
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Chemistry Faculty Research and Publications Chemistry, Department of 

4-2019 

Synthesis of Quinazoline and Quinazolinone Derivatives via Synthesis of Quinazoline and Quinazolinone Derivatives via 

Ligand-Promoted Ruthenium-Catalyzed Dehydrogenative and Ligand-Promoted Ruthenium-Catalyzed Dehydrogenative and 

Deaminative Coupling Reaction of 2-Aminophenyl Ketones and Deaminative Coupling Reaction of 2-Aminophenyl Ketones and 

2-Aminobenzamides with Amines 2-Aminobenzamides with Amines 

Pandula T. Kirinde Arachchige 

Chae S. Yi 
Marquette University, chae.yi@marquette.edu 

Follow this and additional works at: https://epublications.marquette.edu/chem_fac 

Recommended Citation Recommended Citation 
Arachchige, Pandula T. Kirinde and Yi, Chae S., "Synthesis of Quinazoline and Quinazolinone Derivatives 
via Ligand-Promoted Ruthenium-Catalyzed Dehydrogenative and Deaminative Coupling Reaction of 
2-Aminophenyl Ketones and 2-Aminobenzamides with Amines" (2019). Chemistry Faculty Research and 
Publications. 1002. 
https://epublications.marquette.edu/chem_fac/1002 

https://epublications.marquette.edu/
https://epublications.marquette.edu/chem_fac
https://epublications.marquette.edu/chemistry
https://epublications.marquette.edu/chem_fac?utm_source=epublications.marquette.edu%2Fchem_fac%2F1002&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/chem_fac/1002?utm_source=epublications.marquette.edu%2Fchem_fac%2F1002&utm_medium=PDF&utm_campaign=PDFCoverPages


 

Marquette University 

e-Publications@Marquette 

 

Chemistry Faculty Research and Publications/College of Arts and Sciences 

 

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The 

published version may be accessed by following the link in the citation below. 

 

Organic Letters, Vol. 21, No. 9 (April 2019) : 3337-3341. DOI. This article is © American Chemical 

Society and permission has been granted for this version to appear in e-Publications@Marquette. 

American Chemical Society does not grant permission for this article to be further copied/distributed 

or hosted elsewhere without the express permission from American Chemical Society. 

 

Synthesis of Quinazoline and Quinazolinone 
Derivatives via Ligand-Promoted Ruthenium-
Catalyzed Dehydrogenative and Deaminative 
Coupling Reaction of 2-Aminophenyl Ketones 
and 2-Aminobenzamides with Amines 
 

Pandula T. Kirinde Arachchige 
Department of Chemistry, Marquette University, Milwaukee, Wisconsin  

Chae S. Yi 
Department of Chemistry, Marquette University, Milwaukee, Wisconsin 

 

https://doi.org/10.1021/acs.orglett.9b01082
http://epublications.marquette.edu/


Abstract 

 

The in situ formed ruthenium catalytic system ([Ru]/L) was found to be highly selective for the dehydrogenative 

coupling reaction of 2-aminophenyl ketones with amines to form quinazoline products. The deaminative 

coupling reaction of 2-aminobenzamides with amines led to the efficient formation of quinazolinone products. 

The catalytic coupling method provides an efficient synthesis of quinazoline and quinazolinone derivatives 

without using any reactive reagents or forming any toxic byproducts. 

Quinazolines and quinazolinones are a privileged class of nitrogen heterocyclic scaffolds that have been found to 

exhibit a broad spectrum of pharmacological activities, including anti-inflammatory, antitubercular, and antiviral 

activities.(1) A number of quinazoline-based drugs such as prazocin and doxazosine have been approved to treat 

benign prostatic hyperplasia and post-traumatic stress disorder,(2) while both erlotinib and gefitinib have been 

used for the treatment of lung and pancreatic cancers (Figure 1).(3) Lapatinib, as an inhibitor for epidermal 

growth factor, has been shown to be effective in combination therapy for breast cancer.(4) Several 

quinazolinone-based drugs including idelalisib and fenquizone have been shown to exhibit a broad spectrum of 

antimicrobial, antitumor, antifungal, and cytotoxic activities.(5) 

 

Figure 1. Selected examples of quinazoline and quinazolinone-based drugs. 

