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Several Levels of Theory for Description of 
Isotope Effects in Ozone: Symmetry Effect 
and Mass Effect 
 
Alexander Teplukhin 
Department of Chemistry, Marquette University, Milwaukee, Wisconsin, United States 
Dmitri Babikov 
Department of Chemistry, Marquette University, Milwaukee, Wisconsin, United States 
 

Abstract 
The essential components of theory for the description of isotope effects in recombination reaction that forms 
ozone are presented, including the introduction of three reaction pathways for symmetric and asymmetric 
isotopomers, a brief review of relevant experimental data for singly- and doubly substituted isotopologues, the 
definitions of ζ-effect and η-effect, and the introduction of isotopic enrichment δ. Two levels of theory are 
developed to elucidate the role of molecular symmetry, atomic masses, vibrational zero-point energies, and 
rotational excitations in the recombination process. The issue of symmetry is not trivial, since the important 
factors, such as 1/2 and 2, appear in seven different places in the formalism. It is demonstrated that if all these 
effects are taken into account properly, then no anomalous isotope effects emerge. At the next level of theory, a 
model is considered in which one scattering resonance (sitting right at the top of centrifugal barrier) is 
introduced per ro-vibrational channel. It is found that this approach is equivalent to statistical treatment with 
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partition functions at the transition state. Accurate calculations using hyper-spherical coordinates show that no 
isotope effects come from difference in the number of states. In contrast, differences in vibrational and 
rotational energies lead to significant isotope effects. However, those effects appear to be local, found for the 
rather extreme values of rotational quantum numbers. They largely cancel when rate coefficients are computed 
for the thermal distribution of rotational excitations. Although large isotope effects (observed in experiments) 
are not reproduced here, this level of theory can be used as a foundation for more detailed computational 
treatment, with accurate information about resonance energies and lifetimes computed and included.

 
 
 
I. Introduction 
Ozone in the upper atmosphere of Earth, and in relevant laboratory experiments, is formed by a seemingly 
simple recombination reaction: O + O2 → O3. One of the mechanisms behind this process involves the formation 
of the metastable O3

∗  and the following stabilization of these intermediate species through energy transfer to 
the bath gas (the air of the atmosphere—or Ar in the laboratory experiments).(1,2) This energy transfer 
mechanism, also known as the Lindemann mechanism, is probably responsible for the generation of 
anomalously large mass-independent fractionation of stable oxygen isotopes,(3−7) which has significant 
implications for the atmospheric chemistry of the Earth.(8−11) The molecular level origin of this fractionation 
effect is not entirely understood(12−14) and is a subject of this paper. 

In the simplest approach to theoretical description of the ozone forming reaction, one assumes that the 
metastable intermediate species O3

∗  are present in fast equilibrium with reagents (pre-equilibrium 
approximation): 

O + O2  ⇔ O3
∗  + bath gas

→
 O3  

(1) 

In this case, the rate of ozone formation, written using the equilibrium concentration of O3
∗ , leads one to the 

following expression: 

d[O3]
d𝑡𝑡   =  𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[M][O3

∗ ] =  [M][O][O2]𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐾𝐾
 

(2) 
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where [M] is the concentration of the bath gas. Rate coefficient kstab is introduced for stabilization step, and the 
equilibrium constant K = [O3

*]/[O][O2] is introduced for the formation step. Then, the effective third-order rate 
coefficient for recombination is simply k = kstabK. Statistically, the equilibrium constant K is determined by the 
ratio of the partition functions of intermediates and reagents, but it also takes into account the activation 
energy E‡ for reaching the intermediate species, thus:  

𝑘𝑘 =  𝑘𝑘stab𝑒𝑒−𝐸𝐸
‡/𝑘𝑘𝑘𝑘   𝑄𝑄O3∗  /𝑄𝑄𝑂𝑂+𝑂𝑂2    

(3) 
In principle, when the masses of oxygen atoms are changed by isotopic substitutions, all four moieties in the 
right-hand side of this expression will change, leading to some isotope effects. So, ideally, a theory is needed 
that accurately predicts the properties of intermediate ozone states (their spectrum and partition function), 
their energy relative to reagents, the process of their formation from (and decay back to) the reagents, and, 
finally, their quenching by the bath gas. At present time such theory does not exist. A brute-force approach for 
predicting all these properties by rigorous quantum-mechanical calculations remains unfeasible. 

During the last two decades a significant body of work was done on several individual pieces of the overall 
recombination process. Quantum mechanical calculations of energies and lifetimes of O3

∗  states were carried out 
and their possible role in the isotope effects was elucidated.(15−19) Stabilization of the intermediate O3

∗  was 
studied by approximate quantum dynamics methods,(20−27) and using classical trajectories.(28,29) Statistical theory 
developed by Marcus and co-workers(30−34) helped to rationalize the overall trends of isotopic dependencies. 
More recently a newer accurate potential energy surface (PES) was developed for ozone,(35) which led to the 
more complete calculations of the vibrational states of O3,(36−38) and an improved description of the isotope-
exchange process in O +  O2 collisions.(39−41) Finally, accurate calculations of energies and lifetimes of O3

∗  for a 
broad range of vibrational and rotational excitations was carried out, which allowed to reproduce rather well 
both temperature and pressure dependencies of the recombination process.(42) 

In this paper we apply our recently developed computational tools to improve our understanding of possible 
isotope effects during the first step of the ozone forming reaction, which is formation and decay of the 
metastable O3

∗ , described in quantum mechanics as scattering resonances. The final step of recombination 
reaction (stabilization) is treated approximately, by assigning the same value of stabilization cross section to all 
O3
∗  states, irrespectively of their rotational and vibrational content. However, our treatment of O3

∗  states is 
nearly exact. We use the latest PES and employ hyper-spherical coordinates for the description of vibrational 
and rotational motion of oxygen atoms in ozone. The full range of relevant rotational excitations is included 
using the Hamiltonian of a “fluid” symmetric top rotor (which is a model appropriate for ozone(14,18)), with its 
moments of inertia adiabatically adjusted to the instantaneous shape of the vibrating molecule. Large amplitude 
vibrational motion is described accurately by the symmetry adapted combination of FBR and DVR techniques 
(for the internal motion and for reaction coordinate, respectively). Efficiency is achieved by sequential 
diagonalization–truncation procedure. The lifetimes of scattering resonances are computed by the placement of 
a complex absorbing potential in the asymptotic region of the PES. 

Using this accurate approach, we carry out the calculations of O3
∗  states (wave functions, energies, lifetimes) for 

singly and doubly substituted ozone isotopologues, both symmetric and asymmetric 
isotopomers: 16O16O18O, 16O18O16O, 16O18O18O, and 18O16O18O. These data are used as input for the kinetic 
formulas to obtain recombination rate coefficients, and finally to derive and analyze the resultant isotope 
effects. The tools needed for analysis of isotope effects are also presented, including the definitions of the ΔZPE 
effect and η-effect, and some review of experimental data, in section II.D and section II.E. 
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During the course of this work, we realized that it is nearly impossible to rationalize the raw results of our 
quantum mechanical calculations by, let us say, simply comparing results for one ozone molecule with results 
for another. Indeed, these calculations, carried out in a broad range of rotational excitations for multiple 
isotopologues and isotopomers of ozone, produce literally the tens of thousands of bound, resonant and 
scattering states with widely varying properties. It should also be understood that the isotope effects we are 
dealing with are not the small regular isotopic shifts familiar from textbooks (that affect fundamentals near the 
bottom of the potential well). Our focus is on energy range above dissociation threshold, with three-hundred 
bound vibrational states laying below. At this energy, the spectra of different ozone molecules look completely 
different and no one-to-one comparison of individual ro-vibrational states is practical. 

We also found that if all this swarm of resonance data is routed directly into the kinetics equations (to predict 
recombination rates), then basically no physical insight emerges. In particular, in this way it is impossible to 
determine whether there is any sign of the mysterious η-effect in our data, and where this relatively small effect 
might come from. Indeed, although our results exhibit some features observed in experimental data, the 
agreement is not yet perfect, and this remaining discrepancy makes it difficult to accept the results of 
calculations without interpretation. Where the isotope effects are coming from? Are they due to the different 
number of states in different molecules, or the different decay rates of these states? Or due to the different 
energies of vibrational states in the spectrum? Or due to the rotational excitation? 

In order to answer these and other related questions we found instructive to develop a hierarchy of theory 
levels, in which our most complete calculations appear at the top. Several lower levels of theory take care of 
different physical phenomena in the overall process, individually, bringing them into play one by one. Familiar 
statistical tools, such as partition functions, activation energies and reaction endothermicities, appear in this 
approach naturally, and are dressed at the very end with quantum mechanical features, such as resonance 
widths. The isotope effects emerging from each source are thus elucidated and added to the previous level of 
theory, advancing theoretical treatment and unveiling the complex nature of the isotope effect. 

