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Abstract 

 
Parallel spectroscopic and computational studies of iron(III) cysteine dioxygenase (CDO) and synthetic models 

are presented. The synthetic complexes utilize the ligand tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine 

(Ph2TIP), which mimics the facial three-histidine triad of CDO and other thiol dioxygenases. In addition to the 

previously reported [FeII(CysOEt)(Ph2TIP)]BPh4 (1; CysOEt is the ethyl ester of anionic L-cysteine), the formation 

and crystallographic characterization of [FeII(2-MTS)(Ph2TIP)]BPh4 (2) is reported, where the methyl 2-

thiosalicylate anion (2-MTS) resembles the substrate of 3-mercaptopropionate dioxygenase (MDO). One-

electron chemical oxidation of 1 and 2 yields ferric species that bind cyanide and azide anions, which have been 

used as spectroscopic probes of O2 binding in prior studies of FeIII-CDO. The six-coordinate FeIII-CN and FeIII-

N3 adducts are examined with UV–vis absorption, electron paramagnetic resonance (EPR), and resonance 

Raman (rRaman) spectroscopies. In addition, UV–vis and rRaman studies of cysteine- and cyanide-bound FeIII-

CDO are reported for both the wild-type (WT) enzyme and C93G variant, which lacks the Cys-Tyr cross-link that 

is present in the second coordination sphere of the WT active site. Density functional theory (DFT) and ab initio 

calculations are employed to provide geometric and electronic structure descriptions of the synthetic and 

enzymatic FeIII adducts. In particular, it is shown that the complete active space self-consistent field (CASSCF) 

method, in tandem with n-electron valence state second-order perturbation theory (NEVPT2), is capable of 

elucidating the structural basis of subtle shifts in EPR g values for low-spin FeIII species. 

Synopsis 
The geometric and electronic structures of thiolate-ligated FeIII complexes of relevance to the active sites of thiol 

dioxygenases have been elucidated with spectroscopic and computational methods. Data collected for the 

synthetic models are compared to those previously obtained for the analogous enzymatic species, and newly 

collected resonance Raman spectra of Cys- and CN-bound FeIII-CDO are presented. The combined 

enzymatic/synthetic approach reveals that second-sphere residues perturb the positions of substrate 

(analogues) coordinated to the nonheme iron site of CDO. 

Introduction 
Thiol dioxygenases (TDOs) are a family of mononuclear nonheme iron dioxygenases that catalyze the O2-

dependent oxidation of L-cysteine (Cys) or its derivatives to the corresponding sulfinic acids (RSO2H; Scheme 

1).(1) Two TDOs are known to operate in mammalian cells: namely, cysteine dioxygenase (CDO) and cysteamine 

dioxygenase (ADO). CDO regulates the intracellular concentration of exogenous Cys by performing the first step 

in its catabolism into small metabolites.(2−4) ADO has been shown to catalyze a key step in the degradation of 

coenzyme A to (hypo)taurine,(5) although a recent report argued that its primary function is to oxidize amino-

terminal Cys residues of proteins in response to hypoxia.(6) Bacterial CDOs have also been discovered.(7,8) A 
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third type of TDO, 3-mercaptopropionate (3-mpa) dioxygenase (MDO), has been isolated from certain soil 

bacteria.(9−11) X-ray structures of CDOs from various organisms reveal a common iron coordination geometry 

consisting of three His residues in a facial orientation (the 3-His triad).(8,12−14) The active sites of ADO(15) and 

MDO(8,11) also feature a 3-His triad, although a crystal structure of the former is currently lacking. The thiolate 

and amino donors of L-Cys bind directly to the FeII center in the enzyme–substrate complex, yielding a five-

coordinate geometry primed for O2 binding.(12,13) In contrast, a recent study suggested that only the thiolate 

moiety of 3-mpa binds to the Fe center of MDO,(10) although bidentate coordination involving the carboxylate 

group has also been proposed by Jameson et al.(16) 

 
Scheme 1. Reactions Catalyzed by Thiol Dioxygenases 

Even though the first-sphere coordination environment is conserved among all TDOs, these enzymes exhibit 

significant variability in the second (or outer) coordination sphere. Eukaryotic CDOs are distinguished by a post-

translational cross-link between two conserved residues (Cys93 and Tyr157) located ∼3.3 Å from the Fe center 

(Figure 1).(13,17−19) This cross-link is generated during multiple turnovers of the newly formed 

enzyme,(17−19) and although it is not required for catalysis, its presence causes a significant (at least 20-fold) 

increase in CDO activity.(20) Alternatively, bacterial CDOs lack the Cys-Tyr cross-link yet maintain catalytic 

activities similar to those of eukaryotic CDOs.(8) The catalytic function of the cross-link remains an open 

question, but recent studies suggest it plays a role in substrate binding/selectivity and discourages the binding of 

a water molecule to the Cys-bound FeII-CDO active site.(13) CDOs also feature a conserved Arg residue (R60) 

that stabilizes the carboxylate group of bound L-Cys. MDOs lack this Arg residue, and its position in the active 

site is occupied instead by Gln. This change likely accounts for the ability of MDOs to oxidize all known TDO 

substrates (L-Cys, cysteamine, and 3-mpa),(10,21) whereas CDOs exhibit a high degree of substrate 

specificity.(22) 

 
Figure 1. Crystallographic structure of the Cys-bound CDO active site derived from PDB entry 4IEV.(12) 
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The structural and functional effect of the protein environment on iron oxygenases can be probed by treating 

the enzyme with small molecules that bind to the iron center in a manner similar to that of O2. Surrogates of 

O2 and its one-electron-reduced derivative, superoxide, include nitrosyl, carbonyl, azido, and cyano ligands. 

Binding of these ligands to the active site gives rise to distinctive spectroscopic features that report on 

noncovalent interactions with second-sphere groups.(23−27) Recently, the Liu group reported X-ray structures 

of cross-linked and non-cross-linked FeII-CDO bound to both NO and Cys.(28) The Brunold and Pierce groups 

applied a similar strategy to FeIII-CDO by treating the oxidized enzyme with either azide(29) or 

cyanide.(30) These studies found that azide occupies a prebinding site in the enzyme but is unable to coordinate 

directly to the FeIII center of substrate-bound CDO. Alternatively, upon treatment with excess cyanide, the high-

spin (S = 5/2) electron paramagnetic resonance (EPR) signal of substrate-bound FeIII-CDO is replaced by a low-

spin (S = 1/2) signal, indicating the formation of a six-coordinate ternary complex.(30) Significantly, the 

EPR g values of the cyano adduct were shown to be sensitive to changes in the second coordination sphere, such 

as the formation of the Cys-Tyr cross-link. 

The interpretation of spectroscopic data collected for metalloenzymes is often aided by comparison to data 

obtained for synthetic complexes that replicate key aspects of the active site. In 2016, we reported the synthesis 

of a functional CDO model, [FeII(CysOEt)(Ph2TIP)]BPh4 (1; Scheme 2), where Ph2TIP is tris(4,5-diphenyl-1-

methylimidazol-2-yl)phosphine and CysOEt is the ethyl ester of anionic L-Cys.(31) Two factors make 

complex 1 the most structurally accurate model of the CDO active sites prepared to date: (i) the 2-

TIPPh2 supporting ligand reproduces the neutral charge and all-imidazole coordination of the 3-His triad and (ii) 

the “substrate” ligand is not tethered to the supporting ligand, as in several other CDO mimics.(32−35) Because 

complex 1 accurately reproduces the first coordination sphere of the enzyme, while lacking the corresponding 

active-site pocket, comparison of its spectroscopic features to those of the enzyme provides a unique 

opportunity for elucidating first- and second-sphere contributions to the geometric and electronic structures of 

CDO. 

