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Abstract 

 

Calculation of the solvation free energy of ionic molecules is the principal source of errors in the quantum 

chemical evaluation of pKa values using implicit polarizable continuum solvent models. One of the important 

parameters affecting the performance of these models is the choice of atomic radii. Here, we assess the 

performance of the solvation model based on density (SMD) implicit solvation model employing SMD default 

radii (SMD) and Bondi radii (SMD-B), a set of empirical atomic radii developed based on the crystallographic 

data. For a set of 112 ions (60 anions and 52 cations), the SMD-B model showed lower mean unsigned error 

(MUE) for predicted aqueous solvation free energies (4.0 kcal/mol for anions and 2.4 kcal/mol for cations) 

compared to the standard SMD model (MUE of 5.0 kcal/mol for anions and 2.9 kcal/mol for cations). In 

particular, usage of Bondi radii improves the aqueous solvation energies of sulfur-containing ions by >5 kcal/mol 

compared to the SMD default radii. Indeed, for a set of 45 thiols, the SMD-B model was found to dramatically 

improve the predicted pKa values, with ∼1 pKa unit mean deviation from the experimental values, compared to 

∼7 pKa units mean deviation for the SMD model with the default radii. These findings highlight the importance 

of the choice of atomic radii on the performance of the implicit solvation models. 

Introduction 
The pKa value is one of the most important parameters determining the reactivity of (bio)organic molecules, and 

accurate computational predictions of the pKa values have been a topic of long-standing interest.(1) Due to the 

computational costs of including explicit solvent molecules, the electronic structure calculations of the 

pKa values mostly rely on the polarizable continuum description of the solvent. In these calculations, inaccurate 

evaluation of the solvation free energies of neutral molecules and their conjugated ions is one of the main 

sources of error in the predicted pKa values.(1−4) 

During the past decades, several implicit solvation models (e.g., IEF-PCM,(5) C-PCM,(6) COSMO,(7) etc.) were 

devised based on the polarizable continuum model (PCM) of Tomasi(8,9) that solves the nonhomogeneous 

Poisson equation (NPE) to simulate bulk electrostatic effects of the solvent. Alternatively, some other implicit 

solvation models (e.g., SM8(10) and SM12(11)) are designed in a way to represent the solute as a collection of 

point charges. These models use the generalized Born approximation(12,13) based on the partial atomic 

charges. 

Accurate simulation of bulk electrostatic interactions is critical for accurate prediction of solvation free energies, 

particularly in the case of charged solutes. These bulk electrostatic contributions are included into the final 

solvation free energies with the aid of a cavity that represents a solvated molecule by a dielectric medium. This 

cavity is defined by a superposition of nuclear-centered spheres with the assigned radius to each atom of the 

solute. It has been previously shown that nonoptimal atomic radii may significantly deviate the calculated 

solvation free energies and, in turn, the calculated pKa values form the experimental data.(14−19) 
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Regarding the importance of the selected atomic radii, Fang and co-workers attempted to modify the van der 

Waals radii employed in the integral equation formalism variants of the polarizable continuum model (IEF-PCM) 

to obtain improved results for neutral molecules.(14,15) Also, in the processes of parametrization of the SM8 

solvation model and comparing its performance with other implicit solvation models, Marenich et al. tested four 

different sets of radii (UA0, UAHF, UAHF*, and Bondi) using the IEF-PCM solvation model to calculate the errors 

of solvation free energies of 60 anions and 52 cations.(10) Among the four sets of radii tested with IEF-PCM, 

Bondi radii resulted in the lowest mean unsigned errors (MUE) for both anions (5.5 kcal/mol) and cations (3.7 

kcal/mol). Bondi radii have been determined based on the crystallographic data using nonbonded 

intermolecular distances in the crystal structure of molecules collected at 0 K to represent the highest reliable 

densities.(20) In spite of the better performance of Bondi radii for the IEF-PCM solvation model, these values 

were higher than the SM8 mean unsigned error (MUE), 3.7 and 2.7 kcal/mol for anions and cations, respectively. 