A number of different synthetic strategies for quinazolines and quinazolinones have been developed over the 

years, in part to meet the growing needs for screening such derivatives.(6) Several research groups have 

successfully utilized copper-catalyzed Ullmann-type coupling methods of aryl bromides and benzamidines for 

the synthesis of quinazoline derivatives.(7) Similar Cu-catalyzed oxidative coupling methods of aniline 

derivatives with aldehydes and nitriles have also been developed for the construction of quinoline core 

structures.(8) Transition-metal-catalyzed oxidative C–H amination and alkylation methods have also been 

successfully employed to synthesize quinazoline and quinazolinone derivatives.(9) Cho and co-workers recently 

devised a practical synthesis of 2-arylquinazoline derivatives from the coupling of 2-aminobezylamines with 

halogenated toluene substrates.(10) 

Since the advent of the Niementowski condensation of anthranilic acids with amides,(11) a variety of sustainable 

synthetic methods have also been devised for the assembly of quinazolinone core structures.(12) Much recent 

research effort has been devoted to the development of catalytic coupling methods to increase efficiency and 
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selectivity in constructing quinazolinone core structures. A number of transition-metal-catalyzed direct coupling 

methods of aminobenzamides with alcohols and carbonyl compounds have been successfully exploited to 

synthesize quinazolinone derivatives.(13) Transition-metal-catalyzed couplings of 2-aminobenzamides with 

alcohols and ketones(14) and three-component couplings of 2-aminobenzamides, aryl halides or equivalents, 

and isocyanides(15) are among the notable examples of catalytic synthesis of quinazolinones. 

We previously reported that a phenol-coordinated cationic ruthenium–hydride complex is a highly effective 

catalyst for mediating the hydrogenolysis of aldehydes and ketones to give the corresponding aliphatic 

products.(16) We subsequently devised a catalytic system generated in situ from a tetranuclear ruthenium–

hydride complex and a catechol ligand to promote a direct deaminative coupling of primary amines.(17) We 

have been exploring the coupling reactions of amines to further extend the synthetic utility of ligand-promoted 

catalysis, and herein, we disclose an efficient catalytic synthesis of quinazoline and quinazolinone derivatives 

from the dehydrogenative and deaminative coupling reactions of amino ketones and aminobenzamides with 

amines. 

 

In an effort to extend the scope and utility of deaminative coupling methods, we initially explored the coupling 

reaction of 2-amino ketones with amines by employing the ligand-promoted catalysis protocol. Among the 

initially screened Ru catalysts and ligands, the in situ generated catalytic system from the cationic ruthenium–

hydride complex [(C6H6)(PCy3)(CO)RuH]+BF4
– (1) with 4-(1,1-dimethylethyl)-1,2-benzenediol (L1) was found to 

give the highest activity and selectivity for the coupling of 2-(aminophenyl)ethanone with 4-

methoxybenzylamine in yielding the quinazoline product 2a (Table S1). After further ligand screening and 

optimization studies, we established the standard conditions for the quinazoline product 2a as 1 (3 mol %) and 

4-(1,1-dimethylethyl)-1,2-benzenediol (L1) (10 mol %) in 1,4-dioxane (2 mL) at 140 °C (eq 1). 

We explored the substrate scope of the coupling reaction by using the catalyst system 1/L1 under the standard 

conditions (Table1). The coupling of 2-aminophenyl ketones with a variety of benzylic amines selectively formed 

the quinazoline products 2a–o. The coupling of 2-aminophenyl ketones with phenethylamines and with aliphatic 

amines also gave the selective formation of 2q,r and 2s–u, respectively. While the coupling reaction of 2-

aminphenyl ketone substrate with a branched amine smoothly yielded the coupling products 2v and 2cc, 

coupling with sterically demanding secondary amines and branched amines generally yielded only a trace 

amount of the coupling products under the standard reaction conditions. 
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Table 1. Synthesis of Quinazolines from the Coupling of 2-Aminophenyl Ketones with Aminesa 

 

aReaction conditions: amino ketone (0.5 mmol), amine (0.7 mmol), 1 (3 mol %), L1 (10 mol %), dioxane (2 mL), 

140 °C, 20 h. Ar = 3,4,5-trimethoxyphenyl, Ar′= 3,5-methylenedioxybenzyl. 