 
Scheme 2. Schematic Drawing of Complexes 1 and 2 

In the present study, we have generated oxidized derivatives of 1 bound to azide and cyanide ligands and 

examined these FeIII species with an assortment of spectroscopic and computational methods. We also report 

the synthesis and characterization of a new TDO model, [FeII(2-MTS)(Ph2TIP)]BPh4 (2; Scheme 2), where 2-MTS is 

the anion of methyl 2-thiosalicylate. The structure of 2 has similarities to the substrate-bound form of MDO, and 

analysis of the resulting FeIII-CN adduct illuminates the effect of thiolate ligand variations (alkyl vs aryl) on 

electronic and spectral features. Our approach has employed both EPR and resonance Raman (rRaman) 

spectroscopies, which are complementary and responsive to minor changes in structure. Herein, the resulting 

spectra are compared to those previously obtained for the analogous enzymatic species, and we also present 

newly collected rRaman spectra of substrate-bound FeIII-CDO treated with cyanide. In addition, we use the 

combined enzyme/model data to test the ability of density functional theory (DFT) and ab initio calculations to 

predict subtle shifts in spectroscopic parameters upon changes in the FeIII coordination environment. These 

studies demonstrate that the complete active space self-consistent field (CASSCF) method, when it is used in 
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conjunction with n-electron valence state second-order perturbation theory (NEVPT2), provides very 

accurate g values for low-spin FeIII sites in both synthetic and protein environments. 

Experimental and Computational Methods 

General Considerations 
All reagents and solvents were purchased from commercial sources and used as received without further 

purification unless stated otherwise. Dichloromethane (CH2Cl2) was purified and dried using a solvent 

purification system purchased from Vacuum Atmospheres. The synthetic FeII complexes (1 and 2) were prepared 

and stored under an inert atmosphere in a Vacuum Atmospheres Omni-Lab glovebox. Solvents were 

deoxygenated prior to use in the glovebox and stored over molecular sieves. The syntheses of 

[Fe(Ph2TIP)(MeCN)3](OTf)2(36) and complex 1(31) were reported previously. 

Synthesis of [FeII(2-MTS)(Ph2TIP)]BPh4 (2) 
Methyl 2-thiosalicylate (27.5 μL, 0.20 mmol) and NEt3 (30.7 μL, 0.22 mmol) were dissolved in CH2Cl2 and stirred 

for 30 min. Addition of [Fe(Ph2TIP)(MeCN)3](OTf)2 (0.242 g, 0.20 mmol) yielded a red-orange solution that was 

stirred for 1 h, followed by removal of solvent under vacuum. The resulting orange solid (i.e., 2-OTf) was 

dissolved in CH3OH (10 mL) and filtered. Combination with a methanolic solution of NaBPh4 (0.068 g, 0.20 mmol) 

caused immediate formation of an orange-yellow precipitate, which was isolated by filtration. This solid was 

taken up in a small amount of CH2Cl2 and layered with MeOH, which provided an orange-yellow solid that was 

collected after 1 day and dried in vacuo (yield 62%). Anal. Calcd for FeC80H66BN6O2PS (Mw = 1273.11 g mol–1): C, 

75.47; H, 5.22; N, 6.60. Found: C, 74.10; H, 5.68; N, 6.80. UV–vis [λmax, nm (ε, M–1 cm–1) in CH2Cl2]: 380 (5100), 

675 (80). FTIR (cm–1, CH2Cl2): ν 1651 [ν(C = O)], 1582, 1504, 1062, 1030. 1H NMR (400 MHz, CDCl3): δ 43.6 (s, 1H, 

2-MTS), 36.8 (s, 1H, 2-MTS), 17.2 (s, 9H, −NCH3), 16.5 (s, 3H, −OCH3), 8.47 (s, 3H, Ph2TIP), 8.29 (s, 8H, BPh4), 7.65 

(s, 8H, BPh4), 7.38 (s, 4H, BPh4), 6.73 (s, 6H, Ph2TIP), 5.83 (s, 3H, Ph2TIP), 4.85 (s, 6H, Ph2TIP), 3.10 (s, 6H, Ph2TIP), 

−0.52 (s, 1H, 2-MTS), −15.2 (br s, 6H, Ph2TIP), −17.1 (s, 1H, 2-MTS) ppm. 

X-ray Crystallography 
Orange crystals of 2-OTf suitable for crystallographic analysis were grown by layering a concentrated 

CH2Cl2 solution with pentane. Details concerning the acquisition of crystallographic data are provided in 

the Supporting Information. The structure of 2-OTf contains two symmetrically independent units. In the second 

crystallographic unit, one of the phenyl substituents of the Ph2TIP ligand is rotationally disordered, as is the entire 

triflate counterion. In addition, two partially occupied positions containing CH2Cl2 molecules were positively 

localized within the layers, while the remaining solvent was accounted for using a solvent-mask procedure. 

Crystallographic data for complex 2-OTf: C57H46F3FeN6O5PS2·0.5CH2Cl2, Mr = 1145.42 g mol–1, monoclinic, space 

group C2/c, a = 46.4436(4) Å, b = 16.71596(15) Å, c = 30.6899(2) Å, α = 90°, β = 89.9026(8)°, γ = 90 °, V = 

23826.0(3) Å3, Z = 16, ρ = 1.282 g cm–3, μ = 3.902 mm–1, λ = 1.5418 Å, reflections collected 120390, independent 

reflections 23968 (Rint = 0.0324), 1518 parameters (127 restraints), R1 = 0.0503 and wR2 = 0.1477 for I ≥ 2σ(I), R1 

= 0.0547 and wR2 = 0.1532 for all data. Crystallographic data (CIF) can be obtained from the Cambridge 

Crystallographic Data Centre using the deposition number 1945809. 

Preparation of Synthetic FeIII–Cyano and −Azido Adducts 
Solutions of 1 (or 2) in CH2Cl2 were prepared in the glovebox and then cooled to either −78 or −70 °C. An 

anaerobic stock solution of [AcFc]BF4 (AcFc = acetylferrocenium) in CH2Cl2 was also generated. Injection of 1 

equiv of [AcFc]BF4 into the cooled solution caused a color change indicative of 1ox or 2ox formation. Formation of 

the cyano adducts was achieved by subsequent addition of 10–50 equiv of CN– salt (countercation = K+, NEt4
+, 

NBu4
+) at low temperature. The 13CN and 13C15N adducts were generated by addition of isotopically labeled KCN 
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salts that were solubilized in CH2Cl2 using 18-crown-6 ether. Formation of 1ox-N3 required addition of 5–50 equiv 

of N3
– salt (countercation = K+, NBu4

+) to 1ox at low temperature, followed by warming to room temperature. 

The 1ox-N3 adduct with 15N-labeled azide was prepared by addition of excess K15N14N2 solubilized in CH2Cl2 using 

18-crown-6 ether. 

Protein Purification 
Expression of the recombinant Mus musculus cdo gene was performed using Rosetta 2(DE3) E. coli cells 

(MilliporeSigma, Massachusetts) under control of the Lac operator in the pVP16 plasmid. The cdo gene was 

expressed as a fusion protein with an N-terminal 8×His and maltose binding protein (MBP) tags as previously 

described.(14) 

The C93G CDO variant was created using site-directed mutagenesis (SDM) via PCR as previously 

described,(37) with the exception that Phusion Master Mix with GC buffer (Thermo Scientific, Massachusetts) 

and E. coli 10G chemically competent cells (Lucigen, Wisconsin) were used instead. The primers used for SDM 

can be found in the Supporting Information. Cell growth and protein purification were performed as 

before,(38) with some changes. Cells were grown in lysogeny broth (LB) containing chloramphenicol, ampicillin, 

and ferrous ammonium sulfate [(NH4)2Fe(SO4)2] (34 μg/mL, 100 μg/mL, and 110 μM, respectively). Gene 

overexpression was induced by adding isopropyl β-D-1-thiogalactopyranoside (IPTG) to a final concentration of 

80.5 μM, D-lactose to a final concentration of 8 mM, and Casamino acids to a final concentration of 0.20% (w/v). 