Namely, at what we call the zeroth-level of theory all isotopic differences are neglected, including even the 
mass-dependent effects, and the formula are checked for the correct incorporation of molecular symmetry. This 
is not trivial, since it requires the inclusion of important factors such as 2 and 1/2 in seven (!) different places in 
the theory, some of which cancel, but others survive. In the past a lot of confusion was created by including 
some of these factors in an ad hocway but forgetting some others. Here, in section II.C we report a transparent 
and complete description of all these factors, which should help other workers to avoid costly mistakes. 

At the next level of theory, in section II.F, isotopic masses are introduced, and the resultant isotope effects are 
analyzed, neglecting the quantum mechanical properties of the reaction coordinate (i.e., neglecting scattering 
resonances). It is shown that this level of theory, first-level, is equivalent to the statistical treatment of the 
recombination process (such as offered by Marcus and co-workers), except that here we compute the partition 
functions accurately, in contrast to using approximate analytic models, such as hindered rotor etc. At this level 
of theory, the emphasis is on how the rotational excitation of the system, determined by two quantum 
numbers J and Λ, influences two isotope phenomena: ΔZPE-effect (which is named ζ-effect in this work) and η-
effect. 

The influence of resonance properties on the isotope effects is explored in a separate paper,(48) using two more 
levels of theory. Namely, at the second-level of theory the scattering resonances will be introduced, but will be 
computed in a simplified way, by neglecting couplings between the diabatic vibrational channels. At the 
final, third-levelof theory these couplings will be taken into consideration and the multichannel nature of the 
ozone forming process will be fully incorporated (see Conclusions). 
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II. Theory and Methods 
II.A. Coordinates, PES and Reaction Pathways 
 
Here we briefly review the properties of the APH hyper-spherical coordinates, and of the ozone PES expressed in 
these coordinates, since this information is essential for understanding theoretical treatment developed in this 
paper. More details can be found in our recent papers.(43,44) 

Three vibrational degrees of freedom of a triatomic molecule, like ozone, can be described by the APH hyper-
spherical coordinates.(45) Although not as intuitive as Jacobi coordinates, hyper-spherical coordinates lead to the 
simplest form of the ro-vibrational Hamiltonian operator, but also, they permit to take into account molecular 
symmetry in a rigorous way, and to treat all reaction pathways on equal footing, which is essential for the ozone 
formation reaction. Recently, these hyper-spherical coordinates were employed for the calculations of the atom 
exchange in O +  O2  collisions,(41) for the predictions of the vibrational spectra of ozone,(37,38) and for the 
description of its recombination reaction.(42) At a qualitative level ρ, θ, and φ describe breathing, bending, and 
the asymmetric stretching of a triatomic molecule, respectively. As molecule dissociates to the products (or it 
forms from the reagents) the hyperradius ρ starts playing the role of reaction coordinate: O3

∗  →  O + O2. In the 
asymptotic range of the PES, the hyper-angles θ and φ describe the rotation of O2 product/reagent relative to 
the third O atom. Over the years we developed an illustrative way of presenting the PES of ozone in these 
coordinates using, what we call, the energy iso-surface approach.(46)Figure 1a gives a 3D view of the global PES of 
ozone. In this structure we see three potential energy wells where the stable O3 molecules are formed. Each 
well is connected to two dissociation/formation channels through two transition states. These connections are 
easier to see using the frontal view of the PES, when one looks along the hyperradial direction, as shown 
in Figure 1b. Energetically and physically equivalent wells (three of them), transition states (six) and 
entrance/exit channels (three) occur in the case of equivalent oxygen atoms, as, for example, in the 16O16O16O. 
However, in the cases of isotopic substitutions they represent physically distinct molecules and their respective 
formation processes. 
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Figure 1 

 

Figure 1. Two upper frames show the side- and the front-views of the PES of O3 presented as iso-energy surface in hyper-
spherical coordinates. Frame a permits one to see, in three dimensions, how the reagent channels connect to the product 
wells through narrow transition states, as the process of ozone formation proceeds along the reaction path, described here 
by the hyper-radius ρ. Frame b emphasizes the symmetry of the process described by the hyper-angle ϕ: three channels, six 
transition states and three wells. Frame c correlates with frame b, but gives a “map” of possible formation pathways for the 
case of singly substituted isotopologue, indicating the wells for symmetric 16O18O16O and asymmetric 16O16O18O, the three 
types of transition states for the processes A, B, and S in eqs 4 and 5, and the two types of the reagent channels, 16O 
+ 18O16O and 16O16O + 18O. The dashed line represents the reflection plane of symmetry. 

For example, Figure 1c explains the case of single isotopic substitution. One of the wells hosts symmetric 
isotopomer 16O18O16O. This well is connected to two physically and energetically equivalent channels: 

16O + 18O16O 𝑆𝑆
↔

 {16O18O16O}* 𝑆𝑆
↔

 16O18O + 16O   

(4) 
Two other wells of the PES in Figure 1c hold two asymmetric isotopomers, 16O16O18O and 18O16O16O, that are 
energetically and physically equivalent. Each such well is connected to two physically distinct entrance channels: 

16O + 16O18O 𝐴𝐴
↔

 {16O16O18O}* 𝐵𝐵
↔

 16O16O + 18O  

(5) 
The channel on the left-hand side of this process is effectively deeper, since the zero-point energy of isotopically 
substituted 16O18O is lower than that of the usual 16O16O in the right-hand side of the process. We see that, 
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overall, we have to describe three distinct processes: the formation of symmetric ozone isotopomers, and the 
formation of asymmetric isotopomers from two different entrance channels. In eqs 4and 5, those are labeled 
by S, A, and B respectively. Out of six transition states on the PES, two correspond to type S, two correspond to 
type A and two correspond to type B, as indicated in Figure 1c. Experimental data indicate that the processes of 
insertion, such as 18O + 16O16O → 16O18O16O, are 2 orders of magnitude slower(7) and thus can be ignored. 

The picture, similar to Figure 1c, and the formula, similar to eqs 4 and 5, can easily be written for two 
isotopomers of the doubly substituted ozone: 

18O + 16O18O 
𝑆𝑆
↔

 {18O16O18O}* 𝑆𝑆↔
 18O16O + 18O  

(4′) 
18O + 18O16O 

𝐴𝐴
↔

 {18O18O16O}* 𝐵𝐵↔
 18O18O + 16O  

(5′) 
Compared to the singly substituted case, the difference is that for 16O18O18O the deeper formation channel is in 
the pathway B with symmetric diatomic molecule, 16O + 18O18O, which has the lowest zero-point energy. In our 
theory we will always use the deeper entrance channel (first dissociation threshold) as energy reference point, 
which makes the value of ΔZPE (second dissociation threshold) always positive. 

II.B. Kinetics Equations 
In contrast to using a continuous density of states (as typically done in statistical theories) we take into account 
the quantization of the metastable O3

∗  states by introducing scattering resonances. For each O3
∗  resonance we 

consider the processes of its formation from, and decay to, two channels of the PES connected to a given well. 
For example, for each resonance of {16O16O18O}* or {16O18O18O}* we introduce its decay rates into the 
pathways A and B, given by two components ΓA and ΓB of the resonance width, Γ = ΓA + ΓB as follows: kdec

A = 
ΓA/ℏ and kdec

B = ΓB/ℏ (everywhere below, Plank’s constant is omitted for clarity). For symmetric isotopomers 
{16O18O16O}* or {18O16O18O}* the two components of the decay rate are exactly equal and physically 
indistinguishable, so, the total Γ = 2ΓS is used. From these (first-order spontaneous) decay rate coefficients the 
rate coefficients for the formation of each scattering resonance are computed using the equilibrium constant for 
each pathway: kform

A = KAΓA, kform
B = KBΓB and kform

S = KS2ΓS. Stabilization and dissociation rate 
coefficients kstab and kdiss are also introduced, and are intentionally taken equal for all resonances, to avoid any 
bias. Re-excitation of already stabilized O3 (back to O3

∗ ) by bath gas collisions, and resonance-to-resonance 
transitions due to collisions, are ignored. 

