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ABSTRACT 
THE EFFECTS OF ALEXITHYMIA AND AGE ON INHIBITORY CONTROL 

Anthony N. Correro II, M.S.  

Marquette University, 2020 

 Alexithymia is a stable personality trait typified by externally oriented thinking 
and difficulties identifying and describing feelings. It is associated with cognitive-
affective deficits such as poorer memory for emotional and neutral information as well as 
executive dysfunction. Relatedly, aging is accompanied by executive dysfunction and 
increasing alexithymia. Because executive functions comprise multiple cognitive skills, it 
is essential to demarcate which are impacted by aging and alexithymia. While age-related 
deficits in inhibitory control are well established, there is a dearth of literature examining 
inhibition in alexithymia. Thus, this study aimed to examine the effect of alexithymia on 
inhibition and to interrogate its potential additive impact to aging effects. 

 Participants were 538 undergraduate students (age = 18-35) and 201 middle-aged 
to older adults (age = 48-92). All completed the 20-item Toronto Alexithymia Scale 
(TAS-20) and go, no-go, and stop-signal tasks. Following removal of participants with 
missing data or invalid task performance, the final sample included 384 younger and 81 
older adults. Separate hierarchical regressions predicting accuracy and reaction time were 
examined. Post hoc models included TAS-20 subscores. Exploratory moderation and 
mediation models were also conducted to interrogate shared variance among covariates 
and predictor variables.  

 Female sex and greater age predicted slower reaction times across all three tasks. 
Older age was also associated with less accurate responding to target and inhibition trials 
on no-go and slower and less accurate inhibition on stop. Alexithymia predicted poorer 
inhibition on no-go and stop via difficulty identifying feelings (DIF). Mood symptoms 
neither moderated nor mediated the relationship between DIF and inhibitory control. 

 These results replicate the age-related tradeoff of speed for accuracy in reaction 
time and inhibition tasks. They also provide novel evidence for alexithymia deficits in 
non-emotive inhibitory control. The impact of DIF on both automatic (no-go) and 
conscious (stop) inhibitory control supports processing theories of alexithymia. In 
particular, DIF contributed to poorer extrinsically and intrinsically cued response 
suppression. Thus, top-down and bottom-up information processing may be disrupted in 
alexithymia. Critically, the alexithymia effects were additive to age effects extending 
support for alexithymia as a risk factor for cognitive aging.  
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Introduction 

 Alexithymia is a personality trait characterized by difficulty identifying feelings 

(DIF), difficulty describing feelings (DDF), and externally oriented thinking (EOT) 

(Bagby, Parker, & Taylor, 1994; Bagby, Taylor, & Parker, 1994; Nemiah, 1977; Sifneos, 

1973; Taylor, 2000). People who score highly on alexithymia measures are less able to 

fantasize or use imaginal capacities (Nemiah, Freyberger, & Sifneos, 1976). They tend to 

have flat affect and communicate through actions and nonverbal behaviors and are distant 

in interpersonal relationships (Haviland & Reise, 1996). Those who score highly on 

alexithymia also have deficits in the automatic and conscious processing of emotions 

likely due to an inability to perceive and label bodily signals that comprise feeling states 

(Luminet & Zamariola, 2018; Preece, Becerra, Allan, Robinson, & Dandy, 2017).  

Alexithymia, manifest at a clinically significant level, is present in 10-13% of 

adults (Mattila, Salminen, Nummi, & Joukamaa, 2006; Salminen, Saarijarvi, Aarela, 

Toikka, & Kauhanen, 1999). It is generally more prevalent in men than women, in older 

adults, and in those with lower socioeconomic status and fewer years of education (Lane, 

Sechrest, & Riedel, 1998; Mattila et al., 2006; Salminen et al., 1999). However, similar to 

other personality traits, it is dimensional and distributed continuously across the 

population (Keefer, Taylor, Parker, & Bagby, 2019; Mattila et al., 2010; Parker, Keefer, 

Taylor, & Bagby, 2008; Ryder, Sunohara, Dere, & Chentsova-Dutton, 2018). 

Alexithymia as a Cognitive-Affective Skill 

High alexithymia reflects poorly developed emotional awareness, which is a 

cognitive skill that develops during childhood and is defined as a person’s capacity to 
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identify and describe their experienced emotions as well as those of others (Lane, Ahern, 

Schwartz, & Kaszniak, 1997; Lane & Schwartz, 1987). According to the cognitive-

developmental theory of emotional awareness, emotions are initially experienced early in 

life as physical sensations (Lane & Schwartz, 1987). At the next level, they are 

experienced as action tendencies (e.g., my stomach is growling, therefore I want to eat). 

Following the development of symbolic thought, action tendencies resulting from 

physical sensations can be interpreted explicitly as simple emotions (e.g., hunger). 

Emotional awareness continues to develop alongside more sophisticated and abstract 

cognitive processes to the point that complex blends of emotions are understood (e.g., 

"hangry;" cf. MacCormack & Lindquist, 2018).  

Contrasting with typical development of emotional awareness, high alexithymia is 

typified by difficulty differentiating physical sensations from emotions, a tendency to 

experience negative emotions physically, and hypersensitivity to unpleasant external 

stimulation (Eastabrook, Lanteigne, & Hollenstein, 2013; Haviland & Reise, 1996; Kano, 

Hamaguchi, Itoh, Yanai, & Fukudo, 2007; Papciak, Feuerstein, & Spiegel, 1985). 

Relatedly, the DIF and DDF facets are associated with an inability to construe the 

meaning of emotions (Inslegers et al., 2012; Kano & Fukudo, 2013; Lane & Schwartz, 

1987; Moriguchi & Komaki, 2013). Ultimately, the cognitive skill of emotional 

awareness appears to be less well developed in people with high alexithymia (Lane et al., 

1997; Luminet & Zamariola, 2018). 

Executive Functioning in Alexithymia 

Given the range of affective deficits in alexithymia, it is important to better 

understand potential underlying cognitive mechanisms. For example, difficulties with 
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emotion processing hamper other cognitive abilities such as memory retrieval for 

emotional content and for neutral information presented in emotive contexts (Dressaire et 

al., 2015; Luminet, Vermeulen, Demaret, Taylor, & Bagby, 2006; Meltzer & Nielson, 

2010; Vermeulen, Domachowska, & Nielson, 2018; Vermeulen & Luminet, 2009). 

Executive functions are essential to the identification and interpretation of emotions in 

alexithymia (Vermeulen et al., 2018). They are the higher-order, goal-directed cognitive 

operations that subserve self-regulation (Elliott, 2003; Hofmann, Schmeichel, & 

Baddeley, 2012). Many skills comprise executive functioning (EF). They include: 

working memory (i.e., the capacity to update and manipulate information), set-shifting 

(i.e., the skill needed to flexibly switch cognitive resources between tasks or mental sets), 

and inhibitory control (i.e., the ability to suppress irrelevant or interfering stimuli) 

(Miyake et al., 2000). Importantly, EF impacts the utilization and effectiveness of other 

cognitive processes, such as self-control and emotion regulation (Hofmann et al., 2012; 

Zelazo & Cunningham, 2007). As such, executive dysfunction may relate to 

characteristics of alexithymia (Correro II, Paitel, Byers, & Nielson, 2019; Vermeulen et 

al., 2018).  

Thus far, the literature on EF and alexithymia is small and has limitations. Of the 

few studies available, some examined the general population while others examined 

alexithymia induced by neurological injury known as organic alexithymia (e.g., Henry, 

Phillips, Crawford, Theodorou, & Summers, 2006; Wood & Williams, 2007). The studies 

of organic alexithymia provide preliminary support for neuropsychological deficits 

contributing to the cognitive and emotional difficulties present in alexithymia. In one 

study, adults who had sustained a traumatic brain injury (TBI) were compared with 
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control participants and showed poorer verbal fluency (Henry et al., 2006). Verbal 

fluency tasks measure semantic access, search, and control (Strauss, Sherman, Spreen, & 

Spreen, 2006). Additively, alternating fluency tasks also provide a measure of set-shifting 

as the participant must switch between semantic categories. Importantly, poorer 

performance on both semantic and alternating fluency tasks was associated with 

alexithymia via DIF in the TBI patients and the healthy controls, suggesting a 

neurological link between cognitive and emotional dysfunction (Henry et al., 2006). 

Given that the DIF facet isolates poor verbal symbolization of emotions, these findings 

suggest that difficulty in the rapid generation of words and switching between semantic 

probes may contribute to elevated DIF. 

In another organic alexithymia study, TBI patients were compared with 

orthopedic patients on measures of alexithymia and a comprehensive neuropsychological 

battery (Wood & Williams, 2007). The tests were grouped by underlying cognitive 

domains with sequencing, which reflects the updating executive function proposed by 

Miyake et al. (2000), and executive ability considered as separate constructs. The TBI 

group reported greater alexithymia, consistent with emotional changes related to brain 

trauma, and their alexithymia was related to poorer performance on measures of verbal 

intelligence and sequencing. No differences arose in the other cognitive domains. 

However, nontraditional measures comprised the executive ability domain, and the 

sequencing tasks indexed a subcomponent of EF. Thus, differences between these 

findings and those of Henry et al. (2006) are difficult to resolve. Although organic 

alexithymia resulting from TBI may impact some aspects of EF but not others, strong 

conclusions are premature.  
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The few studies that have examined alexithymia and EF in the general population 

primarily support the results stemming from studies on organic alexithymia. A study 

using only self-report measures in undergraduate students examined emotional 

intelligence, emotional awareness, alexithymia, and executive functioning (Koven & 

Thomas, 2010). It linked lower emotional clarity (i.e., DIF and DDF) with more 

dysfunction across multiple executive skills. An experimental study assessed EF in 

alexithymia with the Wisconsin Card Sorting Test (Zhu, Wang, Huang, Yao, & Tang, 

2006). This test measures problem solving, set-shifting, and conceptual reasoning (Berg, 

1948; Grant & Berg, 1948). Examinees are instructed to match cards to one of four key 

cards with no explicit sorting criteria provided. Feedback from the examiner must be used 

to discern the sorting strategy. The sorting principle changes after several successful 

sorts, but the examinee is not explicitly informed of the shift. As such, individuals with 

deficits in EF may perseverate to a sorting principle after it has changed. They may also 

fail to maintain a cognitive set, whereby they cannot suppress responding to a different, 

incorrect sorting strategy. Ultimately, participants with high alexithymia had more total 

errors, greater perseverative errors, and more failures to maintain set than their low 

alexithymia counterparts, suggesting poorer problem solving, response inhibition, and 

set-shifting (Zhu et al., 2006). This limited work extends the organic alexithymia 

literature by demonstrating executive deficits are present in alexithymia outside the 

presence of neurological injury. 

Inhibitory Control in Later Adulthood 

Executive deficits are also present in late adulthood, and losses in EF may 

underlie age-related changes in cognition and emotion (Goh & Park, 2009; Mather, 2012; 
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Park et al., 1996). Changes in inhibition may be of central importance (e.g., Hasher & 

Zacks, 1988). Inhibitory control is the executive function employed in suppressing 

irrelevant information, removing distracting stimuli from attention, and restraining 

responses related to irrelevant or distracting information (Lustig, Hasher, & Zacks, 2007). 

