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ABSTRACT
Recent studies of the weakly bound anisole⋯CH4 complex found a dual mode of binding, featuring both C/H⋯π and C/H⋯O noncovalent
interactions. In this work, we examine the dissociation energies of related aniline⋯(CH4)n (n= 1, 2) van der Waals clusters, where both C/H⋯π
and C/H⋯N interactions are possible. Using a combination of theory and experiments that include mass-selected two-color resonant two-
photon ionization spectroscopy, two-color appearance potential (2CAP) measurements, and velocity-mapped ion imaging (VMI), we derive
the dissociation energies of both complexes in the ground (S0), excited (S1), and cation radical (D0) states. As the amide group is non-planar in
the ground state, the optimized ground state geometry of the aniline⋯CH4 1:1 complex shows two isomers, each with the methane positioned
above the aniline ring. The observed redshift of the electronic origin from the aniline monomer is consistent with TDDFT calculations for the
more stable isomer, where the methane sits on the same face as the amino hydrogens. The dissociation energies of the 1:1 complex, obtained
from 2CAP measurements, are in good agreement with the calculated theoretical values from selected density functional theory methods.
VMI data for the 1:1 complex gave a binding energy value overestimated by ∼179 cm−1 when compared to the 2CAP results, indicating that
dissociative ionization selectively populates an excited vibrational level of the aniline cation radical. Given that the electron donating ability
of aromatic substituents trends as –NH2 > –OCH3 > –CH3, it is noteworthy that the strength of methane binding also trends in this order,
as found by experiment (dissociation energies in kJ/mol: 6.6 > 5.8 > 4.5) and predicted by theory (PBE0-D3/def2-QZVPPD, in kJ/mol: 6.9
> 6.0 > 5.0). For the 1:2 complex of aniline and methane, calculations predict that the more stable conformer is the one where the two
methane molecules lie on opposite faces of the ring, consistent with the observed redshift of the electronic origin. Unlike the anisole–methane
1:2 complex, which shows an enhanced dissociation energy for the loss of one methane in comparison with the 1:1 complex, here, we find
that the energy required to remove one methane from the ground state aniline–methane 1:2 complex is smaller than that of the 1:1 complex,
consistent with theoretical expectations.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0015624., s

INTRODUCTION

The study of molecular complexes provides a platform for
understanding non-covalent interactions, which are important in

many areas of science. Such interactions include hydrogen bond-
ing,1–3 π–π stacking,4–8 C/H–π,4,7,9–12 C/H–O,9,13,14 and halogen
bonding, and other σ-hole types of interactions.15,16 These play
a pivotal role in the structure of proteins and biomolecules,13
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drug–substrate interactions,17,18 anion recognition,15,19 crystal engi-
neering,6 molecular self-assembly, and supramolecular chem-
istry.14,20,21 Insight into all of these processes is gleaned from the
study of small complexes, which provides a bridge from isolated
gas-phase molecules to condensed phases, enabling us to gain
invaluable insights into solvation processes, solution dynamics, and
the nucleation and growth of complexes.22–26 By exploiting a solute
chromophore (typically an aromatic), complexes with various sol-
vents (e.g., rare gas atoms or small molecules) have been studied
in the gas-phase using a variety of spectroscopic techniques, sup-
plemented by theoretical methods, to determine the spectroscopic
features, geometry, and binding interactions.22–32

Aniline is the simplest aromatic amine and is amenable to ion-
ization and detection via mass selective resonant two-photon ioniza-
tion (R2PI) methods.33–35 The spectroscopy of aniline in the S0, S1,
and D0 states has been studied in detail.33–36 It has been firmly estab-
lished that the molecule is nonplanar in the S0 state but becomes
essentially planar in the S1 and D0 states due to a significant lower-
ing of the barrier to inversion of the amino hydrogens upon elec-
tronic excitation and ionization, respectively. A variety of studies
have been reported on the formation and characterization of van der
Waals complexes of aniline with rare gases,37–51 small molecules,52–59

and larger molecules/aromatics.60–65 Furthermore, the homocom-
plexes of aniline have been studied by both infrared (IR) and R2PI
spectroscopies.66–70