All buffers used had a pH of 8. Cell pellets were resuspended in 25 mM HEPES buffer with rLysozyme 

(MilliporeSigma, Massachusetts) and sonicated on ice for 30 min. The lysed solution was then centrifuged at 

48400g and 4 °C for 75 min. Protein bound to the amylose column was eluted with buffer containing 25 mM 

HEPES, 200 mM NaCl, and 50 mM maltose. The N-terminal 8×His and MBP tags were then removed from CDO by 

incubating the solution with tobacco etch virus (TEV) protease overnight at room temperature. Tag-free CDO 

was isolated using subtractive immobilized metal affinity chromatography (IMAC) with a NiII nitrilotriacetic acid 

(NTA) agarose resin (GE Healthcare, Illinois). 

C93G CDO samples for spectroscopy were reconstituted with FeII to increase the increase the fraction of Fe-

bound CDO active sites. This was accomplished by adding a 2-fold excess of [(NH4)2Fe(SO4)2] to C93G CDO 

aerobically. After the protein and [(NH4)2Fe(SO4)2] solution was stirred for 30 min at 4 °C, a 3-fold excess of 

ammonium hexachloroiridate(IV) ((NH4)2[IrCl6]) was added and the solution was again stirred for 30 min at 4 °C. 

To remove any excess [(NH4)2Fe(SO4)2] and (NH4)2[IrCl6], a buffer exchange using 25 mM HEPES and 200 mM 

NaCl solutions, in conjunction with a 10 kDa centrifugal filter unit, was performed three times. The iron content 

of C93G CDO was then determined via a colorimetric assay using 2,4,6-tris(2-pyridyl)-s-triazine (TPTZ).(39) A 

summary of this assay can be found in the Supporting Information. To generate Cys- and CN-bound C93G FeIII-

CDO, a 10-fold molar excess of Cys over FeIII-bound variant protein was added to the sample. After 5 min, a 10-

fold molar excess of KCN over C93G FeIII-CDO was then added. The sample was frozen after another 5 min 

incubation period. 

WT CDO samples for spectroscopy were prepared similarly to C93G CDO with two modifications. Namely, iron 

reconstitution was performed anaerobically in a glovebox and samples were subsequently treated with Chelex 

100 sodium form (Sigma-Aldrich, Missouri) for 30 min to remove any unbound iron in solution. Samples were 

not treated with (NH4)2[IrCl6]; thus, no buffer exchange was performed. 

Spectroscopic Data 
UV–vis absorption spectra were collected with either an Agilent 8453 diode array spectrometer (synthetic 

samples) or Varian Cary 4 Bio spectrometer (protein samples). The former was equipped with a Unisoku 

Scientific Instruments (Osaka, Japan) cryostat for low-temperature measurements. 1H NMR spectra were 
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measured on a Varian 400 MHz spectrometer. Elemental analyses were performed at Midwest Microlab, LLC, in 

Indianapolis, IN. Infrared (IR) spectra were measured with a Thermo Scientific Nicolet iS5 FTIR 

spectrophotometer. X-band EPR spectra were gathered using a Bruker EMX instrument equipped with an 

ER4112 SHQ resonator. EPR data were collected at liquid He temperatures (5–15 K) using a ColdEdge/Bruker 

RDK-408 Stinger recirculating cryocooler. The program EasySpin (version 5)(40) was employed to conduct 

simulations of experimental EPR spectra. 

The resonance Raman data were measured using 647.1 nm excitation from a Coherent I-302C Kr+ laser. The laser 

power at the sample was between 30 and 50 mW for the synthetic samples and ∼20 mW for the protein 

samples. The synthetic samples had concentrations of 5–10 mM on the basis of the initial quantity of precursor 

complex (1 or 2). The preparation of protein samples for rRaman analysis is described in further detail above. 

Light scattered from frozen samples in liquid N2 was collected using a 135° backscattering arrangement and 

dispersed by an Acton Research triple monochromator featuring a 1200 grooves/mm grating. The scattered light 

was detected and analyzed with a Princeton Instruments Spec X:100BR deep depletion, back-thinned CCD 

camera. Baselines of the rRaman spectra were corrected using piecewise functions in the program IGOR to 

remove broad background contributions. Peak positions were calibrated against the 984 cm–1 peak of a 

K2SO4 standard or ice peak at 228 cm–1 for protein samples. 

Computational Methods 
All calculations were performed with the ORCA software package (version 3.0 or 4.0) developed by Dr. F. Neese 

(MPI for Chemical Energy Conversion).(41) Computational models of 1ox-CN, 2ox-CN, and 1ox-N3 were generated 

via density functional theory (DFT) calculations that employed Becke’s three-parameter hybrid functional for 

exchange along with the Lee–Yang–Parr correlation functional (B3LYP).(42,43) The geometry optimizations used 

Ahlrichs’ valence triple-ζ basis set combined with polarization functions on main-group and transition-metal 

elements (TZVP).(44−46) The Ph2TIP supporting ligand was modified by replacing the 5-phenyl substituents with 

hydrogen atoms. Computational times were reduced by applying the resolution of identity and chain of sphere 

(RIJCOSX) approximation(47) and the TZV/J auxiliary basis set.(48) Only real vibrational frequencies were 

computed for the optimized structures, indicating that they correspond to local energy minima. Active-site 

models of CDO in its cross-linked (α) and non-cross-linked (β) forms were obtained from previous QM/MM 

calculations reported by Li et al.(30) Atomic coordinates of all computational models are provided in Tables S4–

S10. For each FeIII-CN adduct, the composition of the singly occupied molecular orbital (SOMO) was determined 

through a natural orbital calculation on the basis of the DFT/B3LYP results. Computational results were 

visualized with the ChemCraft program. 

Two different approaches were employed to compute the g tensor of 1ox-CN. The first method determined spin–

orbit coupling contributions by solving the coupled-perturbed self-consistent field (CP-SCF) 

equations.(49−52) These calculations employed the B3LYP functional, RIJCOSX approximation, and TZVP basis 

set. The second approach utilized the complete active space self-consistent field (CASSCF) based method along 

with n-electron valence state second-order perturbation theory (NEVPT2).(53,54) These calculations were based 

on unrestricted natural orbitals derived from single-point DFT/B3LYP calculations. The CASSCF/NEVPT2 

calculations used either a split valence basis set with polarization (SVP with auxiliaries) or the TZVP basis set 

described above. The impact of active-space size and basis set size on computed g values was analyzed for 1ox-

CN, and the results are provided in Table S2. These results suggested that the most appropriate active space is 

CAS(11,13), which consists of the five Fe 3d orbitals, a second Fe d shell, and three CysOEt-based orbitals. The 

CAS(11,13) approach was then applied to the other FeCN adducts. Ten doublet roots were calculated in each 

case. 
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Results and Discussion 

Synthesis and X-ray Structure of a Substrate-Bound MDO Model 
Following our earlier procedure for the synthesis of complex 1,(31) [FeII(2-MTS)(Ph2TIP)]OTf (2-OTf) was prepared 

by treating the [FeII(Ph2TIP)(MeCN)3](OTf)2 precursor with methyl 2-thiosalicylate in the presence of NEt3. 