The analytic treatment of reaction kinetics follows the steady-state assumption (just like in the standard 
Lindemann mechanism) for the concentration of each metastable O3

∗  state, independently. Then, the 
contributions of individual metastable states to the recombination process are determined, similar to eq 
2 above, and are added all together, which leads to(17,19,24) 

d[O3]
d𝑠𝑠

=  [OA]�O2
A�[M] ∑  𝐽𝐽Λ𝑝𝑝 ∑ Γ𝑖𝑖

𝐴𝐴𝐾𝐾𝑖𝑖
𝐴𝐴𝑘𝑘stab

Γ𝑖𝑖+(𝑘𝑘stab+𝑘𝑘diss[M])
2𝑁𝑁
𝑖𝑖 +  [O𝐵𝐵][O2

𝐵𝐵][M]∑  𝐽𝐽Λ𝑝𝑝 ∑ 𝛤𝛤𝑖𝑖
𝐵𝐵K𝑖𝑖

𝐵𝐵𝑘𝑘stab
Γ𝑖𝑖+(𝑘𝑘stab+𝑘𝑘diss)[M]

2𝑁𝑁
𝑖𝑖

  

(6) 
d[𝑂𝑂3𝑆𝑆]
d𝑠𝑠

=  [O𝐴𝐴]�O2
A�[M] ∑  𝐽𝐽Λ𝑝𝑝 ∑ 2Γ𝑖𝑖

𝑆𝑆𝐾𝐾𝑖𝑖
𝑆𝑆𝑘𝑘stab

Γ𝑖𝑖+(𝑘𝑘stab+𝑘𝑘diss[M])
N
𝑖𝑖

  
(7) 

Note that eq 6 for the formation of asymmetric isotopomers, such as 16O16O18O or 16O18O18O, includes two terms 
for the contributions of two distinct pathways A and B. The values of reagent concentrations [OA] and [O2

A], 
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decay rates Γi
A and equilibrium constants Ki

A in pathway A are all different than those in pathway B: [OB], [O2
B], 

Γi
B, and Ki

B. Eq 7 for the formation of symmetric isotopomers, such as 16O18O16O or 18O16O18O, looks simpler 
because those two entrance channels are identical, and the corresponding terms can be combined. In each 
double-sum of eqs 6−7, the first summation is over the quantum numbers J and Λ, and the parity p. Note that if 
the rotational states of positive and negative parities are introduced (p = ±) then Λ is positive only, varied in the 
range 0 ≤ Λ ≤ J, with 0 ≤ J ≤ Jmax. The second summation in each double-sum of eqs 6 and 7 is over vibrational 
states, labeled here by i (within each set of J, Λ, and p). 

The number of vibrational states of O3
∗  is one important factor in eqs 6 vs 7. It is shown in the Appendix that the 

number of states of asymmetric 16O16O18O is expected to be twice larger than the number of states of 
symmetric 16O18O16O. This is reflected by 2N and N that indicate the upper limits of summation in eqs 6 and 7, 
respectively. Another factor to consider is equilibrium constant for formation and decay of a resonance. For 
each individual resonance at energy Ei, the microcanonical equilibrium constant is given by the following 
expression: K = (2J + 1)e–E

i/kT/QO+O2.(15) The partition function of reagents in the denominator of this expression 
is affected by isotopic substitutions and, besides a relatively small mass effect, includes also the effect of 
symmetry. Namely, in the heteronuclear diatomic molecule 16O18O of the pathway A all rotational states are 
allowed, while in the homonuclear 16O16O (or 18O18O) of the pathway B only odd rotational states are allowed (it 
is well-known that rotational levels j = 0, 2, 4, etc.are forbidden).(16,30,38) So, the partition function of reagents for 
pathway A is larger, roughly by a factor of 2, compared to the partition function of reagents in pathway B. Note 
that the formation of symmetric ozone molecules, such as 16O18O16O or 18O16O18O (labeled by S), proceeds 
through the same entrance channel as pathway A, so, the same partition function should be used. 

On the basis of this discussion, and from the structure of eqs 6-7, it makes sense to introduce the following 
three recombination rate coefficients: 

𝑘𝑘𝐴𝐴 =
𝑘𝑘stab
𝑄𝑄O+O2
𝐴𝐴 �(2𝐽𝐽 + 1) � e−𝐸𝐸𝑖𝑖/𝑘𝑘𝑘𝑘

Γ𝑖𝑖𝐴𝐴

Γ𝑖𝑖 + (𝑘𝑘stab + 𝑘𝑘diss)[M]

2𝑁𝑁

𝑖𝑖𝐽𝐽Λ𝑝𝑝

 

(8) 

𝑘𝑘𝐵𝐵 =
𝑘𝑘stab

𝑒𝑒−∆𝑍𝑍𝑍𝑍𝐸𝐸/𝑘𝑘𝑘𝑘𝑄𝑄O+O2
𝐵𝐵 �(2𝐽𝐽 + 1) � e−𝐸𝐸𝑖𝑖/𝑘𝑘𝑘𝑘

Γ𝑖𝑖𝐵𝐵

Γ𝑖𝑖 + (𝑘𝑘stab + 𝑘𝑘diss)[M]

2𝑁𝑁

𝑖𝑖𝐽𝐽Λ𝑝𝑝

 

(9) 

𝑘𝑘𝑆𝑆 =
𝑘𝑘stab
𝑄𝑄O+O2
𝐴𝐴 �(2𝐽𝐽 + 1) � e−𝐸𝐸𝑖𝑖/𝑘𝑘𝑘𝑘

2Γ𝑖𝑖𝑆𝑆

Γ𝑖𝑖 + (𝑘𝑘stab + 𝑘𝑘diss)[M]

𝑁𝑁

𝑖𝑖𝐽𝐽Λ𝑝𝑝

 

(10) 

 

They describe three possible ozone formation processes, consistent with Figure 1c. With these definitions, eqs 
6 and 7 turn into a simple intuitive form: 

d[O3]
d𝑡𝑡

= [O𝐴𝐴][O2
𝐴𝐴][M]𝑘𝑘𝐴𝐴 + [O𝐵𝐵][O2

𝐵𝐵][M]𝑘𝑘𝐵𝐵
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d[O3
𝑆𝑆]

d𝑡𝑡
= [O𝐴𝐴][O2

𝐴𝐴][M]𝑘𝑘𝑆𝑆
 

Note that in eq 9 the factor e–ΔZPE/kT before the partition function of reagents for pathway B is used to account 
for the zero-point energy difference of O2 in the entrance channels. As written, these equations are applicable to 
singly substituted ozone where the entrance channel of pathway A is deeper and serves as energy reference. For 
doubly substituted ozone molecules, where the entrance channel of pathway B is deeper, the factor e–

ΔZPE/kT would appear in the denominator of eq 8, before the partition function of reagents for pathway A. 

II.C. Zeroth-Level of Theory, and Three Sources of 1/2 
First, it is instructive to compare the values of kA, kB, and kS, taking into account symmetry considerations only, 
since those include relatively important factors, such as 2 and 1/2, that can lead to large effects. Smaller effects 
due to mass differences are neglected at this stage. We call this the “zeroth” level of theory. At this level we 
neglect the difference of decay rates into two channels, by setting ΓA ≈ ΓB ≈ 1/2Γ for each resonance. Analysis is 
simpler in the low-pressure limit, Γ ≫ (kstab + kdiss)[M], when the second term in each denominator of eqs 
8−10 can be neglected. This gives 

𝑘𝑘𝐴𝐴 ≈
𝑘𝑘stab

OO+O2
A

1
2�

(2𝐽𝐽 + 1)
𝐽𝐽Λ𝑝𝑝

� e−𝐸𝐸𝑖𝑖/𝑘𝑘𝑘𝑘
2𝑁𝑁

𝑖𝑖

 

(11) 

𝑘𝑘𝐵𝐵 ≈
𝑘𝑘stab

𝑒𝑒−∆𝑍𝑍𝑍𝑍𝐸𝐸/𝑘𝑘𝑘𝑘  QO+O2
𝐵𝐵

1
2�

(2𝐽𝐽 + 1)
𝐽𝐽Λ𝑝𝑝

� e−𝐸𝐸𝑖𝑖/𝑘𝑘𝑘𝑘
2𝑁𝑁

𝑖𝑖

 

(12) 

𝑘𝑘𝑆𝑆 ≈
𝑘𝑘stab

OO+O2
A

1
2�

(2𝐽𝐽 + 1)
𝐽𝐽Λ𝑝𝑝

� e−𝐸𝐸𝑖𝑖/𝑘𝑘𝑘𝑘
𝑁𝑁

𝑖𝑖

 

(13) 

In order to make these expressions even more concise and thus more transparent, it is convenient to introduce 
the partition functions of resonances for symmetric and asymmetric ozone molecules as 

𝑄𝑄𝑂𝑂3∗ = �  
𝑝𝑝

� e−𝐸𝐸𝑖𝑖/𝑘𝑘𝑘𝑘
2𝑁𝑁

𝑖𝑖

 

(14) 

𝑄𝑄𝑂𝑂3∗
𝑆𝑆

 
= �  

𝑝𝑝

� e−𝐸𝐸𝑖𝑖/𝑘𝑘𝑘𝑘
𝑁𝑁

𝑖𝑖

 

(15) 

Notice that the QO3
* of asymmetric ozone is expected to be larger than the QO3

*S of symmetric ozone by a factor 
of 2, due to the number of states, 2N vs N in eqs 14 and 15. Since the energies Ei of resonances depend on J and 
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Λ, the values of these partition functions are also rotation-dependent. Using these definitions, the expressions 
for three rate coefficients reduce to the following: 

𝑘𝑘𝐴𝐴 =
1
2𝑘𝑘stab

∑ (2𝐽𝐽 + 1)𝑄𝑄O3∗𝐽𝐽Λ

OO+O2
A

 

(16) 

𝑘𝑘𝐵𝐵 =
1
2𝑘𝑘stab

∑ (2𝐽𝐽 + 1)𝑄𝑄O3∗𝐽𝐽Λ

𝑒𝑒−∆𝑍𝑍𝑍𝑍𝐸𝐸/𝑘𝑘𝑘𝑘  OO+O2
B

 

(17) 

𝑘𝑘𝑆𝑆 = 𝑘𝑘stab
∑ (2𝐽𝐽 + 1)𝑄𝑄O3∗

𝑆𝑆
 𝐽𝐽Λ

 OO+O2
𝐴𝐴

 

(18) 

Note that besides symmetry related factors, the zero-point energy differences, and the effect of rotational 
excitation, these formulas look very similar to eq 3 of the Introduction. 