It is an essential component of information processing. Whereas attentional control 

focuses cognitive processing onto a chosen operation, inhibitory control limits 

interference from irrelevant information (i.e., access). Impaired access contributes to 

significant distraction (Darowski, Helder, Zacks, Hasher, & Hambrick, 2008). Another 

role of inhibition is to remove distracting information once it has entered attentional 

awareness (i.e., deletion). Without this component, irrelevant content would not be 

removed from attention or working memory and would therefore compete with more 

salient stimuli (Charlot & Feyereisen, 2004). Finally, response suppression, or restraint, 

occurs when an inappropriate or incorrect response is impeded. When response 

suppression is impaired, an individual presents as impulsive and dysregulated (Hofmann 

et al., 2012). In late adulthood, an inability to parse irrelevant stimuli from the 

environment means that more information reaches attentional awareness and thereby 

burdens working memory resources (Hamm & Hasher, 1992). Furthermore, distracting 

information cannot be as readily ignored, and it interferes with learning, leading to 

intrusion errors and false recollections (Hasher & Zacks, 1988). Thus, inhibitory deficits 

resulting from age may mediate declines in other cognitive skills such as working 

memory, encoding, and memory retrieval. 

While cognitive abilities primarily decline during older adulthood, late-life 

changes in emotional processes are characterized by both gains and losses. Again, 
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executive functions, especially inhibition, are central. Older adults experience negative 

emotions less frequently due, in part, to suppression of negative emotions (i.e., restraint), 

greater focus on positive information (i.e., access), and less attention toward negative 

stimuli (i.e., deletion) (Carstensen & Mikels, 2005; Charles, Mather, & Carstensen, 2003; 

Mather, 2012; Mather & Carstensen, 2005; Mather & Knight, 2005). Despite the declines 

in EF that accompany aging, older adults frequently recruit executive abilities when 

presented with emotional stimuli, which allows them to inhibit negative information and 

focus on positive content (Mather & Knight, 2005). Thus, compensatory recruitment and 

different emotional goals between older and younger adults may explain the affective 

changes in older adulthood although this theory remains contentious (Mather, 2012). 

Structural changes to the frontal cortex are particularly impactful to inhibitory 

control, which has been shown to be primarily processed by the prefrontal cortex (Nigg, 

2000). For example, increased perseveration that occurs with advancing age is associated 

with atrophy in the prefrontal cortex (Head, Kennedy, Rodrigue, & Raz, 2009). The 

anterior cingulate cortex (ACC), within the frontal lobes, is involved in inhibition and is 

susceptible to age-related alterations (Nigg, 2000; Vaidya, Paradiso, Boles Ponto, 

McCormick, & Robinson, 2007). Specifically, the dorsal region of the ACC is involved 

in non-emotional cognitive control, and it is associated with reduced cerebral blood flow 

and declines in cortical thickness as a function of aging (Egner, Etkin, Gale, & Hirsch, 

2008; Vaidya et al., 2007; Whalen et al., 1998). However, ventral regions of the ACC and 

the prefrontal cortex, which are more predominantly involved in emotional processing, 

are not as susceptible to cortical thinning in aging (Egner et al., 2008; Fjell et al., 2009; 

Whalen et al., 1998). The dissociable structural changes between ventral and dorsal 
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regions support evidence of the preservation of affective processes and degradation of 

executive abilities, respectively, in older adulthood (Mather, 2012). 

Alexithymia and Cognitive Aging 

Alexithymia is of central importance to the cognitive, affective, and neural 

changes associated with aging. It increases with age (Gunzelmann, Kupfer, & Brahler, 

2002; Mattila et al., 2006; Paradiso, Vaidya, McCormick, Jones, & Robinson, 2008; 

Pasini, Delle Chiaie, Seripa, & Ciani, 1992; Salminen et al., 1999), and cognitive 

difficulties in alexithymia are apparent in adults across the lifespan (Correro II et al., 

2019; Dressaire et al., 2015; Lamberty & Holt, 1995; Onor, Trevisiol, Spano, Aguglia, & 

Paradiso, 2010; Santorelli & Ready, 2015). For example, among healthy adults aged 24-

79, greater alexithymia was associated with older age and reduced gray matter volume in 

the right rostral ACC, suggesting a neuroanatomical substrate for increased alexithymia 

with older age (Paradiso et al., 2008). Alexithymia was also related to poorer phonemic 

fluency performance, but age and ACC volume did not covary with phonemic fluency, 

perhaps due to the small sample and limited range in cognitive abilities. Another study 

found no age association with alexithymia, but poorer verbal fluency predicted higher 

alexithymia, particularly high DDF, in older adults and in the total sample of younger and 

older adults (Santorelli & Ready, 2015).  

Recently, a series of three large and non-overlapping experiments demonstrated 

the contribution of alexithymia to poorer memory and EF across the lifespan (Correro II 

et al., 2019). Specifically, in a sample of young adults (Experiment 1), EOT predicted 

poorer delayed memory. In Experiment 2, DIF was negatively associated with 

performance on EF tasks among young and older adults, and this association was 
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especially strong when examining the older adults in isolation. Last, Experiment 3 

replicated the findings that greater DIF predicted poorer EF and that EOT was associated 

with poorer delayed memory. This experiment further revealed that among just the older 

adults, EOT predicted poorer immediate and delayed memory. Additionally, memory was 

especially poor among older adults with poorer EF, specifically those with higher EOT. 

Thus, although this literature is quite small, several studies suggest that alexithymia is 

associated with age and executive deficits, especially in older adults, which may be 

related to reduced gray matter volume in the right rostral ACC or other frontal circuits 

(Paradiso et al., 2008; Santorelli & Ready, 2015).  

Alexithymia and Inhibitory Control 

Inhibitory control is one aspect of EF that should receive more attention in the 

alexithymia literature given evidence of cognitive biases toward external stimuli (i.e., 

EOT), attentional capture by somatic sensations (Barsky, Goodson, Lane, & Cleary, 

1988; Kano et al., 2007), and difficulties limiting distracting information (Zhang et al., 

2011). Regarding the latter, a flanker-type task showed that alexithymia did not impact 

basic attentional processes such as alerting or orienting, but it prolonged response times 

and reduced accuracy when deciding whether one arrow in an array of other arrows was 

pointing in the same or opposite direction (Zhang et al., 2011). This is a measure of 

conflict processing and requires inhibition of irrelevant stimuli around the target arrow in 

order to facilitate attention on the target (Eriksen & Eriksen, 1974). Because alexithymia 

prolonged responding and decreased accuracy, the access and deletion functions of 

inhibition may be impaired in high alexithymia. Importantly, this study employed neutral 
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stimuli, indicating alexithymia is associated with generalized inefficiency in attentional 

control.  

Response inhibition has only been directly examined in alexithymia with a task 

embedded in emotive contexts (Zhang et al., 2012). Specifically, positive, negative, or 

neutral pictures were superimposed by the letter “M” or “W,” and subjects were 

instructed to respond to “M” but not “W”. The task was a modified (i.e., emotive) go/no-

go paradigm, which indexes motoric suppression (i.e., the ability to withhold a motor 

response; Congdon et al., 2012). No significant differences emerged regarding 

alexithymia in response speed or accuracy, but larger neural responses (P300 event-

related potentials), localized to the ACC, were attributable to alexithymia (Zhang et al., 

2012). While the alexithymia subscores were not demarcated, it was proposed that DIF 

could explain the findings such that more DIF leads to less interference from negative 

emotional contexts. Although the sample was small, it suggested that poorer processing 

of negative contexts contributes to stronger neural inhibition in high alexithymia. No-go 

differences due to alexithymia may be more apparent in larger samples when a greater 

range of alexithymia scores is available. Ultimately, the study’s design precluded 

examination of alexithymia on inhibitory control in a purely neutral task, leaving 

important questions raised by earlier findings (Zhang et al., 2011) yet to be investigated.  

Study Aims  

Executive dysfunction is present in both older adulthood and high alexithymia 

(Onor et al., 2010; Santorelli & Ready, 2015; Vermeulen et al., 2018), and theoretical 

models of executive deficits in aging and alexithymia implicate alterations in frontal lobe 

functioning and prefrontal circuitry (Koven & Thomas, 2010; Nielson, Langenecker, & 
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Garavan, 2002). Moreover, aging is associated with increased alexithymia (Mattila et al., 

2006). As such, it is paramount to delineate the specific and unique contributions of 

alexithymia and age to EF. Because EF comprises a heterogeneous set of separate yet 

interrelated skills (Miyake et al., 2000), specific executive abilities should be isolated to 

demarcate which aspects of EF are impacted by aging and alexithymia (Koven & 

Thomas, 2010).  

Inhibitory control is necessary to suppress irrelevant or interfering stimuli. Older 

adults in particular have difficulty inhibiting intrusive thoughts and suppressing irrelevant 

information when learning new tasks (Hashtroudi, Johnson, & Chrosniak, 1990; Kausler 

& Hakami, 1982). Alexithymia is typified by deficits in introspection and stimulus-bound 

behaviors (Nemiah et al., 1976; Wastell & Taylor, 2002), difficulty with verbal fluency 

tasks (e.g., Paradiso et al., 2008; Santorelli & Ready, 2015), and perseveration on the 

Wisconsin Card Sorting Test (Zhu et al., 2006). These EF deficits may stem from 

difficulty suppressing irrelevant information. Yet, the role of alexithymia on inhibitory 

control is not well understood. 

Thus far, only limited work has been done examining alexithymia and EF. Most 

of this small literature suggests that working memory updating, semantic control, and 

abstract speeded information processing are poorer in alexithymia (Correro II et al., 2019; 

Henry et al., 2006; Lamberty & Holt, 1995; Onor et al., 2010; Paradiso et al., 2008; 

Santorelli & Ready, 2015).  Generally, sample sizes of these few studies have been 

relatively small, and the results have been mixed even across comparable tasks (e.g., 

Henry et al., 2006; Lamberty & Holt, 1995; Paradiso et al., 2008; Santorelli & Ready, 

2015). Additionally, the focus has been on general alexithymia, rather than its subscores, 
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although emerging evidence suggests that DIF should receive further study as a specific 

attribute related to EF (Correro II et al., 2019; Vermeulen et al., 2018). Future studies 

should build on these findings and extend to more nuanced analysis of alexithymia and 

measures of inhibition.  

The few studies on inhibition in alexithymia were conducted with only younger 

adults, and much of that work employed emotive tasks, which confounds the examination 

of executive functions with emotional processing (Vermeulen et al., 2018). Non-emotive 

inhibitory control is important to examine specifically given the dissociable neural 

substrates involved in neutral versus emotional cognitive control (e.g., Egner et al., 2008; 

Whalen et al., 1998). Additionally, inclusion of older adults or a larger age range can help 

to clarify and address the underlying mechanisms of cognitive effects of alexithymia 

across the age span where both EF and alexithymia are increasingly relevant.  