In a recent paper, we examined the 1:1 complex of anisole with
methane,9 where a dual modality of binding was exhibited, with the
methane interacting with both the oxygen and conjugated π sys-
tems through C/H⋯O and C/H⋯π interactions. Like anisole, aniline
possesses two sites that can act as proton acceptors, the electron
lone pair on nitrogen and the conjugated π system, and thus, both
C/H⋯π and C/H⋯N types of interactions can be expected for the
aniline⋯CH4 complex. In addition, the amino hydrogens of aniline
can also afford hydrogen bonding with solvents containing O or N
atoms. Unlike anisole, the planarization of the amino group, which
occurs upon electronic excitation or ionization of aniline, may sig-
nificantly impact the structure and energetics of binding in these
states. We note that C/H⋯N interactions have emerged as impor-
tant binding motifs in molecular self-assembly, protein structure,
and crystal engineering.13,71–76

Prior studies have examined the spectroscopy of the aniline⋯
(CH4)n (n = 1, 2) complexes; however, the dissociation energies
have not been accurately determined. In 1984, Bernstein et al.
examined the spectroscopy of the 1:1 complex and estimated an
upper limit to the dissociation energy in the S1 state of ∼699 cm−1

(8.4 kJ/mol) from the onset of monomer fluorescence.56 In 1989,
the same group revised this estimate downward to 480 cm−1

(5.7 kJ/mol) by observing the absence of higher vibronic bands from
a two-color excitation spectrum and using a Rice–Ramsperger–
Kassel–Marcus (RRKM) model analysis to fit the observed vibra-
tional predissociation rates.57 Subsequently, Zhang et al. used
photoelectron spectroscopy to predict the change in dissociation
energy of the aniline⋯CH4 complex upon ionization from ioniza-
tion potential (IP) measurements of the monomer and the com-
plex.58 For the D0 state, the dissociation energy was predicted
to increase by 169 cm−1 and 92 cm−1, respectively, compared to
that in the S0 and S1 states. A later study by the Knee group,
which employed picosecond photoelectron spectroscopy, reported a

S1 state dissociation energy of 450 cm−1 (5.4 kJ/mol) from an
RRKM model analysis.59 Thus, some ambiguity remains con-
cerning the dissociation energies of the 1:1 complex of ani-
line and methane, and a direct experimental measurement is
desired.

Building upon our prior studies of related anisole–methane
complexes,9 the goal of this work is to accurately determine the dis-
sociation energies of the aniline⋯(CH4)n (n = 1, 2) complexes in
the three respective states (S0, S1, and D0). Thus, here, we report on
the measurement of the dissociation energies of the aniline⋯(CH4)n
(n = 1, 2) complexes using a combination of experimental methods,
including two-color R2PI or 2CR2PI, two-color appearance poten-
tial measurements or 2CAP, and velocity-mapped ion imaging or
VMI. Our experimental findings are compared with the results of
selected theoretical (density functional theory or DFT) methods. In
addition to being used as a benchmark for theoretical studies, exper-
imental dissociation energy measurements can also afford important
insights into competitive non-covalent interactions and cooperativ-
ity, i.e., how the binding of the first “solvent” molecule affects the
binding of the second. In studies of anisole–methane complexes,
we found that the dissociation energy of methane loss from the 1:2
complex increased by 10% with respect to that of the 1:1 complex,
although both solvent molecules occupied similar sites on oppo-
site faces of the aromatic ring. The related model systems such as
the benzene and toluene⋯CH4 complexes have also been used to
investigate such effects.77–82

