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ABSTRACT 

INDIRECT STRUCTURAL BRAIN CONNECTIVITY AND GRAPH ANALYSIS 

ACCOUNTS FOR MOTOR IMPAIRMENT IN STROKE RECOVERY 

Miguel R. Sotelo Munoz, B.S. 

Marquette University, 2020 

In this dissertation project, we demonstrated that diffusion magnetic resonance 
imaging and measures of indirect structural brain connectivity are sensitive to changes in 
fiber integrity and connectivity to remote regions in the brain after stroke. Our results 
revealed new insights into the effects local lesions have on global connectivity—in 
particular, the cerebellum—and how these changes in connectivity and integrity relate to 
motor impairment. We tested this methodology on two stroke groups—subacute and 
chronic—and were able to show that indirect connectivity is sensitive to differences in 
connectivity during stroke recovery. Our work can inform clinical methods for 
rehabilitating motor function in stroke individuals. By introducing methodology that 
extends local damage to remotely connected motor related areas, we can measure 
Wallerian degeneration in addition to providing the framework to predict improvements 
in motor impairment score based on structural connectivity at the subacute stage. 

We used diffusion magnetic resonance imaging (dMRI), probabilistic tractography, 
and novel graph theory metrics to quantify structural connectivity and integrity after 
stroke. In the first aim, we improved on a measure of indirect structural connectivity in 
order to detect remote gray matter regions with reduced connectivity after stroke. In a 
region-level analysis, we found that indirect connectivity was more sensitive to remote 
changes in connectivity after stroke than measures of direct connectivity, in particular in 
cortical, subcortical, and cerebellar gray matter regions that play a central role in 
sensorimotor function. Adding this information to the integrity of the corticospinal tract 
(CST) improved our ability to predict motor impairment. In the second aim, we 
investigated the relationship between white matter integrity, connectivity, and motor 
impairment by developing a unified measure of white matter structure that extends local 
changes in white matter integrity along remotely connected fiber tracks. Our measure 
uniquely identified damaged fiber tracks outside the CST, correlated with motor 
impairment in the CST better than the FA, and also was able to relate white matter 
structure in the superior cerebellar peduncle to motor impairment. Our final aim used a 
novel connectome similarity metric and the measure of indirect structural connectivity in 
order to identify cross-sectional differences in white matter structure between subacute 
and chronic stroke. We found more reductions in indirect connectivity in the chronic 
stroke cerebellar fibers than the subacute group, Additionally, the indirect connectivity of 
the superior cerebellar peduncle at the subacute stage correlated with the improvement in 
motor impairment score for the paired participants. In conclusion, indirect connectivity is 
an important measure of global brain damage and motor impairment after stroke, and can 
be a useful metric to relate to brain function and stroke recovery. 
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1 CHAPTER 1: INTRODUCTION AND BACKGROUND 

 
 

1.1 THESIS STATEMENT 

 
 

The purpose of this study is to develop imaging biomarkers that are sensitive to 

identifying whole brain structural networks that are damaged after subacute and chronic 

stroke, and to determine the influence of these remotely connected gray matter regions 

and white matter connections on subacute and chronic stroke impairment. The brain is 

highly interconnected and remote regions are vulnerable to focal lesions. We believe 

novel imaging techniques that measure structural connectivity via directly and indirectly 

connected pathways could help identify damage to remote regions of the brain and their 

influence on subacute and chronic stroke motor impairment. 

 

1.2 ISCHEMIC STROKE: MOTOR IMPAIRMENT AND RECOVERY  

 
 

1.2.1 ETIOLOGY OF STROKE 
 
 

Stroke contributes to one out of every 20 deaths in the United States and is one of 

the leading causes of long-term disability (Koton et al., 2014). Hemorrhagic stroke is 

caused by a ruptured blood vessel that bleeds into the brain, and ischemic stroke (the 

most common type) is caused by a clogged artery due to plaque and atherosclerosis. In 

general, stroke is divided into three phases: acute (less than one week), subacute (1 week 

– 1 month), and chronic (greater than one month). Although locations can vary, the most 

common artery implicated in ischemic stroke is the middle cerebral artery (MCA) that 

provides oxygen and nutrients to parts of the motor cortex via the superior division, the 
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temporal lobe via the inferior division, and the basal ganglia and the thalamus via deeper 

branches. More specifically, occlusions of small arteries in the deep division of the MCA 

produce lacunar stroke—small but localized lesions to important motor and sensory 

pathways in the basal ganglia.  

Stroke results in extensive local damage, with progressive degeneration outside 

the immediate lesion location; brain imaging allows us to assess the extent of this 

damage. Detrimental neurovascular events ensue immediately following occlusion. An 

estimated 1-2 million brain cells die every minute immediately at the core of the lesion 

(Lo, Moskowitz, & Jacobs, 2005). As a result, a rapid loss of local neurological function 

ensues in the area with reduced perfusion (Koton et al., 2014). Cellular mechanisms such 

as increased extracellular glutamate and intracellular sodium, calcium, and water result in 

further spatial spread of cellular depolarization, depletion of energy stores, and an 

advancement of injury outside the lesion boundary (Lee, Grabb, Zipfel, & Choi, 2000). 

The rapid neurodegeneration motivates acute clinical interventions that aim to resume 

perfusion to the brain to save potentially salvageable tissue. Perfusion-weighted magnetic 

resonance imaging (MRI) and diffusion-weighted MRI can be used to estimate the 

location and volume of potentially salvageable tissue—named the “penumbra”—and 

differentiate it from the lesion core—the irrevocably damaged brain tissue. The penumbra 

can be estimated as the perfusion-diffusion mismatch seen in MRI: the volume with 

reduced perfusion is larger than the area of reduced perfusion and abnormal diffusion, in 

which the volume has impaired perfusion and enhanced oxygen extraction (Chen, 2012).  