Counteranion metathesis with NaBPh4 in MeOH provided [FeII(2-MTS)(Ph2TIP)]BPh4 (2) as a precipitate that was 

collected and dried to give a yellow powder. Yellow-orange crystals of 2-OTf for X-ray diffraction experiments 

were grown by layering a concentrated CH2Cl2 solution with pentane. The unit cell of 2-OTf consists of two 

symmetrically independent FeII complexes with similar five-coordinate geometries. The three imidazole donors 

of Ph2TIP are arranged facially with an average Fe–NTIP distance of 2.15 Å (Figure 2). These bond distances reflect 

the high-spin (S = 2) state of the FeII center, which is also apparent in the paramagnetically shifted peaks 

between −20 and +50 ppm observed by 1H NMR spectroscopy (Figure S1). The overall geometry is best 

described as distorted trigonal bipyramidal (average τ value 0.57)(55) with the thiolate and carbonyl donors of 2-

MTS occupying equatorial and axial positions, respectively. Metric parameters for complexes 1 and 2-OTf are 

compared in Table S1. The two complexes exhibit nearly identical Fe–S bond distances (∼2.32 Å) despite the 

change from alkanethiolate (1) to arenethiolate (2-OTf). The distance between the Fe center and O atom donor 

of 2-MTS is 2.13 Å, which is considerably shorter (by 0.11 Å) than the Fe–Namino distance measured for the 

CysOEt ligand of 1. These results highlight the stability of the six-membered chelate formed by the bidendate 

S,O-coordination of 2-MTS. 

 
Figure 2. Thermal ellipsoid plot (50% probability) obtained from the X-ray crystal structure of 2-OTf. The triflate 

counteranion, noncoordinating solvent molecules, and all hydrogen atoms are omitted for clarity. 

Because of the structural similarities between 2-MTS and 3-mpa, complex 2 serves as an active-site mimic of 

substrate-bound FeII-MDO. Recently, Jameson and co-workers employed docking methods to discern the 

position of 3-mpa within the MDO active site.(16) In the resulting model (Figure S2), the thiolate and carboxylate 

groups of 3-mpa coordinate trans to His91 and His142, respectively. This bidentate conformation is favored by 

the formation of a salt bridge between the substrate carboxylate and Arg168, which places one of the O atoms 

in proximity to the Fe center. In contrast, Pierce has suggested that the carboxylate of 3-mpa participates in a 

hydrogen bond with a conserved Tyr residue, resulting in thiolate-only coordination.(10) Although the X-ray 

structure of 2-OTf resembles the docking model of Jameson, the absence of outer-sphere residues makes it 
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impossible to draw firm conclusions from our synthetic efforts. Thus, future structural and spectroscopic studies 

of MDOs are required to determine the mode of substrate binding. 

Formation and Spectroscopic Features of Ferric Cyano and Azido Species 
Analysis with cyclic voltammetry (CV) revealed that complex 1 undergoes irreversible oxidation at +65 mV (vs 

Fc+/0) in CH2Cl2 at room temperature. On the basis this result, we reckoned that it would be possible to generate 

the ferric derivative by chemical oxidation with acetylferrocenium (AcFc+; E1/2 = +270 mV).(56) Indeed, treatment 

of 1 with 1 equiv of [AcFc]BF4 in CH2Cl2 at −78 °C generates a new chromophore (1ox) with intense absorption 

bands at 445 and 595 nm (Figure 3a). The oxidized species is stable at reduced temperatures but decays upon 

warming to room temperature, consistent with the irreversibility observed by CV (Figure S3). Oxidation 

of 2 under similar conditions (T = −70 °C) yields a reddish-brown species (2ox) with a similar pattern of UV–vis 

features, albeit red-shifted in comparison to 1ox. Like 1ox, the absorption features of 2ox decay upon warming to 

room temperature to give a featureless spectrum (Figure S3). The 1ox and 2ox absorption bands likely derive from 

thiolate to FeIII charge transfer (CT) transitions. In support of this conclusion, X-band EPR spectra of both species 

(Figure S4) feature an intense derivative feature at g = 4.3 and a much weaker peak near g = 9.4. Such spectra 

are typical of mononuclear high-spin FeIII complexes with rhombic symmetry (E/D ≈ 0.33). 

 
Figure 3. UV–vis and EPR spectra of oxidized derivatives of complexes 1 and 2. Absorption spectra were 

measured in CH2Cl2 at either −78 °C (a) or −70 °C (b, c), with the exception of the 1ox-N3 spectrum (20 °C). 

Samples of 1ox and 2ox were generated by treatment of 1 and 2, respectively, with 1 equiv of [AcFc]BF4. Further 

addition of 50 equiv of (a) [NBu4]CN, (b) [NEt4]CN, or (c) [NBu4]N3 gave rise to the cyano and azido adducts 

(formation of the latter required warming to 20 °C). Initial concentration of Fe complex: (a) 0.52 mM, (b) 0.59 
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mM, and (c) 0.45 mM. Insets: X-band EPR spectra of (a) 1ox-CN, (b) 2ox-CN, and (c) 1ox-N3 measured in frozen 

CH2Cl2 solutions at the indicated temperature. The microwave power was 2 mW, and the frequency (ν) is 

indicated. The features designated by an asterisk (*) arise from a copper impurity in the sample cavity. 

Addition of excess cyanide anion to solutions of 1ox at low temperature results in the formation of a new teal 

species (1ox-CN). Complete conversion of 1ox → 1ox-CN requires at least 10 equiv of cyanide anion, suggesting 

that the affinity is rather low. The same procedure was used to generate 2ox-CN. As shown in Figure 3, these 

cyanide-treated species are characterized by a strong S → FeIII charge transfer (CT) band at 645 (1ox-CN) or 720 

nm (2ox-CN), in addition to a second CT feature at shorter wavelength (λmax ≈ 440 nm). The energies and 

intensities of these UV–vis features resemble those reported for the thiolate-ligated nonheme FeIII-CN adduct of 

superoxide reductase (SOR).(23) Unlike their 1ox/2ox precursors, the cyanide-treated species are stable at room 

temperature. 

As expected, cyanide coordination causes the FeIII complexes to adopt a low-spin configuration. The EPR 

spectrum of 1ox-CN in frozen CH2Cl2 exhibits a nearly axial S = 1/2 signal (Figure 3a; inset) that was simulated 

with g values of 2.204, 2.161, and 1.988. No high-spin S = 5/2 features were observed even at 10 K, indicating 

full conversion of 1ox to 1ox-CN. The spectrum of 2ox-CN (Figure 3b; inset) displays slightly greater rhombicity 

with g values of 2.231, 2.161, and 1.964. Table1 compares these g values to those measured by Pierce et al. for 

Cys-bound FeIII-CDO treated with cyanide.(30) It is clear that the EPR signals of the CDO adducts are significantly 

more rhombic and anisotropic than those exhibited by the synthetic analogues. The structural factors behind 

these disparities will be explored in Computational Studies. 

Table 1. Comparison of EPR g Values Measured for (L-Cys/CN)-Bound FeIII-CDO and Related Model Complexes 

species g1 g2 g3 ref 

WT (L-Cys/CN)-bound FeIII-CDOa 1.937 2.234 2.379 (30) 

C93A (L-Cys/CN)-bound FeIII-CDOb+ 1.951 2.208 2.343 (30) 

1ox-CN 1.988 2.161 2.204 this work 

2ox-CN 1.964 2.161 2.231 this work 
aWT enzyme with Cys93-Y157 cross-link. 
bThe C93A CDO variant lacks the Cys93-Y157 cross-link. 
 