Another strategy, besides manipulating the atomic radii, to improve the accuracy of the implicit solvation 

models and the pKa values, is to explicitly include solvent molecules (most commonly, water) into the calculation 

along with the implicit solvation model. Such a hybrid model (i.e., implicit + explicit) demonstrates significantly 

improved results and circumvents the utilization of the thermodynamic cycles (i.e., molecules are optimized 

both in a solvent and in vacuo);(21) however, it requires more computational resources.(22−28) 

Among several implicit solvation models, a solvation model based on density (SMD),(29) which was designed as 

a universal solvation model (where “universal” denotes its applicability to both ionic and neutral solutes in any 

solvent), gained a significant popularity for the calculation of condensed phase properties like 

pKa values.(30−37) Recently, Schlegel and co-workers showed that utilization of the implicit SMD solvation 

model with up to three explicit water molecules improves predicted pKa values of several functional groups 

relative to implicit-only calculations.(38−41) However, the values obtained without explicit water molecules 

demonstrated large errors, which suggest poor reliability of the pure implicit SMD solvation model for predicting 

the pKa values. 

Motivated by the reports on the low MUEs when Bondi radii are employed with the IEF-PCM model(10) and the 

aforementioned deficiencies of the SMD model without explicit water molecules, here, we explored the 

performance of the SMD model with Bondi radii. We first investigated the effects of using Bondi radii with the 

SMD solvation model (SMD-B) on calculations of the aqueous ionic solvation free energies as well as evaluated 

the application of Bondi radii for predicting the pKa values of 45 thiols. 

We found that using Bondi radii instead of the default SMD radii leads to more accurate values of the calculated 

aqueous solvation free energies of ions, anions in particular, where the MUE decreases by ∼1 kcal/mol. 

Importantly, we conclude that it may be beneficial to employ radii that are specifically parameterized for a given 

charge state of a solute and type of a solvent. 

Computational Details 
All calculations were performed using Gaussian 09,(42) which uses the integral equation formalism variant of 

the polarizable continuum model (IEF-PCM)(5) as the default algorithm for the SMD calculations.(29) This model 

divides the standard free energies of solvation into three components (eq 1) 

∆𝐺sol
° v = ∆𝐺ENP − 𝐺CDS + ∆𝐺Conc

°  (1) 

The first component (ΔGENP) originates from the integration of the nonhomogeneous Poisson equation (NPE) 

based on the self-consistent reaction field to consider the bulk electrostatic effects. ΔGENP accounts for the 

electronic (E), nuclear (N), and polarization (P) effects. The generated cavity around the solute for ENP 

components (electrostatic effects) results from the superpositions of nuclear-centered spheres based on the 
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assigned atomic radii to different atoms. Therefore, as listed in Table1, different implicit (continuum) solvation 

models (e.g., C-PCM,(6) SM12,(11) COSMO,(7) and SMD(29)) use different atomic radii. 

Table 1. Various Coulomb radii (Å) Used in Various Solvation Models and the Bondi van der Waals Radii (Å) 

atom C-PCM SM12 COSMO SMD Bondi 

H 1.44 1.02 1.20 1.20 1.20 

C 2.04 1.57 1.50 1.85 1.70 

N 1.92 1.61 1.50 1.89 1.55 

O 1.80 1.52 1.40 1.52 1.52 

F 1.62 1.47 1.35 1.73 1.47 

Si 2.40 2.10 1.17 2.47 2.10 

P 2.28 1.80 1.80 2.12 1.80 

S 2.22 2.12 1.75 2.49 1.80 

Cl 2.17 2.02 1.70 2.38 1.75 

Br 2.34 2.60 1.80 3.06 1.85 

 

The second component is the cavity–dispersion–solvent structure (CDS) term that models the solute–solvent 

short-range interactions. The GCDS takes into account additional interactions (e.g., dispersion, hydrogen bonding, 

exchange repulsion, etc.) that are not defined by the electrostatic term. 

The last term (ΔGconc
°) accounts for the changes upon transferring the solute from the gas phase to the solution. 