 

1.2.2 POST-STROKE IMPAIRMENTS 
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Stroke deficits vary depending on the neuronal structures and the white matter 

bundles affected by the lesion. For example, impairments in language can include aphasia 

(the impairment of how you speak and write, and your understanding of language), 

dysarthria (the impairment of speech caused by weakened and spastic muscles), and 

dyspraxia (the impairment of speech due to the inability to coordinate muscles). These 

are caused by damage to either brain regions specialized in each of these tasks, or the 

damage of white matter bundles connecting to these regions (conductive, or association 

aphasia). 

Similarly, motor impairments depend on the structures that are affected, which 

depends on the artery producing the occlusion; however, a common symptom post-stroke 

and other upper motor neuron diseases is limb spasticity (Carey, Matyas, & Baum, 2018; 

Gracies, 2005). Ischemia involving the middle cerebral artery (MCA) typically involves 

upper limb impairment, given that the tissue that the MCA perfuses includes the upper 

limb portion of the precentral gyrus. Lesions involving the anterior cerebral artery (ACA) 

damage the lower limb. Lesions of the MCA and ACA typically result in more than 

motor impairments, since these arteries perfuse the temporal, frontal, and parietal regions.  

Impairments are also dependent on the hemisphere that is lesioned. For instance, 

damage to the language center in the left hemisphere produces aphasia, while lesions in 

the right hemisphere may result in aprosodia—the impairment in speech expressiveness. 

Similarly, lesions in the parietal network of the right hemisphere—and not the left—

typically result in spatial neglect. This presents itself as the inability to recognize the left 

side of the body. 
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Lacunar lesions are small lesions usually in locations where large arteries divide 

into small-diameter arterial branches. These are typically in the basal ganglia which is fed 

by the MCA. These lesions generally induce pure motor impairments due to the specific 

damage. For example, lesions to the thalamus—a network hub specialized in relaying 

sensory information—produces very specific impairments depending on what nuclei is 

affected.  

Lastly, the cerebellum is a highly interconnected brain structure involved in motor 

and non-motor tasks. In general, lesions to the cerebellum produce impairments in 

coordination of motor or non-motor tasks. Interestingly, ataxic symptoms may occur 

without direct damage to the cerebellum; if fibers involving the cortico-thalamic-

cerebellar, or the cerebellar-cortical loop are damaged, ataxia out of proportion to 

weakness may be observed. 

 

1.2.3 CLINICAL MEASURES OF MOTOR FUNCTION AND IMPAIRMENT 
 
 

Clinical and research measures of motor function and impairment are used in 

post-stroke patients in order to assess the extent of damage to the motor system. One of 

the most commonly used measures is the Fugl-Meyer assessment of motor impairment 

(Fugl-Meyer et al., 1975). It consists of five domains measuring motor functioning, 

sensation, balance, pain, and joint range of motion. Higher scores indicate less motor 

impairment, and the assessment is measured while standing, sitting, and in the laying 

position. This is the primary measure of motor impairment used in this dissertation, and 

we focused our analysis in the upper-motor examinations.  An example examination of 

the upper motor domain is movements of the paretic arm, measuring their ability to flex 
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their shoulder with little synergy. The participant is asked to keep their elbow extended at 

0-degrees, forearm pronated, and flex their shoulder from 0 to 90-degrees. The highest 

score in this particular examination is 2, with points being deducted if synergy is present 

(elbow flexion, trunk movement) or if the movement cannot be completed. In our study, 

the upper-motor FM was assessed (only measuring motor function and range of motion), 

and the maximum score is 66 

In addition to measures of motor impairment, measures of motor function can be 

administered. For instance, the Wolf-Motor Function Test (WMFT) (Woodbury et al., 

2010). This exam times the patient’s ability to perform tasks such as placing the forearm 

on the table in front or to the side of them from a neutral starting position by using 

shoulder abduction. Another, similar task is to further abduct the shoulder to place the 

forearm on top of a box that is on the table in front of them while sitting. This 

examination also measures the patient’s ability to lift a basket, or fold a towel, thus 

assessing their motor function. The examination times these movements, and typically 

are video-recorded in order to assess the mechanisms used by the patient during the 

examination.  The score is out of 75 (15 measurements), with two other measurements 

assigned to strength. 

Another functional score is the Box and Blocks score (Chen, Chen, Hsueh, 

Huang, & Hsieh, 2009). As the name suggests, the examination requires a box and 

blocks. The box opens like a suitcase and when opened there is a subdivider separating 

the box in two. Boxes are placed on one side, and the patient is asked to move one block 

at a time from one side to the other as fast as possible. The time it takes to move all 

blocks from one side to the other is the score. 
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More complex measures of motor dysfunction are measurements of cerebellar 

injury. The Fugl-Meyer assesses dysmetria (uncoordinated movement) by measuring the 

time it takes for the patient to point at their nose and to the examiner’s finger or pen 

placed in front of them three times. It is, however, difficult to measure cerebellar function 

in stroke participants due to the possibility that their hemiplegia and reduced weakness 

may either hide cerebellar dysfunction or produce false observations. The scale for the 

assessment and rating of ataxia (SARA) (Schmitz-Hubsh et al., 2006) is a 40-point scale 

(higher scores indicate more ataxia) that measures the lack of muscle control and 

coordination. Measures include gait, stance, sitting, speech disturbance, finger chase, and 

the heel-shin slide (the latter two are also measured in the Fugl-Meyer). 