The ability of 1ox to bind azide was also examined. Treatment of 1ox with 50 equiv of [NBu4]N3 at −80 °C results in 

only modest spectral changes; however, the reaction at 20 °C generates a dark brown chromophore (1ox-N3) that 

displays intense absorption features in the 400–600 nm region (Figure 3c). Comparison to synthetic precedents 

suggests that these features arise from N3
– → FeIII CT transitions,(57) although S → FeIII CT bands probably also 

contribute to the absorption envelope. The EPR spectrum of 1ox-N3 consists of a rhombic S = 5/2 signal 

(Figure 3c, inset) similar to that measured for 1ox, indicating the complex remains high spin upon azide 

coordination. 

The properties of the ferric-cyano and -azido adducts were further probed with rRaman spectroscopy. Excitation 

into the S → FeIII CT band using 647.1 nm laser light provided the spectra of 1ox-CN and 2ox-CN shown 

in Figures 4 and 5, respectively. These spectra display a series of features in the 300–550 cm–1 region arising 

from vibrations of the NC–Fe–SR unit. Peak assignments were made by comparing spectra of samples prepared 

with different cyanide isotopes (i.e., 12C14N, 13C14N, and 13C15N). The frequency of the peak at 341 cm–1 in the 1ox-

CN spectrum is characteristic of ν(Fe–S) modes in nonheme iron enzymes and complexes with thiolate 

coordination.(23,58−65) This peak downshifts slightly (1 cm–1) upon 13CN labeling due to kinematic coupling 

between the Fe–S and Fe–C stretching motions. The peak at 464 cm–1 in the natural abundance (NA, 12C14N) 
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spectrum exhibits a similarly small isotope shift, likely corresponding to the Fe–N stretching mode of the 

−NH2 donor of CysOEt. 

 
Figure 4. Resonance Raman spectra of 1ox-CN collected using 647.1 nm laser excitation (∼40 mW at the sample). 

The samples were prepared by treating 1ox with (a) natural abundance KCN (50 equiv) in CD2Cl2, (b) K13CN (50 

equiv) in CD2Cl2, and (d) K13C15N (10 equiv) in CH2Cl2. The KCN salts were solubilized using 18-crown-6 ether. The 

difference spectrum (a–b) generated by digital subtraction is provided in (c). The 13C and 13C15N isotope shifts 

relative to the NA spectrum are indicated in cm–1. 

 
Figure 5. Resonance Raman spectra of 2ox-CN collected at 77 K using 647.1 nm laser excitation (30 mW at the 

sample). The samples were prepared at −78 °C by treating 2ox with (a) natural-abundance KCN (10 equiv) or (b) 

K13CN (10 equiv) in CH2Cl2. The KCN salts were solubilized using 18-crown-6 ether. The 13C isotope shifts relative 

to the NA spectrum are indicated in cm–1. Solvent-derived peaks are indicated with an asterisk (*). 

Much larger 13C isotope shifts are displayed by the three peaks at 426, 499, and 513 cm–1 in the NA spectrum. 

These features arise from ν(Fe–CN) stretching and δ(Fe–C–N) bending modes that often exhibit a substantial 

degree of mixing. On the basis of prior studies of FeIII–CN adducts in proteins, it is known that modes with 

predominant ν(Fe–CN) character are distinguished by large shifts upon isotopic substitution of both the carbon 

and nitrogen atoms of the cyano ligand, whereas the frequencies of δ(Fe–C–N) modes are predominantly 

sensitive to isotopic substitution at the carbon atom.(23,25,66) As shown in Figure 4, the peak at 426 cm–1 in the 
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NA spectrum decreases by 15 cm–1 upon 13C15N labeling, which is 4 cm–1 greater than the change caused by 13C 

labeling alone. In contrast, the 13C15N shifts of the peaks at 499 and 513 cm–1 are nearly identical with the 13C 

shifts. Thus, the peak at 426 cm–1 is assigned to the ν(Fe–CN) stretching mode, while those at 499 and 513 cm–

1 are attributed to modes with predominately δ(Fe–C–N) bending character. Clay et al. also observed δ(Fe–C–N) 

bending modes around 500 cm–1 in the spectrum of CN-treated FeIII–SOR.(23) The observation of two δ(Fe–C–

N)-based peaks for 1ox-CN may indicate the presence of two conformations in frozen solution. An alternative 

explanation is that the FeCN geometry is nearly linear, since the frequencies of the two bending modes merge as 

the bond angle approaches 180°. The latter scenario is supported by DFT calculations (vide infra), which predict 

a Fe–C–N angle of 176° for 1ox-CN. 

The rRaman spectrum of 2ox-CN exhibits peaks due to ν(Fe–S) and ν(Fe-CN) stretching modes at 347 and 403 cm–

1, respectively (Figure 5). The feature at 452 cm–1 with a small 13C isotope shift of −2 cm–1 is tentatively assigned 

to a mode primarily involving stretching of the Fe–O(carbonyl) bond. Unlike 1ox-CN, the spectrum of 2ox-

CN displays a single δ(Fe–C–N) peak at 495 cm–1, although the higher frequency mode at 539 cm–1 likely has 

significant δ(Fe–C–N) and/or ν(Fe–CN) character. 

Raman studies of 1ox-N3 employed 488.1 nm laser excitation into the overlapping N3
— → FeIII and S → FeIII CT 

bands. The resulting spectrum (Figure S5) exhibits an intense peak at 377 cm–1 that is assigned to the ν(Fe–S) 

stretching mode on the basis of its frequency. This peak downshifts by 2 cm–1 when the sample is prepared 

with 15N14N2-labeled azide, indicative of weak coupling to the ν(Fe–N) mode of the azido ligand. For reasons that 

are not clear, the stretching and bending modes of the FeIII–N3 unit are not observed directly. Nevertheless, the 

clear shift in the ν(Fe–S) frequency upon isotopic labeling of N3
– provides direct evidence of azide coordination 

to the FeIII center. The formation of 1ox-N3 is notable because spectroscopic and crystallographic 

studies(13) have shown that azide does not form an inner-sphere complex with Cys-bound FeIII-CDO. Our results 

thus support the proposal that the inability of Cys-bound FeIIICDO to form an FeIII-N3 adduct is due to a hydroxide 

ion occupying the sixth coordination site rather than an intrinsic lack of azide affinity by the FeIII site.(29) 

Resonance Raman Studies of CN/Cys-Bound FeIII-CDO 
Parallel studies of Cys- and CN-treated FeIII-CDO were conducted to discern the effect of the protein 

environment on the geometric and electronic structures of the FeIII center. Wild-type (WT) Cys/CN-bound FeIII-

CDO exhibits a bluish color due to the presence of a S → FeIII CT band at λmax = 667 nm (Figure S6). This peak is 

red-shifted by ∼700 cm–1 relative to the same feature displayed by high-spin Cys-bound FeIII-CDO. A red shift of 

similar magnitude was observed upon CN binding to SOR.(23) We also prepared rRaman samples for the Cys/CN 

adduct of the C93G CDO variant, which lacks the C93–Y157 cross-link (vide supra). In this case, the S → FeIII CT 

band appears at 650 nm, indicating that loss of the cross-link modulates the Fe–S bonding interaction. 

rRaman spectra of the enzyme samples were obtained by 647.1 nm laser excitation into the S → FeIII CT band 

(Figure 6). In addition to the ice lattice peaks (marked by asterisks), the spectrum of WT Cys/CN-bound FeIII-CDO 

exhibits two strong peaks at 377 and 429 cm–1 that are assigned to the ν(Fe–S) and ν(Fe–CN) stretching modes, 

respectively, on the basis of a comparison to the 1ox-CN results. The CDO spectrum also contains a weaker band 

at 495 cm–1 that is attributed to a δ(Fe–C–N) bending mode. In the rRaman spectrum of the C93G CDO variant, 

the ν(Fe–S)- and ν(Fe–CN)-based peaks appear at slightly lower frequencies, which proves that the cross-link 

perturbs both the Cys and CN ligands. These peaks are sensitive to 13CN substitution with isotope shifts similar to 

those observed for 1ox-CN and 2ox-CN. 
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Figure 6. Resonance Raman spectra of Cys/CN adducts of CDO collected at 77 K using 647.1 nm laser excitation 

(20–25 mW at the sample): (upper spectrum) WT FeIII-CDO treated with Cys and natural abundance KCN; 

(middle spectrum) C93G FeIII-CDO treated with Cys and natural-abundance KCN; (lower spectrum) C93G FeIII-

CDO treated with Cys and K13C14N. Peaks labeled with an asterisk arise from the lattice modes of ice. Frequencies 

and 13C isotope shifts (in cm–1) are provided for select peaks. 

