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Abstract 
Quantum computing is a new and rapidly evolving paradigm for solving chemistry problems. In 
previous work, we developed the Quantum Annealer Eigensolver (QAE) and applied it to the 
calculation of the vibrational spectrum of a molecule on the D-Wave quantum annealer. However, the 
original QAE methodology was applicable to real symmetric matrices only. For many physics and 
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chemistry problems, the diagonalization of complex matrices is required. For example, the calculation 
of quantum scattering resonances can be formulated as a complex eigenvalue problem where the real 
part of the eigenvalue is the resonance energy and the imaginary part is proportional to the resonance 
width. In the present work, we generalize the QAE to treat complex matrices: first complex Hermitian 
matrices and then complex symmetric matrices. These generalizations are then used to compute a 
quantum scattering resonance state in a 1D model potential for O +  O collisions. These calculations 
are performed using both a software (classical) annealer and hardware annealer (the D-Wave 2000Q). 
The results of the complex QAE are also benchmarked against a standard linear algebra library 
(LAPACK). This work presents the first numerical solution of a complex eigenvalue problem of any kind 
on a quantum annealer, and it is the first treatment of a quantum scattering resonance on any 
quantum device. 

1 Introduction 
Quantum computers are expected to supersede classical computers one day and scientists around the 
world are working hard to bring that day closer. A number of quantum computing models and physical 
platforms1,2 to realize reliable qubits are under investigation and it is still not clear what model and 
platform are going to win the competition. In the meantime, scientists are also pursuing the 
development of quantum algorithms3,4 for current Noisy Intermediate-Scale Quantum (NISQ) 
devices,5 before true universal quantum computers become available. The applications of quantum 
computers and quantum algorithms are limitless and theoretical chemistry is one of the fields that will 
significantly benefit from them.6–8 

Currently, the two most dominant quantum computing models are gate-based quantum computing 
and adiabatic quantum annealing.6 In the first model of computation, a sequence of quantum gates 
(i.e., reversible unitary transformations) is applied to a number of qubits and the states of all qubits are 
measured at the end. The model has gained widespread popularity because it gives full control over 
the qubits and computation itself. In the literature, the Variational Quantum Eigensolver (VQE)9–11 is 
one of the most popular algorithms implemented on gate-based quantum computers. The solver was 
successfully applied to the calculation of the electronic ground state energy of a molecule – one of the 
most important fundamental problems in computational chemistry. 

Adiabatic quantum annealing is another, probably less popular model of quantum computation. In this 
model, the computation is based on the slow continuous transformation of an initial (easy-to-prepare) 
Hamiltonian into a final (target) Hamiltonian. The ground state of the initial Hamiltonian adiabatically 
becomes the ground state of the final Hamiltonian. In practice, a given problem must be formulated as 
an Ising problem or equivalently a Quadratic Unconstrained Binary Optimization (QUBO) problem. 
Specifically, a QUBO solver finds the minimum of the QUBO function 𝑥𝑥𝑄𝑄𝑄𝑄𝑇𝑇  (called the objective 
function), where 𝑄𝑄 is a matrix describing the problem and 𝑥𝑥 is a binary string (string of zeros and ones). 
At the minimum, the optimal solution string 𝑥𝑥 =  𝑥𝑥opt is obtained. If a problem can be converted into 
a QUBO problem, then it can be solved on an annealer, otherwise it cannot be solved on that type of 
quantum device. This significantly decreases the applicability of quantum annealing, as not every 
problem is convertible. In comparison to the gate-based quantum computers, quantum annealers have 
a much larger number of qubits, but this should not be misunderstood, as those qubits are loosely-
connected. In order to emulate an all-to-all connectivity (i.e., full coupling between all of the qubits), 
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one needs to sacrifice a large portion of the qubits for chain construction which effectively reduces the 
number of qubits from 2048 to just 64 on the D-Wave 2000Q.12 Interestingly, the two models of 
computation: gate-based and adiabatic quantum annealing have been shown to be formally equivalent 
(at least for ideal quantum devices).13 

Due to the limited applicability of quantum annealers, the number of studies where this type of 
quantum device is used to solve chemistry problems is quite small. For example, there are only two 
studies where the electronic Hamiltonian is mapped to a quantum annealer. The method of the first 
paper14 converts all Pauli operators of the second-quantized Hamiltonian to the 𝜎𝜎𝑧𝑧 operator (the only 
operator implemented in the current generation of D-Wave annealers) and makes multiple replicas of 
basis functions to mimic basis function weights. The method was later implemented on a real D-Wave 
annealer to find the ground state energy of H2 and LiH.15 The second approach16 is based on the fact 
that if one writes the expectation value of the second-quantized Hamiltonian in terms of Bloch sphere 
angles, then the expression becomes a sum of products of primitive trigonometric functions. The 
quadrant of each Bloch angle can be stored using one or two binary variables. The function of these 
binary variables is then optimized on a quantum annealer while the remaining angles within the 
[0,𝜋𝜋/2] range are optimized classically. 

The Quantum Annealer Eigensolver (QAE)17 can also be used to solve chemistry problems. For 
example, previously, the method has been applied to compute the vibrational spectrum of a 
molecule.17 The QAE is a general-purpose eigenvalue solver that runs on the D-Wave quantum 
annealer. If a problem can be formulated as eigenvalue problem, then the QAE can be used to solve 
that problem. The method is Hamiltonian and basis agnostic as only a matrix needs to be provided. 

As a matrix-based method, the QAE inherits all intrinsic limitations of the matrix representation, such 
as exponential scaling with the problem size for the matrices constructed using direct product basis 
sets. A smarter choice of the basis potentially may improve the scaling. However, other methods of 
solving the eigenvalue problem on existing annealers (e.g., for the electronic structure14,16) scale 
exponentially as well. This is a limitation of the current generation of D-Wave annealers, which 
currently do not implement non-stoquastic Hamiltonians, needed to realize a better scaling.18 

Thus, the primary goal of the QAE17 and the present study is to show how one can map a fundamental 
physics or chemistry variational (eigenvalue) problem onto the existing quantum annealer hardware or 
equivalently an Ising Hamiltonian, and demonstrate it on available quantum devices. While the long-
term goals of quantum computing are to realize a quantum advantage and ultimately an exponential 
speed-up, these goals are beyond the scope of the current study and will require more advanced 
quantum algorithms and hardware. 

Specifically, in the present study, we generalize the QAE to solve complex matrices, both Hermitian and 
complex symmetric. The new methodology is then applied to compute quantum scattering resonances. 
The real part of a complex eigenvalue is the resonance energy, while the imaginary part is related to 
the resonance width 𝛤𝛤 via: 𝐸𝐸 =  𝐸𝐸res +  (−𝛤𝛤/2)𝑖𝑖. The lifetime of a resonance is the inverse of the 
resonance width, 𝜏𝜏 =  ħ/𝛤𝛤. We apply the complex QAE to a one-dimensional (1D) O +  O scattering 
problem using a simplified interaction potential to facilitate calculations. The QAE is run on both a 
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classical annealer and a hardware quantum annealer (the D-Wave 2000Q). Both sets of results are 
benchmarked against a standard (classical) numerically exact linear algebra library (LAPACK).19 

To the best of our knowledge, this work is the first time when a complex eigenvalue problem is solved 
on a quantum annealer, and it is the first treatment of a quantum scattering resonance on any 
quantum device. 