Other measures of motor dysfunction include measurements of gait, including the 

six-minute walk test (“ATS Statement: Guidelines for the Six-Minute Walk Test,” 2002) 

which assesses the distance covered during a 6-minute time period, and the Timed Up 

and Go test (Podsiadlo & Richardson, 1991) which assess fall-risk. 

 

1.3 MAGNETIC RESONANCE IMAGING 

 
 

1.3.1 BASICS OF MRI 
 
 

The magnetic resonance imaging (MRI) signal is based on the response a proton 

exhibits in the presence of an outside magnetic field, B0, and radiofrequency impulses. In 

most medical applications, the MR scanner measures the signal from the hydrogen 

proton, partly because this is the most common element in our body, and its nuclear 

magnetization is susceptible to the radiofrequency pulses (described later) the produce a 

signal. For Hydrogen atoms, 7 parts per million become aligned to the outside magnetic 
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field, and this produces a net magnetization vector, M. These aligned protons spin 

parallel to the main magnetic field. The proton’s mass, its gyrometric ratio, and the B0 

field all induce angular momentum on the spinning proton, causing it to precess away 

from the main B0 direction giving M a longitudinal (Mz) and a transverse (Mxy) 

component. The precession frequency is called the Larmor frequency. 

In order to obtain a signal, the vectors must have a net vector in the transverse 

plane. This is because the longitudinal portion of M (Mz) is negligible in the presence of 

the larger B0. By applying an external radio frequency (RF) pulse set to the precession 

Larmor frequency, the protons are tipped to a plane specified by the tip-angle. This is 

because the RF pulse frequency is tuned in resonance to the Larmour frequency, allowing 

the spinning proton to absorb energy from the RF coil, allowing the proton to rotate its 

axis away from the main magnetic field. Assuming the tip angle is 90o, this RF pulse will 

tip protons with the Larmour frequency equal to the RF frequency towards the transverse 

plane. The synchronized precession in the transverse plane produces a sinusoidal signal 

that can be measured, called the transverse magnetization signal, Mxy. According to 

Faraday’s law of induction, this signal produces a magnetic flux through the receiving 

coil, inducing a small electromotive force that the receiver coil (in modern systems, 

typically the same coil as the pulse-generating RF coil) receives as a function of time. 

After absorbing energy from the RF pulse, the precessing protons gradually emit 

energy and their net magnetization becomes out of phase and eventually return to the 

low-energy state (the B0 direction, where the largest contributor to the M vector is Mz). 

The rate at which the protons become out of phase in the transverse plane is defined by a 

T2 time constant, while the rate at which the protons return to point in the Z-direction is 
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defined by a T1 time constant. These constants influence the signal strength and are 

dependent on the tissue where the protons reside. In our application, the tissues are white 

matter, gray matter, and cerebral spinal fluid. Two important parameters in MR imaging 

is the TR (the “repetition time” or the time between consecutive points in a repeating MR 

sequence) and the TE (the “echo time”, or the time between the the RF pulse and the 

center of the read-out gradient, described later) These parameters are engineered in order 

to discern differences in tissue imaging contrast based on either the T1 signal (a T1-

weighted MRI) or the T2 signal (T2-weighted MRI). 

 

1.3.2 SIGNAL ACQUISITION 
 
 

The following text describes a gradient echo pulse sequence (Figure 1.1). In this 

dissertation, a gradient echo was used to obtain T1-weighted images. A gradient in the Z-

direction (Gz) added to B0 will cause protons to spin at different Larmor frequencies 

based on the spatial location in the Z direction. RF pulses are then iteratively (based on 

the TR and the field of view in the Z direction) applied at different resonant frequencies 

based on the Larmor frequency at that particular imaging slice to selectively tip protons. 

A Fourier Transformation can decompose the free induction decay (FID or received 

signal) into a spectrum of frequencies. If no gradient is used, (i.e, if the RF pulse is 

applied to the volume in the presence of a static magnetic field), the resulting frequency 

spectrum will contain one frequency, which is the Larmor frequency. In order to obtain 

spatial resolution, different frequencies are required, each mapping a frequency in the 

frequency space (k-space) to the imaging space. A gradient field, Gr, is applied in 

addition to the static magnetic field. This is applied after the slice is selected (after Gz and 
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the RF are applied), and during the read-out time interval. Gr produces sinusoids 

oscillating at different frequencies, all dependent on the spatially varying gradient. As a 

result, the frequency spectrum of the FID signal contains a spread of frequencies 

encoding space according to the spatial gradient, therefore producing an array of summed 

frequency values that encode space (Figure 1.1). 

In the gradient echo pulse sequence (Figure 1.1), the gradient Gr contains an X 

(Gx) and a Y (Gy) component. In a given imaging slice, the Gx encodes spatial 

information in the X direction in the imaging space by varying frequencies in the X 

direction in k-space. In order to obtain a spatial encoding in the Y-direction, Gy, is 

applied right before the read-out Gx. In the transverse plane, this causes protons spinning 

at the higher magnetic field in the Y-direction to spin faster than those in the lower 

magnetic field in the Y-direction. When the gradient Gy is turned off and the read-out 

gradient Gx is turned on, all protons in one X-slice return to the same frequency; 

however, protons are phase-shifted from each other in the direction of the Y-gradient due 

to the previously applied Gy. These sinusoids contain the same frequencies obtained 

before in addition to phase shifts. The signal obtained by the coil is a sum of frequencies 

encoded in the X-direction, and also phase shifts in the Y-direction. By obtaining the FID 

signal over time (in the read-out direction, Gx) and repeating this for a different Gy 

effectively samples the k-space (frequency space) of the image. An inverse Fourier 

