4-2019

Charge-Transfer or Excimeric State? Exploring the Nature of The Excited State in Cofacially Arrayed Polyfluorene Derivatives

Ainur Abzhanova
Marquette University

Lena V. Ivanova
Marquette University

Denan Wang
Marquette University

Tushar S. Navale
Marquette University

Sameh H. Abdelwahed
Marquette University

See next page for additional authors

Follow this and additional works at: https://epublications.marquette.edu/chem_fac

Part of the Chemistry Commons

Recommended Citation
Abzhanova, Ainur; Ivanova, Lena V.; Wang, Denan; Navale, Tushar S.; Abdelwahed, Sameh H.; Ivanov, Maxim Vadimovich; Lindeman, Sergey V.; Rathore, Rajendra; and Reid, Scott A., "Charge-Transfer or Excimeric State? Exploring the Nature of The Excited State in Cofacially Arrayed Polyfluorene Derivatives" (2019). *Chemistry Faculty Research and Publications*. 997.
https://epublications.marquette.edu/chem_fac/997
Authors
Ainur Abzhanova, Lena V. Ivanova, Denan Wang, Tushar S. Navale, Sameh H. Abdelwahed, Maxim Vadimovich Ivanov, Sergey V. Lindeman, Rajendra Rathore, and Scott A. Reid

This article is available at e-Publications@Marquette: https://epublications.marquette.edu/chem_fac/997
Charge-Transfer or Excimeric State? Exploring the Nature of The Excited State in Cofacially Arrayed Polyfluorene Derivatives

Ainur Abzhanova
Marquette University
Lena V. Ivanova
Marquette University
Denan Wang
Marquette University
Tushar S. Navale
Marquette University
Sameh H. Abdelwahed
Marquette University
Maxim V. Ivanov
Marquette University
Sergey Lindeman
Department of Chemistry, Marquette University, Milwaukee, WI
Rajendra Rathore
Department of Chemistry, Marquette University, Milwaukee, WI
Scott A. Reid
Department of Chemistry, Marquette University, Milwaukee, WI

Highlights
Nature of the excited state is probed in cofacially arrayed polyfluorene derivatives.
We examine whether an excimer to charge-transfer transition can be observed.
In all cases we find that excimer formation is energetically favorable.
Promotion of a charge-transfer state is possible but requires a free energy for electron transfer exceeding 1 V.
These findings illuminate important design principles for molecular scaffolds capable of stabilizing both excimeric and charge-transfer states.

Abstract
It is well known that upon electronic excitation various π-stacked dimers readily exhibit excimer formation, facilitated by a perfect sandwich-like arrangement between the chromophores. However, it is unclear whether such a dimer is also capable of electron transfer upon excitation, if a strong electron-donating group is covalently attached. In this work, we probe the nature of the excited state in a series of cofacially arrayed polyfluorene derivatives with electron-rich aromatic donor attached via a methylene linker. Our studies show that in all cases excimer formation is energetically favorable, and promotion of a charge-transfer state in such systems is possible but requires a free energy for electron transfer far exceeding 1 V. These findings shed light on important design principles for molecular scaffolds capable of stabilizing both excimeric and charge-transfer states upon their excitation.

Keyword
Charge transfer

1. Introduction
Understanding the nature of the excited state in π-stacked assemblies is critically important for development of efficient artificial light harvesting systems and photovoltaic devices [[1], [2], [3]]. It is now established that extensive exciton delocalization is a crucial factor in achieving efficient energy transfer in various molecular assemblies [4,5]. However, coupling to the internal and external vibrational modes leads to exciton localization, heavily restricting the size of exciton and reducing the rate of exciton migration [6,7]. In such a scenario it is assumed that exciton transfer follows an incoherent hopping mechanism, which allows several hops before emission [8].

