
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Chemistry Faculty Research and Publications Chemistry, Department of 

7-2020 

Resonance Raman Spectroscopic Studies of Peroxo and Resonance Raman Spectroscopic Studies of Peroxo and 

Hydroperoxo Intermediates in Lauric Acid (LA)-Bound Cytochrome Hydroperoxo Intermediates in Lauric Acid (LA)-Bound Cytochrome 

P450 119 P450 119 

Remigio Usai 
Marquette University 

Daniel Kaluka 
Marquette University 

Piotr J. Mak 
Marquette University, piotr.mak@marquette.edu 

Yilin Liu 
Marquette University 

James R. Kincaid 
Marquette University, james.kincaid@marquette.edu 

Follow this and additional works at: https://epublications.marquette.edu/chem_fac 

 Part of the Chemistry Commons 

Recommended Citation Recommended Citation 
Usai, Remigio; Kaluka, Daniel; Mak, Piotr J.; Liu, Yilin; and Kincaid, James R., "Resonance Raman 
Spectroscopic Studies of Peroxo and Hydroperoxo Intermediates in Lauric Acid (LA)-Bound Cytochrome 
P450 119" (2020). Chemistry Faculty Research and Publications. 1026. 
https://epublications.marquette.edu/chem_fac/1026 

https://epublications.marquette.edu/
https://epublications.marquette.edu/chem_fac
https://epublications.marquette.edu/chemistry
https://epublications.marquette.edu/chem_fac?utm_source=epublications.marquette.edu%2Fchem_fac%2F1026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/131?utm_source=epublications.marquette.edu%2Fchem_fac%2F1026&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/chem_fac/1026?utm_source=epublications.marquette.edu%2Fchem_fac%2F1026&utm_medium=PDF&utm_campaign=PDFCoverPages


 

Marquette University 

e-Publications@Marquette 
 

Department of Chemistry Faculty Research and Publications/College of Arts 
and Sciences  

 

This paper is NOT THE PUBLISHED VERSION.  
Access the published version via the link in the citation below. 

 

Journal of Inorganic Biochemistry, Vol. 208, (2020, July): 111084. DOI. This article is © Elsevier and 
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not 
grant permission for this article to be further copied/distributed or hosted elsewhere without the 
express permission from Elsevier.  

 

Resonance Raman Spectroscopic Studies of 
Peroxo and Hydroperoxo Intermediates in 
Lauric Acid (LA)-Bound Cytochrome P450 119 
 

Remigio Usai 
Department of Chemistry, Marquette University, Milwaukee, WI 

Daniel Kaluka 
Taylor University, Department of Chemistry and Biochemistry, Upland, IN 
Department of Chemistry, Marquette University, Milwaukee, WI 

Piotr J. Mak 
St. Louis University, Department of Chemistry, St. Louis, MO 
Department of Chemistry, Marquette University, Milwaukee, WI 

Yilin Liu 
Department of Chemistry, Marquette University, Milwaukee, WI 

James R. Kincaid  
Department of Chemistry, Marquette University, Milwaukee, WI 
 

http://doi.org/10.1016/j.jinorgbio.2020.111084
http://epublications.marquette.edu/


Abstract 
Cytochromes P450 bind and cleave dioxygen to generate a potent intermediate compound I, capable of 
hydroxylating inert hydrocarbon substrates. Cytochrome P450 119, a bacterial cytochrome P450 that serves as a 
good model system for the study of the intermediate states in the P450 catalytic cycle. CYP119 is found in high 
temperature and sulfur rich environments. Though the natural substrate and redox partner are still unknown, a 
potential application of such thermophilic P450s is utilizing them as biocatalysts in biotechnological industry; 
e.g., the synthesis of organic compounds otherwise requiring hostile environments like extremes of pH or 
temperature. In the present work the oxygenated complex of this enzyme bound to lauric acid, a surrogate 
substrate known to have a good binding affinity, was studied by a combination of cryoradiolysis and resonance 
Raman spectroscopy, to trap and characterize active site structures of the key fleeting enzymatic intermediates, 
including the peroxo and hydroperoxo species. 