2 Methodology 
The Quantum Annealer Eigensolver (QAE)17 is based on the min-max theorem which states (in the 
simplest formulation) that for a 𝑛𝑛 ×  𝑛𝑛 Hermitian matrix A the smallest (largest) eigenvalue is equal to 
the minimum (maximum) of the Rayleigh–Ritz quotient 

RA = (Av,v)/(v,v) (1) 

or 

RA= (Av,v) (2) 

 

if the vector 𝑣𝑣 is normalized. The vector 𝑣𝑣min (𝑣𝑣max) for which this minimum (maximum) is reached is 
the associated eigenvector. One may notice that 𝑅𝑅𝐴𝐴 is quite similar to the QUBO expression 𝑥𝑥𝑄𝑄𝑄𝑄𝑇𝑇 , which 
is what the D-Wave quantum annealer optimizes. First, we will consider real symmetric A and then 
generalize to the complex cases below. For the real case, a matrix of real numbers is common to both 
expressions: A for the quotient in eqn (1) and 𝑄𝑄 for the QUBO problem. However, v is a vector of real 
numbers, whereas 𝑥𝑥 is a vector of binary values. To map the first to the second, we use a fixed-point 
representation for the elements of 𝑣𝑣. In this encoding, an element 𝑣𝑣𝛼𝛼 is represented using 𝐾𝐾 binary 
variables or qubits 𝑞𝑞𝑖𝑖𝛼𝛼, 1 ≤  𝑖𝑖 ≤  𝐾𝐾, so that each qubit contributes a fraction (1/2, 1/4, etc.) to 
the 𝑣𝑣𝛼𝛼 and one more qubit is responsible for the sign, see eqn (10) in the Appendix. The products of 
powers-of-two and the matrix elements of A give the matrix elements of 𝑄𝑄. In this way, we have 
mapped the eigenvalue problem onto the QUBO problem required for running on a quantum annealer. 

After the mapping is established, one also needs to consider adding a normalization constraint to the 
QUBO, because the optimal 𝑣𝑣min represented by x might be a zero vector (i.e., the trivial 
solution 𝑣𝑣 =  𝟎𝟎). In order to avoid that, we have to augment the QUBO function with some constraint 
to encourage ‖𝑣𝑣‖  =  1. The most obvious way is to add a term 𝜆𝜆(‖𝑣𝑣‖  −  1)2 to the QUBO with some 
penalty parameter 𝜆𝜆, but this will make the QUBO biquadratic in 𝑞𝑞𝑖𝑖𝛼𝛼 and unmappable to the D-Wave 
annealer. There is a procedure to handle terms beyond quadratic, but it requires adding more 
constraints which increases the total number of unknown penalties (or constraint multipliers). Instead, 
we suggest dropping the second power in the added constraint to keep the QUBO quadratic in 𝑞𝑞. In 
practice, the usage of a linear form of the constraint does not cause problems, see Results and 
discussion section for additional details concerning the constraint form. The constant shift 𝜆𝜆 can also 
be dropped once the constraint is linear. Thus, the final objective function is given by 

F(v) = (v,Av) +λ·(v,v). (3) 
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While eqn (3) looks like a Lagrangian and is usually tackled with the Lagrange multiplier method (for 
example, see the standard Hartree–Fock method20), here we will be optimizing 𝐹𝐹(𝑣𝑣) for multiple 
values of 𝜆𝜆, chosen iteratively (see below). Now, the 𝑣𝑣 →  𝑞𝑞 mapping discussed above can be used to 
construct the corresponding QUBO function 𝐹𝐹𝑄𝑄(𝑞𝑞) that can then be minimized on a quantum annealer. 
Please see eqn (11) and (12) in the Appendix for the explicit form of 𝐹𝐹𝑄𝑄(𝑞𝑞). 

The normalization penalty 𝜆𝜆 balances two things in the QUBO function 𝐹𝐹(𝑣𝑣): the expectation value and 
the norm. One has to find a “sweet spot”, such that the normalization constraint is satisfied and the 
expectation value is the lowest possible. With the linear form of the normalization constraint there is 
not much of an actual constraint to satisfy, strictly speaking. However, it does provide a way to avoid 
the trivial solution and encourage a non-zero norm. A small 𝜆𝜆 causes the norm to be neglected, while a 
large 𝜆𝜆 causes the Hamiltonian contribution to be neglected (relative to the norm). Thus, the 
optimal 𝜆𝜆opt is located somewhere in between. In the past,17 we did a simple scanning in 𝜆𝜆, but that 
required specifying the 𝜆𝜆-range to scan. Instead, the current version of the QAE iteratively searches for 
the best 𝜆𝜆opt without any additional input from the user. 

The positive and negative values of the maximum matrix element of A serve as the range limits 
where 𝜆𝜆opt is searched. On each 𝜆𝜆 iteration, the QUBO is minimized and the vector v is constructed 
from the binary string q. The vector 𝑣𝑣 is then used to evaluate the expectation value (𝑣𝑣,  𝐴𝐴𝑣𝑣). The 
expectation value can be used to guide the next choice of 𝜆𝜆. However, for inaccurate noisy QUBO 
solvers (see below), the expectation value fluctuates on each run. Thus, it is not a reliable measure to 
guide the next choice for 𝜆𝜆. Instead, we base our search on the type of solution, trivial or non-trivial. 
The 𝜆𝜆opt is always located around a “phase-transition” point – on the edge between trivial and non-
trivial solution areas. Thus, the QAE iteratively shrinks the search range, so that the solution on the left 
end is always non-trivial, whereas the solution on the right end is always trivial. For each 𝜆𝜆 the 
expectation value (𝑣𝑣,𝐴𝐴𝑣𝑣) is stored and the smallest one is returned to the user once the iterations 
stop. 

Currently, the QAE has two stopping criteria. One tracks how much the expectation value changes and 
stops the search if the recent changes are smaller than a user specified tolerance. The other condition 
occurs simply when the 𝜆𝜆 -search range shrinks to a single point. The latter one guaranties that the 
algorithm will eventually stop even when an inaccurate noisy QUBO solver is used. 

Since the number of qubits required to obtain reliable results is much larger than the number of fully-
connected logical qubits on the D-Wave annealer (64 for the D-Wave 2000Q), the QAE uses an 
intermediate (interface) software qbsolv.21 The qbsolv enables the treatment of large QUBO problems. 
On each internal iteration, the qbsolv sorts the QUBO variables of a large QUBO in order of importance, 
splits the problem into subQUBOs of the size 64 qubits, minimizes each chunk separately, appends the 
resulting binary strings and refines the whole solution classically. The subQUBOs can be minimized 
either classically using a Tabu search algorithm or on a D-Wave quantum annealer. In this way, the QAE 
has two modes of operation: classical and hardware (which control how qbsolv's subQUBOs are 
minimized). 