As an example, photoexcitation of cofacially-arrayed polyfluorenes (Fn, Fig. 1A) leads to the formation of an excimeric state where exciton delocalization is limited to two fluorenes for all n, as evident from the characteristic band at 395 nm in the emission spectra of F2-F6 (Fig. 1B) [9,10]. This is understood as occurring due to the rapid decrease in stabilization with increasing n in comparison with the geometrical penalty for reorganization into multiply stacked structures. Furthermore, we have recently shown that an identical band is observed in the emission spectrum of the rigid cyclophane-like bifluorene C2F2, providing further support that in the Fn series exciton delocalization is limited to two fluorenes with a sandwich-like arrangement (Fig. 1C) [11].
While it is usually assumed that excimer formation acts as a trap, resulting in dissipation of the excitonic energy and concomitant loss of efficient charge separation, a recent study by Würthner and co-workers showed that the electron transfer step in covalently linked perylene bisimide dimers (PBI) occurs via formation of the excimeric state [12]. There, it was demonstrated that the decay of excimer emission is accompanied by the rise of transient bands assigned to the PBI cation and anion radicals. This observation calls for the studies to investigate the excited state dynamics in systems capable of stabilizing both excimeric and charge-transfer states.

Motivated by these findings, we synthesized a series of polyfluorene derivatives (Ar\textsubscript{F}n, n = 1–3, Chart 1) with an aromatic electron donor (i.e., Ar = 2,5-dimethoxy-\textit{p}-xylene or DMX) attached via a methylene linker. One may expect that upon excitation of ArF\textsubscript{n}, the aryl group would act as an electron donor (\textit{E}_{\text{ox}}[DMX] = 1.12 V vs SCE) and polyfluorene moiety as an electron acceptor (\textit{E}_{\text{ox}}[F\textsubscript{1}] = 1.73 V and \textit{E}_{\text{red}}[F\textsubscript{1}] \approx 2.2 V vs SCE), thus favoring a charge-transfer state. On the other hand, accessibility of the sandwich-like arrangement in the polyfluorene moiety beginning from \textit{n} = 2 might favor stabilization of the excimeric state. In this manuscript, we probed the nature of the excited state in the ArF\textsubscript{n} derivatives with the aid of steady-state optical spectroscopy and DFT calculations. We demonstrate that excimer formation is energetically favorable, and in order to promote the charge-transfer state in such systems, the free energy of electron transfer must far exceed 1 V. Details of the preliminary findings on the nature of the excited state in ArF\textsubscript{n} are discussed below.

![Chart 1. Structures of (ArF\textsubscript{n}, n = 1–3, Ar = 2,5-dimethoxy-\textit{p}-xylene).](image-url)
2. Results and discussion

2.1. Synthesis

A series of polyfluorene derivatives $^\text{Ar}F_n$ ($\text{Ar} = 2,5$-dimethoxy-p-xylene or DMX, and $n = 1 \sim 3$) were synthesized from readily available fluorene using the synthetic route illustrated in Scheme 1A. All compounds were characterized by $^1\text{H}/^13\text{C}$ NMR and MALDI-TOF mass spectroscopy. The structure of $^\text{Ar}F_3$ was further characterized by X-ray crystallography (Scheme 1B). Complete experimental details and characterization data are summarized in the Supporting Information.

