Probing Cooperativity In C–H⋯N and C–H⋯π Interactions: Dissociation Energies Of Aniline⋯(CH₄)ₙ (n = 1, 2) van der Waals Complexes From Resonant Ionization And Velocity Mapped Ion Imaging Measurements

James Makuvaza
John L. Loman
Damian L. Kokkin
Scott Reid

Follow this and additional works at: https://epublications.marquette.edu/chem_fac

Part of the Chemistry Commons
Probing cooperativity in C–H⋯N and C–H⋯π interactions: Dissociation energies of aniline⋯(CH₄)ₙ (n = 1, 2) van der Waals complexes from resonant ionization and velocity mapped ion imaging measurements

Cite as: J. Chem. Phys. 153, 044303 (2020); doi: 10.1063/5.0015624
Submitted: 29 May 2020 • Accepted: 7 July 2020 • Published Online: 27 July 2020

James T. Makuvaza, John L. Loman, Damian L. Kokkin, and Scott A. Reid

AFFILIATIONS
Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, USA

ABSTRACT
Recent studies of the weakly bound anisole⋯CH₄ complex found a dual mode of binding, featuring both C/H⋯π and C/H⋯O noncovalent interactions. In this work, we examine the dissociation energies of related aniline⋯(CH₄)ₙ (n = 1, 2) van der Waals clusters, where both C/H⋯π and C/H⋯N interactions are possible. Using a combination of theory and experiments that include mass-selected two-color resonant two-photon ionization spectroscopy, two-color appearance potential (2CAP) measurements, and velocity-mapped ion imaging (VMI), we derive the dissociation energies of both complexes in the ground (S₀), excited (S₁), and cation radical (D₀) states. As the amide group is non-planar in the ground state, the optimized ground state geometry of the aniline⋯CH₄ 1:1 complex shows two isomers, each with the methane positioned above the aniline ring. The observed redshift of the electronic origin from the aniline monomer is consistent with TDDFT calculations for the more stable isomer, where the methane sits on the same face as the amino hydrogens. The dissociation energies of the 1:1 complex, obtained from 2CAP measurements, are in good agreement with the calculated theoretical values from selected density functional theory methods. VMI data for the 1:1 complex gave a binding energy value overestimated by ~179 cm⁻¹ when compared to the 2CAP results, indicating that dissociative ionization selectively populates an excited vibrational level of the aniline cation radical. Given that the electron donating ability of aromatic substituents trends as –NH₂ > –OCH₃ > –CH₃, it is noteworthy that the strength of methane binding also trends in this order, as found by experiment (dissociation energies in kJ/mol: 6.6 > 5.8 > 4.5) and predicted by theory (PBE0-D3/def2-QZVPPD, in kJ/mol: 6.9 > 6.0 > 5.0). For the 1:2 complex of aniline and methane, calculations predict that the more stable conformer is the one where the two methane molecules lie on opposite faces of the ring, consistent with the observed redshift of the electronic origin. Unlike the anisole–methane 1:2 complex, which shows an enhanced dissociation energy for the loss of one methane in comparison with the 1:1 complex, here, we find that the energy required to remove one methane from the ground state aniline–methane 1:2 complex is smaller than that of the 1:1 complex, consistent with theoretical expectations.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0015624

INTRODUCTION
The study of molecular complexes provides a platform for understanding non-covalent interactions, which are important in many areas of science. Such interactions include hydrogen bonding, π–π stacking, C/H⋯π, C/H⋯O, and halogen bonding, and other σ-hole types of interactions. These play a pivotal role in the structure of proteins and biomolecules,
drug–substrate interactions, anion recognition, crystal engineering, molecular self-assembly, and supramolecular chemistry. Insight into all of these processes is gleaned from the study of small complexes, which provides a bridge from isolated gas-phase molecules to condensed phases, enabling us to gain invaluable insights into solvation processes, solution dynamics, and the nucleation and growth of complexes. By exploiting a solute chromophore (typically an aromatic), complexes with various solvents (e.g., rare gas atoms or small molecules) have been studied in the gas-phase using a variety of spectroscopic techniques, supplemented by theoretical methods, to determine the spectroscopic features, geometry, and binding interactions.