EXPERIMENTAL AND THEORETICAL METHODS

The experimental approach employed in this work is very sim-
ilar to that described in a recent publication.9 Briefly, it consisted
of a TOF mass spectrometer equipped with a pulsed nozzle. Two
frequency-doubled Nd/YAG pumped dye lasers were used for exci-
tation/ionization, and an 8-channel digital pulse delay generator
was used for temporal control of the experiment. Aniline (99.5%,
Sigma-Aldrich) soaked cotton swabs were placed in a temperature-
controlled oven that was connected to the inlet of a pulsed nozzle.
The oven and nozzle were heated to 60 ○C. At this temperature,
the aniline vapor pressure is roughly 6.5 Torr, as estimated from
the Antoine equation parameters.83 A mixture of 5% methane in
Ar carrier gas at a backing pressure of 50 psi was passed through
the heated oven, picking up the aniline vapor, and then injected
into the TOF source chamber through the 0.8 mm diameter orifice
of the pulsed nozzle, forming a molecular beam. The beam passed
through a 1.5 mm diameter conical nickel skimmer before entering
the ionization region of the TOF. Resonant excitation and ioniza-
tion were achieved using the outputs of two independently tun-
able frequency-doubled Nd/YAG pumped dye lasers, Sirah Cobra-
Stretch and Lambda-Physik Scanmate 2E, pumped by the second
harmonic of a Spectra-Physics INDI and Quantel Q-Smart 850,
respectively. As the aniline S1 lifetime is relatively short, or order
2 ns–3 ns,84,85 for all of the experiments reported here, the laser
pulses were overlapped temporally. Typical laser fluences were of
order 0.1 mJ, with the beams loosely focused into the ionization
region using 2 m spherical lenses. The ions were extracted via a
three-plate stack and flew a distance of 1 m before striking a dual
chevron microchannel plate detector.
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Ion yield spectra for the aniline monomer, and aniline⋯CH4
1:1 and 1:2 complexes, were determined by setting the pump laser
(λ1) on resonance and scanning the frequency of the second laser
(λ2) through the ionization threshold, monitoring the onset of the
monomer or complex ion signal. To determine the S0 state bind-
ing energy of the 1:1 and 1:2 complexes, 2CAP measurements were
performed, where the pump laser was set on resonance (λ1) of the
complex of interest, and the second (ionizing) laser (λ2) was scanned
above the dissociation threshold while monitoring the mass channel
of the fragment species of interest.

Velocity-mapped ion imaging experiments were carried out in
a separate spectrometer that utilized the same beam conditions and
laser configuration, which are described in detail in our previous
publication.9 The counter propagating lasers intercepted the molec-
ular beam between the repeller and extractor electrodes, down-
stream of the skimmer orifice. The voltages of the electrodes were
tuned precisely for optimum velocity mapping conditions. During
image acquisition, the rear MCP voltage was gated to monitor the
species of interest. Images were collected above and below the dis-
sociation threshold, over a period of 60 min. Typically, 36 000 laser
shots were acquired, with the signal attenuated using a linear polar-
izer to avoid image blurring by ensuring that only a few ions were
detected each shot. Images collected at energies above the dissoci-
ation threshold were background-corrected using images obtained
with the second photon set below the dissociation threshold. The
resultant images were inverse Abel transformed using a pBASEX
algorithm in a LABVIEW coded program.

The experimental protocol was as follows: Initially, the elec-
tronic spectra of the aniline⋯(CH4)n (n = 1, 2) complexes were
obtained using R2PI spectroscopy. Subsequently, 2CR2PI measure-
ments with a tunable ionizing photon were performed to derive
the ion yield spectra of the aniline monomer and the 1:1 and 1:2
complexes of aniline and methane from which the respective ioniza-
tion potentials (IPs) were derived. Then, 2CAP measurements were
conducted on the jet cooled aniline⋯CH4 and aniline⋯(CH4)2 com-
plexes to determine binding energies in their ground states (S0). A
thermochemical cycle analysis then returned upper limits of bind-
ing energies in the first excited state (S1) and cation radical state
(D0). We then carried out VMI measurements to directly measure
the binding energy in the D0 state, and application of the thermo-
chemical cycle afforded the corresponding binding energies for the
S1 and S0 states.