Graphical abstract 
CYP119 is a thermophilic Cytochrome P450 which cleaves dioxygen to generate the potent intermediate, 
compound I, which is capable of hydroxylating hydrocarbon substrates. Here cryoradiolysis of the oxygenated 
complex, was employed to generate and trap the precursor peroxo and hydroperoxo enzymatic intermediates, 
which were characterized by resonance Raman spectroscopy. 
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1. Introduction 
The Cytochrome P450s are among nature's most versatile and ubiquitous enzymes because of their 
extraordinary ability to perform highly regio- and stereo-selective oxidation reactions on a wide variety of 
compounds including alkanes, fatty acids, terpenes, steroids, detoxification of carcinogens, pesticides and other 
pharmaceuticals [[1], [2], [3], [4]]. Using molecular oxygen and reducing equivalents supplied by redox partner 
proteins, cytochromes P450 can efficiently catalyze difficult reactions known to occur in biological systems, 
including hydroxylation of inert hydrocarbons through a concerted reaction mechanism [5]. As seen in Scheme 
1, the substrate binds to the low spin ferric six coordinate resting state [species 1] forming a 5-coordinate high 
spin complex [species 2]. One electron reduction and subsequent oxygen binding forms the oxygenated complex 
[species 4]. Another electron reduction forms the peroxo intermediate [species 5] which is protonated to form a 
hydroperoxo intermediate [species 6], with another protonation step leading to O O bond cleavage and 



formation of compound I [species 7]. It is very difficult to trap the peroxo and hydroperoxo intermediates, owing 
to rapid proton transfer and subsequent O O bond cleavage following reduction to the O2-complex. However, 
a useful approach to study these species is cryoradiolysis, introduced by Symons [6,7]. Here the relatively more 
stable oxygenated complex is cryotrapped (77 K) and subjected to radiolysis by a 60Co γ-ray source; while 
radiolytically generated electrons can migrate at 77 K, proton migration is much more restricted. Indeed, this 
approach has been utilized and refined by Hoffman and others to study a variety of heme proteins 
[[8], [9], [10], [11], [12], [13], [14], [15]]. 

 
Scheme 1. Cytochrome P450 catalytic cycle [2,30]. 
 

The bacterial enzyme, Cytochrome P450 119 (CYP119), is an acidothermophilic P450 from Sulfolobus 
solfataricus, which is found in sulfur rich environments in hot springs [[16], [17], [18], [19], [20], [21]]. This 
enzyme exhibits high thermal stability, with its optimal growth occurring near 85 °C [16]. The enzyme is easily 
expressed in E. coli [18,20,22], but its natural substrate and redox partners are still unknown [16,19]. Previous 
studies have shown that this enzyme hydroxylates surrogate substrates including, lauric acid (LA) [19], styrene 
[23], palmitic acid [24,25], and caprylic acid [24,25]. The hydroxylation reaction of lauric acid catalyzed by 
CYP119 yields ~70% of 11-hydroxylauric acid (ω-1), ~22% of 10-hydroxylauric acid (ω-2), 7% 12-hydroxylauric 
acid (ω) and 1% 9-hydroxylauric acid (ω-3), as shown in Scheme 2 below. 

 



 
Scheme 2. O2 reaction of Lauric acid (LA) catalyzed by CYP119 showing the major ω-hydroxylation products ω 
(12-hydroxylauric acid), ω-1 (11-hydroxylauric acid), ω-2 (10-hydroxylauric acid) and ω-3 (9-hydroxylauric acid) 
[20]. 
 

As clearly outlined in reviews by Terner and others [[26], [27], [28], [29], [30]], resonance Raman (RR) 
spectroscopy is an attractive probe of the intermediates encountered in the P450 cycle, being capable of 
interrogating both the heme macrocycle and the iron-ligand fragments. Following early attempts to acquire the 
RR spectrum of Compound I intermediates of peroxidases, which met with difficulties owing to photosensitivity 
with violet probe beams [26,27], the first apparently valid spectrum was reported using near UV excitation by 
Terner and coworkers [31], as later confirmed by others.[32] Coupling RR spectroscopy with cryoradiolysis has 
proven to be particularly effective in trapping and characterizing the peroxo- and hydroperoxo- intermediates 
[[11], [12], [13], [14], [15],30,33]. In this present study we report high quality RR data for the LA bound CYP119 
oxygenated complexes before and after cryoradiolysis to generate, trap and structurally characterize key 
catalytic intermediates, including the oxy-, peroxo- and hydroperoxo- forms. 