Purpose 

The purpose of this study was to isolate the effects of age and alexithymia on non-

emotive tasks that index response inhibition and to delineate the three alexithymia 

factors. To that end, young and older adults completed a self-report measure of 

alexithymia and experimental inhibitory control tasks, including go, no-go and stop-

signal paradigms (Congdon et al., 2012; Logan, Cowan, & Davis, 1984). The go task 

builds and sustains prepotent responding to target stimuli, while the no-go task requires 

selectively responding to the same targets used in the go task (i.e., alternating responding 

and withholding responses) (Langenecker, Zubieta, Young, Akil, & Nielson, 2007; 

Nielson et al., 2002). Thus, no-go requires monitoring to switch cognitive sets and inhibit 

motor responses, and with practice, participants can develop automaticity (Verbruggen & 
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Logan, 2008). The stop-signal paradigm also measures inhibition, but the inhibitory 

process is triggered by an external cue (i.e., the “stop” signal) (Logan & Cowan, 1984). 

Thus, it is more difficult to predict when a response should be inhibited. As such, stop-

signal tasks require more controlled and effortful response inhibition (Votruba et al., 

2008). By including paradigms that distinguish between automatic and controlled 

inhibition, this study sought to elucidate the extent to which top-down and bottom-up 

processing may be impacted in alexithymia.  

Hypotheses 

The following hypotheses were posed:  

1. Age effects: 

a. Relative declines in processing speed and inhibitory control are 

associated with aging (Nielson et al., 2002), and as such, older 

adults are expected to be slower when responding to target stimuli. 

b. Relatedly, older adults are expected to be less successful at 

inhibiting motoric responses during no-go and stop-signal 

paradigms.  

2. Alexithymia effects: 

a. Previous studies have found no difference in high versus low 

alexithymia with regards to reaction time and the attentional 

systems of alerting and orienting (Zhang et al., 2012; Zhang et al., 

2011). Therefore, high alexithymia is not expected to impact 

simple processing speed or go task performance.  
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b. However, conflict monitoring is poorer in high alexithymia (Zhang 

et al., 2011), and alexithymia is associated with poorer 

performance on speeded executive tasks (Correro II et al., 2019). 

These results suggest that accuracy on both the no-go and stop-

signal paradigms will be lower in high alexithymia (Zhang et al., 

2011). Further, based on self-report measures of working memory, 

inhibition, and monitoring (Koven & Thomas, 2010) and greater 

perseverative errors on a conceptual reasoning task (Zhu et al., 

2006), alexithymia will be associated with fewer successful 

inhibition trials for both no-go and stop tasks.  

c. Finally, high alexithymia is likely to be associated with slower 

reaction times to stop signals, indicating more difficulty with 

executive control (e.g., Zhang et al., 2011).  

3. Additive effects: 

a. Some findings suggest executive deficits in high alexithymia are 

more prominent for older adults (e.g., Correro II et al., 2019; 

Santorelli & Ready, 2015). Studies with larger sample sizes should 

have sufficient statistical power to reveal executive dysfunction as 

a fundamental deficit of alexithymia in addition to age-related 

difficulties with EF. As such, while alexithymia is expected to be 

associated with greater age, both age and alexithymia are 

hypothesized to independently predict EF difficulties. Thus, 
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alexithymia deficits will be additive to the effects of aging 

(Dressaire et al., 2015).  

4. Effects of alexithymia subscores:  

a. DIF is the salient facet of alexithymia expected to underlie poorer 

inhibitory control consistent with prior studies demonstrating a 

relationship between DIF and executive dysfunction (Correro II et 

al., 2019; Henry et al., 2006; Zhang et al., 2012).  
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Methods  

Participants 

 The current study utilized archival data from multiple studies on cognition, 

emotion, and aging. Participants were 538 adult undergraduate students (age = 18-35) and 

201 older adults (age = 48-92) recruited from the community. All older adults reported 

their years of formal education to a maximum of 20, reflecting an advanced degree 

beyond the master’s level (e.g., M.D., Ph.D.). For most young adults, who were all 

current undergraduate students, years of formal education was estimated as 𝑦ௗ௨௧ =

𝑥 − 6 to a maximum of 16, reflecting near completion of a bachelor’s degree (i.e., 

senior standing). The older adult sample overrepresented people with risk factors for 

Alzheimer’s disease, including genetic risk (n = 43) and family history (n = 69). All older 

participants, and some young adults, were screened for intact cognition using protocols 

specific to each study.  

Materials 

TAS-20. The 20-item Toronto Alexithymia Scale (TAS-20) is a self-report 

questionnaire consisting of 20 statements rated for agreement on a 5-point Likert scale (1 

= strongly disagree, 5 = strongly agree) (Bagby, Parker, et al., 1994; Bagby, Taylor, et 

al., 1994). Total scores range from 20 to 100. Scores ≥ 61 are deemed clinically 

significant alexithymia, and scores 52 to 60 are deemed possible alexithymia (Bagby & 

Taylor, 1997). While the scale was originally designed with these cutoff scores, 

alexithymia is increasingly interpreted as a dimensional characteristic with a full range of 

scores examined across normal populations as we did here (Parker et al., 2008). Three 
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subscale scores are calculated to reflect the three factors of alexithymia: Difficulty 

Identifying Feelings (DIF), Difficulty Describing Feelings (DDF), and Externally 

Oriented Thinking (EOT).  

The TAS-20 has good-to-excellent internal consistency and adequate test-retest 

reliability (Bagby, Parker, et al., 1994). Construct validity is reported as strong, 

suggesting a robust and consistent three-factor structure although EOT tends to be less 

strongly associated with the latent alexithymia construct than the DIF and DDF factors 

(Bagby, Parker, et al., 1994; Bagby, Taylor, et al., 1994; Parker, Taylor, & Bagby, 2003; 

Preece, Becerra, Robinson, & Dandy, 2018; Sekely, Bagby, & Porcelli, 2018). 

Experimental tasks. The following tasks are modified versions of traditional go, 

no-go, and stop-signal paradigms previously used in the authors’ laboratory (Hazlett 

Elverman, 2016; Langenecker et al., 2007). The tasks were conducted via a computer 

screen and keyboard using letter stimuli (black font against white background) presented 

one at a time, consecutively, with no interstimulus interval (0 ms). The font and size of 

the letters were consistent across all trials. 

Go task. Go measures response time and sustained attention (Donders, 1969). 

Participants were instructed to press the spacebar as quickly and accurately as possible 

when they saw the letters “r” and “s.” This go task was designed to build prepotency for 

responding to “r” and “s” in the subsequent no-go and stop-signal tasks, which facilitates 

the examination of response suppression. 

No-go task. No-go measures working memory and inhibitory control (Donders, 

1969). An extension of the go task, the no-go task required participants to press the 

spacebar to target letters “r” and “s” but only when they alternated. In other words, they 
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should not have responded to the same target twice in a row (Langenecker et al., 2007). 

This task requires selective execution of a response (i.e., intrinsic control), which 

primarily indexes automatic response inhibition (Rubia et al., 2001; Votruba et al., 2008). 

Stop-signal task. Similar to the go and no-go tasks, participants responded to “r” 

and “s” target letters, but they were instructed to withhold responding if a stop-signal 

(i.e., a red box) appeared shortly after the target. These targets were rare and quasi-

random, thereby requiring participants to briefly delay responding to discern whether the 

stop-signal would occur. The stop-signal delay (SSD) occurred 125-400 ms after stimulus 

onset, depending on the dataset, but in each study, the delay was varied to prevent 

prediction. While this procedure is still used, it is now more typical to increase or 

decrease the SSD on every trial, depending on prior success or failure, to produce 50% 

correct responses to inhibition trials (Logan et al., 1984). This approach produces a 

particularly robust SSRT measure with task accuracy equated across participants. Instead, 

we used the older approach as it allows for an adequate SSRT estimate while also 

allowing task accuracy to vary (Logan & Cowan, 1984). The stop-signal task, in contrast 

to the no-go task, employs an external inhibition trigger (i.e., extrinsic control), thereby 

requiring the participant to retract a selective response, which requires more effortful 

(i.e., top-down) control over motoric responding than no-go (Rubia et al., 2001; 

Verbruggen & Logan, 2008; Votruba et al., 2008). 

Task versions. Given the nature of using archival datasets, task parameters varied 

somewhat across studies resulting in three versions of the task included in the present 

study (see Figure 1). Most participants (n = 568) were from studies in which Version 1 

was utilized. Seventy-six participants were from studies with a shorter version of the 
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tasks (i.e., Version 2). For both Versions 1 and 2, each letter was shown up to 750 ms 

(unless the participant responded sooner). Lastly, 95 participants were from studies in 

which Version 3 was used where the stimulus duration was 600 ms. In Versions 1 and 2 

of the stop-signal task, the stop-signal delays (SSD) were 125 ms and 200 ms; Version 3 

had three SSDs: 250 ms, 300 ms, and 400 ms. 

 

Figure 1. Schematic of the three versions of the experimental tasks. In go, participants 
respond to the letters “r” and “s.” In stop, participants respond to letters “r” and “s” 
unless a red flash appears (depicted by red checkered above). In no-go, participants 
respond to “r” and “s” in alternation. Target trials = presentation of the letter “r” or “s” 
when the participant should respond. Inhibitory trials = presentation of the letter “r” or 
“s” when the participant should not respond.  

 

MMSE. The Mini-Mental State Examination (MMSE) is a screening instrument 

for detecting cognitive impairment across five cognitive functions: orientation, verbal 

learning, attention/calculation, spontaneous verbal recall, and language (Folstein, 

Folstein, & McHugh, 1975). Scores range from 0 to 30 with scores below 24 suggestive 

of cognitive impairment although other factors such as education must also be considered 

when using such cutoffs (Tombaugh & McIntyre, 1992). Many of the older participants 
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in this study completed the MMSE (n = 199). Those with scores in the normal range 

(total ≥ 24) were included in the present study. The MMSE has marginal interrater 

reliability, good test-retest reliability, variable internal consistency, modest to high 

construct validity, and modest ecological validity (Strauss et al., 2006). 

DRS-2. The Mattis Dementia Rating Scale – Second Edition (DRS-2) is a tool 

used to index the mental status of individuals with known or suspected dementia (Jurica, 

Leitten, & Mattis, 2001; Mattis, 1988). The instrument measures aspects of attention, 

initiation, perseveration, visuo-construction, abstract verbal reasoning, and verbal and 

nonverbal memory. The maximum score for the DRS-2 is 144. An empirically derived 

cut-off score of 130 was used to demarcate intact cognitive ability for the 103 older 

participants who completed the task (Monsch et al., 1995). The DRS-2 has good 

concurrent and predictive validity, and aspects of the instrument have fair reliability and 

construct validity (Strauss et al., 2006). 

NAART. Some older and younger participants (n = 143) completed the North 

American Adult Reading Test (NAART), which is a word reading task that estimates 

premorbid intellectual functioning (Blair & Spreen, 1989; Strauss et al., 2006). 

Participants with scores within normal limits (i.e., scores that are within two standard 

deviations of the mean of their age group) were included in the study. The NAART has 

good to excellent reliability and moderate to high construct validity.  