Aniline is the simplest aromatic amine and is amenable to ionization and detection via mass selective resonant two-photon ionization (R2PI) methods. The spectroscopy of aniline in the S0, S1, and D0 states has been studied in detail. It has been firmly established that the molecule is nonplanar in the S0 state but becomes essentially planar in the S1 and D0 states due to a significant lowering of the barrier to inversion of the amino hydrogens upon electronic excitation and ionization, respectively. A variety of studies have been reported on the formation and characterization of van der Waals complexes of aniline with rare gases, small molecules, and larger molecules/aromatics. Furthermore, the homocomplexes of aniline have been studied by both infrared (IR) and R2PI spectroscopies.

In a recent paper, we examined the 1:1 complex of anisole with methane, where a dual modality of binding was exhibited, with the methane interacting with both the oxygen and conjugated π systems through C/H⋯O and C/H⋯π interactions. Like aniline, anisole possesses two sites that can act as proton acceptors, the electron lone pair on nitrogen and the conjugated π system, and thus, both C/H⋯π and C/H⋯N types of interactions can be expected for the aniline⋯CH4 complex. In addition, the amino hydrogens of aniline can also afford hydrogen bonding with solvents containing O or N atoms. Unlike anisole, the planarization of the amino group, which occurs upon electronic excitation or ionization of aniline, may significantly impact the structure and energetics of binding in these states. We note that C/H⋯N interactions have emerged as important binding motifs in molecular self-assembly, protein structure, and crystal engineering.

Prior studies have examined the spectroscopy of the aniline⋯(CH4)n complex; however, the dissociation energies have not been accurately determined. In 1984, Bernstein et al. examined the spectroscopy of the 1:1 complex and estimated an upper limit to the dissociation energy in the S1 state of ~699 cm−1 (8.4 kJ/mol) from the onset of monomer fluorescence. In 1989, the same group revised this estimate downward to 480 cm−1 (5.7 kJ/mol) by observing the absence of higher vibronic bands from a two-color excitation spectrum and using a Rice–Ramsperger–Kassel–Marcus (RRKM) model analysis to fit the observed vibrationally predissociation rates. Subsequently, Zhang et al. used photoelectron spectroscopy to predict the change in dissociation energy of the aniline⋯CH4 complex upon ionization from ionization potential (IP) measurements of the monomer and the complex. For the D0 state, the dissociation energy was predicted to increase by 169 cm−1 and 92 cm−1, respectively, compared to that in the S0 and S1 states. A later study by the Knee group, which employed picosecond photoelectron spectroscopy, reported a S1 state dissociation energy of 450 cm−1 (5.4 kJ/mol) from an RRKM model analysis. Thus, some ambiguity remains concerning the dissociation energies of the 1:1 complex of aniline and methane, and a direct experimental measurement is desired.

Building upon our prior studies of related anisole–methane complexes, the goal of this work is to accurately determine the dissociation energies of the aniline⋯(CH4)n (n = 1, 2) complexes in the three respective states (S0, S1, and D0). Thus, here, we report on the measurement of the dissociation energies of the aniline⋯(CH4)n (n = 1, 2) complexes using a combination of experimental methods, including two-color R2PI or 2CR2PI, two-color appearance potential measurements or 2CAP, and velocity-mapped ion imaging or VMI. Our experimental findings are compared with the results of selected theoretical (density functional theory or DFT) methods. In addition to being used as a benchmark for theoretical studies, experimental dissociation energy measurements can also afford important insights into competitive non-covalent interactions and cooperativity, i.e., how the binding of the first “solvent” molecule affects the binding of the second. In studies of anisole–methane complexes, we found that the dissociation energy of methane loss from the 1:2 complex increased by 10% with respect to that of the 1:1 complex, although both solvent molecules occupied similar sites on opposite faces of the aromatic ring. The related model systems such as the benzene and toluene⋯CH4 complexes have also been used to investigate such effects.