2. Materials and methods 
2.1. Materials 
The plasmid encoding the CYP119 gene was kindly provided by Dr. Stephen G. Sligar of the University of Illinois 
at Urbana Champaign. Competent BL21 E. coli cells were purchased from Biolabs. CYP119 was expressed and 
purified as previously published [18]. The samples used had a Reinheitszahl ratio (Rz) value (A415/A280) > 1.5, the 
published value for the pure enzyme [34]. The protein concentrations were determined by UV–visible 
absorption spectroscopy using the mM absorptivity value of 104 mM−1 cm−1 at 415 nm for the ferric, substrate- 
free enzyme [18]. Glycerol solutions for making cryotrapped oxygenated complexes were purified, and checked 
for residual fluorescence with resonance Raman spectroscopy as previously described [35]. Deuterated 
glycerol[(OD)3, 95%] was made by mixing commercial glycerol (boiling point 182 °C) [35] with a 20-fold molar 
excess of deuterium oxide, then refluxed at 100 °C for 30 min. The temperature was increased to 130 °C to distil 
the H2O/D2O. The product remaining after distillation was characterized by Raman spectroscopy and spectrum 
compared with that of commercial D3- glycerol [[35], [36], [37]], and the boiling point of d3-glycerol was 182 °C 
(Literature value of boiling point for D3-glycerol is 182 °C (Cambridge isotopes)). 

2.2. Methods 
2.2.1. Protein preparation 
CYP119 was transformed, expressed and purified according to previously published procedures [18], with minor 
modifications. Briefly, CYP119 was transformed in BL21 cells followed by growing in LB broth with 100 mg/L 
ampicillin overnight at 37 °C and 250 rpm. A 1% starter culture was inoculated and expressed in 2× YT medium 
supplemented with 100 mg/L ampicillin for 20 h at 37 °C and 250 rpm. Cells were harvested by centrifugation at 



9148 ×g for 15 min at 4 °C and stored in a − 80 °C freezer. To isolate protein, cells were thawed and resuspended 
in 4 volumes (4 mL/g cell paste) of lysis buffer (50 mM Tris/HCl pH 8.0, 1 mM EDTA, 4 mg/mL lysozyme, 16 U/mL 
DNase, 4 U/mL RNase) and stirred gently at 4 °C, followed by centrifugation at 47850 ×g for 1 h. The supernatant 
was incubated at 75 °C for 15 min followed by centrifugation at 7656 ×g for 30 min to remove the unwanted 
denatured bacterial proteins [18]. The supernatant was saturated with 40% ammonium sulfate and shaken 
gently at 4 °C for 30 min followed by centrifugation at 7656 ×g for 30 min. The supernatant was saturated to 
60% ammonium sulfate and shaken gently at 4 °C for 30 min followed by centrifugation at 7656 ×g for 30 min. 
The pellet was resuspended in a minimum volume (about 10 mL) of 10 mM phosphate buffer, pH 7.2 and stored 
in −80 °C freezer until needed for the next purification step. 

The protein was further purified on a Bio-Rad P100 gel filtration column equilibrated with 10 mM phosphate 
buffer pH 7.2. Fractions with Rz values >0.5 were combined and loaded onto a DEAE 53 column equilibrated 
with 10 mM phosphate buffer, pH 7.2, washed thoroughly with 6 column volumes of this 10 mM phosphate 
buffer, pH 7. The column was then eluted using a 10–100 mM gradient in phosphate buffer at pH 7.2. Fractions 
with Rz values >1.1 were combined and further purified by loading onto another P100 gel filtration column 
equilibrated with 10 mM PB pH 7.2 [38]. Fractions with Rz > 1.5 were combined, concentrated and stored in 
a − 80 °C freezer and later used for the studies described below. 

2.2.2. Electronic absorption spectrophotometry 
Electronic absorption spectrophotometric measurements were performed using a Hewlett-Packard, Model 8452 
Diode Array Spectrometer. 