Self-report mood measures. Self-report questionnaires were used to quantify 

symptoms of depression and anxiety to exclude participants with clinically elevated 

symptomatology and because mood commonly correlates with alexithymia (Honkalampi, 

De Berardis, Vellante, & Viinamaki, 2018). These measures included the Beck 
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Depression Inventory—II (BDI-II), Geriatric Depression Scale (GDS), and Beck Anxiety 

Inventory (Beck & Steer, 1990; Beck, Steer, & Brown, 1996; Yesavage et al., 1982).  

The BDI-II evaluates severity of 21 depressive symptoms occurring within the 

last two weeks (Beck et al., 1996). This instrument has strong psychometric properties 

including good to excellent internal consistency, high test-retest reliability, and strong 

convergent and divergent validity (Strauss et al., 2006). Six hundred participants 

completed the BDI-II. 

The GDS is a screening measure of depressive symptomatology for older adults 

(Yesavage et al., 1982). The long-form (GDS-lf) consists of 30 items whereas the short-

form has 15 questions. The short-form (GDS-sf) was completed by 42 participants while 

the long-form was completed by 48 participants. The long-form has good to excellent 

internal consistency whereas the short-form appears to have acceptable to good internal 

consistency (Strauss et al., 2006).  

Participants (n = 691) also responded to the BAI, which is an instrument that 

indexes severity of anxiety symptoms (Beck & Steer, 1990). The BAI has excellent 

internal consistency and questionable to acceptable test-retest reliability (Beck, Epstein, 

Brown, & Steer, 1988; Fydrich, Dowdall, & Chambless, 1992). The BAI also has 

excellent convergent validity, acceptable discriminant validity, and good construct 

validity (Fydrich et al., 1992). 

Mood composite. Raw scores of each of the self-report mood measures were 

standardized to place them on a normal distribution. A mood composite was calculated 

for each individual whereby their standardized score on the BAI and their standardized 

score on either the BDI-II, GDS-sf, or GDS-lf were summed. 
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Procedure 

 All procedures were reviewed and approved by Marquette University’s 

Institutional Review Board. The experimental procedures varied based on the larger 

protocol for each study. For all studies, informed consent was obtained at the beginning 

of the session. Participants then completed the TAS-20 and the go, no-go, and stop-signal 

tasks. In Versions 1 and 2 (see Figure 1), participants first completed the go task, then the 

stop-signal task, and finally, the no-go task; Version 3 reversed the order of no-go and 

stop. Following the presentation of instructions for each of the task conditions, 

participants completed blocks of practice trials, except in Version 2.  

Sessions involving older adults were conducted individually, and task instructions 

were read to participants. Sessions with young adults were completed in a group format 

or individually, but all participants were situated in front of an individual computer and 

performed the tasks independently.  

Data Analytic Plan 

A significance criterion of p < .05 was used for all statistical tests. All descriptive 

and inferential statistics were obtained using SPSS v.26. Exploratory mediation and 

moderation models were conducted using the PROCESS 3.0 custom dialog extension for 

SPSS (Hayes, 2018). First, participants with missing age, TAS-20, go, no-go, or stop-

signal data and duplicated participants were removed from subsequent analyses. Then, 

participants with impaired scores on the cognitive screening measures were excluded. 

Next, participants’ performances on the go, no-go, and stop-signal tasks were evaluated 

for poor effort, and dubious responders were removed from subsequent analyses.  
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Because of the variations between the experimental tasks as well as individual 

study’s procedures, performance metrics were first examined for equivalence across the 

experimental samples. Then, exploratory correlations with Pearson’s r for continuous 

variables and Kendall’s tau for categorical variables were evaluated to determine which, 

if any, demographic variables were associated with go, no-go, and stop-signal 

performance variables. Primary analyses of interest included separate hierarchical 

regressions predicting accuracy and reaction time for go, no-go, and stop-signal tasks 

with any significant demographic variables included in initial steps, age entered in the 

subsequent step, and the TAS-20 total score included in the final step. Post hoc models 

substituted all TAS-20 subscores (i.e., DIF, DDF, and EOT) for the total score in the final 

step to explore unique versus shared variance of each factor. Exploratory moderation and 

mediation models were conducted to interrogate shared variance among covariates and 

predictor variables.  

Dependent variables for accuracy included percent correct target trials (PCTT) for 

go, no-go, and stop-signal tasks and percent correct inhibitory trials (PCIT) for no-go and 

stop-signal tasks. Reaction time dependent variables were response time to targets (RTT) 

for go and stop signal reaction time (SSRT) for stop-signal tasks. SSRT was calculated 

by finding the probability of incorrectly responding to an inhibitory trial and multiplying 

that probability by the total number of go response times. The resulting value was used to 

find the “nth” response time (RT). Each stop-signal delay was subtracted from the “nth” 

RT. Finally, each of the resultant values was averaged resulting in the SSRT (Logan & 

Cowan, 1984). 
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A priori power analyses with a Type I error criterion of .05 and Type II criterion 

of .80 were conducted using G*Power version 3.1 (Faul, Erdfelder, Lang, & Buchner, 

2007) and revealed a total sample size of 98 would be necessary to achieve medium 

effect sizes for the proposed linear multiple regressions.  
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Results 

Missing and Excluded Data 

Participants were excluded from analyses if there were any missing data for the 

primary predictors (n = 48; 39 younger, 9 older) or the experimental tasks (n = 30; 3 

younger, 27 older); task data for one part of the experimental paradigm (e.g., go, no-go or 

stop) sometimes occurred due to data storage errors, etc. After removing one additional 

older participant who participated in two of the studies, three participants who had 

impaired cognitive performance (one younger, two older), and one older participant 

whose nine years of education were clearly discrepant from all other participants, 656 

participants (495 younger, 161 older) were retained for analysis.  

To ensure participants completed the go, no-go and stop-signal tasks as instructed 

and to reduce the likelihood of poor effort, cutoff scores were applied to the PCTT and 

PCIT metrics. Target performance (PCTT) in each task is fundamental as it demonstrates 

task engagement and evidence of the prepotent response. If participants did not perform 

this task with high accuracy, either lack of understanding or insufficient effort were 

suspected. Previous research using the same tasks as this study demonstrated mean PCTT 

rates > 90 (Hazlett Elverman, 2016; Langenecker et al., 2007; Votruba & Langenecker, 

2013). As such, participants with mean go-PCTT scores < 95 as well as no-go-PCTT and 

stop-PCTT scores < 90 were excluded from subsequent analyses. Inhibitory control tasks 

are more challenging relative to simple reaction time measures, and as such, it was 

important to provide more range for individual differences in task performance. 

Additionally, the distributions of scores were visually analyzed to approximate cutoffs for 
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PCIT. Ultimately, a more liberal cut score of 50 was used for mean no-go-PCIT and stop-

PCIT scores because it was believed that participants performing above this threshold 

accurately understood the task instructions and were motivated in performing to the best 

of their abilities. Thus, subjects were included in analysis if go-PCTT > 95, no-go-PCTT 

> 90, and stop-PCTT > 90 (i.e., all three filters were applied simultaneously). These 

cutoff scores excluded 191 participants (111 younger, 80 older), leaving 384 younger and 

81 older adults for the final analyses. Final participant demographic characteristics and 

performance metrics can be found in Table 1.  
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Table 1

Mean SD n
Demographic Variables
Age (years) 27.95 19.60 465
Sex (155 M, 310 F) - - 465
Education 13.58 1.69 465

Affective Variables
GDS-lf 2.73 3.18 33
GDS-sf 1.13 1.93 16
BDI-II 7.47 7.11 416
BAI 10.77 8.92 465
TAS-20 Total 43.98 10.41 465
   Difficulty Identifying Feelings 12.97 5.11 465
   Difficulty Describing Feelings 12.31 4.30 465
   Externally Oriented Thinking 18.70 4.29 465

Cognitive and Task Measures
MMSE 28.99 1.41 81
DRS Total 139.79 2.65 48
NAART 37.21 9.68 82
Go-RTT (ms) 603.56 60.44 464
Go-PCTT 99.67 0.78 464
No-Go-RTT (ms) 660.36 66.88 465
No-Go-PCTT 98.09 2.13 465
No-Go-PCIT 82.70 12.75 465
Stop-RTT (ms) 720.18 78.73 465
Stop-PCTT 98.51 1.98 465
Stop-PCIT 76.30 11.86 465
Stop-SSRT (ms) 488.60 85.30 465

Descriptive Statistics.

Notes: GDS = Geriatric Depression Scale, -lf = long form, -sf = short form; 
BDI-II = Beck Depression Inventory - 2nd Edition; BAI = Beck Anxiety 
Inventory; TAS-20 = Toronto Alexithymia Scale-20; MMSE = Mini-Mental 
State Examination; DRS = Dementia Rating Scale; NAART = North 
American Adult Reating Test; RTT = Response Time to Targets; PCTT = 
Percent Correct Target Trials; PCIT = Percent Correct Inhibitory Trials; 
SSRT = Stop Signal Reaction Time
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Task Differences 

Because three versions of the inhibitory tasks were implemented, potential 

differences between the versions were examined. Importantly, however, this study partly 

aimed to evaluate age differences on the tasks, and as such, differences between versions 

due to age were also investigated. Separate one-way ANCOVAs were conducted with 

task version as the between-subjects variable, age as the covariate, and accuracy metrics 

or reaction times as dependent variables. All models were nonsignificant (p values for 

task version ranged from .07 for stop-PCIT to 0.84 for stop-RTT), which suggests that 

there were no differences in performance metrics based on the version of the task. 

Exploratory Correlations 

Bivariate correlations are shown in Table 2. Response time to targets across go, 

no-go, and stop-signal tasks consistently correlated with sex; men responded more 

quickly than women. Greater mood symptoms were associated with slower response 

times to targets during go trials, faster response times to targets during stop trials, and 

poorer stop-signal accuracy. Education was correlated with faster go-RTT and no-go-

RTT, slower stop-RTT, and better inhibition (no-go-PCIT and stop-PCIT). 
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Hierarchical Regressions 

Based on the exploratory correlations, regression models for response time (i.e., 

go-RTT, no-go-RTT, stop-RTT) included sex in Step 1 to isolate the effect of this 

variable prior to the predictor variables of interest (i.e., age and alexithymia). Because of 

the high degree of correlation between education and age (r = .52) and the generally high 

educational attainment of the sample, this variable was not incorporated into regression 

models. Mood was incorporated into regression models where it was significantly 

correlated with primary outcome measures (i.e., go-RTT, stop-RTT, and stop-PCIT; see 

Table 2). Age was entered in Step 2 of all models, and Step 3 introduced TAS-20 total 

scores. 

Go task. Hierarchical regression produced a significant model for go-RTT. Sex 

and mood contributed significantly in Step 1 (R2 = .03, p = .001; see Table 3). Age added 

significant prediction in Step 2 whereas mood no longer contributed unique variance (R2 

= .086, ΔR2 = .057, p < .001). Alexithymia did not add substantive prediction in Step 3 

although the model remained significant (R2 = .088, ΔR2 = .002, p < .001). Thus, older 

age (β = -.247, p < .001) predicted faster go-RTT, and female sex (β = .118, p = .009) 

was associated with slower go-RTT.  
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 Typically, response times are fastest during young adulthood and gradually slow 

across middle and later adulthood (Williams, Ponesse, Schachar, Logan, & Tannock, 

1999). As such, a post hoc hierarchical regression was calculated separately for older and 

younger adults to interrogate the atypical association between age and response time. 