Table1 gives a summary of all factors that affect rate coefficients, for these three processes and also for the 
formation of the usual nonsubstituted ozone 16O16O16O, included for completeness. The third column of 
the Table1 is for the splitting of the decay rate Γ onto two pathways. It includes the factor of 1/2 for the 
formation of asymmetric ozone, since two physically distinct channels, those of pathways A and B, are available. 
The fourth column is for the number of O3

∗  states. It lists the factor of 1/2 for symmetric ozone molecules. The 
fifth column is for the number of reagent states in O2. It lists the factor of 1/2 (in denominator) for those two 
cases when a homonuclear diatomic molecule is the reagent. Column six of Table1 gives the overall effect, 
obtained as a product of columns three, four, and five. It shows that we should expect, roughly: 

2𝑘𝑘𝐴𝐴~𝑘𝑘𝐵𝐵~2𝑘𝑘𝑆𝑆~𝑘𝑘666 

(19) 

This nonintuitive result is consistent with eqs 16–18, with experimental data(2−6) and with their interpretation by 
Janssen et al.(7) 

Table 1. Important Factors of 1/2 and Other Symmetry Related Effects for Ozone Forming Reaction 
    three sources of 1/2         
process 
label 

isotopic reaction Γ QO3
* QO+O2 resultant 

rate 
coefficient 

reaction 
probability 
(Janssen et al.) 

Kex 

A 16O + 16O18O 
→ 16O16O18O 

1/2 1 1 k/2 ×2   

B 18O + 16O16O 
→ 18O16O16O 

1/2 1 
 

k   ×1/
2 

S 16O + 18O16O 
→ 16O18O16O 

1 1/2 1 k/2 ×2   

666 16O + 16O16O 
→ 16O16O16O 

1 1/2 
 

k     
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Indeed, a careful reading of ref(7) reveals that, in addition to the rate coefficients, experimentalists defined the 
reaction probabilities that are doubled if the reagent is a heteronuclear diatomic (such as in the 
processes A and S). This was done, most probably, for convenience, to introduce the quantities that do not differ 
by a factor of 2, and thus are more straightforward to compare. To emphasize this point, we included fifth 
column in Table1 that lists these two multiplication factors. Although we do not like the term “reaction 
probabilities”, we will also introduce, for consistency, an equivalent moiety (using Greek kappa symbol), namely: 
κA = 2kA, κB = kB, κS = 2kS, and κ666 = k666. With these definitions, we should expect that, roughly, κA ∼ κB ∼ κS ∼ 
κ666, at the zeroth-level of theory. 

II.D. Experimental Data, Isotope effects 
The experimental data of Janssen et al. are presented in Figure 2 for the κA, κB, and κSof singly and doubly 
substituted ozone. According to their original idea, horizontal axis is chosen to plot the zero-point energy change 
for the corresponding isotope-exchange process, like in eqs 4 and 5 and in 4′ and 5′. With this choice, the data 
points for the formation of symmetric isotopomers (16O + 18O16O → 16O18O16O and 18O + 16O18O → 18O16O18O) 
appear in the middle of the graph, since for these cases ΔZPE is zero. The data points for 18O + 16O16O 
→ 18O16O16O and 18O + 18O16O → 18O18O16O appear on the left side (negative ΔZPE), while the data points for 16O 
+ 18O18O → 16O18O18O and 16O + 16O18O → 16O16O18O appear on the right side (positive ΔZPE). Along the vertical 
axis we plot the unit-less ratios of rate coefficients, choosing the rate coefficient of symmetric species as a 
reference (separately for singly and doubly substituted ozone molecules), namely: RA = κA/κS, and RB = κB/κS. With 
this choice of reference, RS = 1 by definition, and the corresponding data points appear at the origin of the plot, 
for both singly and doubly substituted ozone molecules. Note that Janssen et al. used the rate coefficient of 16O 
+ 16O16O → 16O16O16O as a single reference for all other data, which is different from our choice, but just slightly, 
since the rate coefficients for the formation of all symmetric ozone molecules are quite similar. 

Figure 2 
 

Figure 2. Experimental data of Janssen et al., plotted as explained in the text, for the rates of formation of the symmetric 
and asymmetric isotopomers of the singly- and doubly substituted isotopologues of ozone. Emphasis is on isotope 18O, but 
two data points for 17O (blue) are also included. Horizontal axis gives the zero-point energy change of the corresponding 
atom-exchange reaction (taking into account that in homonuclear diatomics the ground rotational state is j = 1). Vertical 
axis gives rate coefficients (of asymmetric isotopomers) divided by the rate coefficient of symmetric isotopomers. The data 
for symmetric isotopomers appear at the origin (black symbol). The data for asymmetric isotopomers show large variations 
and follow a clear trend, called ζ-effect (gray background indicates experimental error bars). The shift of this dependence 
up from the origin is called η-effect. Green and red symbols correspond to 16O16O18O and 16O18O18O, respectively. Squares 
and diamonds correspond to pathways A and B, respectively, in eqs 5 and 5′. 

Two major effects are seen in Figure 2. One is the ΔZPE trend for the formation of asymmetric isotopomers 
through pathways A and B. Larger rate coefficients are measured for processes that enter the PES through 
deeper channel, which is pathway Ain the case of singly substituted 16O16O18O, and pathway B in the case of 
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doubly substituted 16O18O18O. Experimental data for the single and double substitutions of 17O (not discussed 
here) also follow this trend, and are included in Figure 2 for completeness. The second effect is the reduction of 
rate coefficients for the formation of symmetric isotopomers, relative to the ΔZPE-trend of asymmetric 
isotopomers, the so-called η-effect. In fact, experimental rate coefficients for the formation of all symmetric 
ozone molecules (including nonsubstituted and triply substituted ozone, and substitutions with isotope 17O), are 
all relatively close to each other, within 1.5% difference. This is in sharp contrast with wide variations of rate 
coefficients for asymmetric isotopomers, more than 60%. 

On the basis of experimental data in Figure 2, we can introduce two metrics for the isotope effects: 

𝜁𝜁exp = 𝐾𝐾𝐴𝐴/𝐾𝐾𝐵𝐵 
(20) 

𝜂𝜂exp = (𝐾𝐾𝐴𝐴 + 𝐾𝐾𝐵𝐵)/2𝐾𝐾𝑆𝑆 
(21) 

The first of these will measure ΔZPE-effect (pathways A vs B for asymmetric isotopomer), while the second will 
measure η-effect (the average of pathways A and Bfor asymmetric isotopomer, vs that of symmetric 
isotopomer, pathways S). Experimental data indicate ζexp = 1.55 and ηexp = 1.16 for the singly substituted case. 
For the doubly substituted case, if we want to have ζ > 1, we should flip its definition: ζ = κB/κA, since the 
entrance channel of pathway B is deeper in that case. Then, the corresponding experimental data are ζexp = 1.63 
and ηexp = 1.16. 

Note that our zeroth-level theory, where all mass effects are neglected and only the symmetry effects are taken 
into account, predicts ζ = 1 and η = 1 for both singly and doubly substituted species. This serves as a check for 
the correctness of the theory (all the factors of 1/2 are correctly included), but also indicates that symmetry 
considerations alone are insufficient for the explanation of experimentally observed large isotope effects. 