EXPERIMENTAL AND THEORETICAL METHODS

The experimental approach employed in this work is very similar to that described in a recent publication. Briefly, it consisted of a TOF mass spectrometer equipped with a pulsed nozzle. Two frequency-doubled Nd:YAG pumped dye lasers were used for excitation/ionization, and an 8-channel digital pulse delay generator was used for temporal control of the experiment. Aniline (99.5%, Sigma-Aldrich) soaked cotton swabs were placed in a temperature-controlled oven that was connected to the inlet of a pulsed nozzle. The oven and nozzle were heated to 60 °C. At this temperature, the aniline vapor pressure is roughly 6.5 Torr, as estimated from the Antoine equation parameters. A mixture of 5% methane in Ar carrier gas at a backing pressure of 50 psi was passed through the heated oven, picking up the aniline vapor, and then injected into the TOF source chamber through the 0.8 mm diameter orifice of the pulsed nozzle, forming a molecular beam. The beam passed through a 1.5 mm diameter conical nickel skimmer before entering the ionization region of the TOF. Resonant excitation and ionization were achieved using the outputs of two independently tunable frequency-doubled Nd/YAG pumped dye lasers, Sirah Cobra-Style and Lambda-Physik Scanmate 2E, pumped by the second harmonic of a Spectra-Physics INDI and Quantel Q-Smart 850, respectively. As the aniline S1 lifetime is relatively short, or order 2–3 ns, for all of the experiments reported here, the laser pulses were overlapped temporally. Typical laser fluences were of order 0.1 mJ, with the beams loosely focused into the ionization region using 2 m spherical lenses. The ions were extracted via a three-plate stack and flew a distance of 1 m before striking a dual chevron microchannel plate detector.
Ion yield spectra for the aniline monomer, and aniline···CH₄ 1:1 and 1:2 complexes, were determined by setting the pump laser (λ₁) on resonance and scanning the frequency of the second laser (λ₂) through the ionization threshold, monitoring the onset of the monomer or complex ion signal. To determine the S₀ state binding energy of the 1:1 and 1:2 complexes, 2CAP measurements were performed, where the pump laser was set on resonance (λ₁) of the complex of interest, and the second (ionizing) laser (λ₂) was scanned above the dissociation threshold while monitoring the mass channel of the fragment species of interest.

Velocity-mapped ion imaging experiments were carried out in a separate spectrometer that utilized the same beam conditions and laser configuration, which are described in detail in our previous publication. The counter propagating lasers intercepted the molecular beam between the repeller and extractor electrodes, downstream of the skimmer orifice. The voltages of the electrodes were tuned precisely for optimum velocity mapping conditions. During image acquisition, the rear MCP voltage was gated to monitor the species of interest. Images were collected above and below the dissociation threshold, over a period of 60 min. Typically, 36,000 laser shots were acquired, with the signal attenuated using a linear polarizer to avoid image blurring by ensuring that only a few ions were detected each shot. Images collected at energies above the dissociation threshold were background-corrected using images obtained with the second photon set below the dissociation threshold.

RESULTS AND DISCUSSION

Aniline···CH₄ 1:1 complex

Figure 1 shows an overview of the spectroscopic information collected for the aniline monomer and 1:1 aniline···CH₄ complex, presented with an energy ladder diagram in the S₀, S₁, and D₀ states, respectively. Data for the aniline monomer were obtained using expansions of aniline in Ar. The electronic spectra, obtained via 2CR2PI spectroscopy, are presented in the lower panels of Fig. 1. The electronic origin of the complex is red shifted by ~81 cm⁻¹ with respect to the monomer origin, consistent with previous publications. Often, van der Waals complexes involving a π system are more strongly bound in the excited state and exhibit a red shift due to the delocalization of the electronic cloud. Noticeably, the shift here is significantly larger than observed for 1:1 complexes of CH₄ with benzene (~41 cm⁻¹), toluene (~43 cm⁻¹), and anisole (~64 cm⁻¹).