Electronic structure calculations were performed to estimate
the equilibrium geometries and energetics of aniline and the aniline–
methane 1:1 and 1:2 complexes using the Gaussian 09 software
package. Our previous study of dispersion dominated, fluorene
based π-stacked dimers revealed that PBE0 and M06-2X density
functionals augmented with Grimme’s D3 dispersion term86 well
reproduced the ground state binding energy but overestimated the
binding in the excited and cation radical states.8 In contrast, the
CAM-B3LYP-D3 functional with def2-QZVPPD or 6-311++G(3df,
3pd) basis sets reproduced in the most balanced way the dissocia-
tion energies across all three states. Recently, dissociation energies
calculated using various DFT and ab initio methods were bench-
marked against experimental values for the anisole⋯CH4 complex
in the S0 and D0 states, and it was found that the PBE0, CAM-
B3LYP, and M06–2X methods with a 6-311++G(3pd,3df) basis
set well reproduced the experimental results across the two states

(S0, D0).9 Accordingly, here, we performed complete geometry opti-
mizations on the aniline⋯CH4 complex. After optimization, vibra-
tional frequency calculations were performed to confirm that the
optimized structure(s) corresponded to minima on the potential
energy surface. The derived dissociation (binding) energies were
corrected for zero-point vibrational energy (ZPVE). For the basis set
used here (def2-QZVPPD), the basis set superposition error (BSSE)
corrections were negligible (i.e., <0.2 kJ/mol). The calculated disso-
ciation energies were compared with experimental data from 2CAP
and VMI measurements.

RESULTS AND DISCUSSION
Aniline⋯CH4 1:1 complex

Figure 1 shows an overview of the spectroscopic information
collected for the aniline monomer and 1:1 aniline⋯CH4 complex,
presented with an energy ladder diagram in the S0, S1, and D0 states,
respectively. Data for the aniline monomer were obtained using
expansions of aniline in Ar. The electronic spectra, obtained via
2CR2PI spectroscopy, are presented in the lower panels of Fig. 1.
The electronic origin of the complex is red shifted by −81 cm−1

with respect to the monomer origin, consistent with previous pub-
lications.56–59 Often, van der Waals complexes involving a π system
are more strongly bound in the excited state and exhibit a red shift
due to the delocalization of the electronic cloud. Noticeably, the
shift here is significantly larger than observed for 1:1 complexes of
CH4 with benzene (−41 cm−1), toluene (−43 cm−1), and anisole
(−64 cm−1).9,77,78

Following the measurement of the excitation spectra using a
2CR2PI scheme with a fixed ionizing photon wavelength, we then
set the excitation wavelength to the respective electronic origins
and measured the ion yield spectra of aniline and the aniline⋯CH4
complex to determine the respective ionization potentials (shown
in the upper panels in Fig. 1). The relatively well defined onsets are
observed from the spectra of the monomer and complex, which gave
the following IP values: aniline, 7.723 eV and aniline⋯CH4 complex,

FIG. 1. Spectroscopic data for aniline and the 1:1 aniline⋯methane complex. The
lower figure in each panel shows the electronic spectrum, obtained via 2CR2PI
spectroscopy, while the upper figure in each panel displays the ion yield curve
from which the ionization potential was determined. The ladder diagram links the
energy levels of the monomer and complex.
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7.711 eV, with our measured IP values slightly higher than previous
determinations, monomer (7.7206 eV) and complex (7.701 eV).58,87

We note that our IP values are not corrected for shifts due to the
electric fields inevitably present in the ionization region, as the pri-
mary focus of our measurement is the determination of dissocia-
tion energies taken from the difference in IPs of the monomer and
complex.

To assign the isomeric structure of the complex, we carried
out theoretical calculations. Initial geometry optimizations were per-
formed at the PBE0/def2-TZVPPD level and subsequently refined
at the PBE0/def2-QZVPPD level. These calculations identified two
isomeric structures—in each the methane sits above the aromatic
plane (Fig. 2) and interacts with aniline via C–H/N and C–H/π inter-
actions, a dual-mode of interaction similar to that observed in the
anisole–methane complex.9 Interestingly, these calculations predict
that isomer 2, where the methane sits on the same face as the amino
hydrogens, is the more stable. The coordinates for the optimized
structures are provided in the supplementary material.