Transform transforms the signal form the k-space into the image space. This is repeated 

for all slices by varying Gz (Figure 1.1). 
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Figure 1-1: Gradient Echo Pulse Sequence Diagram 

a) Pulsed sequence diagram for the typical gradient echo (GRE) pulse sequence. b) k-

space illustration of the frequency and phase encoding (blue), and the read-out (green) 

 

 

1.4 DIFFUSION MRI: AN INDIRECT MEASURE OF WHITE MATTER STRUCTURE 

 
 

1.4.1 THE DIFFUSION MRI SIGNAL 
 
 

The following describes a spin-echo sequence. In this dissertation, a modification 

of the spin-echo sequence was used in order to obtain diffusion weighted MRI. Diffusion 

Weighted Imaging (DWI) is based on Brownian motion, in which water molecules 

randomly diffuse in a Gaussian spatial distribution. DWI is sensitive to the diffusion rate 

of water, and this is linked to signal intensity in sequences that produce DW Images 

(Hagmann et al., 2006). The pioneering work of Hahn, (1949), where he discovered that 

the motion of spins lead to a decrease in signal intensity, and the fundamental equations 

derived by Torrey, (1956) is the foundation of DWI. 
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As previously introduced, a gradient magnetic field causes phase shifts on the 

spins in the direction of the applied gradient. The pulsed-gradient spin echo sequence 

introduced by Stejskal and Tanner, (1965) adds diffusion gradients to the pulse sequence 

diagram described before (Figure 1.2). In addition to the slice selection gradient, the 

frequency-encoding gradient, and the phase-encoding gradient, a diffusion gradient is 

applied in a specified cartesian direction (G), strength (g), pulse duration δ, and time 

between dephasing and rephasing pulses Δ (Figure 1.2). Applying the phase shift 

(dephasing) gradient causes spins to have varying precession frequencies based on spatial 

location (Figure 1.1 and 1.2). Turning off the gradient results in the spins returning to the 

same Larmor frequency; however, each spin has its own spatially dependent phase 

encoding. A second phase shift (rephasing) gradient and a 180-degree inverting pulse is 

then applied that is equal in strength but opposite in direction. All spins that remained 

static in the direction of the gradient will return to their initial state. In other words, a spin 

with a positive phase shift after the first gradient encoding will have its phase shift 

negated after the second gradient encoding. On the other hand, spins that have diffused in 

the direction of the gradient will retain some phase shift. Phase shifts result in less 

synchronous sinusoids in the FID signal, resulting in lower intensity values. Spins that 

have moved a larger distance in the time between the dephasing and rephasing gradients 

will experience a larger signal intensity loss. This procedure is repeated multiple times 

for multiple diffusion gradients. The MRI parameters defining the diffusion gradients (g, 

δ, Δ), and the gyromagnetic ratio γ are often described as the b-value, b (Equation 1.1) 

(Figure 1.2).  

� = γ���(Δ − 	
 �)��     Equation 1.1 
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The FID signal magnitude is described as in Equation 1.2, where �� is the FID 

magnitude of the ith diffusion gradient, where i=0 is referred to as the b0 image (no 

diffusion encoding), and D is the diffusion coefficient. The equation is often solved for D 

to obtain the diffusion coefficient given the baseline signal, the signal acquired, and the 

MRI parameters. 

�� =  ��exp (−��)    Equation 1.2 

Lastly, analogous to k-space, q-space is sampled by repeating the pulsed-gradient 

spin echo sequence; each q-vector represents one phase shift gradient weighting direction 

and strength, and this represents one diffusion weighted image (Hagmann et al., 2006; 

Özcan, Wong, Larson-Prior, Cho, & Mun, 2012). 

 
 

 

Figure 1-2: Pulsed Gradient Spin Echo Sequence Diagram 
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Pulsed gradient spin echo sequence diagram utilized in diffusion imaging. The Diffusion 

encoding parameters determine the b-value weighting. The 180-degree pulse effectively 

reverses the direction of the diffusion encoding, so that the second diffusion encoding 

gradient is equal and opposite in direction. 

 

 

1.4.2 ESTIMATING FIBER ORIENTATION 
 
 

1.4.2.1 WHITE MATTER ANISOTROPY 

 
 

The diffusion signal captured by diffusion imaging depends on the tissue being 

imaged. The brain consists of cortical, subcortical, and cerebellar gray matter, and these 

regions are connected via tightly bound axonal fiber bundles called white matter. In an 

open medium, water molecules will randomly diffuse with a Gaussian spatial 

distribution; however, in the presence of impermeable barriers, the displacement distance 

is reduced, and the distribution would be narrower when compared to unrestricted 

diffusion. Axonal fibers are surrounded by glial cells, and densely packed bundles of 

axons create a diffusion barrier to water molecule diffusion perpendicular to the fiber 

bundles, whereas diffusion is unrestricted parallel to the fiber bundles (Hagmann et al., 

2006). Isotropic diffusion describes water diffusion that is unrestricted during the 

observed time frame. Cerebral spinal fluid exhibits isotropic diffusion, and since water 

diffusion is unrestricted, the diffusion signal is low. Anisotropic diffusion describes water 

diffusion that is restricted in at least one direction. White matter exhibits anisotropic 

diffusion, and hence the diffusion signal would be low in the direction of white matter 

tracks if the b-vector is applied in that fiber bundle orientation. To capture complex fiber 

structures and orientations in the brain, multiple b-vectors are required. Gray matter 

exhibits a combination of iso- and anisotropic diffusion.  
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1.4.2.2 MATHEMATICAL MODELS FOR FIBER ORIENTATION 

 
 

Diffusion models are utilized in order to reduce the high dimensionality of 

diffusion imaging data. The diffusion imaging sequence produces many 3D images, 

containing information about the diffusion profile at any given voxel in 3D space for 

every vector in q-space. This high-dimensionality image is reduced using diffusion 

models that assign a scalar to the anisotropy of the signal, and a separate image 

describing the main directionality of the underlying fiber orientation distribution. Other 

scalars can be obtained, such as the mean diffusivity (MD) which describes the mean 

diffusion in the diffusion signal.  