2.2.3. Resonance Raman spectroscopy 
Final concentrations of all samples of oxygenated complexes were 200 μM CYP119 in 100 mM phosphate buffer 
(PB), pH 8.0, containing 0.30 M NaCl and 30% glycerol. Samples of oxygenated CYP119 were prepared on a 
vacuum line by adding dioxygen gas to 30% glycerol/buffer solutions of the (ferrous) enzyme in 5 mm NMR 
tubes. The ferrous CYP119 was obtained by adding 1.5–2.0 equivalents of sodium dithionite solution via a 
syringe through a septum to a ferric protein that was under an argon atmosphere [39]. The ferrousCYP119 
solution was cooled to −20 °C and oxygenated by adding oxygen gas and agitated by rapidly mixing manually for 
3–5 s and then quickly frozen in liquid nitrogen [21,39]. RR spectra were obtained using a Spec 1269 
spectrometer equipped with a Spec-10 LN (liquid nitrogen cooled) detector (Princeton Instruments, NJ). The 
sample-containing NMR tubes were positioned into a homemade double-walled quartz low temperature Dewar 
filled with liquid nitrogen. The sample tubes were spun to avoid local heating. The excitation line employed for 
oxy samples was 413.1 nm (Coherent Sabre Kr ion laser); for peroxo and hydroperoxo samples the 441.6 nm line 
was used (Kimmon Model IK4153RC He:Cd laser). Fenchone spectra were used to calibrate all spectra, which 
were processed using Grams 32/AI (Galactic Industries, Salem, NH). Rayleigh scattering was removed by use of 
an appropriate Notch filter from Kaiser Optical (HNF-413-1.0 for 413.1 nm excitation line and CNPF-441.6-1,0 for 
441.6 nm excitation line). The NMR tube containing the sample was spun and the RR spectra collected at liquid 
N2 temperature using 180° (back scattering) geometry in combination with a cylindrical lens, which focusses the 
laser beam in a line image on the sample to minimize local heating. In acquiring RR spectra of the frozen 
samples, the laser power at the sample was also minimized to prevent sample heating, which in the case of 
bacterial P450s can sometimes lead to heat-induced proton transfer; i.e., attempts to measure the peroxo- 
intermediate were conducted with much care to minimize generation of the hydroperoxo- intermediate. For all 
RR measurements, the slit width was set at 150 μm; with the 1200 g/mm grating being used, the linear 
reciprocal dispersion is 0.655 nm/mm near 400 nm, corresponding to 0.46 cm−1/pixel [36]. 



2.2.4. Irradiation procedure 
The cryoradiolytic reduction of CYP119 samples was done by exposing the samples to 3.5 Mrad of γ-irradiation 
from a 60Co source at the Notre Dame Radiation Laboratory (University of Notre Dame, South bend, IN), as 
described in previous studies [9,10,39]. During the γ-ray irradiation procedure, the samples were contained in a 
modified Dewar vessel and continuously immersed in the liquid nitrogen at all times during and following the 
irradiation procedure in the 60Co source chamber. 

2.2.5. Deconvolution procedure 
Deconvolution procedures in the region of 1000–1200 cm−1 for the resonance Raman spectra of oxygenated 
CYP119 with LA bound were conducted using Grams 32/A1 programs (Galactic Industries Co., Salem, NH). 
Briefly, a 50% Lorentzian/Gaussian band shape for all bands was assumed and fixed, because using this 
combination of functions, the best fit to the band profiles in the Raman spectra was obtained. The detailed 
strategy for the fitting procedure is described elsewhere [40,41]. 

3. Results and discussion 
3.1. RR spectra of the dioxygen adduct of CYP119 with LA bound 
The formation of oxy ferrous complex of LA bound CYP119 was confirmed by RR spectroscopy at 77 K. The 
medium frequency spectra which allow simultaneous observation of the ν(Fe O) and ν(O O) regions are 
shown in Fig. 1 for the LA-bound samples. The spectra were acquired for 16O2 and 18O2 samples in H2O buffer (A 
and B, respectively), and for 16O2 and 18O2 samples in D2O buffer solutions (C and D, respectively). Furthermore, 
the 16O2 - 18O2 difference traces were generated and are shown at the bottom of Fig. 1. To get better insight into 
the ν(O O) envelope, careful deconvolution was performed using 50/50% Gaussian/Lorentzian functions of 
11.0 cm−1 ± 0.5 cm−1 bandwidth, and the results of this band fitting are shown in Fig. 2. Inspection of Fig. 
2 clearly indicates that the asymmetric envelope of O O bands can be deconvoluted into two modes, a lower 
frequency mode at 1130 cm−1 that is much less populated and a dominant higher frequency mode at 1139 cm−1. 
These modes exhibit 16/18O shifts of 66 and 65 cm−1, respectively, as expected for an O O harmonic oscillator 
[42]. Inspection of the difference pattern in the D2O buffer (trace B of Fig. 2) indicates that the lower frequency 
mode is H/D sensitive and is upshifted by 2 cm−1 in D2O buffer. It is noted that these types of rR spectroscopic 
patterns are reflective of H-bonding interactions observed in careful studies of cytochrome P450 model 
compounds [43,44], where the ν(16O 16O) mode for the oxy complex of a “picket fence” model, with its 
hydrophobic oxygen binding pocket, is observed near 1147 cm−1, [43] while this mode was observed near 
1138 cm−1 for a P450 model of a super-structured heme possessing H-bonding hydroxide groups in its oxygen 
binding pocket [44]. Furthermore, for this latter model, the ν(16O 16O) was observed to shift up by 
2 cm−1 when the –OH groups were replaced with -OD groups [44]. 