Among older adults, the final model was significant although Step 1 was nonsignificant 

Table 3
Hierarchical Regressions Predicting Go Performances

Model Summary of Each Step Contribution of Each Variable in Last Step

R 2 ΔR 2 df F p b SE β t p

RTT
     Step 1 0.030 - 2, 461 7.05 0.001

Sex 0.015 0.006 0.118 2.63 0.009
Mood 0.002 0.002 0.052 1.00 0.317

     Step 2 0.086 0.057 3, 460 14.47 <.001
Age -0.001 <.001 -0.247 -5.37 <.001

     Step 3 0.088 0.002 4, 459 11.10 <.001
TAS-20 Total <.001 <.001 0.051 1.00 0.319

RTT (Older Sample Only)
     Step 1 0.022 - 2, 77 0.85 0.431

Sex 0.027 0.017 0.114 1.57 0.122
Mood 0.002 0.007 0.022 0.29 0.772

     Step 2 0.608 0.586 3, 76 39.31 <.001
Age 0.008 0.001 0.760 10.01 <.001

     Step 3 0.609 0.001 4, 75 29.19 <.001
TAS-20 Total <.001 0.001 0.030 0.37 0.710

RTT (Younger Sample Only)
     Step 1 0.034 - 2, 381 6.78 0.001

Sex 0.014 0.004 0.178 3.51 0.001
Mood 0.001 0.001 0.053 0.91 0.365

     Step 2 0.035 0.001 3, 380 4.59 0.004
Age 0.001 0.003 0.022 0.44 0.660

     Step 3 0.037 0.002 4, 379 3.61 0.008
TAS-20 Total <.001 <.001 -0.047 -0.82 0.414

PCTT
     Step 1 0.008 - 1, 462 3.77 0.053

Age -0.004 0.002 -0.093 -2.00 0.047
     Step 2 0.009 0.001 2, 461 2.17 0.116

TAS-20 Total -0.003 0.003 -0.035 -0.75 0.453
Notes: <.05; <.01; RT = Response Time; PCTT = Percent Correct Target Trials; TAS-20 = Toronto
 Alexithymia Scale-20.
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with sex and mood entered as predictors (R2 = .022, p = .431). Age added significant 

prediction in Step 2 (R2 = .608, ΔR2 = .586, p < .001). In Step 3 alexithymia did not 

contribute unique variance to the model (ΔR2 = .001). Thus, as expected, older age, but 

not alexithymia, predicted slower go-RTT (β = .76, p < .001). Conversely, among 

younger adults, hierarchical regression produced a significant model with sex, but not 

mood, providing significant prediction in Step 1 (R2 = .034, p = .001). Neither age in Step 

2 nor alexithymia in Step 3 demonstrably altered the model (Step 2 ΔR2 = .001; Step 3 

ΔR2 = .002). As such, among college-aged adults, only female sex predicted slower go-

RTT (β = .178, p = .001). 

The models for go-PCTT were nonsignificant. Consistent with the nonsignificant 

correlation between age and go-PCTT, Step 1 was nonsignificant but approached 

statistical significance (R2 = .008, p = .053). Age emerged as a significant predictor in 

Step 2 when alexithymia was added to the model suggesting that age predicts go-PCTT 

when the effect of alexithymia is held constant (β = -.093, p = .047). Nevertheless, the 

model in Step 2 resulted in a reduction of the F value indicating that the initial model 

better predicted go-PCTT (R2 = .009, ΔR2 = .001, p = .116).  

No-go task. Hierarchical regression produced a significant model for no-go-RTT 

(R2 = .022, p = .018; see Table 4). Sex did not provide unique variance in Step 1 (R2 = 

.006, p = .097), age added significant prediction in Step 2 (R2 = .015, ΔR2 = .009, p = 

.034), but none of the individual predictors provided unique variance in Step 3 (ΔR2 = 

.007; coefficient ps = .064-.067). Based on this lack of clarity and the post hoc findings 

for go-RTT, post hoc hierarchical regressions were interrogated separately for the older 

and younger samples. Among older adults alone, the model was significant (R2 = .48, p < 
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.001). Sex did not provide unique variance in Step 1 (R2 < .001, p = .934); age added 

significantly in Step 2 (R2 = .479, ΔR2 = .479, p < .001) and remained significant in Step 

3 when alexithymia was added to the model. Alexithymia did not predict no-go-RTT 

(ΔR2 = .001). Young adults, in contrast, produced a significant model with only sex 

demonstrably predicting no-go-RTT across the three steps (final model R2 = .03, p = 

.009). Thus, only age was associated with slower no-go-RTT in older adults (β = .681, p 

< .001), while only female sex predicted slower no-go-RTT in young adults (β = .172, p 

= .001).  
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 The hierarchical regression model predicting no-go-PCTT was significant (R2 = 

.021, p = .008). Age contributed significant prediction in Step 1 (R2 = .015, p = .008), but 

alexithymia did not add significant prediction in Step 2 (ΔR2 = .006, p = .008). Thus, only 

age was associated with poorer no-go-PCTT (β = -.13, p = .005). There was also a 

Table 4
Hierarchical Regressions Predicting No-Go Performances

Model Summary of Each Step Contribution of Each Variable in Last Step

R 2 ΔR 2 df F p b SE β t p

RTT
     Step 1 0.006 - 1, 463 2.77 0.097

Sex 0.012 0.007 0.085 1.85 0.065
     Step 2 0.015 0.009 2, 462 3.41 0.034

Age <.001 <.001 -0.086 -1.85 0.064
     Step 3 0.022 0.007 3, 461 3.41 0.018

TAS-20 Total 0.001 <.001 0.085 1.84 0.067
RTT (Older Sample Only)
     Step 1 <.001 - 1, 79 0.01 0.934

Sex 0.003 0.024 0.010 0.12 0.907
     Step 2 0.479 0.479 2, 78 35.82 <.001

Age 0.008 0.001 0.681 7.91 <.001
     Step 3 0.480 0.001 3, 77 23.70 <.001

TAS-20 Total 0.001 0.001 0.038 0.44 0.662
RTT (Younger Sample Only)
     Step 1 0.030 - 1, 382 11.64 0.001

Sex 0.015 0.004 0.172 3.40 0.001
     Step 2 0.030 <.001 2, 381 5.85 0.003

Age 0.003 0.001 -0.015 -0.29 0.772
     Step 3 0.030 <.001 3, 380 3.89 0.009

TAS-20 Total <-.001 <.001 -0.001 -0.03 0.979
PCTT
     Step 1 0.015 - 1, 463 7.12 0.008

Age -0.014 0.005 -0.13 -2.80 0.005
     Step 2 0.021 0.006 2, 462 4.93 0.008

TAS-20 Total -0.016 0.009 -0.08 -1.65 0.100
PCIT
     Step 1 0.008 - 1, 463 3.66 0.056

Age 0.051 0.030 0.079 1.71 0.089
     Step 2 0.021 0.014 2, 462 5.04 0.007

TAS-20 Total -0.143 0.057 -0.117 -2.53 0.012
Notes: <.05; <.01; RT = Response Time; PCTT = Percent Correct Target Trials; PCIT = Percent Correct 
Inhibitory Trials; TAS-20 = Toronto Alexithymia Scale-20.
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significant model for no-go-PCIT (R2 = .021, p = .007). Age did not contribute significant 

prediction in Step 1 (R2 = .008, p = .056), but alexithymia was associated with poorer no-

go-PCIT (ΔR2 = .014; β = -.117, p = .012).  

Stop-signal task. Hierarchical regression produced a significant model predicting 

stop-RTT with both sex and mood significant in Step 1 (R2 = .034, p < .001), and only 

sex and age significant in Steps 2 and 3 (R2 = .183, ΔR2 = .149, p < .001 and R2 = .183, 

ΔR2 < .001, p < .001, respectively). Alexithymia was not a significant predictor. Thus, 

older age and female sex predicted slower stop-RTT (in order, β = .398, p < .001 and β = 

.094, p = .027; see Table 5). In contrast, the models for stop-PCTT were nonsignificant 

(R2 = .008, p = .162), with neither age in Step 1 (R2 = .004, p = .186) nor alexithymia in 

Step 2 contributing significant variance (ΔR2 = .004; coefficient ps > .152).  
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Table 5
Hierarchical Regressions Predicting Stop-Signal Performances

Model Summary of Each Step Contribution of Each Variable in Last Step

R 2 ΔR 2 df F p b SE β t p

RTT
     Step 1 0.034 - 2, 462 8.22 <.001

Sex 0.016 0.007 0.094 2.22 0.027
Mood -0.002 0.002 -0.044 -0.90 0.371

     Step 2 0.183 0.149 3, 461 35.46 <.001
Age 0.002 <.001 0.398 9.16 <.001

     Step 3 0.183 <.001 4, 460 25.83 <.001
TAS-20 Total <-.001 <.001 -0.018 -0.38 0.708

PCTT
     Step 1 0.004 - 1, 463 1.75 0.186

Age -0.007 0.005 -0.067 -1.44 0.152
     Step 2 0.008 0.004 2, 462 1.83 0.162

TAS-20 Total -0.012 0.009 -0.064 -1.38 0.169
PCIT
     Step 1 0.037 - 1, 463 17.77 <.001

Mood -0.710 0.346 -0.106 -2.05 0.040
     Step 2 0.070 0.033 2, 462 17.49 <.001

Age 0.115 0.028 0.190 4.13 <.001
     Step 3 0.077 0.006 3, 461 12.79 <.001

TAS-20 Total -0.103 0.058 -0.091 -1.79 0.073
PCIT (Remodeled)
     Step 1 0.049 - 1, 463 24.01 <.001

Age 0.127 0.027 0.210 4.67 <.001
     Step 2 0.068 0.019 2, 462 16.96 <.001

TAS-20 Total -0.158 0.051 -0.139 -3.08 0.002
PCIT (Older Sample Only)
     Step 1 0.146 - 1, 79 13.48 <.001

Age -0.399 0.117 -0.374 -3.42 0.001
     Step 2 0.146 0.001 2, 78 6.69 0.002

TAS-20 Total -0.032 0.139 -0.026 -0.23 0.816
PCIT (Younger Sample Only)
     Step 1 0.032 - 1, 372 12.43 <.001

Age 1.334 0.393 0.170 3.40 0.001
     Step 2 0.047 0.015 2, 381 9.39 <.001

TAS-20 Total -0.135 0.054 -0.125 -2.49 0.013
SSRT
     Step 1 0.035 - 1, 463 16.72 <.001

Age 0.001 <.001 0.189 4.12 <.001
     Step 2 0.036 0.001 2, 462 8.53 <.001

TAS-20 Total <.001 <.001 0.028 0.61 0.545
Notes: <.05; <.01; RT = Response Time; PCTT = Percent Correct Target Trials; PCIT = Percent  
Correct Inhibitory Trials; SSRT= Stop-Signal Reaction Time; TAS-20 = Toronto Alexithymia Scale-20.
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Hierarchical regression analysis revealed a significant model predicting stop-

PCIT with mood significant across all three steps (Step 1: R2 = .037, p < .001), and age 

contributing in Step 2 (R2 = .07, ΔR2 = .033, p < .001). When alexithymia was added in 

Step 3, the effect of mood was reduced (R2 = .077, ΔR2 = .006, p < .001; β = -.149, p = 

.001 in Step 2, β = -.106, p = .04 in Step 3), while the effect of age was unchanged (β = 

.188, p < .001 in Steps 2 and β = .19, p < .001 in Step 3). Moreover, alexithymia 

approached statistical significance (β = -.091, p = .073). Partial correlations were 

examined to further elucidate the relationships among the variables. The zero-order 

correlation of TAS-20 with stop-PCIT was significant (r = -.16, p = .001). However, the 

partial correlation between these variables, in which the effect of mood was controlled, 

was considerably less (r = -.08, p = .098). That is, the correlation coefficient was 

diminished by half. As such, the inclusion of mood severely reduced the amount of 

variance in stop-PCIT shared by alexithymia. Thus, models for stop-PCIT were 

influenced by multicollinearity. To address this issue, the data were remodeled: age was 

significant in Step 1 (R2 = .049, p < .001), and both age and alexithymia were significant 

in Step 2 (R2 = .068, ΔR2 = .019, p < .001). Therefore, older age was associated with 

better stop-PCIT (β = .21, p < .001), and greater alexithymia predicted poorer stop-PCIT 

(β = -.139, p = .002).  