The diffusion tensor model is the most commonly applied diffusion model. It 

results in a 3x3 matrix that applies an ellipsoidal shape to the diffusion in 3D space by 

assuming that the displacement distribution is Gaussian. Another assumption in the 

model is that the diffusion signal at every voxel originates from one fiber bundle; this 

assumption is complicated by the underlying complexity of the brain’s fiber orientations. 

From the matrix, three eigenvectors describe the diffusion shape in three orthogonal 

directions, and the largest eigenvector describes the primary diffusion direction (Basser, 

Mattiello, & LeBihan, 1994). A minimum of six diffusion-weighted images (b-vectors, or 

samples in q-space) are needed in order to model the tensor. The most commonly 

reported value from the tensor model is the fractional anisotropy (FA), which compares 

every eigenvalue (��) with the mean of the eigenvalues (��) (Equation 1.3). 

�� =  �
� �(�����)��(�����)��(� ���)����� ���� � �    Equation 1.3 
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An assumption in the tensor model is that there is only one main fiber direction. 

Although this may be true for larger fiber bundles such as segments of the corticospinal 

tract and the corpus callosum, 63-90% of voxels in the brain are estimated to have 

complex fiber structures such as crossing or kissing fiber bundles (Jeurissen, Leemans, 

Tournier, Jones, & Sijbers, 2013). In the tensor model, crossing fibers of similar size 

would be estimated by the tensor model as a disc rather than an ellipsoid, because there 

would be no dominating eigenvector; there would be no preferential diffusion direction, 

and the tensor would be more isotropic. 

 To capture complex fiber structures, the q-space can be sampled more densely by 

acquiring many diffusion-weighted images (high angular resolution diffusion MRI, or 

HARDI). Every b-vector samples a point in q-space, where the distance between the 

origin and the sample is the b-value; measuring 150 or more diffusion-weighted images 

constructs a “ball” in q-space (if the b-value is kept constant). The resulting 4D diffusion 

image (150 diffusion-weighted images, in addition to the b0 images) can be modeled at 

each voxel with an orientation distribution function (ODF), which is a deformed sphere 

with a radius in a given direction proportional to the sum of the values of the diffusion 

probability density function in that direction (Hagmann et al., 2006).  

One approach to estimate the distribution of fiber orientations in a voxel is using 

constrained spherical deconvolution (CSD) (Tournier, Calamante, & Connelly, 2007) by 

deconvolving the signal obtained during HARDI by the response function; the response 

function assumes the signal of a single fiber bundle.  Another model is the simple partial 

volume model (the ball-and-sticks approach), which is the one we employed in this 

dissertation. This model assumes the diffusion signal comes from two-compartment 
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partial volume model: an anisotropic and an isotropic compartment. The model is then 

expanded to a distribution of fiber orientations by assuming that every subvoxel has only 

one fiber direction, and that the acquired MR signal is the sum of subvoxels. Again, the 

model assumes an isotropic component and an anisotropic component defined by a 

distribution of fiber orientations. For more information, we direct the reader to the 

publication where the model is developed (Behrens, Woolrich, et al., 2003). The major 

parameters obtained from this model include the fraction of the signal contributed by 

anisotropic fiber direction, f, and the dispersion of the main and secondary (in crossing-

fiber voxels) fiber directions. These could in turn be used as surrogate measures of FA 

(Douaud et al., 2009). 

 

1.4.3 ESTIMATING FIBER TRACTOGRAPHY 
 
 

Given the local voxel-level fiber orientation, fiber tractography methods can be 

implemented to obtain a measure of global structural connectivity. Specific fiber bundles 

can be constructed by placing seed points, way points, and end points; additionally, 

stopping criteria are required to prevent fiber tracks from entering implausible regions. 

Seed points initialize a trajectory, and subvoxel steps are iterated in the direction of the 

fiber orientation at the voxel. Subsequently, these fiber tracks enter a new voxel and 

continue in the direction defined by that voxel. If the goal is to construct the corticospinal 

tract, the seed point may be set at the premotor cortex, way points may be defined at the 

posterior limb of the internal capsule, and the end point would subsequently be at the 

pons. Thus, only fiber tracks that touch all three regions would be accepted. Whole-brain 

tractography seeds the entire brain volume (either at the white matter-gray matter 
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interface, or all of the white matter) (Hua et al., 2008). Tractography can be constrained 

further to only include tracks that end in gray matter (Lemkaddem, Skioldebrand, Dal 

Palu, Thiran, & Daducci, 2014; R. E. Smith, Tournier, Calamante, & Connelly, 2012). 

Deterministic fiber tractography projects one fiber trajectory (streamline) along 

the main fiber orientation. Typically, the stopping criteria is an anisotropy threshold 

(based on the tensor model), or the maximum curvature of the track (Mori, Crain, 

Chacko, & van Zijl, 1999). A common limitation to deterministic tractography is its 

inability to map out crossing fibers, specifically those crossing in the pons, or fanning 

fibers specifically those in the corona radiata (Behrens, Johansen-Berg, et al., 2003). 