2.2. Electrochemistry of $^\text{Ar}F_n$ and spectroscopy of their cation radicals

The electron donor strengths of $^\text{Ar}F_n$ series ($\text{Ar} = 2,5$-dimethoxy-p-xylene or DMX, and $n = 1 \sim 3$) were evaluated by electrochemical oxidation at a platinum electrode as a 2 mM solution in CH$_2$Cl$_2$ containing 0.1 M n-Bu$_4$NPF$_6$ as the supporting electrolyte. Cyclic voltammograms (CVs) of $^\text{Ar}F_n$ showed one reversible oxidation wave in each case, with a minor lowering of the oxidation potential (E_{ox}) upon increasing number of fluorenes (Fig. 2A). In contrast, unsubstituted polyfluorenes (Fn) display a significant lowering of the E_{ox} with increasing n, signifying extended delocalization of the cationic charge (i.e., hole) across the cofacially-arrayed polyfluorenes (Fig. 2A). As the E_{ox} of $^\text{Ar}F_n$ spans a narrow range of 0.66-0.63 V that includes E_{ox} of DMX, [13] the hole delocalization must be limited to the aryl moiety of $^\text{Ar}F_n$, irrespective of the number of fluorenes. Indeed, calculations using CAM-B3LYP-D3/6-31 G(d) ([14], [15], [16]) confirmed that: 1) the free energy of oxidation does not depend on the number of fluorenes, and 2) the hole is localized at the aryl moiety of $^\text{Ar}F_n^{**}$ as visualized using the isovalue spin-density plots in Fig. 2A.
The electrochemical stability of the fluorine series prompted us to generate their cation radicals using a stable cation-radical salt [NAP⁺SbCl₆⁻] (NAP = 1,1,4,4,7,7,10,10-octamethyl-1,2,3,4,7,8,9,10-octahydrotetracene, $E_{\text{red}} = 0.94$ V vs Fc/Fc⁺, $\lambda_{\text{max}} = 673$ nm, $\varepsilon_{\text{max}} = 9300$ cm⁻¹M⁻¹) as a one-electron aromatic oxidant in CH₂Cl₂ [17]. The redox titration experiment was carried out by an incremental addition of sub-stoichiometric amounts of $^\text{Ar}$Fn to the solution of NAP⁺. The one-electron oxidation of $^\text{Ar}$Fn to $^\text{Ar}$Fn⁺ and reduction of NAP⁺ to NAP can be described by the equilibrium shown in Eq. (1).

$$\text{NAP}^+ + \text{Ar}F_n \rightleftharpoons \text{Ar}F_n^+ + \text{Ar}F_n$$

Treatment of NAP⁺ with increments of $^\text{Ar}$Fn led to disappearance of the absorption bands of NAP⁺ at 672 nm and growth of a new band at 468 nm (Fig. 3B). Numerical deconvolution [18,19] of the absorption spectrum at each increment further confirmed that the redox reaction follows a 1:1 stoichiometry as indicated in Eq. (1).

Comparison of the generated electronic spectra of $^\text{Ar}$Fn⁺ with that of model DMX⁺ confirmed that the sharp band at 468 nm arises due to the hole localization at the aryl moiety of $^\text{Ar}$Fn⁺ in consistency with the electrochemical data and DFT calculations (Fig. 3A).
We emphasize that observation of a hole localization exclusively on the aryl group of ArFn+ may seem unexpected, and further suggests that the electronic coupling between aryl group and adjacent fluorene is relatively minor. Yet, the electronic coupling in a structurally similar scaffold was found to be sufficient to promote the efficient energy transfer as has been shown in previous studies [20] of triplet energy transfer in the donor-bridge-acceptor system displayed in Scheme 2. In this study, the cofacially arrayed polyfluorenes acted as the bridge that was connected to a benzophenone triplet energy donor (Bp) and naphthalene acceptor (Nap) via the methylene linker. This study showed that the polyfluorenes act as an efficient medium for the energy transfer with the mechanism of the triplet energy transfer switching from tunneling to hopping when the number of fluorenes is changed from 1 to 2.

Scheme 2. Bp-Fn-Nap structures used to probe triplet energy transfer in cofacially arrayed polyfluorenes.

2.3. Optical spectroscopy of ArFn

To probe the nature of the (singlet) excited state in ArFn we recorded their absorption and emission spectra in solvents with varied polarity. Absorption spectra of ArFn display characteristic bands with the wavelength of the absorption maximum invariant to the solvent polarity (Fig. S1 in the Supporting Information). In contrast, emission spectrum of ArF1 show a strong dependence on solvent polarity, with the wavelength of the emission maximum evolving from λ_em = 322 nm in hexane to λ_em = 404 nm in acetonitrile (Fig. 3A). Calculations using time-dependent (TD) DFT with CAM-B3LYP-D3/6-31 G(d) with state-specific solvation further confirm that emission of ArF1 at the equilibrium excited state geometry involves a transition between HOMO and LUMO, with the HOMO residing on the aryl group, and LUMO centered on the fluorene (Fig. 3B). Furthermore, emission energies calculated using TD-DFT showed a perfect linear correlation with the experimental values (Fig. 3C). Natural population analysis (NPA) [21] of the excited state wavefunction showed that a charge of 0.95 e is transferred upon excitation, which together with the experimentally observed strong solvent effect, clearly points to the charge-transfer nature of the excited state in ArF1.