II.E. Isotope Enrichments 
In this section it is convenient to use “6” for isotope 16O, and “8” for isotope 18O. By definition, isotopic 
enrichment is 

𝛿𝛿 =
𝑓𝑓p
𝑓𝑓R
− 1

 

(22) 

where fR is the fraction of isotope 18O in the reagents, which represents natural abundance, while fP is the ratio 
of isotopes in the products, which is ozone. Doubly substituted isotopologues are extremely rare in the 
atmosphere, so, we can focus on singly substituted 16O16O18O and 16O18O16O. Heavy isotope is present in each of 
these molecules, one atom per molecule, so: [8] = 1 × [668] + 1 × [686]. The major isotope 16O is present mostly 
in the unsubstituted 16O16O16O, three atoms per molecule, so [6] = 3 × [666]. Thus, 

𝑓𝑓p ≈
1 × [668] + 1 × [686]

3 × [666]
 

(23) 

Using the third-order kinetics of reactions 6 and 7, this expression transforms as follows: 
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𝑓𝑓p =
1 × [668] + 1 × [686]

3 × [666]
 

=
[6][68][𝑀𝑀]𝑘𝑘𝐴𝐴 + [8][66][𝑀𝑀]𝑘𝑘𝐵𝐵 + [6][86][𝑀𝑀]𝑘𝑘𝑆𝑆

3[6][66][𝑀𝑀]𝑘𝑘666
 

=
1
3

[68]
[66]

𝑘𝑘𝐴𝐴 + 𝐾𝐾𝑒𝑒𝑒𝑒𝑘𝑘𝐵𝐵 + 𝑘𝑘𝑆𝑆

𝑘𝑘666
 

(24) 

In the last line of this derivation, we introduced the equilibrium constant for the isotope exchange process 5, 
defined as 

𝐾𝐾ex =
[66][8]
[68][6]

 

(25) 

For the reagents, the isotope fraction is 

𝑓𝑓𝑅𝑅 ≈
1 × [68]
2 × [66] =

1
2

[68]
[66]

 

(26) 

The substitution of 24 and 26 into 22 gives the final expression for the enrichment:(30,31) 

𝛿𝛿 =
2
3�

𝑘𝑘𝐴𝐴 + 𝐾𝐾𝑒𝑒𝑒𝑒𝑘𝑘𝐵𝐵 + 𝑘𝑘𝑆𝑆

𝑘𝑘666 � − 1.
 

(27) 

This formula is not particularly transparent, but it can be simplified if we introduce the average rate coefficient 
for the formation of the asymmetric isotopomer of ozone through two pathways, A and B: 

𝑘𝑘𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 =
𝑘𝑘𝐴𝐴 + 𝐾𝐾𝑒𝑒𝑒𝑒𝑘𝑘𝐵𝐵

2
 

(28) 

For the formation of the symmetric isotopomer of ozone we can just rename: ksym ≡ kS. From eq 19, it follows 
that krec

666≈ 2krec
S, based on the zeroth-level of theory (symmetry only), and in agreement with experimental 

results. Thus, krec
666 ≈ 2ksym. With these definitions:(30,31) 

𝛿𝛿 =
2
3

2𝑘𝑘𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 + 𝑘𝑘𝑠𝑠𝑎𝑎𝑎𝑎

2𝑘𝑘𝑠𝑠𝑎𝑎𝑎𝑎 − 1 =
2
3 �
𝑘𝑘𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎

𝑘𝑘𝑠𝑠𝑎𝑎𝑎𝑎 − 1�
 

(29) 

It appears that the phenomenon of isotope enrichment is driven by the ratio of rate coefficients for the 
formation of the asymmetric and symmetric isotopomers of ozone. For asymmetric isotopomers the definition 
of eq 28 averages over the contributions of the pathways A and B, so, the difference between the energies of 
their entrance channels (the ΔZPE difference) does not matter in eq 29, which eliminates the effect of ΔZPE on 
enrichment δ. But, one can check that, with Kex ≈ 1/2: 
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𝑘𝑘𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎

𝑘𝑘𝑠𝑠𝑎𝑎𝑎𝑎 =
𝑘𝑘𝐴𝐴 + 𝐾𝐾ex𝑘𝑘𝐵𝐵

2𝑘𝑘𝑆𝑆 = 𝜂𝜂
 

(30) 

So, the conclusion is that the enrichment is driven exclusively by the η-effect 

𝛿𝛿 =
2
3

(𝜂𝜂 − 1) 

(31) 

and appears to be independent of ζ. This interesting property was first demonstrated by Hathorn and 
Marcus.(30,31) Note that this discussion also gives us an improved definition of η and ζ parameters, as follows: 

𝜂𝜂 =
𝑘𝑘𝐴𝐴 + 𝐾𝐾ex𝑘𝑘𝐵𝐵

2𝑘𝑘𝑆𝑆
 

(32) 

𝜁𝜁 =
𝑘𝑘𝐴𝐴

𝐾𝐾ex𝑘𝑘𝐵𝐵
 

(33) 

More symmetric formula can be obtained if one expresses Kex through KA and KB. For example, ζ = KBkA/(KAkB). 

Equations 32 and 33 are based on the kinetic arguments and take into account the isotope exchange process 
described by the equilibrium constant Kex. In contrast, definitions we used in the previous section, eqs 20 and 21, 
were postulated based on the analysis of experimental data in Figure 2. If Kex ≈ 1/2, the two sets of definitions 
are consistent. It is important to realize, that the isotope exchange process is 3 orders of magnitude faster than 
the recombination reaction itself (see ref (7), and references therein), so, the equilibrium 16O + 16O18O ↔ 16O16O 
+ 18O will be readily achieved and should always be taken into account. It should also be stressed that one more 
factor of 1/2 shows up in the theory due to Kex, and is added to the Table1, accordingly. Thus, one can say that, 
overall, there are seven factors of 1/2 in the formalism, that take care of symmetry-related effects in the decay 
rates Γ, the number of metastable O3

∗  states, the number of reagent O2 states, and the isotope exchange 
process Kex (see Table1). 

Using the experimental value of η = 1.16 (for singly substituted isotopologue we obtain from eq 31 an estimate 
of enrichment δ = 11%, in good agreement with laboratory measured value close to 13% (see ref (7)and 
references therein). However, our zeroth-level theory, with 2kA ∼ kB ∼ 2kS ∼ k666 based on symmetry 
considerations, gives η = 1 and δ = 0, which is no enrichment. Thus, symmetry considerations alone can not 
explain the enrichment of ozone in heavy isotopes. 

In the following section, we explore several other sources of isotope effects ζ and η, and the enrichment δ, 
based on accurate numerical calculations at higher theory levels. 

II.F. Mass-Effect, First Level of Theory 
The effect of masses in isotopically substituted reactions enters eqs 8–10 through the partition functions of two 
entrance channels, QO+O2

A and QO+O2
B(computed statistically), but also through the energies of scattering 

resonances Ei. The spectra of Ei are different in different isotopomers and isotopologues, which may lead to an 
isotope effect. In this subsection we will determine this effect in a somewhat simplified way, without the actual 
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calculations of energies Ei and decay rates Γi of resonances, using the fact that hyper-radius ρ plays the role of 
reaction coordinate. 

The calculation of vibrational states in hyper-spherical coordinates is done sequentially. First, a bound-state 
problem over hyper-angles θ and φ is solved to determine wave functions ψi(θ,φ) and energies εi for the 2D-
slices of the PES, at different values of ρ. Figure 3 shows dependencies εi(ρ) computed for singly substituted 
ozone isotopologue. Asymptotically (ρ → ∞) these curves correlate with the rotational states of 
O2reagents/products. In the region of transition state each εi(ρ) curve exhibits a centrifugal barrier, and the 
property essential for this discussion is that the wave functions of scattering resonances O3

∗  are trapped behind 
these barriers, over the region of covalent well, as shown in Figure 3. The energies Ei, widths Γi (decay rates), and 
wave functions Ψi(ρ,θ,φ) of these 3D-states are computed at the final, most challenging step of calculations, and 
normally, all authors proceed straight to that final step. What we propose to do here is to analyze the εi(ρ) 
dependencies first, since they carry a lot of useful information. Although in the past similar adiabatic curves for 
ozone have been computed and presented by several authors,(16,18,38) they have never been systematically 
analyzed, to the best of our knowledge. 

Figure 3 
 

Figure 3. Ro-vibrational energies εicomputed along the reaction coordinate (hyperradius ρ) for the typical rotational 
excitation J = 24 and Λ = 2 of the singly substituted isotopologue of ozone. Only one vibrational symmetry is shown, 
A1(symmetry B1 is similar). Transition state region near ρ‡ is emphasized; the potential energy well is also seen. Diabatic 
curves are color-coded: green, red and blue correspond to the processes A, B and S in eqs 4 and 5, respectively. 