Probabilistic tractography utilizes complex models that can estimate multiple 

fiber orientations at a voxel, such as CSD or the ball-sticks model. This methodology 

estimates a distribution of possible connections by sampling multiple streamlines; the 

probability of a connection can then be estimated as a normalized sum of fibers crossing 

a voxel. Unlike the deterministic approach which seeds one voxel and generates one 

streamline via a defined fiber orientation, probabilistic tractography—in particular, the 

algorithm employed in FMRIB Software Library (Behrens, Berg, Jbabdi, Rushworth, & 

Woolrich, 2007)—randomly seeds hundreds to thousands of starting points in a sphere 

within the voxel and generates thousands of streamlines via perturbations around the 

primary and secondary fiber orientations. At every step, the streamline trajectory is 

perturbed slightly; however, trajectories are favored in the direction of greatest diffusion 

coefficient. 

Using the ball-and-sticks model, probabilistic tractography utilizes the dispersion 

as a measure of uncertainty—how certain the algorithm is of the fiber orientation. The 
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greater the dispersion, the greater the standard deviation in that particular fiber 

orientation. If two fiber populations are estimated per voxel, two dispersion images are 

estimated, each with 50 perturbations along that fiber orientation. Seeding thus follows a 

unique direction at every iteration. As streamlines enter a new voxel, the streamline 

draws from that orientation distribution, the main fiber orientation, and the dispersion. 

Lastly, with the exception of the fiber curvature angle, probabilistic tractography employs 

other termination criteria as compared to deterministic tractography. Rather than use a 

fiber anisotropy threshold to terminate streamlines and prevent them from entering 

regions with low uncertainty, probabilistic tractography continues to propagate 

streamlines. However, as streamlines enter regions with high uncertainty (low 

anisotropy), streamlines take on a wider distribution of trajectory directions. Thus, the 

probability of any of those streamlines being the true underlying fiber bundle decreases. 

Probabilistic tractography requires more computational power than deterministic 

tractography to map the whole-brain structural connectome due to the thousands of 

streamlines per voxel. Computer parallelization techniques can be employed by splitting 

up the total number of generated streamlines into multiple computer cores, and randomly 

selecting from the orientation distribution in every core so that no two cores produce the 

same results. 

 

1.5 BIOMARKERS OF MOTOR IMPAIRMENT AND RECOVERY 

 
 

1.5.1 WHITE MATTER INTEGRITY 
 
 

As previously stated, measures of diffusion anisotropy and fiber connectivity can 

be used as biomarkers for stroke recovery and rehabilitation. Motor impairment, fine 
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motor control, and hand function is related to FA of the corticospinal tract (Koyama & 

Domen, 2017; Mang et al., 2015; Puig et al., 2010; Schulz et al., 2012; Wen et al., 2016) 

in both chronic and acute stroke (Puig et al., 2011). The FA rests on the assumption of 

one major fiber bundle in the voxel, and although it has been validated in large fiber 

tracks (Budde & Annese, 2013; Budde & Frank, 2012), it is only sensitive to local effects 

of the lesion (Kalinosky, Schindler-Ivens, & Schmit, 2013) and is affected by complex 

fiber structures (Behrens, Woolrich, et al., 2003). Not only will FA be smaller in areas of 

crossing fibers. A decrease in FA might indicate axonal degeneration (Vedantam et al., 

2014). However, an increase in FA might not necessarily mean increased axonal 

integrity; white matter degeneration in perpendicular fibers (Douaud et al., 2011; 

Wheeler-Kingshott & Cercignani, 2009) can artificially increase FA.  

 

1.5.2 WHITE MATTER CONNECTIVITY 
 
 

1.5.2.1 CALCULATING THE CONNECTOME FROM TRACTOGRAPHY 

 
 

A connectivity matrix can be constructed after calculating fiber tracts seeded at 

every voxel. Voxels can be grouped based on anatomical information from gray matter 

gyri segmentation, or using segmentation based on independent component analysis from 

fMRI data. Voxels that share a fiber tract are then considered structurally connected, and 

the sum of the connectivities of all voxels in a region are summed to represent that 

region’s connectivity. Alternatively, the connectome can be kept at the finer resolution of 

the voxel level (Rubinov & Sporns, 2010; Zalesky et al., 2010). Key terms in graph 

analysis are nodes (gray matter regions in our context), edges (white matter tracts), direct 

connections, or level-1 connections (in which two gray matter nodes are connected by a 
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white matter tract), and indirect connections, or level-2 connections (in which two gray 

matter nodes are connected via a third node). A “step” refers to the progression from 

direct to indirect connections (level-1 to level-n). 

 

1.5.2.2 GRAPH ANALYSIS 

 
 

Graph analysis utilizes graph theory and mathematical approaches to solve these 

problems. These calculations are done at the matrix level. Given that a row and column in 

a connectivity matrix denotes two gray matter nodes (assuming the row and column are 

unique), and the white matter tract is represented by a vertex in the matrix, graph 

theoretical parameters can be computed. A direct connection is all nodes connected to a 

node of interest by an edge. In the matrix, a direct connection can be determined by 

obtaining the set of all columns with non-zero entries for every row. An indirect 

connection is a connection that connects two nodes via a third node without forming 

triangles; in other words, a node cannot be an indirect connection if it is already a direct 

connection. This can be calculated in the matrix by first determining all of the columns 

with non-zero entries at every row and looking at that set of rows to identify columns that 

were not present in the first set. Other advanced measures include the clustering 

coefficient which measures the level of connectedness between all direct connections of a 

node, and the shortest path length which measures the minimum number of steps 

connecting given regions. Lastly, the small-world metric measures the level of 

segregation and integration in a graph network. Read Rubinov & Sporns, (2010) for a 

review.  
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Some measures have been developed in the context of human brain connectivity. 