While being a great tool to solve large QUBO problem, the qbsolv is noisy. Running it many times for 
the same QUBO problem gives different results on each run, independent of how the subQUBOs are 
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solved (i.e., either classically or on the D-Wave annealer). This not only leads to fluctuating eigenvalues, 
but also limits a number of ways in which 𝜆𝜆 can be searched. For example, one cannot simply use 
gradient-based methods to find 𝜆𝜆opt. 

The QAE algorithm can also be used to compute more than one eigenpair (i.e., the excited quantum 
states). The kth eigenpair is found by repeating the whole procedure for a modified matrix 

𝐴𝐴′ = 𝐴𝐴 + �𝑆𝑆𝑖𝑖(𝑣𝑣𝑖𝑖 ⊗ 𝑣𝑣𝑖𝑖),
𝑘𝑘−1

𝑖𝑖=0

 
(4) 

 

where ⊗ denotes the outer product and the multipliers 𝑆𝑆𝑖𝑖 shift the previously computed eigenpairs 
higher in the spectrum. The 𝑆𝑆𝑖𝑖 should be large enough so that the next eigenpair of interest is the 
minimum energy solution of A′. In the current implementation they are set equal to the maximum 
matrix element multiplied by 16. However, other multipliers such as 2, 4, 8 have also worked well. A 
more robust technique for choosing the 𝑆𝑆𝑖𝑖 values could be investigated but this is not our present 
focus. 

2.1 Complex Hermitian matrices 
In the complex case, both the given matrix A and its eigenvectors c are complex. This means that twice 
the number of qubits are needed to encode the problem of the same size (𝑛𝑛 ×  𝑛𝑛) than for the real 
case. One half of the qubits encodes the real part of an eigenvector 𝑐𝑐Re and the other half encodes the 
imaginary part 𝑐𝑐Im. As shown in the Appendix (see eqn (13) and (14)) each (𝛼𝛼,𝛽𝛽) term of the objective 
function 𝐹𝐹(𝑐𝑐) is now a complex number. However, due to the Hermitian property of A, the sum of two 
terms that have their indices exchanged (i.e., (𝛼𝛼,𝛽𝛽) with (𝛽𝛽,𝛼𝛼)) gives a real number (see eqn (15)). 
Since the diagonal terms (𝛼𝛼,𝛼𝛼) are purely real for a Hermitian matrix, the whole objective 
function 𝐹𝐹(𝑐𝑐) and the resulting QUBO remain real. This is fortunate since the D-Wave annealers 
optimize real QUBOs only. A real objective function 𝐹𝐹(𝑐𝑐) is expected for Hermitian matrices since both 
components of 𝐹𝐹(𝑐𝑐), the expectation value (𝑐𝑐,𝐴𝐴𝑐𝑐) and the norm (𝑐𝑐, 𝑐𝑐), have to be real. Thus, there 
are no changes to the fundamental algorithm of the QAE for the complex Hermitian case, other than 
doubling the qubit count and carefully tracking real and imaginary parts of the complex numbers 
involved. The final objective function is given by 

Fherm(c) = (c,Ac) + λ·(c,c) (5) 

 
2.2 Complex symmetric matrices 
The extension of the QAE to complex symmetric matrices is not as elegant as for the real and complex 
Hermitian matrices. This is due to the fact that both 𝐹𝐹(𝑐𝑐) and resulting QUBO are not real anymore. 
The sum of the (𝛼𝛼,𝛽𝛽) and (𝛽𝛽,𝛼𝛼) terms in 𝐹𝐹(𝑐𝑐) has an imaginary component, which replaces some of 
the real-valued terms in the similar expression for Hermitian matrices, see eqn (16). Generally 
speaking, the traditional variational method is not applicable in the complex symmetric case, because 
the eigenvalues are complex 𝐸𝐸 =  𝐸𝐸Re +  𝑖𝑖𝐸𝐸Im and minimizing only the real part will not suffice. 
However, for the quantum scattering problem, we are interested in the lowest lying bound and quasi-
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bound (resonance) states which have the smallest energy 𝐸𝐸Re and smallest width 𝛤𝛤 =  −2𝐸𝐸Im. This 
means that the complex eigenvalues of interest are variational in the sense that they must have both 
small real and small imaginary parts. In a typical 1D scattering problem, all ro-vibrational states until 
the dissociation threshold are bound states with purely real eigenvalues (i.e., they have zero width or 
infinite lifetime). The quasi-bound (resonance) states which lie above the dissociation threshold and 
are trapped behind the centrifugal barrier (and also include some states above the barrier energy) 
have complex eigenvalues with a finite width that increases with increasing energy. Examples of this 
correlation can be found in the literature, see Fig. 4 in ref. 22 (Lennard-Jones potential with centrifugal 
term) and Tables 1, 2 and 4 in ref. 23 (double barrier symmetric potentials). That is, the 
lifetime 𝜏𝜏 decreases with increasing resonance energy due to enhanced tunneling through the barrier. 
At very high energies above the barrier, the solutions approach the continuum states which have 
infinite width (i.e., zero lifetime). Thus, at least for the complex symmetric matrices generated for 
quantum scattering problems, the QAE must be augmented with another constraint to minimize the 
imaginary part or width 𝛤𝛤 =  −2𝐸𝐸Im. Since the width is a positive number and we are trying to 
minimize it, the addition of the real valued term (−2𝐸𝐸Im) in the 𝐹𝐹(𝑐𝑐) is sufficient. The expression 
for 𝐸𝐸Im in terms of the matrix and vector elements is given in the Appendix (see eqn (17)). 

Similar to the normalization constraint, the new constraint on 𝛤𝛤 has its own penalty 𝛾𝛾. As before, the 
role of the new penalty factor is to balance components in the objective function and QUBO. Together, 
the two penalties, 𝜆𝜆 and 𝛾𝛾, are used to balance three components of the whole expression: energy, 
norm and width. As a result, the search for the optimal weights, 𝜆𝜆opt and 𝛾𝛾opt, makes the complex 
symmetric QAE more expensive than the real and Hermitian versions. In practice, we found that the 2D 
search can be reduced to semi-2D by letting the 𝜆𝜆 penalty contribute to the 𝛤𝛤 constraint, resulting in 
a 𝜆𝜆𝛾𝛾(−2𝐸𝐸Im) form of the new constraint. The QUBO optimization in 𝜆𝜆 is now performed for 
multiple 𝛾𝛾 values. 