Our experience shows that the dominant contribution to the recombination process comes, typically, from one 
resonance found at energy close to the barrier top.(47) Very narrow resonances, found at energies far below the 
barrier top, make small contributions because the rates of their formation (by deep tunneling though the 
barrier) are very low. This suggests an approximation, in which, instead of computing the energies of all 
resonances, one can assume that for each curve εi(ρ) in Figure 3 there is single resonance at the energy of the 
barrier top, Ei = εi(ρ‡). A low-pressure regime is appropriate, since the widths Γi of such resonances are not 
expected to be small. Reaction pathway (A, B, or S) is assigned by comparing each 2D wave function ψi(θ,φ) 
computed at ρ ≈ ρ‡ to the “map” of the process, that of Figure 1c. This permits us to separate the εi(ρ) curves 
onto three groups that correspond to pathways A, B, and S, respectively (color-coded in Figure 3). This 
separation, effectively, splits the 2N metastable O3

∗  states of asymmetric isotopomer onto two groups, those 
populated from pathway A, and those populated from pathway B, with only N states in each group: 
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𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑄𝑄𝑂𝑂+𝑂𝑂2
𝐴𝐴 �(2𝐽𝐽 + 1)

𝐽𝐽Λ𝑝𝑝

�𝑒𝑒−𝜀𝜀𝑖𝑖�𝜌𝜌‡�/𝑘𝑘𝑘𝑘
𝑁𝑁

𝑖𝑖

 

https://pubs.acs.org/doi/10.1021/acs.jpca.8b09025#fig3
https://pubs.acs.org/doi/10.1021/acs.jpca.8b09025#fig3
https://pubs.acs.org/doi/10.1021/acs.jpca.8b09025#fig3
https://pubs.acs.org/doi/10.1021/acs.jpca.8b09025#fig3
javascript:void(0);
https://pubs.acs.org/doi/10.1021/acs.jpca.8b09025#eq4
https://pubs.acs.org/doi/10.1021/acs.jpca.8b09025#eq5
javascript:void(0);
https://pubs.acs.org/doi/10.1021/acs.jpca.8b09025#fig3
https://pubs.acs.org/doi/10.1021/acs.jpca.8b09025#fig3
https://pubs.acs.org/doi/10.1021/acs.jpca.8b09025#fig1
https://pubs.acs.org/doi/10.1021/acs.jpca.8b09025#fig1
https://pubs.acs.org/doi/10.1021/acs.jpca.8b09025#fig3
https://pubs.acs.org/doi/10.1021/acs.jpca.8b09025#fig3


𝑘𝑘𝐵𝐵 =
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Summation over resonances in these expressions has a meaning of partition function at the transition state: 

𝑄𝑄𝑘𝑘𝑆𝑆 = �  
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(34) 

Note that summation over two parities can be absorbed by the partition function, since the energy of ro-
vibrational states does not depend on rotational state parity. Thus, both symmetric and antisymmetric 
vibrational states (symmetries A1 and B1, respectively, see Appendix) are included in QTS, for each pair of the 
values of J and Λ. In each pathway, energies can be measured relative to the first resonance (ground state), 
which now acquires the meaning of activation energy ε0(ρ‡) = E‡, relative to the asymptotic value of energy for 
each pathway (which means that for pathway B we should set ε0(ρ‡) = ΔZPE + E‡, see Figure 4). This gives 
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(37) 

Note that the factor e–ΔZPE/kT cancels in these equations, which emphasizes the independence of the three 
reaction pathways at this level of theory. The factor of 2 between the numbers of states in asymmetric and 
symmetric molecules is still formally achieved, since QTS

A + QTS
B ≈ 2QTS

S due to the above-mentioned splitting of 
2N states. 

Figure 4 
 

Figure 4. Schematic representation of state energies in two entrance channels, three transition states, and two potential 
wells for the case of singly substituted ozone isotopologue. The rotational states of 16O16O and 16O18O in two asymptotic 
channels are shown by black dashes. The vibrational zero-point energy difference between them is indicated. Lower energy 

https://pubs.acs.org/doi/10.1021/acs.jpca.8b09025#app1
https://pubs.acs.org/doi/10.1021/acs.jpca.8b09025#fig4
https://pubs.acs.org/doi/10.1021/acs.jpca.8b09025#fig4


channel corresponds to 16O18O (energy reference, dashed line), which also has twice more states than the usual 16O16O. 
Colored dashes indicate quantum states at three transition states: green, red and blue for the processes A, B, and S in eqs 
4 and 5, respectively. Their corresponding activation energies are indicated. The connections of these states to two wells, 
hosting symmetric 16O18O16O and asymmetric 16O16O18O isotopomers, are shown by thin lines. This schematic covers 
(roughly) one-half of the diagram in Figure 1c. 

The moieties E‡ and QTS that appear eqs 35–37, are also found in statistical approach to the recombination rate, 
so, one can argue that this level of theory is equivalent to the statistical approach. However, in the practical 
application of statistical theory the position, energy, and partition function of the transition state are 
determined approximately, using analytic models such as hindered rotor. Here we accurately 
compute EA

‡, EB
‡, ES

‡, QTS
A, QTS

B, and QTS
S, and analyze the resultant isotope effects. 

At this level of theory, according to eqs 32 and 33, and using Kex =  e–∆ZPE/kTQO+O2
B /QO+O2

A : 

𝜁𝜁 =
1

e–∆ZPE/kT ×
∑ (2𝐽𝐽 + 1)e−𝐸𝐸𝐴𝐴

‡ /𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑆𝑆𝐴𝐴𝐽𝐽Λ

∑ (2𝐽𝐽 + 1)e−𝐸𝐸𝐵𝐵
‡ /𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑆𝑆𝐵𝐵𝐽𝐽Λ

 

(38) 
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(39) 

Note that these expressions include only the properties of three transition states A, B, and S. The partition 
functions of reagents in the asymptotic channels cancel completely. One can also define, compute and analyze 
the “local” values of ζ and η for each pair of J and Λ: 
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(41) 

These last two equations give the contribution of each term in the sums of eqs 38 and 39 and permit to monitor 
the role of rotational excitation in isotope effects. Figure 4 emphasizes the meaning of, and connections 
between ΔZPE, EA

‡, EB
‡, ES

‡, QTS
A, QTS

B, and QTS
S. 

III. Results 
Overall, eqs 40 and 41 contain six ratios that one may want to explore separately: QTS

A/QTS
B, QTS

A/QTS
S, QTS

B/QTS
S, 

e–(E
A

‡–EB
‡)/kT, e–(E

A
‡–ES

‡)/kT, and e–(E
B

‡–ES
‡)/kT. For each of these factors, we computed its dependence on the 

two quantum numbers of rotational excitation, J and Λ, for the cases of the singly and doubly substituted 
isotopologues of ozone. All those data are available to readers in the Supporting Information. As for absolute 
values, at room temperature all partition functions are ∼1.4 for the vibrational states of each symmetry, A1 and 
B1 that (combined with the rotational states of proper parities) must be added together in eq 37. So, on average, 
the process of ozone formation includes less than three (QTS = ∑p ≈ 2.8) vibrational states of O3

∗  per each 
rotational state characterized by J and Λ. As for the ratios QTS

A/QTS
B, QTS

A/QTS
S, and QTS

B/QTS
S, they all stay very 

close to one, through the entire range of relevant rotational excitations Jand Λ. First conclusion here is that 
virtually no isotope effects come from the difference in the number of states at the barrier region in the three 
pathways of ozone formation: A, B, and S. 

This result permits us to come out with a useful approximation to eqs 40 and 41: 

𝜁𝜁𝐽𝐽Λ = e−�𝐸𝐸𝐴𝐴
‡−𝐸𝐸𝐵𝐵
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‡−𝐸𝐸𝑆𝑆

‡� 𝑘𝑘𝑘𝑘⁄ e–∆ZPE kT⁄ � /2.
 

(43) 

Each E‡ includes three contributions: the potential energy, the rotational energy, and the vibrational zero-point 
energy (all at the transition state point ρ‡). The effect of potential energy largely cancels, since the transition 
state points for pathways A, B and S occur at roughly the same value of ρ. When there is no overall rotation (J = 
0), the effect can only come from the differences of the vibrational zero-point energies at the transition state, 
which we will denote ΔZPE‡. So, we end up with a very simple and useful formula: 

𝜁𝜁𝐽𝐽=0 = e+∆ZPE‡ kT⁄  

(44) 
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Although the local vibrational zero-point energy does change along the reaction path ρ, one may assume that it 
correlates with the vibrational zero-point energy of O2 in the asymptotic region, which is ΔZPE. At room 
temperature (kT ∼ 200 cm–1) and using ΔZPE ∼ 20 cm–1, one can readily make a simple estimate of the isotope 
effect due to ΔZPE: ζJ=0 ∼ e0.1 ∼ 1.10, for the nonrotating ozone molecule. 