Following the measurement of the excitation spectra using a 2CR2PI scheme with a fixed ionizing photon wavelength, we then set the excitation wavelength to the respective electronic origins and measured the ion yield spectra of aniline and the aniline···CH₄ complex to determine the respective ionization potentials (shown in the upper panels in Fig. 1). The relatively well defined onsets are observed from the spectra of the monomer and complex, which gave the following IP values: aniline, 7.723 eV and aniline···CH₄ complex, (S₀, D₀). Accordingly, here, we performed complete geometry optimizations on the aniline···CH₄ complex. After optimization, vibrational frequency calculations were performed to confirm that the optimized structure(s) corresponded to minima on the potential energy surface. The derived dissociation (binding) energies were corrected for zero-point vibrational energy (ZPVE). For the basis set used here (def2-QZVPPD), the basis set superposition error (BSSE) corrections were negligible (i.e., <0.2 kJ/mol). The calculated dissociation energies were compared with experimental data from 2CAP and VMI measurements.
7.711 eV, with our measured IP values slightly higher than previous determinations, monomer (7.7206 eV) and complex (7.701 eV).28,37 We note that our IP values are not corrected for shifts due to the electric fields inevitably present in the ionization region, as the primary focus of our measurement is the determination of dissociation energies taken from the difference in IPs of the monomer and complex.

To assign the isomeric structure of the complex, we carried out theoretical calculations. Initial geometry optimizations were performed at the PBE0/def2-TZVPPD level and subsequently refined at the PBE0/def2-QZVPPD level. These calculations identified two isomeric structures—in each the methane sits above the aromatic plane (Fig. 2) and interacts with aniline via C–H/N and C–H/r interactions, a dual-mode of interaction similar to that observed in the anisole–methane complex. Interestingly, these calculations predict that isomer 2, where the methane sits on the same face as the amino hydrogens, is the more stable. The coordinates for the optimized structures are provided in the supplementary material.

To identify which isomer(s) might be contributing to the observed 2CR2PI spectrum, we performed calculations using time-dependent DFT (TDDFT), at the TDPBE0-D3/def2-QZVPPD level, on the PBE0-D3/def2-QZVPPD optimized structures. As shown in Table S1 of the supplementary material, these calculations predict redshifts of 35 cm\(^{-1}\) and 99 cm\(^{-1}\) for isomers 1 and 2, respectively. Thus, while both isomers may contribute to the observed spectrum, it appears that the most redshifted band is consistent with the isomeric complex 2, the most stable complex as predicted by the calculations presented above and additional calculations that we outline below. In this work, we used this feature to derive the ion yield spectra (Fig. 1) and both 2CAP spectra and VMI results presented below. Thus, for the remainder of this paper, we will assume that the structure of the 1:1 complex conforms to isomer 2.

In order to estimate the ground (S\(_0\)) state binding energy of the 1:1 complex, we performed two-color appearance potential (2CAP) measurements, which set an upper limit to the binding energy. Here, the excitation laser was fixed on the origin of the complex, and the ionization laser was scanned while monitoring the signal in the mass channel of the aniline cation. The energetic onset of the aniline cation can be represented as the sum of the ground (S\(_0\)) state complex binding energy and the adiabatic complex ionization energy, as illustrated in Fig. 3(a). The 2CAP spectrum of the aniline–\(\cdot\)\(\cdot\)\(\cdot\)\(\cdot\)\(\cdot\)\(\cdot\)\(\cdot\)\(\cdot\)\(\cdot\)CH\(_4\) 1:1 complex is shown in Fig. 3(b), where the energy scale was determined by subtracting the monomer IP from the two-photon excitation energy, and thus, it provides a direct readout of the ground state dissociation energy. A clear onset representing the appearance potential was observed, and a linear extrapolation of the rising edge returns an upper limit to the S\(_0\) state dissociation energy of 6.6(2) kJ/mol or \(\sim 550\) cm\(^{-1}\), in excellent agreement with the PBE0/def2-QZVPPD prediction for isomer 2.

Application of the thermochemical cycle shown in Fig. 1 affords the dissociation energy in the excited (S\(_1\)) and cation radical (D\(_0\)) states, presented in Table 1 in units of kJ/mol. The value derived for the S\(_1\) state binding energy is 7.6 kJ/mol or 640 cm\(^{-1}\). It is noteworthy that the 2CAP data show an increase in binding energies between S\(_0\) and S\(_1\), but a similar binding energy for S\(_1\) and D\(_0\).