Unfortunately, the proposed changes discussed above were not sufficient. After examining the QUBO 
terms, eqn (16) in the Appendix, one can see there are only 𝑐𝑐𝛼𝛼Re𝑐𝑐𝛽𝛽

Re and 𝑐𝑐𝛼𝛼Im𝑐𝑐𝛽𝛽Im products, but there are 
no cross-terms 𝑐𝑐𝛼𝛼Re𝑐𝑐𝛽𝛽Im or 𝑐𝑐𝛼𝛼Im𝑐𝑐𝛽𝛽

Re. This means that the real and imaginary parts are independent and 
uncoupled. In contrast, for the Hermitian case the cross-terms are naturally included as part of the 
energy minimization and, as shown in the Appendix eqn (18) and (19), are responsible for the “angular 
repulsion” between the vector elements. With these terms added, the optimization is encouraged to 
explore the full 2𝜋𝜋 range of the complex phase and the complex symmetric QAE becomes stable, giving 
reasonable energies and widths. Thus, the final objective function for the complex symmetric QAE is 
given by 

Fcsym(c) = (c,Ac) + λ·(c,c) − λγ2EIm − λγ′X(c) (6) 

 

where 𝑋𝑋(𝑐𝑐) contains all of the cross-terms from the Hermitian case (see eqn (18) in the Appendix). The 
new 𝛾𝛾′ weight is analogous to the 𝛾𝛾 weight introduced above for the imaginary constraint. It balances 
the relative contribution of the −𝑋𝑋(𝑐𝑐) constraint with the other terms in eqn (6). The QUBO 
optimization of the final form of the functional given in eqn (6) with respect to 𝜆𝜆 is now performed for 
multiple 𝛾𝛾 and 𝛾𝛾′ values to determine the overall optimal complex symmetric eigenvalue solution. The 
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addition of the −2𝐸𝐸Im and −𝑋𝑋(𝑐𝑐) constraints does not affect the final computed energies similar to 
the normalization constraint. 

3 Results and discussion 
The new complex QAE methodology is applied to the calculation of both bound and quasi-bound 
(resonance) states of molecular oxygen O2. The focus of the present work is to demonstrate the new 
capabilities of QAE. Thus, we use a simplified 1D model for O2 where the depth of the O2 potential well 
is artificially decreased in order to reduce the number of bound states to just one or two. The oxygen 
molecule is also rotationally excited to 𝑗𝑗 =  6 which gives rise to a small centrifugal barrier that 
supports at least one quasi-bound state. The traditional approach for computing the quasi-bound 
(resonance) spectrum is to add a Complex Absorbing Potential (CAP) to the Hamiltonian. The 
Hamiltonian matrix is constructed using a suitable basis and the matrix is diagonalized to obtain the 
complex eigenvalues and eigenvectors. In the present work, we use two different basis sets and 
absorbing potentials with two different O2 model potentials. One model leads to a Hermitian matrix 
and the other model gives a complex symmetric matrix. Thus, with these two model problems we can 
demonstrate both the Hermitian and complex symmetric versions of the new complex QAE 
methodology. 

The 1D model problem is given by the Schrödinger equation 

�−
ℎ2

2𝜇𝜇
𝜕𝜕2

𝜕𝜕𝜕𝜕2 +
ℎ2𝑗𝑗(𝑗𝑗 + 1)

2𝜇𝜇𝜕𝜕2 + 𝑉𝑉(𝜕𝜕) + 𝑉𝑉abs(𝜕𝜕)�𝛹𝛹(𝜕𝜕) = 𝐸𝐸𝛹𝛹(𝜕𝜕) 
(7) 

 

where 𝜇𝜇 is the reduced mass of O2, 𝜕𝜕 is the internuclear distance of O2, 𝑗𝑗 is the rotational quantum 
number, 𝑉𝑉(𝜕𝜕) is the O2 interaction potential, 𝑉𝑉abs(𝜕𝜕) is the absorbing potential, 𝜓𝜓(𝜕𝜕) is the wave 
function and E is the energy. The Hamiltonian operator (H) consists of the terms in the brackets acting 
on 𝜓𝜓(𝜕𝜕) on the left hand side of eqn (7) (i.e., 𝐻𝐻𝜓𝜓(𝜕𝜕)  =  𝐸𝐸𝜓𝜓(𝜕𝜕)). The interaction potential is chosen to 
be a standard Morse potential given by 𝑉𝑉(𝜕𝜕)  =  𝐷𝐷e{exp[−𝑏𝑏(𝜕𝜕 −  𝜕𝜕0)]  −  2exp[−𝑏𝑏(𝜕𝜕 −  𝜕𝜕0)]} 
where 𝐷𝐷e, 𝑏𝑏, and 𝜕𝜕0 are parameters specified below. Two forms of the absorbing potential (𝑉𝑉abs) are 
utilized, a real quadratic potential 

𝑉𝑉rap(𝜕𝜕) = 𝜂𝜂(𝜕𝜕 − 𝜕𝜕𝑐𝑐)2 (𝜕𝜕 ≥ 𝜕𝜕𝑐𝑐)
= 0 (𝜕𝜕 ≥ 𝜕𝜕𝑐𝑐)

 
(8) 

 

and a complex (purely imaginary) quadratic potential 

𝑉𝑉cap(𝜕𝜕) = 𝑖𝑖𝜂𝜂(𝜕𝜕 − 𝜕𝜕𝑐𝑐)2 (𝜕𝜕 ≥ 𝜕𝜕𝑐𝑐)
= 0 (𝜕𝜕 < 𝜕𝜕𝑐𝑐)

 
(9) 

 

where 𝜂𝜂 is the potential strength and 𝜕𝜕𝑐𝑐 is its origin. 

In the Hermitian model, the real absorbing potential of eqn (8) (with 𝜂𝜂 =  0.01 and 𝜕𝜕𝑐𝑐 =  8.5𝑎𝑎0) is 
used in eqn (7). The wave function 𝜓𝜓(𝜕𝜕) in eqn (7) is expanded using a complex Fourier basis given by  
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 𝛹𝛹𝑗𝑗(𝜕𝜕) = ∑ 𝑐𝑐𝑚𝑚
𝑗𝑗 exp(𝑖𝑖𝑖𝑖𝑖𝑖) √2𝜋𝜋⁄+𝑚𝑚max

𝑚𝑚=−𝑚𝑚max
 

where 𝑖𝑖𝑘𝑘 =  2𝜋𝜋𝑘𝑘/𝑛𝑛,  𝑘𝑘 is an integer labeling the 𝑘𝑘th grid point, and 𝑛𝑛 =  2𝑖𝑖 +  1 denotes the total 
number of grid points. The grid in 𝜕𝜕 is defined as: 𝜕𝜕𝑘𝑘 =  𝜕𝜕mid +  𝑖𝑖𝑘𝑘𝑑𝑑𝜕𝜕 where 𝑑𝑑𝜕𝜕 =  (𝜕𝜕𝑓𝑓 −  𝜕𝜕𝑖𝑖)/2𝜋𝜋 
and 𝜕𝜕𝑖𝑖,  𝜕𝜕𝑓𝑓 and 𝜕𝜕mid denote the initial, final and midpoint of the grid. The grid parameters used in the 
Hermitian model are 𝜕𝜕𝑖𝑖 =  1.5a0,  𝜕𝜕𝑓𝑓 =  9.5𝑎𝑎0, and 𝜕𝜕mid =  5.5𝑎𝑎0. The complex expansion 

coefficients 𝑐𝑐𝑚𝑚
𝑗𝑗  are the eigenvectors. These are computed by diagonalizing the Hamiltonian matrix (𝐻𝐻) 

which when evaluated in the complex Fourier basis is a Hermitian matrix. In order to keep the problem 
size small for QAE so that it fits on the existing quantum hardware (e.g., the D-Wave annealer), we 
chose a small basis 𝑖𝑖 =  10 which gives 𝑛𝑛 =  21 grid points and a Hermitian matrix of size 21 ×  21. 
A discretization with 𝐾𝐾 =  10 qubits was used which results in a QUBO of size 210 ×  210. To keep 
the problem size manageable, we also chose the positions of the absorbing potential wall to be as 
close as possible to the barrier, 𝜕𝜕𝑐𝑐 =  8.5𝑎𝑎0. The dynamic range of the Hamiltonian matrix was also 
reduced by setting all matrix elements with absolute value larger than 𝐸𝐸max =  200 cm−1 equal 
to 𝐸𝐸max. This avoids wasting “precious” qubits in resolving the large matrix elements associated with 
the repulsive regions of the potential (we chose 𝐸𝐸max large enough so not to significantly affect the 
low-lying eigensolutions of interest). 