However, here this value is zero due to the same concentration (1 mol/L) of gaseous and solution phases.(43) 

In the SMD calculations, the radii scaling factor was set to α = 1.0 for the calculations using Bondi radii (Figure 

S1 in the Supporting Information (SI)). Vibrational frequency calculations have been performed for all of the fully 

optimized structures to ensure the absence of imaginary frequencies. In this work, we used a set of six most 

popular density functionals including pure (Perdew–Burke–Ernzerhof (PBE) and BLYP),(44,45) hybrid GGA 

(B3LYP, PBE0, and ωB97XD),(45−47) and hybrid meta-GGA (M06-2X)(48) functionals, along with five double- and 

triple-ζ quality basis sets (6-31G*, 6-31+G*, cc-pVTZ, aug-pcseg-2, def2-TZVPPD).(49−51) To examine the effect 

of the contribution of the exact (Hartree–Fock, HF) exchange component, M06-HF, M06, and M06-L functionals 

were tested with the 6-31G* basis set.(48,52,53) A set of 112 ions (60 anions and 52 cations, MNSol data 

set)(54) with known experimental solvation free energies was used (Tables S3–S6 in the Supporting 

Information). The pKa values were calculated using the direct method (which does not require the gas-phase 

optimization) using eqs 2 and 3 

 

p𝐾𝑎 =
∆𝐺aq

∗

2.303𝑅𝑇
 (2) 

(3) 

𝐺aq
∗ = 𝐺aq

∗ (A−) − 𝐺aq
∗ (HA) + 𝐺aq

∗ (H+) (3) 

where Gaq
* is the Gibbs energy difference of a deprotonation reaction (HA → A– + H+) in the solution, Gaq

*(A–) 

and Gaq
*(HA) are calculated free energies of deprotonated and protonated acids; the aqueous phase free energy 

of proton Gaq
*(H+) was set to −270.29 kcal/mol, which is the summation of ΔGsolv(H+) = −265.9 kcal/mol, G°(H+) = 

−6.28 kcal/mol, and ΔG°→*(H+) = +1.89 kcal/mol.(55−58) 
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Results and Discussion 

Performance of the SMD and SMD-B Models for Ionic Solvation Free Energies 
The mean unsigned errors (MUEs) of the aqueous solvation free energies using the two different sets of radii are 

listed for 52 cations and 60 anions in Table2. Interestingly, the smallest basis set used, 6-31G* yields overall the 

lowest errors (∼3.4 kcal/mol for M06-2X) in comparison to the other basis sets used (∼4.1–5.0 kcal/mol for 

M06-2X), which can be attributed to the parametrization of the SMD model based on this basis set.(29) PBE and 

M06-2X functionals yield lower MUEs for cations using SMD-B (2.4 kcal/mol) and SMD (2.8 kcal/mol) models, 

respectively. For anions, the M06-2X functional shows MUEs of 4.0 kcal/mol and 5.0 kcal/mol for SMD-B and 

SMD, respectively, which is the lowest MUE in comparison to the other functionals used. The results 

in Table2 indicates that SMD-B consistently outperforms the SMD solvation model for predicting the ionic 

solvation free energies in aqueous media, irrespective of the combination of the basis set and density functional. 

The results for the 112 ions studied here show that the Bondi radii can decrease the error by ∼0.6 kcal/mol. The 

average MUE for all ions using the SMD-B and M06-2X/6-31G* method is 3.4 kcal/mol, in contrast with ∼4.0 

kcal/mol MUE for the default SMD radii. 

Table 2. Mean Unsigned Errors (MUE, in kcal/mol) of Aqueous Ionic Solvation Free Energies Using Bondi and 

SMD Default Radii (in Brackets) Calculated with Different Basis Sets and Density Functionals 

solute N PBE BLYP B3LYP M06-2X PBE0 ωB97XD 

6-31G*        

cations 52 2.4 [3.5] 2.7 [3.8] 2.8 [3.3] 2.8 [2.9] 2.7 [3.2] 2.9 [3.2] 

anions 60 5.6 [6.8] 5.9 [7.3] 4.8 [5.9] 4.0 [5.0] 4.5 [5.2] 4.3 [5.0] 

all ions 112 4.1 [5.3] 4.4 [5.7] 3.9 [4.7] 3.4 [4.0] 3.7 [4.3] 3.7 [4.2] 