To identify which isomer(s) might be contributing to the
observed 2CR2PI spectrum, we performed calculations using time-
dependent DFT (TDDFT), at the TDPBE0-D3/def2-QZVPPD level,
on the PBE0-D3/def2-QZVPPD optimized structures. As shown in
Table S1 of the supplementary material, these calculations predict
redshifts of 35 cm−1 and 85 cm−1 for isomers 1 and 2, respectively.
Thus, while both isomers may contribute to the observed spectrum,
it appears that the most redshifted band is consistent with the ori-
gin of isomeric complex 2, the most stable complex as predicted
both by the calculations presented above and additional calcula-
tions that we outline below. In this work, we used this feature to
derive the ion yield spectra (Fig. 1) and both 2CAP spectra and
VMI results presented below. Thus, for the remainder of this paper,
we will assume that the structure of the 1:1 complex conforms to
isomer 2.

In order to estimate the ground (S0) state binding energy of the
1:1 complex, we performed two-color appearance potential (2CAP)
measurements, which set an upper limit to the binding energy.

FIG. 2. Isomeric structures of the aniline–methane 1:1 complex calculated at the
PBE0/def2-QZVPPD level. The energies reflect the stabilization of the complex
with respect to the isolated monomers and are corrected for ZPE. With this basis
set, the BSSE correction is negligible.

Here, the excitation laser was fixed on the origin of the complex,
and the ionization laser was scanned while monitoring the signal
in the mass channel of the aniline cation. The energetic onset of
the aniline cation can be represented as the sum of the ground
(S0) state complex binding energy and the adiabatic complex ion-
ization energy, as illustrated in Fig. 3(a). The 2CAP spectrum of the
aniline⋯CH4 1:1 complex is shown in Fig. 3(b), where the energy
scale was determined by subtracting the monomer IP from the two-
photon excitation energy, and thus, it provides a direct readout of
the ground state dissociation energy. A clear onset representing the
appearance potential was observed, and a linear extrapolation of
the rising edge returns an upper limit to the S0 state dissociation
energy of 6.6(2) kJ/mol or ∼550 cm−1, in excellent agreement with
the PBE0/def2-QZVPPD prediction for isomer 2.

Application of the thermochemical cycle shown in Fig. 1 affords
the dissociation energy in the excited (S1) and cation radical (D0)
states, presented in Table I in units of kJ/mol. The value derived for
the S1 state binding energy is 7.6 kJ/mol or 640 cm−1. It is notewor-
thy that the 2CAP data show an increase in binding energies between
S0 and S1, but a similar binding energy for S1 and D0.

In addition to the 2CAP measurements, VMI experiments were
also performed. Complementary to the 2CAP results, the VMI mea-
surements provide a direct measure of the kinetic energy (KE)
release to the monomeric cation following ionization-induced frag-
mentation. Thus, this method can provide a direct estimate of the
dissociation energy in the cation radical state (D0). Shown in Fig. 4
(left panel) are VMI images of the aniline cation obtained at the
total (two-photon) energies shown, which span one energy below
and three above the dissociation threshold of the aniline⋯CH4 com-
plex. Images taken at total energies above the dissociation threshold
were background subtracted and inverse Abel transformed, and the
kinetic energy (KE) distributions obtained following transformation
are shown in the right panel of Fig. 4.

From the data shown in Fig. 4, it is apparent that KEmax,
which reflects the complex dissociation energy assuming the forma-
tion of cold (ground state) monomer cation, scales in proportion

FIG. 3. (a) Illustration of the 2CAP method. Appearance energy of the monomer
fragment is represented as the sum of ground state binding energy of the complex
and adiabatic ionization energy (AIE) of the monomer. (b) 2CAP spectrum of the
aniline–methane complex, where the energy axis is scaled to show the ground
state dissociation energy in kJ/mol. The darker line in this panel represents a 10
point smoothing of the data.
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TABLE I. Comparison of experimental and computed dissociation energies for the aniline–methane 1:1 complex. All theo-
retical energies were corrected for ZPE, while the BSSE correction was negligible with the employed basis set. Unrestricted
wavefunctions were employed for calculations of the cation radical state.