 
Fig. 1. Resonance Raman spectra of oxy CYP119 with LA; A) 16O2/H2O, B) 18O2/H2O, C) 16O2/D2O, D) 18O2/D2O, and 
their difference traces. Spectra were measured with 413.1 nm excitation line at 77 K, the total collection time 
was 5 h for each spectrum and ~ 1.4 mW power was used. 



 
Fig. 2. The deconvoluted 16O2- 18O2 traces in H2O (A) and D2O (B) buffers for the LA-bound oxyCYP119. 
 

Returning attention to the current study of CYP119, the frequency of the 1139 cm−1 mode and its lack of H/D 
sensitivity indicate that this Fe-O-O conformer doesn't participate in any substantial H-bonding interactions. On 
the other hand, the 9 cm−1 downshift of the weaker lower frequency mode and its H/D sensitivity clearly indicate 
that this less populated conformer is H-bonded with some active site H-bond donor. Since the substrate contains 
no H-bond donors, the potential H-bond donors are acid/alcohol pair E212/T213 for CYP119 or more likely water 
molecules. Consistent with this interpretation, it is noted that crystallographic data show that a distal pocket 
water molecule lies close to the iron and also interacts with the highly conserved Thr 213 [34]. It is noted that 
these RR data observed for CYP119 are similar to those CYP101 and its D251N mutant, where H-bonded and 
non-H bonded Fe-O-O conformers were also identified [14,45]. 

In the low-frequency region of the RR spectra, a feature assigned to the ν(Fe O) stretching mode is seen at 
535 cm−1 (Fig. 1) and exhibits a 28 cm−1 shift upon 18O2 substitution and no H/D sensitivity. It is noted that while 
the ν(O O) modes of the two conformers are isolated, apparently the corresponding ν(Fe O) modes are 
sufficiently close in energy to prevent resolution. In any case, these ν(Fe O) modes observed here are similar 
to those seen for other oxygenated P450s; i.e., 537 cm−1 in D251N mutant and ~ 540 cm−1 in CYP101. 

In summary, the oxy complex of the LA- bound sample of CYP119 was successfully prepared and characterized 
by RR spectroscopy. The careful deconvolution studies revealed that the dioxygen adduct possesses two Fe-O-O 
conformers, with an H-bonded form whose ν(O O) appears 7 cm−1 lower than that of the dominant non-H-
bonded form, behavior also seen for oxy complexes of other cytochromes P450 [15,30]. It is noted that only one 



feature associated with the ν(Fe O) mode was observed at 534–535 cm−1, possibly the result of two features 
having only small differences in inherent frequency. 

3.2. Resonance Raman studies of cryoradiolytically reduced samples of oxyCYP119 
In beginning the discussion of the spectroscopic data for the cryoreduced samples, it is important to note that 
some P450 enzymes apparently have very efficient proton delivery pathways, making it more difficult to trap the 
peroxo intermediate. For example, in the case of the bacterial enzyme, cytochrome P450cam (CYP101), the 
hydroperoxo-intermediate formed even at 77 K for the wild type enzyme, with the peroxo intermediate being 
observed only for the D251N mutant, which cripples the proton shuttle [14]. In the present work the oxygenated 
samples of CYP119 bound to LA were irradiated and handled according to previously published procedures 
[[9], [10], [11], [12], [13], [14]]. However, initial attempts, in this work and earlier [46], to measure the peroxo 
species, inadvertently generated the spectra of the hydroperoxo species. Later, more care was taken and 
multiple efforts were made using adequately low laser powers, or slightly defocused excitation laser, until RR 
spectra were acquired that were consistent with that for the peroxo intermediate. These acquired RR spectra 
of 16O2 and 18O2 samples in H2O and D2O buffers, as well as their difference traces are shown in Fig. 3, below. 
The ν(Fe O) mode of the peroxo-CYP119 species produced by cryoradiolytic reduction of oxy-CYP119 was 
observed to occur at 547 cm−1, exhibiting a 26 cm−1 shift for the 18O analogue, consistent with that expected for 
a Fe O harmonic oscillator [42]. The ν(O O) was observed at 781 cm−1 and shifts down to 742 cm−1 for 
the 18O analogue, yielding a 39 cm−1 downshift upon isotope substitution. There is no significant H2O/D2O 
sensitivity for this feature, confirming its assignment as the ν(O O) mode for the peroxo intermediate [14,47]. 