The ν(Fe–S) frequency of 377 cm–1 observed for the Cys/CN adduct of low-spin WT CDO is significantly higher 

than the value of 340 cm–1 measured for high-spin Cys-bound FeIII-CDO.(59) This trend is opposite to that found 

for the synthetic complexes, as the ν(Fe–S) frequency of low-spin 1ox-CN is lower (by 36 cm–1) than that of high-

spin 1ox-N3. Interestingly, Johnson and co-workers reported that the ν(Fe–S) frequency of SOR is largely 

unchanged upon CN binding.(23) These findings suggest that the ν(Fe–S) frequency is not a reliable indicator of 

spin state or Fe–S bond distance, and this issue will be addressed in greater detail in the Conclusions. 

Computational Studies 

Geometry-Optimized Synthetic and Enzyme Models 
The geometric and electronic structures of our synthetic FeIII-CN and FeIII-N3 species were further examined with 

DFT calculations employing the B3LYP functional. The computational models generated via geometry 

optimization are shown in Figure 7, and key metric parameters are summarized in Table2 for the Fe-CN adducts. 

The Fe–S bond distances of 2.18 and 2.20 Å computed for 1ox-CN and 2ox-CN, respectively, are significantly 

shorter than those measured for their FeII precursors, reflecting the increase in Fe oxidation state and the 

change from high-spin to low-spin state. In both cases, the Fe-CN units are nearly linear with Fe–C–N bond 

angles of 176°. The aryl ring of the 2-MTS ligand in 2ox-CN is tilted by nearly 40° out of the plane created by the 

S–Fe–O chelate ring in order to minimize steric interactions between 2-MTS and the nearby Ph ring of Ph2TIP. In 

the geometry-optimized model of 1ox-N3, the Fe-N3 unit adopts a highly bent orientation with a Fe–N–N bond 

angle of 136°. The azido ligand points away from the CysOEt chelate to avoid steric interactions with the 
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adjacent phenyl rings (Figure 7). The high-spin nature of the FeIII center in 1ox-N3 results in a lengthy Fe–S bond 

distance of 2.32 Å. 

 
Figure 7. DFT geometry-optimized structures of 1ox-CN, 2ox-CN, and 1ox-N3. 

Table 2. DFT-Computed Bond Lengths (Å) and Angles (deg) for 1ox-CN and 2ox-CN Compared to Those for 
QM/MM-Optimized Cys/CN-Bound FeIII-CDO Active Sites 

species Fe–
S 

Fe–
C 

Fe–
N(His/TIP) (av) 

Fe–C–
N 

N–Fe–
CCN 

ref 

1ox-CN 2.18 1.91 2.17 176.3 173.6 this 
work 

2ox-CN 2.20 1.90 2.17 175.8 172.3 this 
work 

(L-Cys/CN)-FeIII-CDO cross-linked (α-CDO) 2.28 1.95 2.07 169.2 168.6 (30) 

(L-Cys/CN)-FeIII-CDO non-cross-linked (β-
CDO) 

2.26 1.95 2.05 176.3 172.6 (30) 

 

DFT calculations of 1ox-CN and 2ox-CN predict ν(Fe–S) stretching frequencies of 378 and 365 cm–1, respectively, in 

reasonable agreement with the experimental data.(67) The calculations somewhat overestimate the frequencies 

of the ν(Fe–CN) modes, providing values of 457 and 472 cm–1 for 1ox-CN and 2ox-CN, respectively. Analysis of the 

computed Δ13C isotope shifts reveals that several modes in the 420–480 cm–1 region contain partial δ(Fe–C–N) 

character, making it difficult to determine the precise frequencies of these modes. However, the presence of 

multiple isotopically active modes with ν(Fe–CN) and δ(Fe–C–N) character is consistent with the rRaman data 

measured for the synthetic FeIII-CN adducts. 

To better understand the role of outer-sphere residues in modulating the coordination geometry of the Fe 

center, it is worthwhile to compare the DFT-generated structures of our synthetic CDO mimics to analogous 

computational models of the FeIII-CDO active site. Recently, the Pierce and Brunold groups used a quantum 

mechanical/molecular mechanics (QM/MM) approach to generate whole-protein models of FeIII-CDO bound 

to L-Cys substrate and CN.(30) In these calculations, the QM region was treated with the same DFT/B3LYP 

methodology as employed here for the synthetic complexes. In the QM/MM-optimized protein structures, the 

carboxylate group of the L-Cys substrate forms a salt bridge to a conserved Arg60 residue, as illustrated 

in Figure 1. Due to this interaction, the Fe–S bond distance of 2.28 Å in the CN/Cys-bound FeIII-CDO active site is 

significantly longer than the value of 2.18 Å computed for 1ox-CN (Table2). In addition, the protein active site 

features shorter Fe–NHis distances in comparison to the Fe–NTIP distances in 1ox-CN and 2ox-CN, which contributes 

to the longer Fe–S and Fe–C(N) bonds in the active-site models (Table2). 
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The QM/MM studies also examined the structural effects of the Cys-Tyr cross-link on the Cys/CN FeIII-CDO 

adducts. Here, we adopt the labeling scheme of Pierce et al. and refer to the cross-linked and non-cross-linked 

enzymes as α-CDO and β-CDO, respectively.(27) In the absence of the cross-link, the Fe–C–N unit is nearly linear 

with an angle of 176° (nearly identical to the values computed for 1ox-CN and 2ox-CN). However, α-CDO exhibits 

a more bent Fe–C–N unit with an angle of 169°. In addition, by shifting the position of the Tyr157 residue, the 

cross-link disrupts the network of hydrogen bonds between the side chain of Arg60, the phenol of Tyr157, and 

the substrate Cys carboxylate (Figure 1), which causes the Fe–S bond to lengthen by 0.02 Å. Although seemingly 

minor, this perturbation has a measurable effect on the electronic and spectroscopic properties of the enzyme 

active site, as described below. 

Electronic Structure and Bonding Interactions 
The DFT/B3LYP-computed molecular orbital (MO) diagram of 1ox-CN shown in Figure 8a provides a useful 

starting point for discussing the electronic structures of these thiolate-ligated FeIII-CN adducts, both synthetic 

and enzymatic. As expected for a distorted-octahedral complex, the five 3d electrons of the low-spin FeIII center 

occupy the t2g set of orbitals (dxy, dxz, dyz), while the eg orbitals (dz
2, dx

2–y2) are unoccupied (see Figure 8c for the 

molecular coordinate system). The singly occupied Fe 3dxy-based MO is destabilized relative to the doubly 

occupied Fe 3dxz- and 3dyz-based MOs by a strong π-antibonding interaction with the sulfur 3py orbital. Following 

the convention established by Griffith and Taylor for low-spin FeIII systems,(68,69) the energy difference 

between the 3dxy orbital and 3dxz/3dyz pair is referred to as the tetragonal (Δ) splitting, while the gap between 

the 3dxz/3dyz orbitals is the rhombic splitting (V; Figure 8b). The Δ and V splittings can be estimated 

experimentally through analysis of EPR g values, as discussed in the next section. 