Analytically pure quinazoline products were readily isolated after silica gel column chromatographic separation, 

and their structures were completely established by spectroscopic methods. The structure of 2j was also 

confirmed by X-ray crystallography. The coupling reaction was easily scalable to a 2–3 mmol scale reaction to 

yield 0.5–0.7 g of 2b, 2l and 2z. The catalytic coupling method furnishes a direct synthesis of quinazoline 

products without resorting to employing any reactive reagents. 

 

Adopting the previously developed deaminative coupling protocol,(17) we next sought the catalytic coupling 

reaction of the arylamides with amine substrates to form quinazolinone products. Thus, the treatment of 2-

aminobenzamide (0.5 mmol) with benzylamine (0.7 mmol) in dioxane (2 mL) at 140 °C in the presence of the 

catalyst system 1 (3 mol %)/L1 (10 mol %) led to the selective formation of the quinazolinone product 3a, which 

was analyzed by both GC and NMR spectroscopic methods (eq 2). 

The substrate scope of the coupling reaction was explored by using the catalyst system 1/L1 under the standard 

conditions (Table2). The coupling of 2-aminobenzamides with both benzyl- and alkyl-substituted amines led to 

the selective formation of the quinazolinone products 3a–n with no significant amount of the quinazoline or 

other side products. The analogous coupling reaction of N-alkyl-2-benzamides with both benzylamines and alkyl-

substituted amines afforded the corresponding coupling products 3o–t in moderate to high yields. 
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Table 2. Synthesis of Quinazolinones from the Coupling of 2-Aminobenzamides with Aminesa 

 

aReaction conditions: benzamide (0.5 mmol), amine (0.7 mmol), 1 (3 mol %), L1 (10 mol %), dioxane (2 mL), 140 

°C, 20 h. 

Single crystals of 3c were obtained by slow evaporation in hexanes/EtOAc at room temperature, and its 

structure was determined by X-ray crystallography. The formation of quinazolinone product can be rationalized 

by initial deaminative coupling of amide and amine substrates followed by the cyclization dehydrogenation 

steps. The coupling reaction efficiently assembles synthetically valuable quinazolinone core structures by 

employing readily available amine and benzamide substrates. 

To further demonstrate synthetic utility of the catalytic method, we next performed the couplings of both 2-

aminophenyl ketones and 2-aminobenzamides with a number of biologically active amine substrates (Table3). 

The treatment of 2-aminophenylethanone with tryptamine under the standard conditions led to the indole-

substituted product 2ff. The analogous coupling with (−)-cis-myrtanylamine formed the quinazoline 

product 2gg (dr = 10:1) with a minimal racemization on the benzylic carbon. The coupling of 2-

aminophenylethanone with a morpholinyl-substituted amine predictively formed 2ii. The coupling of a 

thiophene-substituted amino ketone with 3,4,5-trimethoxybenzylamine yielded the product 2jj in 52% yield. The 

analogous treatment of 2-aminobenzamide with geranylamine formed the corresponding quinazolinone 

product 3u, in which the neighboring olefinic group is selectively hydrogenated, while the treatment of a 

thiophene-substituted amide with 4-phenylbenzylamine formed the corresponding quinazolinone product 3v. 

The coupling of 2-aminobenzamide with (−)-cis-myrtanylamine formed the coupling product 3w with a modest 

diastereoselectivity (dr = 1.9:1). In sharp contrast, the analogous coupling with (+)-dehydroabietylamine resulted 

in the formation of the coupling product 3x without any detectable racemization. The structure and 

stereochemistry of both 3w (major diastereomer) and 3x have been confirmed by X-ray crystallography. 
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Table 3. Coupling Reaction of 2-Aminophenyl Ketones and 2-Aminobenzamides with Biologically Active Aminesa 

 

aReaction conditions: amino ketone or benzamide (0.5 mmol), amine (0.7 mmol), 1 (3 mol %), L1 (10 mol %), 

dioxane (2 mL), 140 °C, 20 h. 

bBenzamide (0.25 mmol), amine (0.35 mmol). 