6-31+G*        

cations 52 3.0 [2.7] 3.0 [2.9] 3.6 [2.8] 3.5 [2.6] 3.4 [2.6] 3.6 [2.8] 

anions 60 7.3 [8.4] 7.7 [8.7] 6.0 [7.2] 4.6 [5.8] 5.1 [6.3] 4.6 [5.7] 

all ions 112 5.3 [5.7] 5.5 [6.0] 4.9 [5.2] 4.1 [4.3] 4.3 [4.6] 4.1 [4.4] 

cc-pVTZ        

cations 52 2.7 [2.7] 3.0 [3.5] 3.0 [3.2] 3.2 [3.1] 3.0 [3.1] 3.0 [3.2] 

anions 60 6.6 [8.1] 7.3 [8.6] 5.6 [7.0] 6.6 [8.1] 5.1 [6.5] 4.8 [6.0] 

all ions 112 4.8 [5.6] 5.3 [6.2] 4.4 [5.2] 5.0 [5.8] 4.1 [4.9] 4.0 [4.7] 

aug-pcseg-2        

cations 52 2.9 [3.3] 3.0 [3.5] 3.2 [3.4] 3.1 [3.3] 3.1 [4.4] 3.2 [3.4] 

anions 60 8.0 [8.9] 9.1 [9.9] 7.2 [8.6] 5.4 [6.6] 6.3 [8.2] 5.8 [6.8] 

all ions 112 5.6 [6.3] 6.3 [6.9] 5.3 [6.2] 4.3 [5.1] 4.8 [6.4] 4.6 [5.2] 

def2-TZVPPD        

cations 52 2.6 [3.3] 2.9 [3.4] 3.0 [3.2] 3.1 [3.1] 2.9 [3.1] 3.2 [3.2] 

anions 60 8.4 [9.7] 9.1 [10.4] 7.5 [8.7] 5.5 [6.8] 6.7 [8.1] 5.8 [7.2] 

all ions 112 5.7 [6.7] 6.2 [7.2] 5.4 [6.1] 4.4 [5.1] 4.9 [5.8] 4.6 [5.3] 

 

To investigate the performance of the Bondi radii for nonaqueous solvents, the solvation free energies of 220 

ionic molecules (Tables S15–S26, SI) with the experimental data (MNSol data set(54)) were calculated using the 

M06-2X/6-31G* method. The SMD with its default radii outperforms the SMD-B model for all anions in 

nonaqueous solvents (acetonitrile, dimethyl sulfoxide (DMSO), and methanol, Table3). This phenomenon can be 

attributed to the more diffused nature of anions, which is in direct contrast with the smaller Bondi radii in 

comparison to the default intrinsic atomic radii of SMD (Table1).(59) 
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Table 3. Mean (Un)signed Errors (MUE and MSE, in kcal/mol) of Ionic Solvation Free Energies using Bondi and 

SMD Default Radii (in Brackets) at M06-2X/6-31G* Level of Theory 

solute N solvent MUE MSE 

cations 39 MeCN 2.7 [7.8] 1.4 [7.5] 

anions 30 MeCN 18.0 [3.5] –18.0 [−3.1] 

cations 4 DMSO 4.0 [8.7] 4.0 [8.7] 

anions 67 DMSO 16.4 [4.4] –16.4 [−3.0] 

cations 29 MeOH 4.3 [2.3] –4.3 [0.0] 

anions 51 MeOH 2.7 [2.3] –0.7 [0.6] 

cations 52 H2O 2.8 [2.9] –1.4 [2.4] 

anions 60 H2O 4.0 [5.0] 1.8 [4.4] 

 

Regarding the cations, SMD-B showed better results for acetonitrile and dimethyl sulfoxide (DMSO) solvents. 

The MUE differences (SMD, SMD-B) for acetonitrile and DMSO are 5.1 and 4.7 kcal/mol in favor of the SMD-B 

model, respectively. However, in methanol, SMD yields smaller MUE, 2.3 vs 4.3 kcal/mol. The comparison of the 

mean signed errors (MSE) for organic solvents indicates that the smaller radii of SMD-B lead to systematic 

underestimation (i.e., more negative than experimental solvation free energies) of the solvation free energies 

for all anions. However, for anions in water, the calculated values come closer to the experimental data. For 

cations, water and methanol solvents showed underestimation; at the same time, the values improved for 

acetonitrile and dimethyl sulfoxide solvents. Among all considered solvents, usage of the Bondi radii is 

advantageous for aqueous solutions, and, therefore, in the remaining part of this work, we focus on aqueous 

solvation free energies. 