 
Figure 8. (a) MO diagram derived from a spin-unrestricted DFT calculation (TZVP/B3LYP) of 1ox-CN. MOs are 

labeled according to their principal contributor, and energies correspond to the spin-down (β) orbitals. (b) 

Schematic depiction of Δ and V splittings of the t2g set of Fe 3d orbitals. (c) DFT-generated isosurface plot of the 

singly occupied natural MO of 1ox-CN (phenyl rings of TIP ligand omitted for clarity). 

The covalent nature of the Fe–S bond in 1ox-CN is reflected in the composition of the singly occupied MO 

(SOMO), as determined through a natural orbital calculation based upon the DFT/B3LYP results. The SOMO 

of 1ox-CN shown in Figure 8c contains 75% Fe 3d and 20% S 3py character. Because of the Fe–S π-bonding 

interaction, the unpaired electron is partially delocalized onto the thiolate ligand, as indicated by the Mulliken 

spin population of 0.18 for the S atom of 1ox-CN. The Fe–S bond of 2ox-CN is similarly covalent, although the 

thiolate-based π-donor MO is partially delocalized over the aromatic ring.(70) The longer Fe–S bonds of the 
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enzymatic models reduce the S character of the SOMOs to 14% and 11% in β-CDO and α-CDO, respectively, 

indicative of markedly less covalent π-interactions. 

Computational Analysis of EPR g Values 
For low-spin d5 complexes in six-coordinate environments, the anisotropy of the g tensor is mainly due to spin–

orbit coupling (SOC) among the three states arising from the parent 2T2g ground state in Oh symmetry. However, 

the near-degeneracy of the 2T2g-derived states poses a challenge for the calculation of magnetic and EPR 

properties. While coupled-perturbed self-consistent field (CP-SCF) equations are often employed to account for 

SOC effects in DFT calculations, previous studies (by us and others) have found that this method often fails to 

reproduce the g values of low-spin nonheme FeIII systems.(30,71,72) Indeed, as shown in Table3, DFT/CP-SCF 

calculations for 1ox-CN greatly underestimate the g3 value and incorrectly predict a g1 value greater than 2.0, 

regardless of the functional used. To overcome such deficiencies, we recently developed an alternative 

approach that utilizes time-dependent DFT to calculate the Δ and V splittings (Figure 8b) of the 

t2g orbitals.(72) These values are then entered into equations developed by Taylor to arrive at the 

computed g values. While this strategy proved effective in predicting the g values of various states of iron-type 

nitrile hydratase, it fails to explicitly treat metal–ligand covalency and also requires prior calibration with 

structurally characterized models to determine the SOC constant (λ). 

Table 3. Comparison of Computed and Experimental g Values and Ligand-Field Splittings for Relevant FeCN 
Adductsa 

model method g1 g2 g3 rms devc Δ (cm–1) V (cm–1) 

1ox-CN exptl 1.988 2.161 2.204   4731d 1094d 

  DFT/PBE0/CP-SCF 2.026 2.127 2.145 0.045     

  DFT/B3LYP/CP-SCF 2.020 2.110 2.131 0.055     

  CASSCF/NEVPT2 1.946 2.183 2.234 0.032 4321 512 

2ox-CN exptl 1.964 2.161 2.231   4063d 1292d 

  CASSCF/NEVPT2 1.953 2.191 2.256 0.023 3886 431 

α-CDO exptlb 1.937 2.235 2.379   2776d 1171d 

  CASSCF/NEVPT2 1.914 2.258 2.425 0.032 2833 1056 

β-CDO exptlb 1.951 2.207 2.344   3126d 1416d 

  CASSCF/NEVPT2 1.930 2.228 2.350 0.017 3366 1013 

Hybrid-1 CASSCF/NEVPT2 1.931 2.206 2.389 nae 3280 1422 

Hybrid-2 CASSCF/NEVPT2 1.971 2.283 2.352 nae 2849 785 
aThe CASSCF/NEVPT2 calculations employed a CAS(11,13) active space and TZVP basis set. 
bReference (30). 
crms dev = root-mean-square deviation between experimental and computed g values. 
dThe experimental Δ and V values were calculated using Taylor’s equations for low-spin FeIII complexes in the 

absence of iron–ligand covalency, assuming a SOC parameter (λ) of 400 cm–1. See ref (68) for more details. 
ena = not applicable. 

 

Neese and co-workers have demonstrated that complete active space self-consistent field (CASSCF) methods 

provide reliable g values for transition-metal complexes, particularly when dynamic correlation is incorporated 

via n-electron valence state second-order perturbation theory (NEVPT2).(53) We therefore applied the 

CASSCF/NEVPT2 approach to each of the synthetic and enzymatic FeIII-CN models described above. Initial studies 

gauged the impact of active-space size on the calculated g values for 1ox-CN, starting with the minimal active 

space consisting of five active electrons in the five Fe 3d orbitals (i.e., CAS(5,5)). As shown in Table S2, 

the g values derived from the CAS(5,5) calculation (g1,2,3 = 1.932, 2.272, and 2.334) are significantly more 
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anisotropic than the experimental values. However, improved results were obtained with the CAS(11,8) active 

space, which includes three occupied CysOEt-based orbitals. Further addition of a second Fe d shell (i.e., 

CAS(11,13)) yielded g values in excellent agreement with experiment, as evidenced by the root-mean-square 

deviation of just 0.023. Expansion of the basis set (from SVP to TZVP) caused only slight changes in the 

computed g values (Table S2), consistent with the basis-set stability of CASSCF/NEVPT2 calculations noted by 

Neese.(53) Analysis of the g tensor revealed that the g1, g2, and g3 axes are aligned along the Fe–NH2, Fe–CCN, 

and Fe–S bonds, respectively, as indicated in Figure 8c. Following Taylor’s analysis, the average anisotropy 

of g2 and g3 (i.e., (g2 + g3)/2 – 2.0023) is dictated by Δ, while the rhombicity (V) accounts for the difference 

between g2 and g3. 

Encouraged by our success with 1ox-CN, we performed CAS(11,13)/NEVPT2 calculations for the remaining FeIII-

CN adducts using the TZVP basis set. In each case, the computed and experimental g values are in good 

agreement, as indicated by root-mean-square deviations of around 0.02 (Table3). Most notably, the 

computational results reproduce the increased anisotropy of the enzymatic FeIII-CN adducts relative to the 

synthetic models, as well as the subtle differences between α-CDO and β-CDO. Through analysis of the ligand-

field transition energies provided by the CASSCF/NEVPT2 calculations, we can extract the Δ and V splittings of 

the t2g orbitals for each model (Table3). The computed Δ values of 1ox-CN and 2ox-CN are 4300 and 3900 cm–1, 

respectively, reflecting the considerable destabilization of the Fe 3dxy-based MO due to π-antibonding 

interactions with the thiolate donor (vide supra). In comparison, the Δ values of α-CDO and β-CDO are smaller 

by roughly 1000 cm–1, which increases the g tensor anisotropy by enhancing SOC-induced mixing among the 2T2g-

derived states. The decrease in Δ is largely a consequence of the elongated Fe–S bonds in α-CDO and β-

CDO relative to the synthetic complexes (Table2). The computed V splittings are also greater for the enzymatic 

structures, although the experimentally determined rhombicities are roughly similar for both the synthetic and 

biological FeIII-CN adducts. 