J. J. Crofts & Higham, (2009) developed the weighted communicability as a way to 

increase the sensitivity to disruptions in connectivity in the contralesional hemisphere. 

Indirect connectivity—in which two nodes are connected via an intermediary node—is 

particularly applicable in brain connectivity analyses because regions in the brain are 

either directly or indirectly connected. Typically, direct connections are assigned as 

“level-1” connections, while the immediate indirect connection is the “level-2” 

connection. Direct connections of indirect neighbors (“level-3”) have been found to be 

sensitive to changes in brain connectivity after stroke, with higher sensitivity to global 

damage to connectivity and higher predictability to motor impairment after stroke 

(Kalinosky et al., 2013).  

 

1.6 MOTOR-RELATED PATHWAYS AND RECOVERY 

 
 

The brain is a collection of gray matter regions housing neural bodies that process 

information, and white matter volumes bundling axonal fiber that transfer information. 

Damage to the motor system can be caused by either damage to the gray matter regions 

initiating movement, to regions involved in the coordination of movement, or to white 

matter volume involved in the conduction of motor and sensory information. In other 

words, the motor system is complex and redundant, but also vulnerable. For instance, an 

animal model recently showed that cortical lesions had a greater percent improvement at 

8 weeks than striatal lesions (Karthikeyan, Jeffers, Carter, & Corbett, 2019), potentially 

due to the redundancy in the cortical motor system (Jones & Adkins, 2015; Karthikeyan 

et al., 2019).  
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Complex motor behavior involves connectivity between specialized regions. 

Subcortical regions are involved in complex motor feedback systems that include the 

putamen, the thalamus, and the striatum. With the exception of the sensorimotor cortex, 

cortical structures are thought to play a role in movement initiation. The cerebellum, 

although a smaller structure compared to the cerebrum, is highly connected and is 

involved in posture and temporospatial coordination, among other motor and non-motor 

tasks. Damage to white matter may affect not only the conduction of information from 

connected motor regions, but also information from other regions. Additionally, 

degeneration of myelin sheaths may reduce the speed of conduction, resulting in a 

gradation of motor deficits. 

 

1.6.1 CORTICOSPINAL TRACT 
 
 

The corticospinal tract is the major descending white matter pathway and it is 

associated with motor control. It begins in the motor cortex, descends to the cerebral 

peduncle, and crosses to the other hemisphere via the pons as it connects with lower 

motor neurons in the spinal cord. In stroke, direct damage to it (lesion load) and the 

integrity of it after cortical damage has been associated with motor impairment, strength, 

coordination, and recovery (Koyama & Domen, 2017; Puig et al., 2013; Schulz, Braass, 

et al., 2015).  

 

1.6.2 COMMISSURAL PATHWAYS 
 
 

The corpus callosum is a major commissural pathway that connects cortical 

regions interhemispherically. It can be subdivided in the rostral-caudal direction, and is 
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regions. The volume of affected white and gray matter related to motor impairment, 

which motivate future studies to further develop these measures so that they can be 

implemented in the clinic. 

 

 

Figure 5-1: Case study of a chronic stroke participant with remote changes in indirect 

connectivity after stroke 

This chronic stroke participant (lesion shown in blue) has reduced indirect connectivity 

in cortical, subcortical, and cerebellar regions (top figure, red) and reduced structurally-

weighted fractional anisotropy (bottom, red). 

 

 

Additionally, our results were able to distinguish the structural connectivity of 

chronic and subacute stroke participants. A case study is shown in Figure 5.2. The same 

subject is shown at the subacute stage (top) and chronic stage (bottom), and the reduced 

indirect connectivity compared to the mean of the control group is shown in red. 

Determining the connectivity profile of subacute stroke participants may become a 

powerful tool in stroke rehabilitation and could serve diagnostic purposes. Although the 
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sample size was small, the preliminary results are promising: subacute-stage indirect 

connectivity of the cerebellum may predict improvements in stroke impairment. 

 

 
Figure 5-2: Case study comparison between indirect connectivity of subacute and 

chronic stroke 

The indirect connectivity decrease compared to the mean of the control group is shown in 

red for the stroke participant at the subacute (top) and chronic (bottom) stage. Lesion is 

shown in blue. 

 

 

Lastly, we documented new evidence of changes in cerebellar structural 

connectivity after stroke—a finding that has sparsely been reported in diffusion imaging 

studies. Changes to cerebellar activation, functional connectivity, perfusion and gray 

matter volume have been documented after lesions to the cortico-cerebellar loop, likely 

due to reduced excitatory inputs. The cerebellum is indirectly connected to the cerebrum 

via indirect structural connections. Using indirect structural connectivity based on 

diffusion MRI has been shown in our study to be sensitive to changes in cerebellar 

connectivity after stroke. We additionally related these changes to motor impairment. 

Although the cerebellum is mainly involved in coordination, and our behavioral measure 
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is not a measure of cerebellar dysfunction, this indicates the cerebellum exhibits damages 

connectivity after stroke, and these changes may relate to motor deficits.  

 

5.2 FUTURE WORK: INDIRECT CONNECTIVITY AND FUNCTIONAL CONNECTIVITY 

 
 

Regions can be functionally connected even in the absence of direct structural 

connections. Understanding the relationship between structure and function after stroke, 

particularly in longitudinal studies, may be clinically important especially for prognostic 

purposes. Kalinosky and colleagues found reduced structurofunctional connectivity in 

cerebellar-cortical tracts after stroke (2017) using a method that weighted functional 

connections via structural connections. Chapter 3 introduced a similar approach with 

similar results: we weighted fractional anisotropy by structural connections. It was the 

residual WM structure that—when averaging the FA along the WM track—related to 

motor impairment. A major finding of our study was the ability of indirect connectivity to 

measure changes in structural connectivity to the cerebellum after stroke, in particular 

demonstrating differences in connectivity between subacute and chronic stroke.  