The analysis of the 60 investigated solvation free energies (Table2) suggests that the largest differences between 

the SMD and SMD-B models are observed for sulfur-containing anions. Table4 contains calculated solvation free 

energies for six sulfur-containing anions using the M06-2X/6-31G* level of theory. The calculated MUEs for the 

SMD and SMD-B models are 7.6 and 2.4 kcal/mol, respectively, i.e., using Bondi radii improves the solvation 

energies of sulfur-containing ions by ∼5.2 kcal/mol compared to the SMD default radii. The only molecule for 

which SMD showed a better result is hydrogen sulfide clustered with one explicit water molecule. 

Table 4. Performance of SMD-B and SMD (ΔΔG = ΔG[calculated] – ΔG[exp.], in kcal/mol) for the Sulfur-

Containing Anions Calculated with M06-2X/6-31G* 

compound exp. ΔΔG [SMD-B] ΔΔG [SMD] 

hydrogen sulfide (cluster) –65.5 –7.8 1.2 

methanethiol –73.8 –1.8 11.8 

ethanethiol –71.8 –1.9 11.6 

1-propanethiol –70.5 –2.4 11.1 

thiophenol –63.4 –0.6 8.4 

dimethyl sulfoxide –67.7 0.0 1.6 

average   –2.4 7.6 

 

To evaluate the role of the explicit water molecules on this system, the calculations were repeated without a 

water molecule. Interestingly, the error for SMD-B increased to around −12.8 kcal/mol, whereas the SMD 

performance improved (0.1 kcal/mol error). The calculations revealed that the S–H bond length decreases by 

∼0.4 pm when using the Bondi radii. The change in the bond length, in turn, increases the dipole moment of this 

molecule from 1.19 to 1.55 D. In contrast to the HS– anion, the S–C bond length showed ∼1 pm increase for 
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CH3SH (methanethiol), EtSH (ethanethiol), ProSH (1-propanethiol), and thiophenol molecules. The differences 

between hydrogen sulfide and other molecules show that Bondi radii are not reliable for this particular system 

(HS–). However, for all molecules, the cavity surface of SMD-B is smaller (Figure 1) and closer to the sulfur atom. 

This phenomenon can be attributed to the large difference between the Bondi radius of sulfur (1.80 Å) in 

comparison to the SMD default radius (2.49 Å). It seems that this smaller radius decreases the ability of sulfur to 

participate in hydrogen bonding. As shown in Figure 1, the calculated hydrogen bond between water and HS– is 

∼13 pm longer with Bondi radii. It should be noted that the average free energy of solvation difference for 21 

alcohol and phenol anions is just around 0.3 kcal/mol in favor of the Bondi radii. The radii for oxygen in both 

SMD-B and SMD are similar (1.52 Å, Table1). Therefore, this difference (∼0.3 kcal/mol) can be attributed to the 

differences related to the other atoms such as carbon; the radius of carbon in Bondi is ∼0.15 Å smaller than the 

SMD default radii (Table1). 

Figure 1 

 
Figure 1. Solvation cavity (M06-2X/6-31G*) for HS– (left) and HS––water cluster (right) anions using SMD and 

SMD-B models. 

Although the focus of this work is on the free energy of solvation of ionic molecules, for completeness, we have 

also investigated the performance of SMD-B for 22 sulfur-containing neutral molecules using the M06-2X/6-

31G* method (Table S2 in the Supporting Information). The results indicated that the SMD-B underestimates the 

aqueous solvation free energies, with MUE and MSE around 2.8 and −2.8 kcal/mol, respectively, as compared to 

1.0 and 0.25 kcal/mol for the SMD solvation model. These results suggest that it may be more advantageous to 

define two different sets of radii for neutral and ionic molecules. 