The CASSCF/NEVPT2 calculations help to illuminate the structural origins of the different g values exhibited by α-

CDO and β-CDO. As described above, the presence of the Cys-Tyr cross-link lengthens the Fe–S bond and 

induces a decrease in the Fe–C–N bond angle. To determine whether these perturbations are responsible for the 

greater g anisotropy of α-CDO, we generated two hybrid structures. Hybrid-1 is identical with β-CDO apart from 

the Fe-CN unit, which adopts the bent orientation of α-CDO (Fe–C–N angle of 169°). In the Hybrid-2 structure, 

the Fe-CN unit is nearly linear as in β-CDO (Fe–C–N angle of 176°) but the Fe–SCys and Fe–NCys bond distances 

correspond to those found in α-CDO. As shown in Table3, the Δ value is primarily determined by the length of 

the Fe–S bond, while the Fe–C–N bond angle has the greatest effect on the rhombicity parameter (V). 

Comparison of the computed g values indicates that the larger g3 value of α-CDO—in comparison to β-CDO—is 

mainly a consequence of the bend in the FeCN unit due to the Cys-Tyr cross-link. The g2 value is most sensitive 

to the Fe–S bond distance, while the effect of structural variations on g1 is less clear. These results support the 

conclusion that the observed shifts in g values between α-CDO and β-CDO arise from cross-linked-induced 

perturbations of both the CN and Cys ligands. 

Conclusions 
A variety of synthetic, spectroscopic, and computational methods have been used to elucidate the geometric 

and electronic structures of thiolate-ligated FeIII complexes of relevance to the active sites of thiol dioxygenases. 

These efforts included the preparation and structural characterization of [FeII(2-MTS)(Ph2TIP)]BPh4 (2), which 

serves as the first synthetic model of substrate-bound FeII-MDO (Figure 2). One-electron chemical oxidation 

of 2 and the previously reported 1 yielded ferric derivatives capable of binding small anions (namely, cyanide 

and azide) that are commonly used as spectroscopic probes of biological and synthetic Fe sites involved in 

O2 activation. The formation of six-coordinate FeIII-CN and FeIII-N3 adducts (1ox-CN, 2ox-CN, and 1ox-N3) was 

confirmed by examination with UV–vis absorption, EPR, and rRaman spectroscopies. DFT calculations 
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determined that the unpaired electron of the FeIII-CN complexes occupies the Fe 3dxy-based MO that carries 

significant S character due to the covalent nature of the Fe–S π-bond. In addition, the g values derived from 

CASSCF/NEVPT2 calculations for 1ox-CN and 2ox-CN are in excellent agreement with the experimental data. The 

observed and calculated g tensors were rationalized on the basis of Δ and V splittings among the Fe 3d 

t2g orbitals. 

Importantly, our studies of the synthetic CDO/MDO models facilitated the interpretation of data collected in 

parallel studies of CDO. We expanded upon the prior EPR studies of Pierce and co-workers by collecting rRaman 

spectra of Cys- and CN-bound FeIII-CDO. The assignment of ν(Fe–S), ν(Fe–CN), and δ(Fe–C–N) features in the 

rRaman spectra was aided by close similarities between the enzymatic and model spectra. The effect of the Cys-

Tyr cross-link was examined by comparing rRaman spectra of Cys- and CN-treated WT CDO (cross-linked; α-CDO) 

and C93G CDO (non-cross-linked; β-CDO). Small shifts in the ν(Fe–S) and ν(Fe–CN) frequencies indicate that both 

the CN and Cys ligands are perturbed by formation of the cross-link. This finding is consistent with prior QM/MM 

calculations which provided the active site models that we used in our ab initio computational studies of CDO 

FeIII-CN adducts. To the best of our knowledge, this is the first time that the CASSCF/NEVPT2 approach has been 

applied to a metalloenzyme active site. The computed g values for α-CDO and β-CDO exhibit remarkably good 

agreement with experiment. Moreover, by analyzing the effect of structural variations on the computed g values 

and ligand-field splittings, we determined that the greater g anisotropy of α-CDO—in comparison to β-CDO—is 

the result of both the elongation of the Fe–S bond and the tilting of the Fe-CN unit caused by the Cys-Tyr cross-

link. 

It is somewhat curious that loss of the Cys-Tyr cross-link is accompanied by a slight decrease (9 cm–1) in the ν(Fe–

S) frequency of Cys- and CN-bound FeIII-CDO (Figure 6), even though the computational results indicate that the 

Fe–S bond is shorter in the non-cross-linked active site. This finding would seem to contradict Badger’s rule, 

which states that bond length is inversely proportional to vibrational frequency.(73,74) We noted a similar 

discrepancy in our studies of the synthetic adducts: the ν(Fe–S) frequency of 1ox-CN (341 cm–1) is lower than that 

of 1ox-N3 (377 cm–1), even though DFT calculations provide Fe–S bond distances of 2.18 and 2.32 Å, respectively. 

To explore this matter further, we sought to compare the spin states, ν(Fe–S) frequencies, and computed Fe–S 

bond distances of biological and synthetic nonheme FeIII centers with mixed S/N coordination reported in the 

literature. From the data compiled in Table4, and the corresponding plots in Figure S7, it is clear that the ν(Fe–S) 

modes of these nonheme iron sites do not behave according to Badger’s rule. To determine whether the lack of 

a clear relationship could be due to errors in the calculated Fe–S bonds, we performed geometry optimizations 

of 1ox-CN and 2ox-CN using a range of DFT functionals (nonhybrid, meta-GGA, and hybrid). As shown in Table S3, 

the absolute and relative Fe–S bond distances are largely independent of functional, suggesting that differences 

in computational methods cannot entirely account for the observed breakdown in Badger’s rule. Another likely 

explanation is that the Fe–S stretching motion is often strongly coupled to δ(S–C–C) and δ(C–C–N) motions, and 

thus ν(Fe–S) character is distributed across several modes. Because of this, the ν(Fe–S) frequency is not a 

dependable marker of either spin state or Fe–S bond distance in nonheme iron systems. In contrast, our results 

suggest that EPR studies of low-spin FeIII sites can provide more reliable structural insights when they are 

conducted in tandem with DFT and CASSCF/NEVPT2 calculations. 

Table 4. Spin States, Fe–S Bond Distances, and Fe–S Stretching Frequencies of Nonheme FeIII Centers with Mixed 
S/N Ligation 

  spin r(Fe–S), Åa ν(Fe–S), cm–1 ref 

Synthetic     

1ox-CN 1/2 2.18 341 this work 

2ox-CN 1/2 2.20 347 this work 

1ox-N3 5/2 2.32 377 this work 
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[FeIII(cyclam-PrS)(OOH)]+ 5/2 2.36 352 (61) 

Biological     

Cys-bound WT FeIII-CDO 5/2 2.27 340 (59) 

Cys/CN-bound FeIII-CDO (WT) 1/2 2.28 377 (30) 

Cys/CN-bound FeIII-CDO (C93G) 1/2 2.26 368 (30) 

FeIII-SOR 5/2 2.36b 323 (58) 

CN-bound FeIII-SOR 1/2 2.28 323 (23) 

nitrile hydratase (low pH form) 1/2 2.21c 373 (65) 

aUnless otherwise noted, the Fe–S bond distances are derived from theoretical calculations. 
bBond distance determined from EXAFS analysis (ref (75)). 
cBond distance determined from EXAFS analysis (ref (76)). 
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