Given that greater stop-PCIT accuracy was associated with older age, in contrast 

to expectations, follow-up models were evaluated separately across age samples. Older 

adults alone produced a significant model with age predicting poorer PCIT performance, 

as predicted (R2 = .146, p < .002; β = -.382, p < .001), with no added effect of alexithymia 

in Step 2 (R2 = .146, ΔR2 = .001, p = .002). In contrast, young adults alone also produced 
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a significant model but with greater age predicting better performance (R2 = .032, p < 

.001) and alexithymia adding further prediction in Step 2 (R2 = .047, ΔR2 = .015, p < 

.001). Thus, aging was associated with poorer stop-PCIT, as predicted, but among young 

adults, stop-PCIT improved with age whereas alexithymia impaired it (β = .17, p = .001 

and β = -.125, p = .013, respectively). 

Last, hierarchical regression produced a significant model predicting stop-SSRT 

with age significant in Step 1 (R2 = .035, p < .001). Alexithymia did not add significant 

prediction in Step 2 (R2 = .036, ΔR2 = .001, p < .001; β = .028, p = .545). Thus, only age 

was associated with slower stop-SSRT (β = .189, p < .001).  

Post Hoc Examination of PCIT Findings 

 In order to specify the salient subscales of alexithymia accounting for inhibitory 

control deficits, post hoc hierarchical regression models were performed with the three 

TAS-20 subscores replacing the total score in Step 3 (see Table 6). Part and partial 

correlations were computed, and the subscore with the highest part correlation coefficient 

was targeted for follow-up moderation and mediation analyses.  
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No-go task. Hierarchical regression predicting no-go-PCIT produced a significant 

model. Age approached significance in Step 1 (R2 = .008, p < .056; β = .089, p = .056). In 

Step 2, the model was significant (R2 = .022, ΔR2 = .014, p = .035), but none of the 

predictors (i.e., age, DIF, DDF, EOT) reached the threshold for significance (ps = .085-

.856) suggesting issues with multicollinearity. To clarify the model, the partial and semi-

partial correlations from Step 2 were examined. After controlling for the effects of the 

other variables, age accounted for the most variance (r = .08) followed by DIF (r = -

.069). Thus, DIF appeared to account for the most variance among the alexithymia 

factors, and it predicted poorer no-go-PCIT. 

Table 6
Post Hoc Hierarchical Regressions Predicting PCIT Performances Using Factor Scores

Model Summary of Each Step Contribution of Each Variable in Last Step

R 2 ΔR 2 df F p b SE β t p

No-Go-PCIT
     Step 1 0.008 - 1, 463 3.66 0.056

Age 0.053 0.031 0.081 1.73 0.085
     Step 2 0.022 0.014 4, 460 2.62 0.035

DIF -0.214 0.144 -0.086 -1.49 0.137
DDF -0.033 0.180 -0.011 -0.18 0.856
EOT -0.182 0.147 -0.061 -1.24 0.215

Stop-PCIT
     Step 1 0.037 - 1, 463 17.77 <.001

Mood -0.577 0.383 -0.086 -1.51 0.133
     Step 2 0.070 0.033 2, 462 17.49 <.001

Age 0.117 0.028 0.193 4.16 <.001
     Step 3 0.080 0.009 5, 459 7.93 <.001

DIF -0.260 0.149 -0.112 -1.74 0.082
DDF 0.041 0.163 0.015 0.25 0.800
EOT -0.001 0.001 -0.035 -0.71 0.476

Notes: <.05; <.01; RT = Response Time; PCTT = Percent Correct Target Trials; PCIT = Percent 
Correct Inhibitory Trials; SSRT = Stop Signal Reaction Time; TAS-20 = Toronto Alexithymia
Scale-20; DIF = Difficulty Identifying Feelings; DDF = Difficulty Describing Feelings; EOT = 
Externally Oriented Thinking.
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Despite substantial research showing alexithymia is a stable personality trait 

(Taylor & Bagby, 2004), individuals with high depression and anxiety symptoms also 

tend to have high alexithymia scores leading some to argue that alexithymia is an 

affective state of psychiatric distress (Honkalampi et al., 2010; Marchesi, Ossola, Tonna, 

& De Panfilis, 2014). In the present study, the mood composite was moderately-to-

strongly correlated with TAS-20 (r = 0.47) and DIF (r = .60). As such, follow-up 

analyses were evaluated for the possibility of moderation or mediation by the mood 

composite. First, moderation was not supported; despite a significant overall moderation 

analysis (R2 = .023, p = .033), none of the predictors (i.e., DIF, mood, DIF-X-mood 

interaction) achieved significance (ps = .102-.238). Second, bootstrapped mediation 

analysis demonstrated that the mood composite did not mediate the relationship of DIF to 

no-go-PCIT (see Figure 2). Specifically, while mood did reduce the direct effect relative 

to the total effect of DIF to no-go-PCIT (bc' = -0.243, p = .092 and bc = -0.256, p = .028, 

respectively), and alexithymia provided significant prediction of the mood composite (ba 

= 0.201, p < .001), the mood composite did not predict no-go-PCIT (bb = -0.065, p = 

.878). The lack of mediation was verified by examining the 95% confidence interval of 

the indirect effect (bab = -0.013, 95% CI [-0.186, 0.153]). The null hypothesis could not 

be rejected because the 95% CI included zero. Thus, higher DIF uniquely predicted lower 

no-go-PCIT, and mood neither moderated nor mediated this relationship. 
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Figure 2. DIF was associated with mood (a), but mood was not related to no-go-PCIT 
(b). While mood reduced the direct effect (c) relative to the total effect (c'), the 95% 
confidence interval of the indirect effect (ab) contained zero (95% CI [-0.186, 0.153]). 
Thus, mood did not mediate the relationship between DIF and no-go-PCIT. Reported 
values are coefficients and standard errors. *p <.05, **p<.01, ***p<.001 
 

 Stop-signal task. Models predicting stop-PCIT were significant (R2 = .08, p < 

.001). Mood provided significant prediction in Step 1 (R2 = .037, p < .001; β = -.192, p < 

.001), age added prediction in Step 2 (R2 = .07, ΔR2 = .033, p < .001; β = .188, p < .001), 

and in Step 3, only age remained as a significant predictor (ΔR2 = .009, p < .001, βage = 

.193, p < .001). That is, mood was no longer a unique predictor (β = -.086, p = .133), and 

DIF was marginally significant (β = -.112, p = .082). The part correlation coefficient for 

age was largest of the predictors (r = .186) followed by DIF (r = -.078) then the mood 

composite (r = -.07) suggesting that DIF was the most salient facet of alexithymia after 

controlling for the effect of the other predictors on stop-PCIT.  

Because anxiety and depression are often correlated with alexithymia, additional 

models were examined to discern whether mood moderated or mediated the relationship 

between DIF and stop-PCIT. First, mood did not moderate the role of DIF on stop-PCIT. 

Although the model was significant (R2 = .079, p < .001), none of the predictors were 

(mood, DIF, mood-X-DIF interaction; ps = .082-.931); only the covariate age was 
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significant (b = .115, p < .001). Second, bootstrapped mediation analysis revealed that 

mood did not mediate the effect of DIF on stop-PCIT (see Figure 3). That is, DIF and 

mood were associated (ba = 0.201, p < .001), mood did not predict stop-PCIT (bb = -

0.547, p = .151), and DIF predicted stop-PCIT (bc = -0.369, p = .001). Importantly, the 

direct effect of mood on stop-PCIT, although reduced, remained significant (bc' = -0.259, 

p = .046). This was confirmed by examining the 95% confidence interval of the indirect 

effect (bab = -0.11, 95% CI [-0.259, 0.033]), which suggested that the indirect effect was 

not significantly different from zero. 

 

Figure 3. DIF was associated with mood (a), but mood was not related to stop-PCIT (b). 
While mood reduced the direct effect (c) relative to the total effect (c'), the 95% 
confidence interval of the indirect effect (ab) contained zero (95% CI [-0.259, 0.033]). 
Thus, mood did not mediate the relationship between DIF and stop-PCIT. Reported 
values are coefficients and standard errors. *p <.05, **p<.01, ***p<.001 
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Discussion 

 The purpose of this study was to investigate the effects of age and alexithymia on 

inhibitory control among adults ranging in age from 18-92 years. Participants completed 

tasks of motoric inhibition: go, no-go and stop-signal paradigms. Results revealed female 

sex and older age were associated with slower responding on target trials across go, no-

go, and stop-signal tasks. Greater age predicted less accurate responding to target trials 

on no-go and slowed processing of stop signals. Among the middle-aged to older adults, 

greater age was associated with less accurate responding to inhibition trials in the stop-

signal paradigm. Importantly, greater alexithymia predicted less accurate responding to 

inhibitory trials on no-go. Difficulty identifying feelings (DIF) was the salient facet of 

alexithymia that accounted for this effect. Similarly, while anxiety and depression 

symptoms also predicted poorer performance on inhibitory trials of the stop-signal task, 

this appeared to be due to shared variance between mood and alexithymia. Again, DIF 

was the subscale of alexithymia accounting for this effect. Finally, mood neither 

moderated nor mediated the relationship between DIF and inhibitory control on the no-go 

and stop-signal tasks. Taken together, this study captured typical aging findings related to 

slower, but generally accurate, responding on go, no-go and stop-signal paradigms, and 

alexithymia independently contributed to poorer inhibitory control via DIF. 