It is important to note that in addition to including bulk electrostatic effects, implicit solvation models include 

nonbulk (e.g., hydrogen bonding, dispersion, CH−π, etc.) interactions via the cavitation, dispersion, and solvent 

structural effects (CDS). The major issue arising here is the significant differences between the magnitude of 

solvation free energies of neutral and ionic molecules. Indeed, the bulk electrostatic effects have a larger 

contribution to the solvation free energies of ions than neutral molecules.(29) The difference in nonbulk effects 

is also significant for ions with opposite charges, which referred to the charge hydration 

asymmetry.(60,61) Therefore, finding a reasonable balance between the electrostatic and CDS contributions 

plays an important role in the accurate simulation of solvation effects for both neutral and ionic molecules. As 

the SMD-B model shows the best performance for the sulfur-containing ionic molecules, we next investigate the 

effect of Bondi radii on the prediction of thiols pKa. 
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Application of the SMD-B Model for Predicting the pKa Values of Thiols 
Schlegel and co-workers tested the accuracy of 175 different DFT functionals for predicting the pKa values of 

methanethiol and ethanethiol using the SMD solvation model.(38) They found that the error of the calculated 

values is almost consistent for all density functionals and that all of the functionals overestimate pKa values by 

∼10 pKa units. Moreover, they found that scaling of the solvent cavity does not significantly improve the results 

for thiolates.(38) However, scaling the solvent cavity showed good results for pKa and oxidation potential values 

of some nucleobases.(62,63) Finally, they used explicit water molecules to compensate for the deficiencies of 

the pure implicit-only SMD approach for simulating the short-range hydrogen bonding interactions. Their results 

indicated that the ωB97XD/6-31+G** level of theory with three water molecules gives the best results among 

the tested methods. This lower error is achieved at the expense of higher computational cost due to the 

treatment of explicit water molecules. 

The results of Schlegel and co-workers and also the other calculations for predicting the pKa values of other 

functional groups(22−28) indicate less satisfactory results of the implicit solvation models for predicting the 

solvation free energies of ions in the protic solvents.(64) Pomogaeva and Chipman attempted to include the 

solute–solvent dispersion, Pauli repulsion, and hydrogen bonding effects on the final calculated solvation free 

energies.(65) Their implicit solvation model, a composite method for implicit representation of the solvent 

(CMIRS), showed very good results for aqueous solvation free energies of neutral molecules and ions. The MUEs 

for 60 anions and 52 cations are around 3 and 2 kcal/mol, respectively. 

Despite the better performance of CMIRS model in comparison to SMD for ions, the average MUE for six sulfur-

containing anions of this model is higher than SMD (8.6 kcal/mol). Recently, You and Herbert reparametrized the 

original CMIRS parameters to modify the treatment of the dispersion interactions,(66) which decreased the 

average MUE for six sulfur-containing anions to ∼6.3 kcal/mol (compared to 7.6 kcal/mol of the SMD 

model, Table4); however, this error is still higher than the average error for other ions (2.9 kcal/mol). These 

results indicated that the inclusion of additional empirical parameters to the implicit solvation models cannot 

improve its accuracy for sulfur-containing anions. 

To show the direct relationship between the ionic solvation energies of thiols and their pKa values, we evaluated 

the applicability of the SMD-B solvation model using a set of 45 thiol molecules(67−73) (Figure S2, SI). The 

accuracy of the predicted pKa values can be a good indication of the reliability of the Bondi radii implemented in 

the SMD solvation model for predicting the acidity of thiols. As evident from Table2, the 6-31G* basis set shows 

overall the best results for the investigated anions (with MUEs of ∼4.0 and ∼5.0 kcal/mol for M06-2X using 

Bondi and SMD default radii, respectively). Among the density functionals used, M06-2X, PBE0, and ωB97XD, 

which showed the lowest MUEs (4.0, 4.5, and 4.3 kcal/mol, respectively), have been selected for the evaluation 

of the pKa values of thiols. 