This simple estimate gives the right direction of the isotope effect, but the magnitude deviates from the 
accurately computed value (see below), simply because ΔZPE‡ at the transition state is not really equal to the 
asymptotic ΔZPE of O2. In order to obtain a better estimate, we tried to derive a more accurate value of 
ΔZPE‡using two alternative methods. In one approach we simply computed the εi(ρ) curves for nonrotating 
ozone molecule, J = 0, when there is no rotational excitation, so that the difference of ε0(ρ‡) at two transition 
states gives vibrational contribution directly, ΔZPE‡. In an alternative method, we analyzed the spectrum of εi(ρ‡) 
which has two local modes that are normal to the reaction coordinate ρ. We found the first excited state of each 
mode, determined its frequency, and computed the vibrational zero-point energy from those (all done for 
typical rotational excitation J = 24 and Λ = 2). Importantly, the results of two methods were very similar to each 
other, giving ΔZPE‡ ∼ 32 cm–1 for both singly- and doubly- substituted isotopologues (see Supporting 
Information). With this value, the estimate of vibrational contribution to ζ-effect is ζJ=0 ∼ 1.18, considerably 
larger than the estimate of the previous paragraph. 

In Figure 5, the dependencies of ζJΛ on Jand Λ, accurately computed using eq 40, are presented for singly and 
doubly substituted isotopologues. We can see that, indeed, in the range of smaller rotational excitations the 
value of ζJΛ tends toward ζJ=0 ∼ 1.18 predicted by the approximate eq 44. More specifically, the value of ζJΛ = 1.22 
is found to be around J = 16 and Λ = 13. However, as the rotational excitation increases, the value of 
ζJΛ decreases. For example, near J = 48 and Λ = 0, it is reduced to ζJΛ ≈ 1, which means that the rotational 
excitation acts against the vibrational ΔZPE difference, compensating for it and reducing the resultant ζ-effect. 
Summation over J and Λ in eq 38 gives us ζ = 1.126 and 1.127, for singly and doubly substituted isotopologues, 
respectively, which is smaller isotope effect compared to the J = 0 case. Our conclusion here is that this level of 
theory, equivalent to the statistical treatment of the recombination process, is insufficient to explain the large 
magnitude of ζ-effect observed in the experiments (ζexp = 1.55 and 1.63). 
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Figure 5 
 

Figure 5. Accurately computed dependence of ζ-effect on the two quantum numbers of rotational excitation, J and Λ, 
plotted along horizontal and vertical axes, respectively. The first level of theory is used to include mass-effect on vibrational 
and rotational excitations. Upper and lower frames are for singly and doubly substituted isotopologues, respectively. As J → 
0 the value of ζ approaches 1.18, consistent with estimate based on the vibrational ZPE only. In the range of large J ∼ 50 the 
value of ζ approaches 1, indicating that rotational excitation equalizes the deeper and shallower reaction channels, acting 
against the ZPE difference. Only in the range of extreme rotational excitations (unphysically large Λ) is the value of ζ 
predicted to be large. 

In Figure 6 the dependencies of ηJΛ on Jand Λ are presented for singly- and doubly substituted isotopologues. We 
immediately see that the behavior of ηJΛ is different for singly and doubly substituted isotopologues. This already 
means that the dependencies we observe here are very unlikely to explain experimental η-effect, simply 
because in the experiment η-effect is the same for singly and doubly substituted isotopologues (namely, 
asymmetric isotopomers are always favored). Interestingly, we see again that the values of ηJΛ change rather 
drastically when we change J and Λ. For example, if we change the rotational excitation from J = 16, Λ = 13 to J = 
48, Λ = 0 the value of ηJΛ evolves from ηJΛ = 0.86 to 1.17 for singly substituted isotopologue, and from ηJΛ = 1.18 
to 0.86 for doubly substituted isotopologue. However, when we compute the overall effect, by summation 
over J and Λ in eq 39, these contributions, again, compensate each other, leading to the relatively small values 
of the overall isotope effect: η = 0.954 and 1.036 for singly and doubly substituted isotopologues, respectively. 
Not only are these values small (compared to the experimental value of ηexp= 1.16) but also they deviate from 
1.000 in two opposite directions. Thus, again, our conclusion is that this level of theory, equivalent to the 
statistical treatment of the recombination process, is insufficient to explain η-effect and does not help to 
determine its origin. 
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Figure 6 
 

Figure 6. Accurately computed dependence of η-effect on the two quantum numbers of rotational excitation, J and Λ, 
plotted along horizontal and vertical axes, respectively. The first level of theory is used to include mass-effect on vibrational 
and rotational excitations. In contrast with Figure 5, these dependencies are opposite for singly and doubly substituted 
isotopologues, shown in the upper and lower frames, respectively. In the range of typical rotational excitations, 25 < J < 40 
and Λ< 8, the value of η deviates from 1 by a few percent only. 

Rather strong dependencies of ζJΛ and ηJΛon J and Λ (Figures 5 and 6) are explained by the effect of masses on 
the rotational energy of O3

∗  complex at the transition state, E‡. To build an alternative and even more 
transparent model one can use an approximate rotational Hamiltonian in Jacobi coordinates (at the transition 
state): 

𝐸𝐸rot =
𝐽𝐽(𝐽𝐽 + 1)

2𝜇𝜇O+O2𝑅𝑅2
+

Λ2

2𝜇𝜇O2𝑟𝑟2
 

(45) 

to describe the effect of rotation on the energy of the centrifugal barrier. Again, we can 
use E‡ = Vpot + Erot + ZPEvib (minus ΔZPE for the upper channel, see Figure 4). Here the reduced masses of O2 and 
O + O2are specific to pathways A and B. Parameters for the pathway S are the same as for 
pathway A (see Figure 1c). The substitution of these equations in eqs 42 and 43 gives 

𝜁𝜁𝐽𝐽Λ ≈ 𝑒𝑒−∆𝐸𝐸rot/𝑘𝑘𝑘𝑘𝜁𝜁𝐽𝐽=0 

(46) 
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𝜂𝜂𝐽𝐽Λ ≈ �1 + 𝜁𝜁𝐽𝐽Λ−1�/2 

(47) 

where ΔErot = Erot
A – Erot

B (for the singly substituted isotopologue) and ζJ=0 is given by eq 44. For the doubly 
substituted isotopologue one should define ΔErot = Erot

B– Erot
A, consistent with the discussion of eq 20 above. We 

found that the trends predicted by these simple formulas are in reasonable semiquantitative agreement with 
accurately computed results presented in Figures 5 and 6, which confirms one more time that the effect of 
masses on the vibrational and rotational energies of transition states in ozone cannot explain large isotope 
effects seen in the experiments. 

Finally, the absolute values of the recombination rate coefficients depend on stabilization rate 
coefficients kstab in eqs 35–37, that in turn depend on stabilization cross sections. Accurate calculations of 
stabilization cross sections go beyond the scope of this paper. A constant value of σstab = 154 a0

2 was adopted 
from ref (25). Using this value, we computed the contributions of different rotational excitations, J and Λ, into 
the rate coefficients or recombination kA, kB, and kS. Because of space considerations those data are presented 
in the Supporting Information, for singly and doubly substituted isotopologues. The practically useful 
information is the range of J and Λ values that make significant contributions to the recombination process. We 
found that at this level of theory, the largest contributions come from a “stripe” that extends between J= 16, Λ = 
13 and J = 48, Λ = 0. The range of J and Λ values considered here is broader, and thus, it is well sufficient for a 
converged description of the recombination process. 

IV. Conclusions 
In this paper, we presented in sufficient detail the most important components of the theory for the description 
of the isotope effects in the recombination reaction that forms ozone, including the introduction of three 
reaction pathways for symmetric and asymmetric isotopomers, a brief review of relevant experimental data for 
singly- and doubly substituted isotopologues, the definitions of ζ-effect and η-effect, and the introduction of 
isotopic enrichment δ. The two levels of theory are presented to elucidate the role of molecular symmetry and 
atomic masses in the recombination process. 

The issue of symmetry is not trivial, since important factors, such as 1/2 and 2, appear in seven different places 
in the formalism. This question has never been presented in the literature in sufficient detail, which created 
significant confusion in the past. The literature has examples when a missing factor of 1/2 was interpreted as a 
source of an isotope effect, and other examples when the missing factor was introduced in an ad hoc way to 
reproduce experimental results but based on a wrong argument. Now we have a transparent summary of all 
these symmetry-related factors, collected in one table, and accounted for in a consistent and rigorous way in the 
theory of recombination rate. We showed that if all these effects are taken into account properly, then no 
anomalous isotope effects emerge. We call this zeroth-level theory, to emphasize the fundamental importance 
of molecular symmetry, as a basis for other more detailed levels of description. 

