

Collectively, our work demonstrates that indirect structural connectivity and 

measures that summarize global network topology at the voxel level are sensitive to 

global changes in connectivity after stroke. Additionally, our work suggests that these 

measures are necessary in order to measure disruptions in cerebellar connectivity after 

stroke, such as detecting network loss to the cerebellum. We also documented for the first 

time changes in white matter structure during subacute stroke recovery. Lastly, using 

these measures, we were able to show that the disruption to remote gray matter regions 

and white matter fiber tracts, such as those in the cerebellum, relate to post-stroke motor 

impairment and recovery. Thus, stroke-induced changes to structural connectivity extend 

throughout the brain, through the corpus callosum and the cerebellar peduncles, and 

indirect connectivity provides an important tool to 1) measure these changes and 2) relate 

these changes to motor impairment. 
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5.1.2 NEW INSIGHTS ON REMOTE CHANGES IN INDIRECT STRUCTURAL CONNECTIVITY 

AFTER STROKE 
 
 

A main result of our work is the evidence of remote changes to structural 

connectivity after stroke, as detected by indirect connectivity. Indirect connectivity may 

help relate changes in functional activity and connectivity, and other imaging-related 

findings showing changes in areas remote from the lesion after stroke. For instance, a 

main finding in functional activation is reduced ipsilesional activation and increased 

contralesional activation after stroke. Additionally, perfusion and gray matter atrophy 

studies have found remote damage to contralesional cerebral and cerebellar regions. 

Currently, the most common findings in diffusion MRI in stroke participants show 

reduced integrity of the corticospinal tract. Our findings corroborated the relationship the 

CST has on motor impairment. As expected, indirect connectivity and global measures of 

connectivity extended local changes in white matter integrity along fiber tracks. Perhaps 

more clinically important, these changes related to motor impairment and improved 

existing correlations in the corticospinal tract.  

Figure 5.1 shows a case study of our main result. Indirect connectivity detected 

cortical, subcortical, and cerebellar regions with reduced connectivity after stroke. 

Additionally, a measure of local white matter integrity weighted by its global structural 

connections extended local stroke-induced changes in white matter integrity along 

connected white matter paths. This suggests there are subtle changes in white matter 

integrity along white matter pathways connected to the lesion exhibiting Wallerian 

degeneration. In turn, these result in an increase in fiber orientation dispersion, resulting 

in reduced direct connectivity and, thus, reduced indirect connectivity to gray matter 
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regions. The volume of affected white and gray matter related to motor impairment, 

which motivate future studies to further develop these measures so that they can be 

implemented in the clinic. 

 

 

Figure 5-1: Case study of a chronic stroke participant with remote changes in indirect 

connectivity after stroke 

This chronic stroke participant (lesion shown in blue) has reduced indirect connectivity 

in cortical, subcortical, and cerebellar regions (top figure, red) and reduced structurally-

weighted fractional anisotropy (bottom, red). 

 

 

Additionally, our results were able to distinguish the structural connectivity of 

chronic and subacute stroke participants. A case study is shown in Figure 5.2. The same 

subject is shown at the subacute stage (top) and chronic stage (bottom), and the reduced 

indirect connectivity compared to the mean of the control group is shown in red. 

Determining the connectivity profile of subacute stroke participants may become a 

powerful tool in stroke rehabilitation and could serve diagnostic purposes. Although the 
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sample size was small, the preliminary results are promising: subacute-stage indirect 

connectivity of the cerebellum may predict improvements in stroke impairment. 

 

 
Figure 5-2: Case study comparison between indirect connectivity of subacute and 

chronic stroke 

The indirect connectivity decrease compared to the mean of the control group is shown in 

red for the stroke participant at the subacute (top) and chronic (bottom) stage. Lesion is 

shown in blue. 

 

 

Lastly, we documented new evidence of changes in cerebellar structural 

connectivity after stroke—a finding that has sparsely been reported in diffusion imaging 

studies. Changes to cerebellar activation, functional connectivity, perfusion and gray 

matter volume have been documented after lesions to the cortico-cerebellar loop, likely 

due to reduced excitatory inputs. The cerebellum is indirectly connected to the cerebrum 

via indirect structural connections. Using indirect structural connectivity based on 

diffusion MRI has been shown in our study to be sensitive to changes in cerebellar 

connectivity after stroke. We additionally related these changes to motor impairment. 

Although the cerebellum is mainly involved in coordination, and our behavioral measure 
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is not a measure of cerebellar dysfunction, this indicates the cerebellum exhibits damages 

connectivity after stroke, and these changes may relate to motor deficits.  

 

5.2 FUTURE WORK: INDIRECT CONNECTIVITY AND FUNCTIONAL CONNECTIVITY 

 
 

Regions can be functionally connected even in the absence of direct structural 

connections. Understanding the relationship between structure and function after stroke, 

particularly in longitudinal studies, may be clinically important especially for prognostic 

purposes. Kalinosky and colleagues found reduced structurofunctional connectivity in 

cerebellar-cortical tracts after stroke (2017) using a method that weighted functional 

connections via structural connections. Chapter 3 introduced a similar approach with 

similar results: we weighted fractional anisotropy by structural connections. It was the 

residual WM structure that—when averaging the FA along the WM track—related to 

motor impairment. A major finding of our study was the ability of indirect connectivity to 

measure changes in structural connectivity to the cerebellum after stroke, in particular 

demonstrating differences in connectivity between subacute and chronic stroke.  