The calculated pKa values are shown in Table S1 in the Supporting Information. M06-2X functional yields the best 

results for both SMD-B and SMD models, with MUEs of ∼1.08 and ∼7.4 pKa units. As shown in Figure 2, the 

Bondi radii decrease the slope of the linear correlation between the calculated and experimental pKa values 

from ∼2.0 for SMD to ∼1.25 for SMD-B; in addition, the correlation coefficient R2 value increased from 0.918 to 

0.938. The other two functionals, PBE0 and ωB97XD, show higher MUEs (2.90 and 3.67 pKa unit, respectively), 

which agree with the errors from the calculated solvation free energies (Table2) using the same level of theory 

(see Table S1, SI). Yet, their slopes are close to unity, i.e., 1.26 and 1.17 for PBE0 and ωB97XD functionals, 

respectively, much smaller than the slopes obtained using SMD default radii, i.e., 2.19 and 2.05 for PBE0 and 

ωB97XD functionals, respectively. Overall, the Bondi radii showed significantly better performance for predicting 

the pKa of thiols in comparison to the SMD default radii. Importantly, these results are independent of the 

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
https://pubs.acs.org/doi/10.1021/acs.jpca.9b02340#tbl4
https://pubs.acs.org/doi/10.1021/acs.jpca.9b02340#tbl4
javascript:void(0);
https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.9b02340/suppl_file/jp9b02340_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.9b02340#tbl2
https://pubs.acs.org/doi/10.1021/acs.jpca.9b02340#tbl2
https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.9b02340/suppl_file/jp9b02340_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.9b02340#fig2
https://pubs.acs.org/doi/10.1021/acs.jpca.9b02340#fig2
https://pubs.acs.org/doi/10.1021/acs.jpca.9b02340#tbl2
https://pubs.acs.org/doi/10.1021/acs.jpca.9b02340#tbl2
https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.9b02340/suppl_file/jp9b02340_si_001.pdf


choice of DFT functional, while improving the predicted values by ∼6 pKa units (see Table S1, Figures S3 and 

S4 in the Supporting Information). 

Figure 2 

 
Figure 2. Linear correlation of experimental and calculated pKa values of 45 thiols employing Bondi radii (SMD-B, 

blue) and the SMD default radii (SMD, red) at the M06-2X/6-31G* level of theory. 

As the M06-2X functional has the highest exact/HF exchange contribution (54%) among the selected functionals, 

it is conceivable that the inclusion of higher contribution of the HF exchange improves the calculated solvation 

free energies/pKa values. To verify this hypothesis, we calculated pKa values with M06-HF/6-31G* that includes 

100% HF exchange. Indeed, we found that compared to M06-2X, the M06-HF functional yields lower MUEs for 

the set of 45 selected thiols studied (∼0.84 pKa unit). However, the slope of the linear correlation between 

calculated and experimental pKas increased to ∼1.28 (Table S33 and Figure S5 in the Supporting Information). 

Also, the R2 value decreased from 0.9375 for M06-2X to 0.8785 for M06-HF. The decrease in the HF exchange 

contribution to 26% (M06 functional) and 0% (M06-L functional) increases the MUE to 2.53 and 2.91 pKa unit, 

respectively (Tables S34 and S35, Figures S6 and S7, SI). Therefore, it appears that the M06-2X has the optimal 

amount of HF exchange correlation among the examined functionals. 

Conclusions 
In this study, we investigated the utility of Bondi radii with the SMD implicit solvation model for a set of 112 ions 

(60 anions and 52 cations). We found that using Bondi radii instead of the default SMD radii leads to more 

accurate values of the calculated aqueous solvation free energies of ions, anions in particular, where the MUE 

decreases by ∼1 kcal/mol. This effect is the most pronounced for the sulfur-containing molecules (∼5 kcal/mol). 

Motivated by the better performance of the SMD-B approach, we studied its application for predicting the 

pKa values of thiols. A set of 45 thiols with pKa values in the range of 4–12 have been selected, and their 

pKa values were calculated. The usage of the Bondi radii decreases the error of calculated pKa values from 7 to 1 

pKa unit. Thus, the acceptable error is achieved without using any thermodynamic cycle or explicit water 

molecules. Finally, we conclude that the improved implicit solvation models should employ radii that are 

specifically parameterized for a given charge state of a solute and the type of a solvent. 
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