 



Fig. 3. Resonance Raman spectra of irradiated dioxygen adducts of LA bound CYP119 A) 16O2/H2O, B) 18O2/H2O, 
C) 16O2/D2O, D) 18O2/D2O, and their difference traces. Spectra were measured with 441.6 nm excitation line at 
77 K, the total collection time was 6 h for each spectrum and ~ 1 mW power was used. 
 

Fig. 4 shows RR data for oxy adducts of CYP119 bound with LA measured after irradiation at 77 K using the 
441.6 nm excitation line. Here, relatively higher laser power, or possibly tighter laser focusing, apparently 
induced local heating on the frozen sample [48]. The acquired RR spectra exhibit an oxygen isotope sensitive 
mode at 772 cm−1, shifting to 733 cm−1 for the 18O2 sample, along with a 5 cm−1 downshift in D2O buffer; the 
frequency and H/D sensitivity permits confident assignment of this mode to the ν(O O) stretching mode of the 
hydroperoxo intermediate. The corresponding ν(Fe O) mode is seen at 569 cm−1 and shifts by 
27 cm−1 upon 18O2 substitution, possibly exhibiting a small H/D shift of ~1 cm−1. The accuracy of the absolute 
frequencies is about ±1 cm−1and it is noted that this is within the margin of error. This apparent strengthening of 
the Fe O bond, with its ν(Fe O) frequency of 569 cm−1, as compared to the Fe O bond of the peroxo 
intermediate (547 cm−1) is consistent with the formation of the hydroperoxo form [14,47]. It is also noted that 
previously published EPR studies of irradiated oxy adducts of substrate-free CYP119, acquired after annealing at 
150 K, showed formation of the hydroperoxo intermediate [21]. 

 
Fig. 4. Resonance Raman spectra of oxy CYP119 with LA after irradiation; A) 16O2/H2O, B) 18O2/H2O, C) 16O2/D2O, 
D) 18O2/D2O, and their difference traces. Total collection time was 6 h for each spectrum and ~ 1.4 mW laser 
power was used. 
 



In summary of this section, Table 1 compares the data for peroxo- and hydroperoxo intermediates of CYP119 
obtained in this work with similar data obtained previously on other cytochromes P450 (references in the Table 
2). The data show that bacterial P450s (CYP101 and CYP119) exhibit rapid proton transfer, readily forming the 
hydroperoxo- intermediate, behavior consistent with their propensity to facilitate hydroxylase chemistry. On the 
other hand, the multifunctional P450, CYP17, whose peroxo- intermediate has been implicated in the 
mechanism for lyase activity via nucleophilic attack on a susceptible C20– carbonyl of OH– PREG [11,12], 
interestingly, shows no tendency to form the hydroperoxo-intermediate when OH PREG is bound, even when 
annealing to 165 K, behavior that has been ascribed to the enhanced nucleophilicity, and therefore lyase activity 
of the peroxo-intermediate, owing to a particular H-bonding interaction of the 17-OH group with the proximal 
oxygen (Op) of the Fe-Op-Ot fragment [12]. 



Table 1. CYP 119 O O and Fe O stretching modes of cryoreduced oxy complexes relative to those observed other P450 enzymes. 

Cytochrome  ν(O
O) oxy 
(cm−1) 

 ν(O O) 
peroxo- 
(cm−1) 

 ν(O O) 
hydroperoxo- 
(cm−1) 

 ν(Fe
O) oxy 
(cm−1) 

 ν(Fe O) 
peroxo- 
(cm−1) 

 ν(Fe O) 
hydroperoxo- 
(cm−1) 

 

Buffer (see 
cited references 
for details) 

 H2O D2O H2O D2O H2O D2O H2O D2O H2O D2O H2O D2O 

CYP119 
this work 

16O2 
18O2 
 
16O2 
18O2 

1139 
1072 
 
1130 
1065 

1139 
1072 
 
1132 
1067 

7811 
7421 

7811 
7421 

772 
733 

767 
727 

535 
507 

535 
507 

547 
521 

547 
521 

569 
542 

568 
542 

CYP101 wild 
type [43,45] 

16O2 
18O2 
 
16O2 
18O2 

1139 
1073 
 
1131 
1066 

1139 
1073 

N.O. N.O. N.O. 
N.O. 