In addition to the 2CAP measurements, VMI experiments were also performed. Complementary to the 2CAP results, the VMI measurements provide a direct measure of the kinetic energy (KE) release to the monomeric cation following ionization-induced fragmentation. Thus, this method can provide a direct estimate of the dissociation energy in the cation radical state (D\(_0\)). Shown in Fig. 4 (left panel) are VMI images of the aniline cation obtained at the total (two-photon) energies shown, which span one energy below and three above the dissociation threshold of the aniline–\(\cdot\)\(\cdot\)\(\cdot\)\(\cdot\)\(\cdot\)\(\cdot\)\(\cdot\)\(\cdot\)\(\cdot\)\(\cdot\)CH\(_4\) complex. Images taken at total energies above the dissociation threshold were background subtracted and inverse Abel transformed, and the kinetic energy (KE) distributions obtained following transformation are shown in the right panel of Fig. 4.

From the data shown in Fig. 4, it is apparent that KE\(_\text{max}\), which reflects the complex dissociation energy assuming the formation of cold (ground state) monomer cation, scales in proportion...
TABLE I. Comparison of experimental and computed dissociation energies for the aniline–methane 1:1 complex. All theoretical energies were corrected for ZPE, while the BSSE correction was negligible with the employed basis set. Unrestricted wavefunctions were employed for calculations of the cation radical state.

<table>
<thead>
<tr>
<th>Method</th>
<th>S_0 (kJ/mol)</th>
<th>S_1 (kJ/mol)</th>
<th>D_0 (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment (this work, 2CAP)</td>
<td>6.6(3)</td>
<td>7.6(3)</td>
<td>7.8(3)</td>
</tr>
<tr>
<td>Experiment (this work, VMI, uncorrected)</td>
<td>8.7(2)</td>
<td>9.7(2)</td>
<td>9.9(2)</td>
</tr>
<tr>
<td>Experiment (this work, VMI, corrected)</td>
<td>6.6(2)</td>
<td>7.6(2)</td>
<td>7.8(2)</td>
</tr>
<tr>
<td>Experiment (Ref. 56)</td>
<td></td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>Experiment (Ref. 57)</td>
<td></td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>Experiment (Ref. 58)</td>
<td></td>
<td>S_1 DE + 1.1</td>
<td></td>
</tr>
<tr>
<td>Experiment (Ref. 59)</td>
<td></td>
<td>S_0 DE + 1.9</td>
<td></td>
</tr>
<tr>
<td>CAM-B3LYP-D3/def2-QZVPPD</td>
<td>6.0</td>
<td>...</td>
<td>7.6</td>
</tr>
<tr>
<td>M062X-D3/def2-QZVPPD</td>
<td>6.2</td>
<td>...</td>
<td>7.8</td>
</tr>
<tr>
<td>PBE0-D3/def2-QZVPPD</td>
<td>6.9</td>
<td>...</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Unlike our prior study of anisole–methane complexes, here, the 2CAP and VMI experiments do not agree regarding the aniline–CH$_4$ dissociation energy in the D_0 state (Table I). As the VMI experiments are analyzed with the assumption that KE_{max} corresponds to the formation of vibrationally cold fragments, one possible explanation for this discrepancy is the preferential formation of the vibrationally excited aniline cation radical in the VMI experiments. Indeed, this was previously observed in VMI measurements of the anisole dimer. The difference in D_0 state binding energy between the VMI and 2CAP results is ~180 cm$^{-1}$, which corresponds exactly to the lowest vibrational frequency (10b) of the aniline cation, an out-of-plane NH$_2$ wag ring deformation. Thus, the discrepancy between the 2CAP and VMI measurements can be resolved if it is assumed that the aniline cation fragment is preferentially produced with one quantum of excitation in mode 10b following dissociation of the ionized aniline–CH$_4$ complex. With this assumption, the corrected dissociation energy values are reported in Table I, in good agreement with the 2CAP measurement. This illustrates the benefit of comparing VMI measurements with those from 2CAP (or other methods) to identify cases where dissociation preferentially populates excited vibrational states.

Regarding comparison with previous experiments, these are also listed in Table I. Our S_1 dissociation energy lies between the two experimental values derived by Bernstein and is roughly 2 kJ/mol higher than that estimated by Smith et al. The difference in S_0 and S_1 dissociation energies that we measure is in good agreement with that derived in Ref. 58.