The true 1D potential for O2 contains too many bound states (even with the centrifugal component 
added), which causes the QAE to do a lot of work before it can reach the first resonance state above 
the threshold. The QAE performs spectrum transformations using the previously computed low-energy 
states, as was explained earlier (see eqn (4)). This not only takes time, but also introduces noise (from 
the qbsolv) to the transformed matrices 𝐴𝐴′, which may in turn corrupt high-energy solutions. Since the 
focus of the present work is to compute quasi-bound states, we artificially lowered the well depth of 
our O2 model potential so that it supports only one or two bound states. For the Hermitian model, the 
Morse parameters for O2 were chosen as 𝐷𝐷e =  200 cm−1, 𝑏𝑏 =  2.5836, and 𝜕𝜕0 =  2.28189𝑎𝑎0 (we 
note that the 𝑏𝑏 and 𝜕𝜕0 values are the correct values for O2 and were unchanged, only the 𝐷𝐷e was 
reduced from its true value of 44, 457.26 cm−1). The corresponding model potential curve 𝑉𝑉(𝜕𝜕) is 
plotted in Fig. 1 (the thick black curve). This choice of Morse parameters together with 𝑗𝑗 =  6 supports 
two bound states and one quasi-bound state (a shape resonance trapped behind the broad centrifugal 
barrier). 

 

Fig. 1 Application of the Hermitian QAE to the calculation of bound and resonance states. Two bound 
states and one resonance were calculated in a model O2 potential for 𝑗𝑗 =  6 (black curve). The 
model Hamiltonian was diagonalized using LAPACK (blue), and the QAE in both classical (dashed red) 
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and hardware (D-Wave, dashed black) modes. The wave functions of all three methods are close to 
each other. The differences in state energies (horizontal dashed lines) are small (see Table 1). 

 

The results of using the Hermitian QAE are shown in Fig. 1. For comparison, we calculated all three 
states using a standard numerical diagonalization library (LAPACK)19 plotted in solid blue. The QAE 
results in classical mode are plotted in dashed red, and the QAE results in hardware mode on the D-
Wave annealer are plotted in dashed black (thinner line). As one can see, there is not much difference 
between the three methods. Thus, the Hermitian QAE is working well for the calculation of both bound 
and resonance state energies and wave functions. The energies are all collected in Table 1. The optimal 
normalization penalty, determined iteratively, for each of the three states is 𝜆𝜆bound1 =
 90.625, 𝜆𝜆bound2 =  31.25, and 𝜆𝜆 res =  −7.53326, respectively. The eigenvectors computed using 
LAPACK and QAE were found to agree up to an overall arbitrary phase. The QAE eigenvectors had a 
different phase on each run, which nicely demonstrates a property of Hermitian matrix eigenvectors – 
the arbitrariness of the phase. It seems that the qbsolv noise ultimately determines the phase, rather 
than the less-influential hardware noise. In contrast, the LAPACK eigenvectors had the same phase on 
each run. 

Table 1 The Hermitian bound and resonance state energies (cm−1) computed using LAPACK, QAE in 
classical mode (QAE Cl.) and QAE in hardware mode (QAE Hw.) 

State LAPACK QAE Cl. QAE Hw. 
Bound #1 −97.36 −96.44 −95.73 
Bound #2 −32.00 −31.48 −30.73 
Resonance 2.85 3.94 4.46 

 

For the complex symmetric matrix model, the imaginary absorbing potential of eqn (9) (with 𝜂𝜂 =
 0.005 and 𝜕𝜕𝑐𝑐 =  13.0𝑎𝑎0) is used in eqn (7). The wave function 𝜓𝜓(𝜕𝜕) in eqn (7) is expanded using real 
valued particle-in-a-box basis functions:  

𝛹𝛹𝑗𝑗(𝜕𝜕) = �2 𝐿𝐿⁄ � 𝑐𝑐𝑚𝑚
𝑗𝑗 sin(𝑖𝑖𝜋𝜋𝜕𝜕/𝐿𝐿)

𝑚𝑚max

𝑚𝑚=1

 

where 𝐿𝐿 is the width of the box 𝐿𝐿 =  𝜕𝜕𝑓𝑓 −  𝜕𝜕𝑖𝑖. The grid parameters used in the complex symmetric 
model are 𝜕𝜕𝑖𝑖 =  1.5𝑎𝑎0 and 𝜕𝜕𝑓𝑓 =  13.5𝑎𝑎0. The size of the basis set was 𝑖𝑖max =  20 which gives a 
20 ×  20 dimensional complex symmetric matrix. A discretization of 𝐾𝐾 =  10 qubits was used which 
results in a QUBO of size 200 × 200. For the complex symmetric model, the Morse parameter 𝐷𝐷e =
 125 cm−1 was chosen for O2 (the b and r0 are the same as in the Hermitian model). The corresponding 
potential curve 𝑉𝑉(𝜕𝜕) is plotted in Fig. 2 (the thick black curve). The smaller 𝐷𝐷e value together with 𝑗𝑗 =
 6 supports one bound state and one quasi-bound (resonance) state. As was done for the Hermitian 
case, the dynamic range of the Hamiltonian matrix was reduced by setting all matrix elements with 
absolute value larger than 𝐸𝐸max =  75 cm−1 equal to 𝐸𝐸max. 
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Fig. 2 Application of the complex symmetric QAE to the calculation of bound and resonance states. 
One bound and one resonance state were calculated in a model O2 potential for 𝑗𝑗 =  6 (black solid 
curve). The same complex symmetric matrix was solved using LAPACK (blue) and the QAE in both 
classical (dashed red) and hardware (D-Wave, dashed black) modes. The wave functions of all three 
methods are close to each other. The energies of both states computed using the three methods are 
almost the same (horizontal dashed lines). 

 

The QUBO optimization in the QAE with respect to 𝜆𝜆 in eqn (6) was repeated on a 9 × 9 grid for a total 
of 81 values of the two new penalties 𝛾𝛾 and 𝛾𝛾′. Specifically, each penalty was discretized on a grid of 9 
values decreasing by a factor of two each time: 0.05, 0.025, 0.0125 0.00625, etc. In the present 
problem, only positive values of 𝛾𝛾 and 𝛾𝛾′ need be considered. The optimal values for these penalties 
were determined by running QAE ten times at each of the 81 values of 𝛾𝛾 and 𝛾𝛾′. The real part of the 
QAE energy eigenvalue was averaged over the ten runs at each point and the point with the lowest 
average energy value was chosen. This procedure is repeated for each of the eigensolutions. The 
optimal 𝛾𝛾 and 𝛾𝛾′ for the bound and excited states were determined to be (𝛾𝛾bound =
 7.8125 × 10−3, 𝛾𝛾bound′  =  1.5625 × 10−2) and (𝛾𝛾res =  7.8125 ×  10−3, 𝛾𝛾res′ =  0.25), 
respectively. The optimal normalization penalty for each state, determined iteratively, is 𝜆𝜆bound =
 29.301453 and 𝜆𝜆res =  −7.983398. 