Dissociation energy (kJ/mol)

Method S0 S1 D0

Experiment (this work, 2CAP) 6.6(3) 7.6(3) 7.8(3)
Experiment (this work, VMI, uncorrected) 8.7(2) 9.7(2) 9.9(2)
Experiment (this work, VMI, corrected) 6.6(2) 7.6(2) 7.8(2)
Experiment (Ref. 56) 8.4
Experiment (Ref. 57) 5.7

Experiment (Ref. 58) S1 DE + 1.1
S0 DE + 1.9

Experiment (Ref. 59) 5.4
CAM-B3LYP-D3/def2-QZVPPD 6.0 . . . 7.6
M062X-D3/def2-QZVPPD 6.2 . . . 7.8
PBE0-D3/def2-QZVPPD 6.9 . . . 8.3

to the total energy, as expected. A dissociation energy in the D0
state (9.9 kJ/mol or 830 cm−1) was determined from the observed
KEmax, derived from an extrapolation of the data to the baseline,
and the total available energy and is an average of measurements
taken at three different total energies. Using the energetic cycle
derived from spectroscopic data (Fig. 1), the dissociation energies
in S0 and S1 were then determined, and these are provided in
Table I.

FIG. 4. Left: aniline monomer ion images obtained following the dissociation of the
aniline⋯CH4 complex at four different total energies indicated, corresponding to
one energy below (top) and three above the complex dissociation threshold. Right:
the P(E) distributions obtained following the transformation of the three images
collected above the dissociation threshold. The maximum kinetic energy values
from the plots were used to determine the D0 state binding energy, as described
in the text.

Unlike our prior study of anisole–methane complexes,9 here,
the 2CAP and VMI experiments do not agree regarding the aniline–
CH4 dissociation energy in the D0 state (Table I). As the VMI
experiments are analyzed with the assumption that KEmax corre-
sponds to the formation of vibrationally cold fragments, one possible
explanation for this discrepancy is the preferential formation of the
vibrationally excited aniline cation radical in the VMI experiments.
Indeed, this was previously observed in VMI measurements of the
anisole dimer.88 The difference in D0 state binding energy between
the VMI and 2CAP results is ∼180 cm−1, which corresponds exactly
to the lowest vibrational frequency (10b) of the aniline cation, an
out-of-plane NH2 wag ring deformation. Thus, the discrepancy
between the 2CAP and VMI measurements can be resolved if it is
assumed that the aniline cation fragment is preferentially produced
with one quantum of excitation in mode 10b following dissociation
of the ionized aniline⋯CH4 complex. With this assumption, the cor-
rected dissociation energy values are reported in Table I, in good
agreement with the 2CAP measurement. This illustrates the ben-
efit of comparing VMI measurements with those from 2CAP (or
other methods) to identify cases where dissociation preferentially
populates excited vibrational states.42

Regarding comparison with previous experiments, these are
also listed in Table I. Our S1 dissociation energy lies between the
two experimental values derived by Bernstein56,57 and is roughly 2
kJ/mol higher than that estimated by Smith et al.59 The difference in
S0 and S1 dissociation energies that we measure is in good agreement
with that derived in Ref. 58.

To aid in understanding the experimental results, we per-
formed additional calculations of the complex geometry, spectro-
scopic properties, and dissociation energies of isomer 2 using the-
oretical methods, including dispersion corrected single and double
hybrid density functional theory methods (PBE0-D3, M062X-D3,
and Cam-B3LYP-D3) with def2-XZVPPD (X = T, Q). The calculated
dissociation energies were corrected for zero-point energy (ZPE)—
in practice, we found that the BSSE correction was negligible (i.e.,
<0.2 kJ/mol) when employing the larger basis set (def2-QZVPPD).
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The calculated ground state dissociation energies (Table I) range
from 6.0 kJ/mol to 6.9 kJ/mol, in close agreement with the 2CAP
and corrected VMI estimates. For all of the theoretical methods,
the predicted difference in energy of the two isomers was similar,
of order ∼1 kJ/mol, with isomer 2 as the global minimum energy
structure.