The relationship between function and structure in the stroke brain, in particular 

using indirect structural connectivity, should be used to further investigate subacute 

stroke recovery. Using indirect and direct connectivity may better relate to functional 

connectivity, and a measure that combines direct and indirect structural connectivity, and 

functional connectivity should be implemented in stroke studies. This approach could 

elucidate mechanisms that are better able to explain the variance seen in stroke motor 

impairment. For example, relating the reduced structural connectivity in the cerebellum 
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to functional connectivity may help identify particular cerebellar structures with reduced 

structural-functional connectivity. 

Additionally, better tests of motor impairment and function should be used. In 

addition to the Fugl-Meyer, clinical scores obtained longitudinally such as the Wolf-

Motor score (Woodbury et al., 2010), Box and Blocks (Chen et al., 2009), gross motor 

output, and measures of cerebellar ataxia (Schmitz-Hubsh et al., 2006) should be 

investigated. For example, the cerebellum was related to motor impairment in our study; 

however, it would be interesting to investigate how the cerebellum modulates recovery in 

motor function. 

The findings of this work and of future studies that combine indirect structural 

connectivity with functional connectivity with the aim of tracking changes in cerebellar 

connectivity and how they relate to motor recovery could help develop imaging 

techniques that can be used in the clinic. Although the work we have done has brought 

down computational time in diffusion imaging techniques, more work can be done such 

as fine-tuning the necessary streamlines required for whole-brain tractography, and 

running region-of-interest analyses rather than whole-brain analyses. Additionally the 

work demonstrated in this study and proposed here could help develop imaging 

techniques sensitive to identifying patients most likely to benefit from rehabilitative 

techniques, and prognosticating patients at the subacute stage to predict chronic stage 

brain connectivity and function. 

 

6 CHAPTER 6: APPENDIX: ADDITIONAL FIGURES 

 
 



126 

 

  

Probabilistic tractography is a computational burden, requiring thousands of 

starting-point streamlines per voxel. In order to lessen the computational burden, we 

estimated the minimum required streamlines required to perform whole-brain 

probabilistic tractography while maintaining the same amount of information. 

 
 

 
Figure 6-1: Percent change between after adding 10 more streamlines per sample vs 

Number of streamlines samples per voxel.  

As pertaining specifically to the second chapter, we sampled the entire gray matter 

volume at 10 streamlines per voxel and continuously added 10 more streamlines per 

voxel and calculated the percent change of the average connectome probability between 

every two consecutive runs in order to determine the point at which adding more 

streamlines per voxel results in negligible change. We selected 500 streamlines per voxel 

as the optimal amount. 

  
 

In order to properly map the connectivity of the cerebellum (physiologically 

connected contralaterally to the thalamus), we seeded the right cerebellum and allows 

unconstrainted tractography to take place. The cerebellum connects contralaterally to the 

thalamus in probabilistic tractography. 
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Figure 6-2: Validating cerebellar connectivity 

Seeding the right dentate nucleus and adding a waypoint at the left thalamus results in 

cross-connectivity. We note that the cerebellum does connect to the contralateral 

thalamus, but streamlines pass through the thalamus (the physiological endpoint) and 

continue onto the cortex and cross the corpus callosum into the ipsilateral cortex. This 

produces false-connections between the cerebellum and the ipsilateral cortex, which 

could be a factor as to why we saw changes in connectivity in the contralesional 

hemisphere in chapter 3 (aim 2). 

 

 

 
Figure 6-3: Seeding the gray matter vs the gray matter/white matter boundary: future 

work 

Chapter 2 seeded the gray matter volume in order to determine gray-matter connectivity, 

and chapters 3 and 4 seeded white matter volume in order to determine white matter 

tracks. Future work would need to assess the level of information obtainable by seeding 

the GM/WM boundary. Seeding the boundary results in a greater span in connectivity, 

and determining how the connectome and the probability of connectivity changes would 

be necessary in order to determine the best approach. 
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Figure 6-4: Determining the effect of running tractography in parallel 

We ran tractography in parallel in all three aims, and before doing that we assessed the 

difference in connectivity probability at every voxel between running tractography in 

parallel or not. We seeded every WM voxel at 500 streamlines per voxel and compared 

the percent difference. Most large white matter tracks and their volumes were within 5%. 

Edges of large white matter tracks were within 5 and 10%. 

 
 



129 

 

  

 
Figure 6-5: Example of direct and indirect connections 

Seeding a single voxel in the cerebellum produces direct connections (red) in the 

cerebellar peduncle, crossing over to the contralateral side (as can be seen in the 

coronal slice in the top row). Indirect connections (blue) connect that single voxel to 

other voxels in the cerebellum, expanding the span of connections. Additionally, indirect 

connections connect the single voxel to bilateral thalamic regions. 
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Figure 6-6: Correlation between the change in Fugl-Meyer score at the 6-month follow-

up and the subacute scan VISC in the SCP 

Pertaining to chapter 4 (aim 3), we correlated the change in Fugl-Meyer score at the 6-

month follow-up with the VISC in the right SCP at the subacute scan. We note a high 

correlation, indicating that participants with high initial connectivity in the 

contralesional SCP saw more increase in their Fugl-Meyer score (measure of motor 

impairment). 
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