Age Effects 

 Hypothesis 1A: Slower RTT with greater age. Prior studies have demonstrated 

that while older age contributes to slower responding on go and no-go tasks, accuracy 

remains consistent across older and younger samples (Hazlett Elverman, 2016; Nielson et 
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al., 2002). In this study, age significantly predicted RTT in go, no-go, and stop-signal 

tasks, but only its association with stop-RTT was in the predicted direction. This 

appeared to be driven by the more limited spread of RTTs in the younger sample. When 

older adults were examined separately, greater age predicted slower go-RTT and no-go-

RTT, as was expected. For young adults, age was not a significant predictor of go-RTT 

and no-go-RTT. Typically, simple reaction times are fastest among young adults with 

slowing beginning in midlife (Der & Deary, 2006). As many of the young adults 

completed the tasks in group settings, they may have been distracted or less motivated to 

perform well (as often occurs with student samples), potentially delaying their RTT. In 

contrast, the stop-signal task requires more effortful control over responding, which 

appears to have been better exerted by the young adults under these strong top-down 

control requirements (Verbruggen & Logan, 2008). Alternatively, there was a very large 

sample of young adults with a narrow performance distribution, combined with a smaller 

sample of older adults who had a wider performance distribution. Furthermore, the 

distribution was bimodal, with a lack of representation of participants age 25-50. A fuller 

and more balanced age distribution would likely have produced reaction times more 

representative of prior studies. 

 Although target accuracy during the no-go and stop tasks were expected to be 

uninfluenced by age, poorer no-go-PCTT was apparent at older ages. Indeed, normative 

data reveal a negative trend for no-go-PCTT across adulthood, but this trend typically 

does not reach statistical significance, especially due to typically high overall task 

performance (Nielson et al., 2002; Votruba & Langenecker, 2013). The significant effect 

of age on no-go-PCTT in the present study was small but significant likely due to the 
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large sample size. Similarly, its magnitude is consistent with prior literature (Nielson et 

al., 2002). While both go and no-go are relatively easy, target detection in the no-go task 

is more challenging relative to go because no-go imposes a small working memory 

requirement in order to accurately alternate responding (Garavan, Ross, & Stein, 1999; 

Nielson et al., 2002; Wingfield, Stine, Lahar, & Aberdeen, 1988). Yet, such aging effects 

also likely have little meaning due to the ceiling effect on performance (floor = 95% 

correct).   

 Hypothesis 1B: Poorer PCIT and slower SSRT with greater age. In contrast to 

target detection, greater age was expected to predict fewer correct inhibitory trials on no-

go and stop-signal tasks and slower inhibitory control processes (Hazlett Elverman, 2016; 

Nielson et al., 2002; Rey-Mermet & Gade, 2018). The results partly supported this 

hypothesis. Although age did not predict no-go-PCIT, older age was significantly 

associated with poorer stop-PCIT within the older group. Moreover, greater age predicted 

slower SSRT. 

No-go task. The lack of an age effect on no-go-PCIT is inconsistent with a recent 

meta-analysis (Rey-Mermet & Gade, 2018). Across 18 studies with go and no-go tasks, 

aging was associated with more errors on inhibition trials. Yet, our sample was highly 

educated, and we set a high criterion for task performance to assure both adequate 

understanding of and engagement with the tasks; these factors may not have been 

considered in other studies. Moreover, our strict filter criterion resulted in a relatively 

small sample of older adults (n = 81). Using the same cutoff for all participants, 

regardless of age, likely resulted in the loss of older individuals who understood the 
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instructions and provided sufficient effort. Thus, the present results may reflect a Type II 

Error, such that a true aging effect was not captured. 

A prior study (some participants overlapped with this study) also did not detect 

age group differences for inhibitory trials on the no-go task; however, there were 

significant group differences in event-related potential (ERP) amplitudes during 

inhibitory control (Hazlett Elverman, 2016). Specifically, older adults had greater frontal 

(midline) amplitudes and reduced central-parietal (midline) amplitudes during no-go 

relative to young adults suggesting older adults had less efficient processing in posterior 

brain regions and neural recruitment in frontal regions, which is consistent with 

compensatory models of aging (Cabeza, 2002; Nielson et al., 2002; Park & Reuter-

Lorenz, 2009; Reuter-Lorenz & Park, 2014). Thus, an alternative explanation for the 

nonsignificant impact of age on no-go-PCIT is that the participants in the current study 

were able to effectively compensate for age-related changes. 

Stop-signal task. As expected, older age predicted poorer stop-PCIT among the 

sample of middle-aged to older adults and slower stop-SSRT across all participants. 

These results support Hypothesis 1B (i.e., poorer inhibitory control with older age). Yet, 

for college students, age predicted better stop-PCIT consistent with the ongoing 

development of executive functions through young adulthood and into early adulthood 

(Friedman et al., 2016).  

Commensurate with a recent meta-analysis, older age was associated with both 

less accurate responding to inhibition trials and slowed suppression of motoric responses 

(Rey-Mermet & Gade, 2018). Our prior work using this stop-signal task and a portion of 

the same participants found no significant age group difference for stop-PCIT but did 
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show greater ERP amplitude in older adults (Hazlett Elverman, 2016) indicative of less 

efficient processing and compensatory recruitment that occurs as a function of aging 

(Cabeza, 2002). ERP may therefore be a more sensitive method for capturing age-related 

changes in smaller studies. In larger studies, such as this one, age-related differences in 

stop-PCIT may be more likely to emerge.  

Differential age effects in no-go vs. stop-signal. Task demands may explain the 

variable aging findings between no-go-PCIT and stop-PCIT. On average, all participants 

performed more poorly on inhibition trials of the stop-signal task compared to no-go. 

This finding supports the automatic-inhibition hypothesis, which predicts that as an 

individual learns the pattern between target and inhibition trials they can anticipate when 

a response should be inhibited leading to more automatic and accurate inhibitory control 

(Verbruggen & Logan, 2008). No-go in particular is better suited for the development of 

automaticity. In the stop-signal paradigm, the stimuli for responding and for inhibiting 

are the same (Votruba et al., 2008). Therefore, the stop and the go responses are 

inconsistent and less likely to become automatized reflecting more controlled and 

effortful response suppression relative to no-go (Verbruggen & Logan, 2008). Yet, for 

both tasks automatic response inhibition can develop with practice. Nevertheless, for no-

go the demand on response retraction is less reliant on top-down control and is more 

likely to be mediated by implicit learning (Rubia et al., 2001; Verbruggen & Logan, 

2008). Thus, motoric suppression via the stop-signal task may be better suited to 

ascertain age-related changes across middle to late adulthood. 
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Alexithymia Effects 

An important objective of this study was to examine potential independent effects 

for both age and alexithymia on inhibitory control. The hierarchical regressions were 

designed to isolate age effects after accounting for significant covariates and then to 

distinguish the extent to which alexithymia effects were additive to aging (cf., Dressaire 

et al., 2015). This study also sought to demarcate which of the facets of alexithymia 

contributed to inhibitory control deficits.  

Hypothesis 2A: Alexithymia should not affect responding to target trials. In 

prior studies, alexithymia did not impact simple processing speed and response accuracy 

in non-emotive or emotive inhibition tasks (Zhang et al., 2012; Zhang et al., 2011). Thus, 

no alexithymia effects were anticipated for go-PCTT, go-RTT, no-go-PCTT, no-go-RTT, 

stop-PCTT, or stop-RTT. The results supported the hypothesis (see Tables 3-5).   

 Hypotheses 2B, 2C, and 4A: Poorer inhibition with greater alexithymia via 

DIF. Previous studies revealed that high alexithymia is associated with less accurate and 

slower conflict processing (Zhang et al., 2011); more perseverative errors on a conceptual 

reasoning task (Zhu et al., 2006); greater self-reported difficulties with working memory, 

inhibition, and monitoring (Koven & Thomas, 2010); and deficits on traditional executive 

functioning tasks (Correro II et al., 2019; Santorelli & Ready, 2015; Wood & Williams, 

2007). As such, alexithymia was hypothesized to independently contribute to poorer 

inhibitory control as measured by no-go-PCIT, stop-PCIT, and stop-SSRT.  

No-go task. As expected, alexithymia predicted poorer no-go-PCIT. Post hoc 

analyses with the three facets of the TAS-20 were opaque due to shared variance of the 

subscales (see Table 2; see also Preece et al., 2018), but DIF had the largest partial and 
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semi-partial correlations after age. Further analysis showed that DIF predicted no-go 

inhibitory performance and that it did so independent of mood (with which it is highly 

correlated). These results support previous demonstrations of executive deficits in 

alexithymia via DIF (Correro II et al., 2019; Henry et al., 2006; Zhang et al., 2012).  

Stop-signal task. A complicated relationship emerged for the stop-signal 

performance metrics. First, neither alexithymia nor any of its subscales predicted SSRT. 

Second, mood predicted poorer stop-signal inhibition while neither the total score of the 

TAS-20 nor any of its salient subscores uniquely predicted stop-PCIT. However, 

inclusion of alexithymia in the model reduced or eliminated the mood effect. As 

alexithymia and mood (i.e., anxiety and depression) are highly correlated (Honkalampi et 

al., 2018), this finding suggested a shared variance issue. As previous studies reveal small 

to no effects of anxiety and depression on inhibitory control tasks, it seemed likely that 

alexithymia was driving the stop-PCIT results (Lipszyc & Schachar, 2010; Lyche, 

Jonassen, Stiles, Ulleberg, & Landro, 2010; Wright, Lipszyc, Dupuis, Thayapararajah, & 

Schachar, 2014). Age again had the largest partial and part correlations, but DIF was 

more strongly associated with stop-PCIT than mood and was independent of possible 

moderation and mediation effects of mood despite the high correlation between these 

constructs. Thus, greater alexithymia, via DIF, predicted poorer inhibition accuracy, 

which extends earlier studies demonstrating the importance of DIF on executive 

functioning (Correro II et al., 2019; Henry et al., 2006; Zhang et al., 2012). The findings 

also substantiate the argument that alexithymia is related to, but not attributable to, 

anxiety and depression (Honkalampi et al., 2018). Finally, the effect of alexithymia on 

inhibitory performance, but a lack of effect on SSRT, was consistent with prior work 
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showing alexithymia does not contribute to simple processing speed but is associated 

with both slower and less accurate conflict processing (Zhang et al., 2011). Importantly, 

these errors may underpin other emotional-behavioral response difficulties in alexithymia 

(Taylor & Bagby, 2004).  

Interpretations and interim summary. Emerging evidence suggests a general 

cognitive deficit in high alexithymia, and the present results support the notion that 

alexithymia contributes to impairments in executive functions. Prior studies that did not 

differentiate the TAS-20 subscales demonstrated elevated self-report of executive 

deficits, greater errors on sequencing tasks, and impaired conflict processing in high 

alexithymia (Koven & Thomas, 2010; Wood & Williams, 2007; Zhang et al., 2011). 