At the next level of theory developed in this paper, we explored in detail the effect of the masses of oxygen 
isotopes, including the vibrational and rotational components of molecular excitations in a broad range. For this 
treatment to be transparent, we employed an approximation, by allowing only one resonance per rotational–
vibrational channel, chosen right at the top of centrifugal barrier. This approximation is expected to represent, 
on average, the spectrum of scattering resonances in a real molecule, since only the resonances close to barrier 
top (slightly below or slightly above it) are known to make significant contributions to the recombination 
process, and typically there is only one such resonance per rotational–vibrational channel, simply due to the 
quantization of vibrational motion. It came as a surprise for us that the formulas we obtained in this case are 
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basically equivalent to the statistical treatment of the recombination process, where transition state is 
quantized, and the corresponding partition function is introduced. 

At this first level of theory, we found that barely any isotope effect come from the number of vibrational states 
participating in the three pathways of ozone formation: A, B, and S. The ratios of the corresponding partition 
functions are all close to one, and this holds at any level of the rotational excitation. Isotope effects come from 
the differences of transition state energies in three pathways. Vibrational contribution to this energy, known as 
the ΔZPE effect, can account for about 18% difference in the formation rates of two pathways, A and B, but only 
if the molecule does not rotate. As rotational excitation increases, the centrifugal energy of the deeper channel 
(pathway A in the singly substituted and pathway B in the doubly substituted case) grows faster. So, rotational 
excitation acts against the vibrational ΔZPE, reducing the resultant ζ-effect. At the high level of the rotational 
excitation, near J = 50, rotational energy becomes sufficient to compensate the difference in the vibrational 
zero-point energies, so, the two transition state energies become equal and ζ-effect disappears completely. 
When we sum over rotational states (at room temperature) the average ζ-effect is only 13%, which can not 
explain the ∼60% difference of rates for pathways A and B observed in the experiment. 

A similar phenomenon is found in our calculations for the η-effect. Although the extreme rotational excitations, 
such as very large J values, or very large Λ values, lead to a rather significant difference between symmetric and 
asymmetric isotopomers, these effects are local and mutually cancel when we average over the distribution 
of Jand Λ (at room temperature). Moreover, local η-effects we see in our calculations occur in opposite 
directions for singly and doubly substituted isotopologues (with the rotationally averaged values of +4% and 
−4%), in contrast to experimental measurements that show the same direction and magnitude of η-effects for 
all ozone molecules, about +16%. This indicates that the statistical description of mass-effects can not give the 
explanation of the mysterious η-effect observed in experiments. 

These two levels of theory provide a solid foundation for more rigorous theoretical treatment reported 
elsewhere,(48) that includes finer components such as accurately computed resonance energies, lifetimes, and 
channel-to-channel couplings.  

Appendix 
Symmetry Considerations 
The number of vibrational states is an important factor in eqs 6 and 7. Here we consider isotopes 16O and 18O 
only, both of which are spin-less bosons. The vibrational wave functions of scattering resonances O3

∗  are 
localized over the covalent well, where the electronic wave function of the system is symmetric, X1A1. This 
means that the ro-vibrational wave functions of the molecule should also be symmetric. The detailed analysis of 
symmetry for the ro-vibrational states of ozone was presented in a recent dissertation.(49) Here we focus on 
singly- and doubly-substituted ozone molecules, described using C2v point group, with the z-axis, used to define 
quantum number Λ and positioned in the plane of the molecule, along the principal axis of inertia with the 
smallest component of the moment of inertia. (An alternative approach would be to use, following 
Bunker,(50) the permutation-inversion symmetry group, as it was done in a recent paper.(38)) The symmetry of 
rotational states is determined by parity, but differently for the even and odd values of Λ, which, in turn, sets 
symmetry restrictions on vibrational states (see ref(49) for details). It is demonstrated that for the even values of 
Λ the rotational states of positive and negative parities can only be combined with the vibrational states of 
symmetries A1 and B1, respectively. But for the odd values of Λ this is just opposite: negative and positive parities 
are combined with vibrational symmetries A1 and B1, respectively. In the Fig. 1c of the PES the vibrational wave 
functions of symmetry A1would be symmetric, while those of symmetry B1 would be antisymmetric with respect 
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to the sign change of the hyper-angle φ (or, equivalently, with respect to reflection through the symmetry 
plane). This is also emphasized in the Fig. 7 of this Appendix. 

Figure 7 
 

Figure 7. Frames a–c represent, schematically, the structure of the wave functions of three nearly degenerate states with 
two quanta of excitation. Frame a shows the state of symmetric isotopomer 16O18O16O, whereas frames b and c show the 
two possible states of asymmetric isotopomer 16O16O18O. Frames d–f represent the same information for the next 
vibrational state, with three quanta of excitation. State symmetries are indicated in each case. 

Strictly speaking, this means that only 50% of the vibrational states are allowed (compared to the case with no 
symmetry, such as 16O17O18O, where each vibrational state could be combined with two rotational states, of 
both parities). But in practice no vibrational states are disregarded, simply because the parity of the rotational 
wave functions does not affect the centrifugal potential, determined solely by Λ (and J). Namely, for any given 
values of J and Λ, the calculations of vibrational states are carried out to determine both symmetric (A1) and 
antisymmetric (B1) states. Each computed vibrational state is assumed to be combined with the rotational state 
of correct parity according to the rule outlined above, depending on whether Λ is even or odd. So, both 
vibrational symmetries, A1 and B1, are retained in the spectrum. The only exception to this, is the case of Λ = 0 
(any J) where only the positive parity of rotational state is possible and thus only symmetric vibrational states 
(A1) are allowed. Antisymmetric vibrational states (B1) should be disregarded for all Λ = 0 cases. 

Importantly, this selection rule applies to both symmetric and asymmetric ozone molecules, and, by itself, does 
not seem to cause any difference in the number of states in symmetric and asymmetric isotopomers, such as 
in 16O18O16O vs16O16O18O. What happens to be important, is the presence of two equivalent wells for the case 
of 16O16O18O, vs only one well in the case of 16O18O16O. To understand this, consider a finite energy range, which 
contains two consecutive vibrational states of the asymmetric stretching progression, with say two and three 
quanta of excitation along the hyper-angle φ: ψ2 and ψ3. It follows from Figure 1c and Figure 7 that since the 
well of symmetric 16O18O16O is crossed by the symmetry plane, the wave function of ψ2 is symmetric (A1) while 
the wave function of ψ3 is anti-symmetric (B1). Combined with the rotational states of proper parities these 
excitations will give two ro-vibrational states of 16O18O16O in the considered energy range. Now consider the 
same two vibrational excitations in the case of asymmetric 16O16O18O. From Figure 7, we understand that since 
symmetry plane passes between the two wells, the symmetry of vibrational wave functions is not determined by 
the number of excitation quanta in each well, but rather by how the wave functions of the two wells are 
combined to form a global state. On the basis of a textbook double-well problem, we expect to see in the 
spectrum a pair of nearly degenerate states for each level of vibrational excitation: (ψ2

L ± ψ2
R)/√2 and (ψ3

L ± 
ψ3

R)/√2, where indexes L and R label the wave functions in the right and left wells of 16O16O18O in Fig. 7. Within 
each pair, one state, obtained by “in-phase” superposition, is symmetric (A1) while the other, obtained by “out-
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of-phase” superposition, is antisymmetric (B1). Being combined with the rotational states of proper parities, they 
would give four ro-vibrational states in the energy range chosen for this example (see Figure 8). 

Figure 8 
 

Figure 8. Schematic representation of the vibrational spectrum of the symmetric and asymmetric isotopomers of 
ozone, 16O18O16O and 16O16O18O, based on symmetry considerations presented in Figure 7. In symmetric ozone (left), the 
states of two symmetries intercalate in the spectrum, since symmetry is determined by the number of excitation quanta 
(A1 for the even numbers of excitations, and B1 for the odd). In asymmetric ozone, the states of both symmetries occur at 
every energy, due to the double-well nature of wave functions. This means that the asymmetric isotopomers of ozone have 
twice as many states, compared to symmetric isotopomers. 

The bottom line of this discussion is that on the global PES of ozone, such as presented in Figure 1c and Figure 7, 
the number of states of asymmetric 16O16O18O, 2N, is roughly twice as large as the number of states of 
symmetric 16O18O16O, N. Deviations from the perfect factor of 2 can occur due to the mass effect and due to 
larger coupling between the wells at higher energies (non-negligible splitting). We checked and found, by the 
accurate calculations of vibrational states, that for the bound states below dissociation threshold the ratio is, 
indeed, very close to two. A molecule with no symmetry, such as 16O17O18O, would have twice as many states 
than the C2v molecules, namely: 2Nstates per each of the three wells in Figure 1c (16O17O18O, 17O16O18O 
and 16O18O17O) or 6N states in the entire configuration space, again, just because each vibrational state would be 
allowed to combine with the rotational states of both parities. 
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