Considering the D0 state, complete geometry optimizations
were performed using spin unrestricted wavefunctions at the vari-
ous levels of theory presented in Table I. The estimated dissociation
energies were also corrected for ZPE, again the BSSE correction
became insignificant with this basis set. The optimized structure of
the complex cation radical at the UPBE0-D3/def2-QZVPPD level of
theory is shown in Fig. S1 of the supplementary material. The calcu-
lated D0 dissociation energies range from 7.6 kJ/mol to 8.3 kJ/mol,
in excellent agreement with the experimental 2CAP and corrected
VMI results.

The experimental and theoretical predictions of the 1:1 com-
plex structure are suggestive of a dual mode of non-covalent inter-
action (Fig. 1). The measured S0 state dissociation energy is approxi-
mately additive if we consider the previously determined interaction
energies for complexes exhibiting only C/H⋯π interactions such
as benzene or toluene⋯CH4 (∼4.315 kJ/mol–4.5 kJ/mol)77–79 and
C/H⋯N interactions in the prototypical ammonia⋯CH4 complex
(∼2.5 kJ/mol). The experimental result suggests that the bond dis-
sociation energy of a C/H⋯N type of interaction (∼2.5 kJ/mol) is
stronger than that of the previously determined C/H⋯O interac-
tion (∼1 kJ/mol).9 Considering that the electron donating ability of
aromatic substituents trends as –NH2 > –OCH3 > –CH3, it is note-
worthy that the strength of methane binding also trends in this order
for aniline, anisole, and toluene, as found by experiment (dissoci-
ation energies in kJ/mol: 6.6 > 5.8 > 4.5) and predicted by theory
(PBE0-D3/def2-QZVPPD, in kJ/mol: 6.9 > 6.0 > 5.0).

Aniline⋯(CH4)2 complex

The mass selected 2CR2PI spectra of aniline⋯CH4 1:1 and 1:2
complexes are presented in Fig. S2 of the supplementary material.
The 1:2 complex spectrum is red shifted by 163 cm−1 with respect
to the aniline monomer origin, a shift approximately twice that
of the 1:1 complex (81 cm−1). A similar, nearly additive, shift has
previously been observed for benzene and toluene⋯CH4 1:2 com-
plexes77–79 and reflects the two solvent molecules occupying oppo-
site positions with respect to the ring plane. Unlike the related stud-
ies of benzene and toluene⋯CH4 1:2 complexes, no obvious peak
corresponding to the origin of a second isomer (with the two sol-
vent molecules on the same face of the ring) was observed within the
proximity of the 1:1 complex origin.

Figure 5 presents an overview of the spectroscopic information
collected for the 1:1 and 1:2 complexes, presented with an energy
ladder diagram following Fig. 1. The electronic spectra of the com-
plexes, recorded using 2CR2PI, are presented in the lower panels of
Fig. 5, while the corresponding ion yield spectra are presented in
the upper panels of Fig. 5. The 1:2 complex ion yield curve is simi-
lar in shape to that of the 1:1 complex, and an ionization onset was
clearly observed around 7.688 eV, lowered as expected relative to the
monomer and 1:1 complex.

To determine the experimental S0 state dissociation energy of
the 1:2 complex, 2CAP measurements were employed, as shown in

FIG. 5. Spectroscopic data obtained for jet cooled aniline–methane 1:1 and 1:2
complexes, presented with an energy ladder diagram as in Fig. 1. For each
species, jet-cooled electronic spectra were obtained using 2CR2PI experiments as
described in the text (lower panels). Ion yield spectra, also obtained via 2CR2PI
measurements with a tunable second photon, are shown in the upper panels.

Fig. S3. Here, the mass channel of the (aniline⋯CH4)+ fragment was
monitored from dissociation of the 1:2 complex by setting the first
photon on resonance with the origin of the 1:2 complex and scan-
ning the second above the ionization threshold. As described above
for the 1:1 complex, the energetic onset of fragmentation represents
the sum of the S0 state dissociation energy and the adiabatic IP of
the 1:1 complex. This method sets an upper limit to the ground state
dissociation energy, and using the energy ladder diagram (Fig. 5),
we then obtain dissociation energies for the S1 and D0 states. These
are given with the associated uncertainties in Table II, in units of
kJ/mol. We note that VMI experiments for the 1:2 complex were not
performed.