To aid in understanding the experimental results, we performed additional calculations of the complex geometry, spectroscopic properties, and dissociation energies of isomer 2 using theoretical methods, including dispersion corrected single and double hybrid density functional theory methods (PBE0-D3, M062X-D3, and CAM–B3LYP-D3) with def2-XZVPPD (X = T, Q). The calculated dissociation energies were corrected for zero-point energy (ZPE)—in practice, we found that the BSSE correction was negligible (i.e., <0.2 kJ/mol) when employing the larger basis set (def2-QZVPPD).
The calculated ground state dissociation energies (Table I) range from 6.0 kJ/mol to 6.9 kJ/mol, in close agreement with the 2CAP and corrected VMI estimates. For all of the theoretical methods, the predicted difference in energy of the two isomers was similar, of order ~1 kJ/mol, with isomer 2 as the global minimum energy structure.

Considering the D$_0$ state, complete geometry optimizations were performed using spin unrestricted wavefunctions at the various levels of theory presented in Table I. The estimated dissociation energies were also corrected for ZPE, again the BSSE correction became insignificant with this basis set. The optimized structure of the complex cation radical at the UPBE0-D3/def2-QZVPPD level of theory is shown in Fig. S1 of the supplementary material. The calculated D$_0$ dissociation energies range from 7.6 kJ/mol to 8.3 kJ/mol, in excellent agreement with the experimental 2CAP and corrected VMI results.

The experimental and theoretical predictions of the 1:1 complex structure are suggestive of a dual mode of non-covalent interaction (Fig. 1). The measured S$_0$ state dissociation energy is approximately additive if we consider the previously determined interaction energies for complexes exhibiting only C/H⋯CH$_4$ \sim (4.315 kJ/mol–4.5 kJ/mol)$^{77–79}$ and C/H⋯N interactions in the prototypical ammonia⋯CH$_2$ complex \sim (2.5 kJ/mol). The experimental result suggests that the bond dissociation energy of a C/H⋯N type of interaction \sim (2.5 kJ/mol) is stronger than that of the previously determined C/H⋯O interaction \sim (1 kJ/mol). Considering that the electron donating ability of aromatic substituents trends as $\text{–NH}_2 > \text{–OCH}_3 > \text{–CH}_3$, it is noteworthy that the strength of methane binding also trends in this order for aniline, anisole, and toluene, as found by experiment (dissociation energies in kJ/mol: 6.6 > 5.8 > 4.5) and predicted by theory (PB(E0-D3/def2-QZVPPD, in kJ/mol: 6.9 > 6.0 > 5.0).

Aniline⋯(CH$_4$)$_2$ complex

The mass selected 2CR2PI spectra of aniline⋯CH$_4$ 1:1 and 1:2 complexes are presented in Fig. S2 of the supplementary material. The 1:2 complex spectrum is red shifted by 163 cm$^{-1}$ with respect to the aniline monomer origin, a shift approximately twice that of the 1:1 complex (81 cm$^{-1}$). A similar, nearly additive, shift has previously been observed for benzene and toluene⋯CH$_4$ 1:2 complexes27,28 and reflects the two solvent molecules occupying opposite positions with respect to the ring plane. Unlike the related studies of benzene and toluene⋯CH$_4$ 1:2 complexes, no obvious peak corresponding to the origin of a second isomer (with the two solvent molecules on the same face of the ring) was observed within the proximity of the 1:1 complex origin.

Figure 5 presents an overview of the spectroscopic information collected for the 1:1 and 1:2 complexes, presented with an energy ladder diagram following Fig. 1. The electronic spectra of the complexes, recorded using 2CR2PI, are presented in the lower panels of Fig. 5, while the corresponding ion yield spectra are presented in the upper panels of Fig. 5. The 1:2 complex ion yield curve is similar in shape to that of the 1:1 complex, and an ionization onset was clearly observed around 7.688 eV, lowered as expected relative to the monomer and 1:1 complex.

To determine the experimental S$_0$ state dissociation energy of the 1:2 complex, 2CAP measurements were employed, as shown in Fig. S3. Here, the mass channel of the (aniline⋯CH$_4$)$^+$ fragment was monitored from dissociation of the 1:2 complex by setting the first photon on resonance with the origin of the 1:2 complex and scanning the second above the ionization threshold. As described above for the 1:1 complex, the energetic onset of fragmentation represents the sum of the S$_0$ state dissociation energy and the adiabatic IP of the 1:1 complex. This method sets an upper limit to the ground state dissociation energy, and using the energy ladder diagram (Fig. 5), we then obtain dissociation energies for the S$_1$ and D$_0$ states. These are given with the associated uncertainties in Table II, in units of kJ/mol. We note that VMI experiments for the 1:2 complex were not performed.