799 
759 

796 
755 

546 
515 

546 
515 

N.O. 
N.O. 

N.O. 
N.O. 

559 
532 

556 
528 

CYP101 
(D251N) mutant 
[14,45] 

16O2 
18O2 
 
16O2 
18O2 

1136 
1070 
 
1125 
1060 

1136 
1070 
 
1127 
1062 

792 
754 

792 
754 

774 
737 

770 
734 

537 
507 

537 
507 

553 
526 

553 
526 

564 
536 

562 
534 

CYP17A1 
Prog [11,12] 

16O2 
18O2 

1140 
1074 

1140 
1074 

N.O. 
N.O. 

N.O. 
N.O. 

772 
735 

768 
731 

536 
508 

536 
508 

N.O. N.O. N.O. 
N.O. 

575 
549 

572 
546 

CYP17A1 
17-OH Prog 
[11,12] 

16O2 
18O2 

1131 
1066 

1133 
1068 

790 
753 

790 
753 

771 
734 

768 
730 

542 
513 

542 
513 

562 
536 

561 
536 

576 
550 

574 
548 

CYP17A1 
Preg [11,12] 

16O2 
18O2 

1140 
1074 

1140 
1074 

802 
764 

802 
764 

775 
738 

770 
733 

535 
506 

535 
506 

554 
527 

553 
527 

572 
545 

569 
541 

CYP17A1 
17-OHPreg 
[11,12] 

16O2 
18O2 

1135 
1070 

1136 
1071 

796 
758 

796 
758 

N.O. 
N.O. 

N.O. 
N.O. 

526 
497 

526 
497 

546 
522 

546 
522 

N.O. 
N.O. 

N.O. 
N.O. 

1- requires special care in acquiring RR spectra to Avoid unintentional annealing. 

 



Table 2. Table of abbreviations. 

Abbreviation Explanation 
CYP119 Cytochrome P450 119 
CYP101/P450cam Cytochrome P450 101/Cytochrome P450cam 
CYP17 Cytochrome P450 17A1 
H/D Shift Hydrogen/deuterium Shift 
LA Lauric acid 
RR Resonance Raman 
Rz Reinheitszahl ratio 
ν(O O) Oxygen-Oxygen stretching mode 
ν(Fe O) Iron-Oxygen stretching mode 
Cam Camphor 
N.O. Not observed 

 

4. Conclusions 
This work presents an especially effective approach to study the reactive catalytic intermediates of the 
thermostable CYP119 with LA bound by means of coupling cryoradiolysis and resonance Raman spectroscopy. 
The dioxygen adduct was shown to possess two structural isomers, an H-bonded form exhibiting the ν(O O) 
mode at 1130 cm−1 and a non-H-bonded conformer at 1139 cm−1, both conformers exhibiting their ν(Fe O) 
modes near 534–535 cm−1. The peroxo-CYP119 species produced by radiolytic reduction of oxy-CYP119 exhibits 
a ν(Fe O) mode at 547 cm−1 and its ν(O O) mode at 781 cm−1, exhibiting no shift in D2O buffer, consistent 
with the assignment to the peroxo-intermediate. The ν(Fe O) mode of the hydroperoxo-CYP119 intermediate 
occurs at 569 cm−1, while the ν(O O) mode is observed at 772 cm−1, exhibiting a 5–6 cm−1 shift to lower 
frequencies in D2O, the relative positioning and H/D shifts being entirely consistent with data acquired for the 
hydroperoxo-intermediates seen for other P450s (see Table 1). These results for CYP119 are consistent with 
those obtained for other cytochromes P450 upon conversion of oxy- to peroxo- to hydroperoxo- intermediates; 
i.e., addition of an electron to the ferric superoxide species leads to weaker O O and stronger Fe O linkages, 
with protonation at the terminal oxygen of the Fe-O-O fragment of the peroxo-species increasing the strength of 
the Fe O linkage with further weakening of the O O bond. 
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