We performed the following set of experiments to probe mechanistic insights on the coupling reaction. First, we 

examined the deuterium-labeling pattern from the reaction of 2-aminophenylethanone-d3 (89% D) with 4-

methoxybenzylamine (eq 3). The treatment of 2-aminophenylethanone-d3 (0.5 mmol) with 4-

methoxybenzylamine (0.7 mmol) in the presence of 1 (3 mol %)/L1 (10 mol %) in 1,4-dioxane (2 mL) was heated 

in an oil bath at 140 °C for 20 h. The isolated product 2a-d as analyzed by 1H and 2H NMR contained only 11% of 

the deuterium on the methyl group as most of the deuterium had been washed away (Figure S1). A relatively 

small amount of the deuterium on 2a-d suggests an extensive keto–enol tautomerization under the reaction 

conditions. 

We next monitored the reaction progress by using NMR spectroscopy to discern intermediate species for the 

coupling reaction. In a resealable NMR tube, a reaction mixture of 2-aminophenylethanone (0.25 mmol), 4-

methoxybenzylamine (0.25 mmol), and in situ generated catalyst 1 (3 mol %)/L1 (10 mol %) in toluene-d8 (0.5 

mL) was immersed an oil bath set at 140 °C. The tube was taken out from the oil bath at 20 min intervals, and 

the reaction progress was recorded by 1H NMR. The appearance of new set of peaks attributed to the imine 

product 4a has been observed initially as both starting substrates are consumed. After about 100 min of 

reaction time, the peaks due to the quinazoline product 2a began to appear as the imine peaks gradually 

disappeared. The plot of relative concentration vs time is shown in Figure 2. 
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Figure 2. Plot of relative concentration vs time for the coupling reaction of 2-aminophenylethanone (■) with 4-

methoxybenzylamine (●), 2a (⧫), and 4a (▲). 

To establish the imine as a requisite intermediate for the formation of 2, independently synthesized 4b was 

treated with 1/L1 under the standard conditions, which proceeded smoothly to afford the quinazoline 

product 2h in 87% yield (eq 4). In a control experiment, the analogous treatment of 4b with p-toluenesulfonic 

acid (5 mol %) did not form the product 2h under otherwise similar reaction conditions. The results showed that 

the ruthenium catalysis is essential for the cyclization and dehydrogenation steps of the product formation. 

Although much kinetic and spectroscopic information is still needed to ascertain a detailed reaction mechanism, 

we offer a plausible mechanistic sequence for the formation of quinazoline products 2 on the basis of these 

preliminary results (Scheme 1). The reaction profile study clearly implicates that the imine intermediate 4 is 

generated from initial dehydrative coupling of amino ketone and amine substrates. We propose that the Ru 

catalyst facilitates the imine isomerization to form the imine-coordinated species 5. The subsequent cyclization 

and dehydrogenation steps would yield the quinazoline product 2. In support of this, we previously found that 

the ruthenium–hydride complexes are efficient catalysts for olefin isomerization reaction(18) and 

dehydrogenation of saturated amines and carbonyl compounds.(19) While the exact role of catechol ligand has 

yet to be established, we believe that a redox-active catechol ligand may be facilitating the dehydrogenation 

step on the catalysis.(20) 
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Scheme 1. Possible Mechanistic Sequence for the Formation of Quinazoline Products 

In summary, we have been able to devise a catalytic protocol for the synthesis of quinazoline and quinazolinone 

derivatives from the dehydrogenative and deaminative couplings of 2-aminophenyl ketones and 2-

aminobenzamides with amines. The in situ formed ruthenium–hydride complex with a catechol ligand (1/L1) 

was found to exhibit uniquely high catalytic activity and selectivity in forming these products. The salient 

features of the catalytic method are that it employs readily available substrates, exhibits a broad substrate 

scope while tolerating common organic functional groups, and does not require any reactive reagents or forms 

any wasteful byproducts. We are currently exploring synthetic utility of the deaminative coupling protocol in 

constructing other nitrogen heterocyclic core structures. 
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