In our previous study of the anisole–methane 1:2 complex,
we found that the dissociation energy corresponding to a loss of
single methane increased by 10% with respect to the 1:1 complex
across all three states (S0, S1, D0). In contrast, here, we find that
the ground state dissociation energy of the 1:2 complex with respect
to the loss of one methane is decreased by ∼10% relative to the 1:1
complex in the S0 state. This trend is consistent with the inequiv-
alence of the two dissociation sites and, thus, the loss of the more
weakly bound methane. The dissociation energy in the S1 state is
decreased by ∼10% for the 1:2 complex, while the D0 (cation rad-
ical state) dissociation energy is similar to that found for the 1:1
complex. To gain further insight into these trends, we performed
theoretical calculations on the 1:2 complex. Calculations found two
minima on the ground state PES, corresponding to structures where

TABLE II. Experimental and calculated dissociation energies for the aniline–methane
1:2 complex.

Dissociation energy (kJ/mol)

Method S0 S1 D0

Experiment (2CAP) 5.7(3) 6.7(3) 7.9(3)
PBE0-D3/def2-QZVPPD 5.9 . . . 8.3
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the two methane molecules are on the same face or opposite faces,
respectively, of the aromatic ring. The global minimum energy struc-
ture corresponded to the latter, and this is illustrated in Fig. S4 of
the supplementary material. Calculations at the (U)PBEO-D3/def2-
QZVPPD level well reproduce the observed dissociation energies in
the S0 and D0 states (see Table II). The coordinates for the opti-
mized structure at this level of theory are provided in Table S3 of
the supplementary material.

CONCLUSIONS

To probe cooperativity in C–H/N and C–H/π interactions, we
have measured the dissociation energies of aniline⋯(CH4)n (n = 1,
2) van der Waals complexes, in their ground (S0), excited (S1), and
cation radical (D0) states, using 2CAP and VMI experiments (the
latter for the 1:1 complex only). The dissociation energies of the
aniline⋯CH4 1:1 complex derived from the 2CAP experiments are
consistent with isomeric structure 2, where the methane sits above
the aromatic ring but on the same side as the amino hydrogens, and
are in good agreement with a range of DFT and ab initio methods.
We found that the VMI and 2CAP experiments were not in agree-
ment but could be reconciled if it is assumed that dissociation of
the complex in the D0 state leads to the selective population of a
low frequency inversion mode in the ionized aniline fragment. This
is consistent with the expected (rigid) planarization of the amino
group upon ionization. The dual mode of interaction (C/H⋯π and
C/H⋯N) predicted by the ground state equilibrium geometry of the
1:1 complex is consistent with the large experimental dissociation
energy observed when compared to systems exhibiting only C/H⋯π
interactions such as toluene/benzene⋯CH4.

Studies of the 1:2 complex show a redshift in the S0–S1 spec-
trum, which is nearly twice that observed for the 1:1 complex,
suggestive of a geometry where the two methane moieties lie on
opposite faces of the aromatic ring. We find that the ground state
dissociation energy of the 1:2 complex with respect to loss of one
methane is decreased by ∼10% relative to the 1:1 complex in the S0
and D0 states, consistent with the inequivalency of the two bind-
ing sites and loss of the more weakly bound methane. The mea-
sured dissociation energies are in good agreement with theoretical
expectations.

SUPPLEMENTARY MATERIAL

See the supplementary material for three tables and three fig-
ures of additional data. Table S1 shows the calculated data from
TDDFT methods for the 1:1 complex, while Tables S2 and S3 show
the optimized coordinates for the 1:1 and 1:2 complexes. Figure S1
shows the optimized structure of the cation radical state of the
1:1 complex. Figure S2 compares the 2CR2PI spectra of the ani-
line monomer and 1:1 and 1:2 aniline–methane complexes. Finally,
Fig. S3 shows the optimized structure of the ground state of the 1:2
complex.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article and its supplementary material.
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