When TAS-20 factors have been demarcated, DIF, and less frequently DDF, accounted 

for executive dysfunction (Correro II et al., 2019; Henry et al., 2006; Santorelli & Ready, 

2015). As such, impaired executive functioning may underlie the emotion processing 

difficulties in alexithymia, and deficient emotion processing may be one mechanism 

through which people with high alexithymia also have high psychiatric distress (Correro 

II et al., 2019; Honkalampi et al., 2018; Li, Zhang, Guo, & Zhang, 2015; Lumley, 2000; 

Marchesi, Brusamonti, & Maggini, 2000; Parker, Bagby, & Taylor, 1991). Only one prior 

study examined inhibitory control utilizing go and no-go tasks, reporting no alexithymia 

differences in task performance (Zhang et al., 2012). Importantly, the sample was small 

(n = 30) and the experimental paradigm was conducted in an emotional context thereby 

limiting interpretations about neutral response inhibition. Regardless, that study did 

reveal neural activation differences in inhibitory control for negative contexts that were 
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attributable to alexithymia; although not directly assessed, DIF was proposed as the facet 

likely responsible.  

The present results demonstrated a negative association between alexithymia and 

inhibitory control performances consistent with the characterization of alexithymia as a 

deficit in the transfer of information from subsymbolic physiological sensations to 

symbolic thought necessary for acting on and regulating behaviors (Bucci, 2001; Frawley 

& Smith, 2001; Lane et al., 1997; Luminet & Zamariola, 2018; Murphy, Catmur, & Bird, 

2017; Preece et al., 2017; Rinaldi, Radian, Rossignol, Arachchige, & Lefebvre, 2017; 

Vermeulen et al., 2018). We provide evidence of poorer bottom-up and top-down control 

over response inhibition in alexithymia that sheds light on the perspective of alexithymia 

deficits in stimulus appraisal, action preparedness, and execution. Importantly, the 

inhibition tasks were non-emotive suggesting that an information processing deficit in 

alexithymia extends to neutral contexts. This supports an emerging body of literature 

indicative of general cognitive deficits in alexithymia (Correro II et al., 2019; Vermeulen 

et al., 2018).  

DIF is uniquely situated at the intersection of bottom-up emotional awareness and 

top-down interpretation of social and emotional information (Bar-On, Tranel, Denburg, 

& Bechara, 2003; Frawley & Smith, 2001), which may make both selective response 

execution and extrinsic response retraction challenging. The response inhibition tasks 

used in the current study are capable of measuring both bottom-up and top-down 

inhibitory processes (Verbruggen & Logan, 2008). DIF contributed to poorer automatic 

response inhibition (i.e., no-go-PCIT) and controlled response inhibition (i.e., stop-

PCIT). From a processing framework, an inability to ascertain the meaning of stimuli in 
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the environment and within the self leads to an inability to plan or prepare an action 

response (Frawley & Smith, 2001). This disconnection might explain the elevated 

commission errors on a stop-signal task. Namely, DIF impedes one’s capacity to integrate 

extrinsic information properly and thereby execute an appropriate response, which could 

lead to elevated commission errors to lures. Relatedly, a disconnect between action 

readiness and execution could explain the no-go results (Frawley & Smith, 2001). That is, 

participants knew that they should alternate between inhibiting and responding to two 

target stimuli; however, DIF interfered with the appropriate and flexible execution of this 

behavior. These results are consistent with the inappropriate implementation of emotional 

behaviors, such as incongruent or flat affect, present in high alexithymia (Taylor & 

Bagby, 2004).  

Ultimately, an inability to interpret one’s emotions contributed to poorer control 

over motoric responses. Stated differently, impairments in automatically and consciously 

controlling goal-directed behavior may impute difficulty in interpreting one’s sensations 

as emotional phenomena. The proposed deficit in both bottom-up and top-down 

informational transfer appears to happen at the rate of milliseconds potentially explaining 

the relatively small effect sizes in the present work. Because of the rapidity of these 

cognitive processes, both conscious and preconscious, more sensitive methods might 

assist in understanding informational transfer in high alexithymia. Indeed, recent 

electrophysiological work has revealed deficits in both early, automatic and later, 

conscious processing of affective information (Goerlich, 2018). While many anatomical 

structures have been implicated in high alexithymia, the anterior cingulate cortex (ACC), 

a structure that is critical for controlling emotions and behaviors, including motoric 
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responding, may be essential for understanding the link between the emotive and non-

emotive cognitive deficits present in high alexithymia (Goerlich & Aleman, 2018; Lane 

et al., 1997; Zhang et al., 2012). Future studies are needed to better ascertain the role of 

the ACC and early attentional processes for non-emotive stimuli in alexithymia. 

Age and Alexithymia Effects 

Hypothesis 3A: Alexithymia effects additive to age effects. Age and 

alexithymia independently predicted poorer performance on two tasks of inhibitory 

control, as predicted. These results highlight the importance of alexithymia as a risk 

factor for poorer cognitive functioning across the lifespan and especially in older 

adulthood. Aging is typified by declines in cognitive processes, including executive 

functions such as inhibitory control (Caserta et al., 2009; Hasher & Zacks, 1988; 

Salthouse, 2010). Alexithymia is also associated with deficits in executive processes and, 

in this study, response inhibition (Correro II et al., 2019; Vermeulen et al., 2018). 

Specifically, alexithymia via DIF added significant predictive value beyond aging effects 

on measures of inhibition. As such, the effect of alexithymia on cognition may be 

particularly impactful during late life.  

Although this study was not designed to directly examine neural functioning, the 

present results may be useful in understanding the role of the ACC in aging, inhibition, 

and alexithymia. The dorsal region of the ACC is involved in neutral cognitive control 

(including inhibitory control), is associated with age-related functional and structural 

declines, and appears to be reduced in high alexithymia (Egner et al., 2008; Goerlich & 

Aleman, 2018; Vaidya et al., 2007; Whalen et al., 1998). In this study, high alexithymia 
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was associated with behavioral deficits on inhibitory control tasks. Given the role of the 

dorsal ACC in inhibition and the relative reductions of dorsal ACC volume in high 

alexithymia (Goerlich & Aleman, 2018; Nigg, 2000), the present results may reflect the 

neurobehavioral consequences of aberrant neuroanatomical structure and function present 

in high alexithymia. Moreover, the dorsal ACC is susceptible to cortical thinning in aging 

and potentially provides a neural mechanism for alexithymia as a risk factor for cognitive 

aging (Egner et al., 2008; Fjell et al., 2009; Whalen et al., 1998). In fact, some studies 

claim that alexithymia reflects a generalized neurocognitive functioning deficit, is a 

neuropsychiatric consequence of normal aging, and uniquely predicts pathological 

cognitive aging (Messina, Beadle, & Paradiso, 2014; Paradiso et al., 2008; Ricciardi, 

Demartini, Fotopoulou, & Edwards, 2015; Sturm & Levenson, 2011; Yuruyen et al., 

2017). Additional research will be necessary to parse out the complex interplay of 

cognition, age, and alexithymia. 

Limitations 

The studies combined for this project attempted to provide a relatively full age 

spectrum. Despite this intention, age was still bimodally represented with an inordinate 

number of very young adults (i.e., under 25 years; college samples) and lacking most of 

the middle age spectrum. As such, it was necessary in some occasions to examine results 

separately by age group. Future work should better represent the third and fourth decades 

of life and strive for balance across age distributions. Relatedly, this study was a 

secondary analysis of prior experiments, which contributed to differences across samples 

including versions of the go, no-go and stop-signal tasks, exclusion/inclusion criteria, and 

mood measures. Prospective studies would have better control of these parameters 
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although the present work demonstrated proof of concept for further investigations into 

neutral response inhibition, aging, and alexithymia. 

Another potential limitation stemmed from only examining behavioral measures 

of inhibitory control. Previous work revealed that behavioral measures may be less 

sensitive to index the effects of alexithymia on inhibition and the no-go and stop-signal 

changes associated with aging (Hazlett Elverman, 2016; Nielson et al., 2002; Zhang et 

al., 2012). Thus, a future line of inquiry could incorporate these neural techniques.  

A conservative approach was used in the exclusionary cutoffs for performance 

accuracy. Low motivation was suspected in one of the young adult samples, and as such, 

strict criteria for inclusion into the analyses were essential to assure internal validity. 

Participants were required to respond with 90% accuracy to target trials in no-go and 

stop, with 95% accuracy to go, and with 50% accuracy to inhibitory trials in no-go and 

stop. These performance criteria were applied across the entire dataset regardless of study 

or age group. Consequently, near perfect responding to targets was required at the outset 

of the experiment and had to be maintained throughout all three tasks. This precluded any 

variability in performance that could occur due to fatigue, and as such, participants with 

poorer sustained attention were likely to be excluded. This was potentially overly 

restrictive, particularly for older adults, as sustained attention abilities decline with age 

(Fortenbaugh et al., 2015). In fact, only 40% of the older adult sample remained after all 

exclusionary and inclusionary criteria were applied, yet 70% of the young adult sample 

were retained with the cutoffs. As such, participants, especially older individuals, who 

gave sufficient effort but did not respond near ceiling to targets on all three tasks were 

excluded. An alternative approach would be to analyze slightly different samples for each 
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task, allowing for better or poorer performance across the tasks. This approach would 

have somewhat different limitations as it would assume each task was conducted in 

isolation instead of maintaining the context of completing them in succession. Future 

work could also consider less stringent criteria. These alternative approaches would 

increase this study’s external validity but may result in increased threats to internal 

validity. Furthermore, the shared variance among the mood composite, the TAS-20, and 

the subscores of the TAS-20 reduced the power of discernible effects of alexithymia and 

its factors on the predictive models thereby requiring multiple post hoc modeling. 

Multiple comparisons increase the likelihood of Type I Errors although the conservative 

cutoff approach reduced internal validity concerns. Given the lack of association between 

mood and most performance metrics, future directions for these data would identify 

targeted post hoc analyses to support the findings that alexithymia affects inhibitory 

control rather than psychiatric distress. 

Conclusion 

Across a large sample of individuals ranging in age from 18 to 92 years, older age 

predicted slower reaction times to target stimuli, especially among the middle-aged to 

older adult samples, which is consistent with prior work demonstrating relatively stable 

reaction time during early adulthood followed by progressive slowing in later life (Der & 

Deary, 2006). Age was generally not associated with accurate responding to target stimuli 

supporting the speed-accuracy tradeoff in later life for reaction time and inhibition tasks 

(Hazlett Elverman, 2016; Nielson et al., 2002; Williams et al., 1999). However, older age 

was associated with less accurate responding to inhibition trials of the stop-signal task 

and slowed suppression of motoric responses. Age did not predict no-go inhibition 
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performance. To some extent, these results replicate recent work demonstrating age-

related deficits on both no-go and stop-signal tasks (Rey-Mermet & Gade, 2018).  

Alexithymia, via the Difficulty Identifying Feelings (DIF) subscore, predicted 

greater commission errors on inhibition trials across both no-go and stop. Critically, 

mood symptoms did not moderate or mediate these relationships. These results reveal 

how information processing may be disrupted in alexithymia. That is, difficulties 

interpreting internal cues may lead to an inability to suppress competing responses and to 

selectively execute responses. Consistent with a processing theory of alexithymia, top-

down and bottom-up information processing may be disrupted in high alexithymia 

(Frawley & Smith, 2001; Moriguchi & Komaki, 2013). Importantly, the effect of 

alexithymia on inhibitory control occurred in addition to aging effects suggesting that 

alexithymia may be a substantive contributor to age-related cognitive dysfunction 

(Correro II et al., 2019).  
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