Fig. 2 shows the QAE results for the complex symmetric matrix. Again the matrix was diagonalized 
using three methods: a traditional LAPACK diagonalization (blue) and the QAE in both classical (dashed 
red) and hardware (dashed black) modes. As with the Hermitian matrices, the differences in the energy 
and wave function computed using the three methods are very small. However, these new calculations 
treat the imaginary component of the energy explicitly and therefore provide the lifetime of the 
resonance. In contrast, the Hermitian approach gives only the real part of the eigenvalue (i.e., the 
resonance energy but no resonance lifetime). The complex symmetric energies and lifetimes are 
collected in Table 2. 

Table 2 The complex symmetric bound and resonance state energies (cm−1) computed using LAPACK, 
QAE in classical mode (QAE Cl.) and QAE in hardware mode (QAE Hw.). The resonance lifetimes (ps) are 
also listed 

State LAPACK QAE Cl. QAE Hw. 
Bound E −32.16 + i0.003 −31.87 + i0.003 −31.51 + i0.003 
Resonance E 6.76 − i0.102 7.05 − i0.108 7.75 − i0.097 
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Resonance τ 26.0 24.5 27.3 
 

There are a number of points about the QAE that are worth discussing. As it was mentioned in the 
methodology section, we cannot afford the second power of the normalization constraint and, because 
of that, we had to change the form of the constraint to linear. In a sense, this means that the correct 
value of the norm, unity, is approached from a single side, from zero to one, and nothing is preventing 
it from exceeding unity. With a full two-sided (quadratic) constraint, the minimum of the QUBO 𝐹𝐹(𝑣𝑣) 
will be the minimum of the expectation value part (𝑣𝑣,𝐴𝐴𝑣𝑣), for some reasonable 𝜆𝜆. For the one-sided 
constraint that we use, the two minima diverge, the QUBO minimum diverge further and further from 
the expectation value minimum as 𝜆𝜆 increases (the excessive norm drives the solution away). In this 
case, we have to use the expectation value and the solution type (trivial or non-trivial) to guide the 
choice of 𝜆𝜆 and avoid following the QUBO minimum as 𝜆𝜆 increases. However, 𝜆𝜆 is not known for the 
full (quadratic) constraint either and therefore requires searching as well. Thus, both forms of the 
normalization constraint (linear and quadratic) are practicality the same, as both require 𝜆𝜆 -searching. 
However, the one-sided constraint has an advantage of being linear (and therefore quadratic in 𝑞𝑞) and 
thus programmable on the D-Wave annealer. 

Specifically for quantum scattering problems, the imaginary part of the energy has to be negative, 
because the physical state width is always a positive number. This means that we do not need the 
qubit that is responsible for the sign of the imaginary part of eigenvector element. Thus, we can 
probably save n qubits for this particular class of problems and this may help to improve the quality of 
solution. 

The QAE energies and lifetimes reported in Tables 1 and 2 are not exactly the same as those computed 
using LAPACK. We found that the qbsolv software, that is used to divide large QUBO problems into 
smaller ones, is noisy and causes discrepancies in energies and lifetimes. More details and possible 
ways to improve the accuracy can be found in the original QAE paper.17 

The addition of the Hermitian cross-terms (i.e., the coupling between the real and imaginary 
components X(c)) as an additional constraint in the complex symmetric QAE might be improved upon. 
The choice of this constraint was motivated by the Hermitian expression but other forms for this 
constraint might be derived and investigated which could lead to more accurate solutions. 

Finally, the method is limited by the number of fully-connected qubits. It uses as many of those as are 
available (only 64 on the D-Wave 2000Q) which are realized as chains of loosely-connected physical 
qubits. The lack of full connectivity is compensated classically by the qbsolv interface which effectively 
boosts the number of fully-connected qubits by two orders of magnitude. As a consequence, for a 
typical level of discretization 𝐾𝐾 =  10 used in the present work for the real and imaginary parts, the 
largest complex matrix that can probably be targeted is about 300 ×  300, or a diatomic molecule. 
This estimate is very approximate and should be taken with caution. While the upcoming D-Wave 
Advantage will have 5k qubits and better connectivity, it is hard to tell if resonances in a triatomic 
molecule could be computed reliably. The classical part of the QAE (constructing the matrix and 
submitting QUBOs) has negligible resource requirements. 
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4 Conclusions 
In the present work, we generalized the Quantum Annealer Eigensolver to the complex Hermitian and 
complex symmetric matrices. The Hermitian case is fundamentally very similar to the real case, since 
the imaginary terms in the underlying QUBO expression completely cancel out. Thus, the problem is 
solvable on D-Wave annealers as in the real case. In the complex symmetric case, the imaginary part 
does not vanish and is treated as another real valued constraint in the QUBO. Since the bound states 
have zero width (i.e., their eigenvalues are purely real) and the quasi-bound (shape resonance) states 
also have small widths that increase with increasing resonance energy, we constrain the imaginary part 
of the QUBO to be of small magnitude. The complex symmetric case also requires yet another 
constraint between the real and imaginary components in order to maintain stability and converge to a 
reasonable solution. The Hermitian QUBO provides motivation for a natural choice for this constraint 
but other possibilities could exist. 

Using the newly developed complex QAE extensions, a few ro-vibrational states of molecular oxygen 
O2 were calculated in a model 1D potential including a centrifugal component with 𝑗𝑗 =  6. The 
Hermitian QAE gives only real energies, whereas the complex symmetric QAE gives complex 
eigenvalues which include both the energy and width. All of the bound and resonance state 
properties, i.e. energies, lifetimes and wave functions, were reproduced by the QAE quite well. The D-
Wave 2000Q and qbsolv software were used to solve the underlying QUBO problems. In principle, the 
method can be easily extended to molecules with multiple degrees of freedom by constructing a 
Hamiltonian matrix in a direct-product or any other optimal basis set and using exactly the same QAE 
methodology to solve the matrix on an annealer.17 This, however, would require very substantial 
quantum resources. 

This first-ever treatment of scattering resonances on a quantum annealer opens the door to the 
calculation of rate coefficients of chemical reactions that proceed through formation of long-lived 
intermediate species, described in quantum mechanics by scattering resonances, and the modeling of 
chemical dynamics on quantum annealers. We hope that this work will help stimulate additional 
studies in this fascinating new computational paradigm. 
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Appendix 
This appendix gives detailed QUBO expressions for the real, Hermitian and complex symmetric input 
matrices. 