The relationship between function and structure in the stroke brain, in particular 

using indirect structural connectivity, should be used to further investigate subacute 

stroke recovery. Using indirect and direct connectivity may better relate to functional 

connectivity, and a measure that combines direct and indirect structural connectivity, and 

functional connectivity should be implemented in stroke studies. This approach could 

elucidate mechanisms that are better able to explain the variance seen in stroke motor 

impairment. For example, relating the reduced structural connectivity in the cerebellum 
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to functional connectivity may help identify particular cerebellar structures with reduced 

structural-functional connectivity. 

Additionally, better tests of motor impairment and function should be used. In 

addition to the Fugl-Meyer, clinical scores obtained longitudinally such as the Wolf-

Motor score (Woodbury et al., 2010), Box and Blocks (Chen et al., 2009), gross motor 

output, and measures of cerebellar ataxia (Schmitz-Hubsh et al., 2006) should be 

investigated. For example, the cerebellum was related to motor impairment in our study; 

however, it would be interesting to investigate how the cerebellum modulates recovery in 

motor function. 

The findings of this work and of future studies that combine indirect structural 

connectivity with functional connectivity with the aim of tracking changes in cerebellar 

connectivity and how they relate to motor recovery could help develop imaging 

techniques that can be used in the clinic. Although the work we have done has brought 

down computational time in diffusion imaging techniques, more work can be done such 

as fine-tuning the necessary streamlines required for whole-brain tractography, and 

running region-of-interest analyses rather than whole-brain analyses. Additionally the 

work demonstrated in this study and proposed here could help develop imaging 

techniques sensitive to identifying patients most likely to benefit from rehabilitative 

techniques, and prognosticating patients at the subacute stage to predict chronic stage 

brain connectivity and function. 

 

6 CHAPTER 6: APPENDIX: ADDITIONAL FIGURES 
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Probabilistic tractography is a computational burden, requiring thousands of 

starting-point streamlines per voxel. In order to lessen the computational burden, we 

estimated the minimum required streamlines required to perform whole-brain 

probabilistic tractography while maintaining the same amount of information. 

 
 

 
Figure 6-1: Percent change between after adding 10 more streamlines per sample vs 

Number of streamlines samples per voxel.  

As pertaining specifically to the second chapter, we sampled the entire gray matter 

volume at 10 streamlines per voxel and continuously added 10 more streamlines per 

voxel and calculated the percent change of the average connectome probability between 

every two consecutive runs in order to determine the point at which adding more 

streamlines per voxel results in negligible change. We selected 500 streamlines per voxel 

as the optimal amount. 

  
 

In order to properly map the connectivity of the cerebellum (physiologically 

connected contralaterally to the thalamus), we seeded the right cerebellum and allows 

unconstrainted tractography to take place. The cerebellum connects contralaterally to the 

thalamus in probabilistic tractography. 
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Figure 6-2: Validating cerebellar connectivity 

Seeding the right dentate nucleus and adding a waypoint at the left thalamus results in 

cross-connectivity. We note that the cerebellum does connect to the contralateral 

thalamus, but streamlines pass through the thalamus (the physiological endpoint) and 

continue onto the cortex and cross the corpus callosum into the ipsilateral cortex. This 

produces false-connections between the cerebellum and the ipsilateral cortex, which 

could be a factor as to why we saw changes in connectivity in the contralesional 

hemisphere in chapter 3 (aim 2). 

 

 

 
Figure 6-3: Seeding the gray matter vs the gray matter/white matter boundary: future 

work 

Chapter 2 seeded the gray matter volume in order to determine gray-matter connectivity, 

and chapters 3 and 4 seeded white matter volume in order to determine white matter 

tracks. Future work would need to assess the level of information obtainable by seeding 

the GM/WM boundary. Seeding the boundary results in a greater span in connectivity, 

and determining how the connectome and the probability of connectivity changes would 

be necessary in order to determine the best approach. 
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Figure 6-4: Determining the effect of running tractography in parallel 

We ran tractography in parallel in all three aims, and before doing that we assessed the 

difference in connectivity probability at every voxel between running tractography in 

parallel or not. We seeded every WM voxel at 500 streamlines per voxel and compared 

the percent difference. Most large white matter tracks and their volumes were within 5%. 

Edges of large white matter tracks were within 5 and 10%. 
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Figure 6-5: Example of direct and indirect connections 

Seeding a single voxel in the cerebellum produces direct connections (red) in the 

cerebellar peduncle, crossing over to the contralateral side (as can be seen in the 

coronal slice in the top row). Indirect connections (blue) connect that single voxel to 

other voxels in the cerebellum, expanding the span of connections. Additionally, indirect 

connections connect the single voxel to bilateral thalamic regions. 
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Figure 6-6: Correlation between the change in Fugl-Meyer score at the 6-month follow-

up and the subacute scan VISC in the SCP 

Pertaining to chapter 4 (aim 3), we correlated the change in Fugl-Meyer score at the 6-

month follow-up with the VISC in the right SCP at the subacute scan. We note a high 

correlation, indicating that participants with high initial connectivity in the 

contralesional SCP saw more increase in their Fugl-Meyer score (measure of motor 

impairment). 
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