In our previous study of the anisole–methane 1:2 complex, we found that the dissociation energy corresponding to a loss of single methane increased by 10% with respect to the 1:1 complex across all three states (S$_0$, S$_1$, D$_0$). In contrast, here, we find that the ground state dissociation energy of the 1:2 complex with respect to the loss of one methane is decreased by ~10% relative to the 1:1 complex in the S$_0$ state. This trend is consistent with the inequivalence of the two dissociation sites and, thus, the loss of the more weakly bound methane. The dissociation energy in the S$_1$ state is decreased by ~10% for the 1:2 complex, while the D$_0$ (cation radical state) dissociation energy is similar to that found for the 1:1 complex. To gain further insight into these trends, we performed theoretical calculations on the 1:2 complex. Calculations found two minima on the ground state PES, corresponding to structures where

<table>
<thead>
<tr>
<th>Method</th>
<th>S$_0$</th>
<th>S$_1$</th>
<th>D$_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment (2CAP)</td>
<td>5.7(3)</td>
<td>6.7(3)</td>
<td>7.9(3)</td>
</tr>
<tr>
<td>PB(E0-D3/def2-QZVPPD)</td>
<td>5.9</td>
<td>...</td>
<td>8.3</td>
</tr>
</tbody>
</table>
the two methane molecules are on the same face or opposite faces, respectively, of the aromatic ring. The global minimum energy structure corresponded to the latter, and this is illustrated in Fig. S4 of the supplementary material. Calculations at the (U)PBE0-D3/def2-QZVPPD level well reproduce the observed dissociation energies in the S_0 and D_0 states (see Table II). The coordinates for the optimized structure at this level of theory are provided in Table S3 of the supplementary material.

CONCLUSIONS

To probe cooperativity in C–H/N and C–H/π interactions, we have measured the dissociation energies of aniline···(CH_4)_n (n = 1, 2) van der Waals complexes, in their ground (S_0), excited (S_1), and cation radical (D_0) states, using 2CAP and VMI experiments (the latter for the 1:1 complex only). The dissociation energies of the aniline···CH_4 1:1 complex derived from the 2CAP experiments are consistent with isomeric structure 2, where the methane sits above the aromatic ring but on the same side as the amino hydrogens, and are in good agreement with a range of DFT and ab initio methods. We found that the VMI and 2CAP experiments were not in agreement but could be reconciled if it is assumed that dissociation of the complex in the D_0 state leads to the selective population of a low frequency inversion mode in the ionized aniline fragment. This is consistent with the expected (rigid) planarization of the amino group upon ionization. The dual mode of interaction (C/H–π and C/H–N) predicted by the ground state equilibrium geometry of the 1:1 complex is consistent with the large experimental dissociation energy observed when compared to systems exhibiting only C/H–π interactions such as toluene/benzene···CH_4.

Studies of the 1:2 complex show a redshift in the S_0–S_1 spectrum, which is nearly twice that observed for the 1:1 complex, suggestive of a geometry where the two methane moieties lie on opposite faces of the aromatic ring. We find that the ground state dissociation energy of the 1:2 complex with respect to loss of one methane is decreased by ~10% relative to the 1:1 complex in the S_0 and D_0 states, consistent with the inequivalence of the two binding sites and loss of the more weakly bound methane. The measured dissociation energies are in good agreement with theoretical expectations.

SUPPLEMENTARY MATERIAL

See the supplementary material for three tables and three figures of additional data. Table S1 shows the calculated data from TDDFT methods for the 1:1 complex, while Tables S2 and S3 show the optimized coordinates for the 1:1 and 1:2 complexes. Figure S1 shows the optimized structure of the cation radical state of the 1:1 complex. Figure S2 compares the 2CR2PI spectra of the aniline monomer and 1:1 and 1:2 aniline–methane complexes. Finally, Fig. S3 shows the optimized structure of the ground state of the 1:2 complex.

DATA AVAILABILITY

The data that support the findings of this study are available within the article and its supplementary material.