Real matrix QUBO 
We approximate each vector element 𝑣𝑣𝛼𝛼 with a finite number of qubits 𝑞𝑞𝑘𝑘𝛼𝛼 (1 ≤  𝑘𝑘 ≤  𝐾𝐾) using a 
fixed-point representation: 

𝑣𝑣𝛼𝛼 = � 2𝑘𝑘−𝐾𝐾𝑞𝑞𝑘𝑘𝛼𝛼 − 𝑞𝑞𝐾𝐾𝛼𝛼 ∈ [−1; 1
𝐾𝐾−1

𝑘𝑘=1

) 
(10) 
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As a result, the 𝐹𝐹(𝑣𝑣) function is approximated by 

𝐹𝐹𝑄𝑄(𝑞𝑞) = �𝑣𝑣𝛼𝛼�𝐴𝐴𝛼𝛼,𝛽𝛽 + 𝜆𝜆𝜆𝜆𝛼𝛼,𝛽𝛽�𝑣𝑣𝛽𝛽 = � 𝑄𝑄𝛼𝛼,𝑘𝑘;𝛽𝛽𝛽𝛽𝑞𝑞𝑘𝑘𝛼𝛼𝑞𝑞𝛽𝛽
𝛽𝛽,

𝑛𝑛,𝐾𝐾;𝑛𝑛,𝐾𝐾

𝛼𝛼,𝑘𝑘;𝛽𝛽,𝛽𝛽

𝑛𝑛,𝑛𝑛

𝛼𝛼,𝛽𝛽

 
 

(11) 

 

where the QUBO matrix element is defined as 

Qα,k;β,l = (Aα,β + λδα,β) × 2k+l−2K(−1)δk,K+δl,K (12) 

 

Thus, in order to obtain a QUBO element, an element of the input matrix A, with 𝜆𝜆 added to the 
diagonal, has to be multiplied by the appropriate power of two with the correct sign. Most of the 
QUBO elements are positive, except those that have either 𝑘𝑘 or 𝑙𝑙 equal to 𝐾𝐾 (but not both 
simultaneously). The expression for Q in eqn (12) is symmetric with respect to the 
exchange 𝛼𝛼,𝑘𝑘 ⇔  𝛽𝛽, 𝑙𝑙 pairs of indices which is a property of any QUBO problem. 

Complex QUBO elements 
Since the eigenvectors of a complex matrix A are complex, we have to introduce separate real 𝑐𝑐𝛼𝛼Re and 
imaginary 𝑐𝑐𝛼𝛼Im parts of an eigenvector element 𝑐𝑐𝛼𝛼. The 𝜆𝜆 -normalization constraint does not change, so 
we can introduce a complex matrix 𝑍𝑍 =  𝐴𝐴 +  𝜆𝜆𝜆𝜆 for convenience. The objective function that we want 
to minimize becomes 

𝐹𝐹(𝑐𝑐) = �𝑐𝑐�̅�𝛼𝑍𝑍𝛼𝛼,𝛽𝛽𝑐𝑐𝛽𝛽 ,
𝑛𝑛,𝑛𝑛

𝛼𝛼,𝛽𝛽

 
(13) 

 

where the bar above 𝑐𝑐𝛼𝛼 is complex conjugation. A single term of the sum is a complex number 

𝑐𝑐�̅�𝛼𝑍𝑍𝛼𝛼,𝛽𝛽𝑐𝑐𝛽𝛽 = �𝑍𝑍𝛼𝛼𝛽𝛽Re + 𝑖𝑖𝑍𝑍𝛼𝛼𝛽𝛽Im�𝑐𝑐𝛼𝛼Re𝑐𝑐𝛽𝛽Re + �𝑖𝑖𝑍𝑍𝛼𝛼𝛽𝛽Re − 𝑍𝑍𝛼𝛼𝛽𝛽Im�𝑐𝑐𝛼𝛼Re𝑐𝑐𝛽𝛽Im + �𝑍𝑍𝛼𝛼𝛽𝛽Im − 𝑖𝑖𝑍𝑍𝛼𝛼𝛽𝛽Re�𝑐𝑐𝛼𝛼Im𝑐𝑐𝛽𝛽Re

+ �𝑍𝑍𝛼𝛼𝛽𝛽Re + 𝑖𝑖𝑍𝑍𝛼𝛼𝛽𝛽Im�𝑐𝑐𝛼𝛼Im𝑐𝑐𝛽𝛽Im  

(14) 

Next, we will see what happens to the sum of the (𝛼𝛼,𝛽𝛽) and (𝛽𝛽,𝛼𝛼) terms, when the matrix A is 
Hermitian or complex symmetric. 

Hermitian matrix QUBO.  
Because 𝑍𝑍𝛼𝛼𝛽𝛽  = �̅�𝑍𝛽𝛽𝛼𝛼  for the Hermitian matrix A, the sum of two opposite (𝛼𝛼,𝛽𝛽) and (𝛽𝛽,𝛼𝛼) terms of the 
objective function 𝐹𝐹(𝑐𝑐) is a real number 

𝑐𝑐�̅�𝛼𝑍𝑍𝛼𝛼𝛽𝛽𝑐𝑐𝛽𝛽 + 𝑐𝑐�̅�𝛽𝑍𝑍𝛽𝛽𝛼𝛼𝑐𝑐𝛼𝛼 = 2𝑍𝑍𝛼𝛼𝛽𝛽Re𝑐𝑐𝛼𝛼Re𝑐𝑐𝛽𝛽Re − 2𝑍𝑍𝛼𝛼𝛽𝛽Im𝑐𝑐𝛼𝛼Re𝑐𝑐𝛽𝛽Im

 +2𝑍𝑍𝛼𝛼𝛽𝛽Im𝑐𝑐𝛼𝛼Im𝑐𝑐𝛽𝛽Re + 2𝑍𝑍𝛼𝛼𝛽𝛽Re𝑐𝑐𝛼𝛼Im𝑐𝑐𝛽𝛽Im

 = 2Re�𝑐𝑐�̅�𝛼𝑍𝑍𝛼𝛼𝛽𝛽𝑐𝑐𝛽𝛽�
 

 

(15) 

https://pubs.rsc.org/en/content/articlehtml/2020/cp/d0cp04272b#eqn12


Thus, for a Hermitian matrix the eigenvectors are complex but the QUBO expression is purely real, due 
to the cancellation of the imaginary part in the sum over the (𝛼𝛼,𝛽𝛽) and (𝛽𝛽,𝛼𝛼) terms. This is consistent 
with the property that eigenvalues of a Hermitian matrix are real. 

Although the sum has reduced to the simple form of Re((𝛼𝛼,𝛽𝛽)), all four terms in eqn (15) have to be 
added to the QUBO, with both 𝑐𝑐𝛼𝛼Re and 𝑐𝑐𝛼𝛼Im discretized as in the real symmetric case (eqn (10)–(12)). 
We note that by using the four terms in eqn (15), the sums over α and β in constructing the 
functional 𝐹𝐹(𝑐𝑐) in eqn (13) are now restricted to 𝛼𝛼 =  1,2, …𝑛𝑛 with 𝛽𝛽 ≥  𝛼𝛼. 