In contrast, emission spectra of ArF2 and ArF3 derivatives show a characteristic excimeric band centered at 395 nm whose position is invariant to the solvent polarity (Fig. 4A and B). TD-DFT calculations confirmed that in ArF2 exciton delocalization is spread over the two fluorenes, which form an ideal sandwich-like arrangement as represented in the transition density plots in Fig. 4C. Accordingly, excimeric emission involves transition from LUMO to HOMO, both centered on the same two-fluorene moieties. Finally, NPA of the excited state wavefunction in ArF2 and ArF3 showed that only a negligible amount of charge (i.e., 0.04 e) is transferred to the bifluorene moiety upon excitation.
The striking transition in nature of the excited state from being purely charge-transfer in $^{\text{Ar}}F1$ to the excimeric in $^{\text{Ar}}Fn$ when $n = 2–3$ provides important information on the stability of excimer formation in polyfluorenes. In particular, comparison of the redox potentials of the Ar group ($E_{\text{ox}}[\text{DMX}] = 1.12$ V vs SCE) and fluorene moiety ($E_{\text{red}}[\text{F1}] \sim 2.2$ V vs SCE) provides an estimated free energy of the electron transfer, i.e., $\Delta G_{\text{ET}} = E_{\text{ox}}[\text{DMX}] - E_{\text{red}}[\text{F1}] = -1.1$ V. Thus, a significant energy gain in the electron transfer is responsible for the observed charge transfer upon excitation of $^{\text{Ar}}F1$. In contrast, while the presence of additional fluorenes in $^{\text{Ar}}F2$ and $^{\text{Ar}}F3$ is expected to further stabilize the anionic charge and favor charge-transfer, the observation of an excimeric state in $^{\text{Ar}}F2$ and $^{\text{Ar}}F3$ suggests that the stabilization energy of the excimer exceeds that of the energetic gain of charge transfer (ΔG_{ET}). These preliminary findings show that energy of excimer formation is significant and a much larger difference in the redox properties between the Ar group and polyfluorene moiety is needed in order to promote the charge transfer in $^{\text{Ar}}Fn$ scaffolds. The preparation of such systems is currently under investigation and will be presented in due course.

3. Conclusions
Motivated by the recent reports on the stabilization of the electron-transfer state via excimer formation in perylene bisimide dimers (PBI), we explored the nature of the excited state in a series of cofacially arrayed polyfluorene derivatives ($^{\text{Ar}}Fn$) with an electron-rich aromatic donor attached via methylene linker. Our preliminary studies showed that $^{\text{Ar}}F1$ exhibits a charge-transfer state upon excitation, as evidenced in the strong dependence of the emission on the solvent polarity and supported by DFT calculations. In contrast, emission spectra of $^{\text{Ar}}F2$ and $^{\text{Ar}}F3$ show a characteristic excimeric band without any solvent effect, suggesting that an excimeric state is formed, an observation also supported by DFT calculations. The transition of the nature of the excited state from charge-transfer like in $^{\text{Ar}}F1$ to excimer like in $^{\text{Ar}}F2$ and $^{\text{Ar}}F3$ suggests a significant energetic gain associated with excimer formation. Finally, comparison of the redox potentials of aromatic group and fluorene moiety suggest that the free energy of the electron transfer must exceed 1.1 V in order to favor formation of the charge-transfer state in polyfluorene scaffolds. These findings provide important guidance into the design and synthesis of molecular scaffolds capable of stabilizing both excimeric and charge-transfer states upon their excitation.

References

Fig. 4. Emission spectra of (A) $^{\text{Ar}}F2$ and (B) $^{\text{Ar}}F3$ in various solvents. C. Isovalue plots of transition density, HOMO and LUMO calculated using CAM-B3LYP-D3/6–31 G(d)+PCM(CH$_2$Cl$_2$).