Complex symmetric matrix QUBO.  
For the complex symmetric case, 𝑍𝑍𝛼𝛼𝛽𝛽  =  𝑍𝑍𝛽𝛽𝛼𝛼. In contrast to the Hermitian case, the sum of (𝛼𝛼,𝛽𝛽) and 
(𝛽𝛽,𝛼𝛼) terms in the QUBO is a complex number 

𝑐𝑐�̅�𝛼𝑍𝑍𝛼𝛼𝛽𝛽𝑐𝑐𝛽𝛽 + 𝑐𝑐�̅�𝛽𝑍𝑍𝛽𝛽𝛼𝛼𝑐𝑐𝛼𝛼
  
 

= 𝑍𝑍𝛼𝛼𝛽𝛽�𝑐𝑐�̅�𝛼𝑐𝑐𝛽𝛽 + 𝑐𝑐�̅�𝛽𝑐𝑐𝛼𝛼�
= 2𝑍𝑍𝛼𝛼𝛽𝛽�𝑐𝑐𝛼𝛼Re𝑐𝑐𝛽𝛽Re + 𝑐𝑐𝛼𝛼Im𝑐𝑐𝛽𝛽Im�
= 2𝑍𝑍𝛼𝛼𝛽𝛽Re𝑐𝑐𝛼𝛼Re𝑐𝑐𝛽𝛽Re + 2𝑍𝑍𝛼𝛼𝛽𝛽Im𝑐𝑐𝛼𝛼Re𝑐𝑐𝛽𝛽Re × 𝑖𝑖
+2𝑍𝑍𝛼𝛼𝛽𝛽Im𝑐𝑐𝛼𝛼Im𝑐𝑐𝛽𝛽Im × 𝑖𝑖 + 2𝑍𝑍𝛼𝛼𝛽𝛽Re𝑐𝑐𝛼𝛼Im𝑐𝑐𝛽𝛽Im

 

(16) 

 

The first and fourth terms in eqn (16) are identical to those in eqn (15), but the second and third terms 
are different and now imaginary. Thus, in the complex symmetric case the sum of (𝛼𝛼,𝛽𝛽) and (𝛽𝛽,𝛼𝛼) 
does not reduce to a real number. This presents a problem, since the QUBO function has to be real. To 
overcome this, we treat the imaginary terms as real and include them in the functional as a second 
constraint (−2𝐸𝐸Im) which must be minimized along with the expectation value and normalization 
constraint (see eqn (6) in the main text) 

−2𝐸𝐸𝛼𝛼𝛽𝛽Im =  2𝑍𝑍𝛼𝛼𝛽𝛽Im𝑐𝑐𝛼𝛼Re𝑐𝑐𝛽𝛽Re +  2𝑍𝑍𝛼𝛼𝛽𝛽Im𝑐𝑐𝛼𝛼Im𝑐𝑐𝛽𝛽Im (17) 

 

We also note that there is no coupling (cross terms) between the real 𝑐𝑐Re and imaginary 𝑐𝑐Im in eqn 
(16) in contrast to eqn (15), which leads to stability issues. To overcome this problem, a third constraint 
−𝑋𝑋(𝑐𝑐) (see eqn (6)) is added to the QUBO. The pairwise terms of −𝑋𝑋(𝑐𝑐) are the cross terms from eqn 
(15) 

−𝑋𝑋𝛼𝛼𝛽𝛽(𝑐𝑐)  =  −2𝑍𝑍𝛼𝛼𝛽𝛽Im𝑐𝑐𝛼𝛼Re𝑐𝑐𝛽𝛽Im +  2𝑍𝑍𝛼𝛼𝛽𝛽Im𝑐𝑐𝛼𝛼Im𝑐𝑐𝛽𝛽Re (18) 

 

The role of the −𝑋𝑋(𝑐𝑐) constraint becomes clear, once one recognizes the cross product between 
the 𝑐𝑐𝛼𝛼 and 𝑐𝑐𝛽𝛽, represented as vectors on the complex plane (with 𝑥𝑥 =  Re and 𝑦𝑦 =  Im) 

−𝑋𝑋𝛼𝛼𝛽𝛽(𝑐𝑐)  =  −2𝑍𝑍𝛼𝛼𝛽𝛽Im|𝑐𝑐𝛼𝛼||𝑐𝑐𝛽𝛽|sin(𝜃𝜃𝛼𝛼𝛽𝛽), (19) 

where |𝑐𝑐𝛼𝛼| and |𝑐𝑐𝛽𝛽| are vector magnitudes and 𝜃𝜃𝛼𝛼𝛽𝛽  is the relative angle between the vectors. Thus, the 
−𝑋𝑋(𝑐𝑐) constraint is a weighted sum of pairwise terms, which encourages the optimization to explore 
regions away from sin(𝜃𝜃𝛼𝛼𝛽𝛽) = 0 (i.e., to explore the full 2𝜋𝜋 range in 𝜃𝜃𝛼𝛼𝛽𝛽) similar to the normalization 

https://pubs.rsc.org/en/content/articlehtml/2020/cp/d0cp04272b#eqn15
https://pubs.rsc.org/en/content/articlehtml/2020/cp/d0cp04272b#eqn10
https://pubs.rsc.org/en/content/articlehtml/2020/cp/d0cp04272b#eqn15
https://pubs.rsc.org/en/content/articlehtml/2020/cp/d0cp04272b#eqn13
https://pubs.rsc.org/en/content/articlehtml/2020/cp/d0cp04272b#eqn16
https://pubs.rsc.org/en/content/articlehtml/2020/cp/d0cp04272b#eqn15
https://pubs.rsc.org/en/content/articlehtml/2020/cp/d0cp04272b#eqn6
https://pubs.rsc.org/en/content/articlehtml/2020/cp/d0cp04272b#eqn16
https://pubs.rsc.org/en/content/articlehtml/2020/cp/d0cp04272b#eqn16
https://pubs.rsc.org/en/content/articlehtml/2020/cp/d0cp04272b#eqn15
https://pubs.rsc.org/en/content/articlehtml/2020/cp/d0cp04272b#eqn6
https://pubs.rsc.org/en/content/articlehtml/2020/cp/d0cp04272b#eqn15
https://pubs.rsc.org/en/content/articlehtml/2020/cp/d0cp04272b#eqn15


constraint which encourages solutions with non-zero norm. Without this “angular repulsion” between 
the vector elements, the optimization collapses to 𝜃𝜃𝛼𝛼𝛽𝛽  = 0 and does not explore the full 2𝜋𝜋 range of 
possibilities. It therefore never converges to a solution and/or becomes unstable. The normalization 
constraint separately encourages non-zero |𝑐𝑐𝛼𝛼| and |𝑐𝑐𝛽𝛽|. Again, all the sums over 𝛼𝛼 and 𝛽𝛽 are 
restricted to 𝛼𝛼 =  1,2, …𝑛𝑛 with 𝛽𝛽 ≥  𝛼𝛼. 

D-Wave setup 
The D-Wave 2000Q was accessed using the D-Wave's Ocean tools. Since in an actual quantum annealer 
some qubits and couplers are not active (unrepresented), we have been using the Virtual Full-Yield 
Chimera (VFYC) version of a hardware QUBO solver, which postprocess a QUBO solution to fix 
unrepresented qubits and couplers. This allows for the development of a “portable” code. The 
embedding (mapping QUBO variables to qubits) was done automatically based on Ocean's heuristic 
algorithms, and the default annealing schedule was employed. 
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