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Abstract 
Human cytochrome P450 CYP17A1 first catalyzes hydroxylation at the C17 position of either 
pregnenolone (PREG) or progesterone (PROG), and a subsequent C17−C20 bond scission to produce 
dehydroepiandrosterone (DHEA) or androstenedione (AD). In the T306A mutant, replacement of the 
Threonine 306 alcohol functionality, essential for efficient proton delivery in the hydroxylase reaction, 
has only a small effect on the lyase activity. In this work, resonance Raman spectroscopy is employed 
to provide crucial structural insight, confirming that this mutant, with its disordered proton shuttle, 
fails to generate essential hydroxylase pathway intermediates, accounting for the loss in hydroxylase 
efficiency. Significantly, a corresponding spectroscopic study with the susceptible lyase substrate, 17-
OH PREG, not only reveals an initially trapped peroxo-iron intermediate experiencing an H-bond 
interaction of the 17-OH group with the proximal oxygen of the Fe-Op-Ot fragment, facilitating peroxo- 
attack on the C20 carbon, but also unequivocally shows the presence of the subsequent hemiketal 
intermediate of the lyase reaction. 

Introduction 
Human cytochrome P450 CYP17A1 plays a critically important role in steroid hormone biosynthesis as 
an indispensable enzyme involved in the production of androgens.1, 2 Using pregnenolone (PREG) and 
progesterone (PROG) as substrates, this human enzyme catalyzes two sequential reactions, namely 
hydroxylation at the C17 position, and subsequently carbon–carbon bond scission between C17 and 
C20. The first reaction is typical for P450 chemistry and is driven by classical hydrogen abstraction by a 
ferryl high-valent intermediate termed Compound I which is followed by “oxygen rebound” that results 
in the addition of a hydroxyl group to the carbon chain of the substrate.3 The net result is the 
“insertion” of an oxygen atom into a C−H bond. Meanwhile, the mechanism of C−C scission reaction, 
and the nature of catalytically active intermediate involved in this step, are not completely resolved 
and continue to be a subject of discussion.4 Compound I driven catalysis utilizing hydrogen abstraction 
from C17 hydroxyl has been suggested based on experiments using oxygen surrogates5 and some 
model compounds6 although this possibility has been refuted.7 An alternative mechanism involving the 
peroxo-iron intermediate via nucleophilic attack on C20, as illustrated in Scheme 1, originally proposed 
by Akhtar and co-workers,4, 7, 8 has recently received substantial support in theoretical 
calculations9 and experimental studies10-13 as has been reviewed in detail.14, 15 
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Scheme 1 Cytochrome P450 17A1 enzymatic cycle and the pathway of formation of peroxo hemiketal following 
peroxo attack on C20 of the substrate (17OH-PREG). 
 

A critical difference between these two mechanisms of P450 catalysis is the obligatory requirement of 
two sequential protonation events at the distal oxygen atom of iron-coordinated dioxygen moiety, 
ultimately from solvent water, to form Compound I. The first converts the iron peroxoanion to the 
hydroperoxo with the second reducing the O−O bond order,16 breaking this bond, releasing water to 
form Compound I (CpdI). On the other hand, catalysis by the peroxoanion does not require, and would 
in fact be inhibited by, proton transfer to the distal oxygen. The efficient proton delivery mechanism 
for Cpd1 formation is known as an essential feature of productive P450 hydroxylase 
activity.17, 18 Specifically, the highly conserved acid-alcohol pair (Asp or Glu followed by Thr or Ser) in 
the I-helix near the heme iron oxygen and substrate binding site has been shown to be critical for 
supporting these protonation events. When absent, the substrate can provide the alcohol functionality 
in some cases19 or when CpdI is not used as in some prostaglandin biosynthetic steps.20 The role of the 
acid/alcohol pair has been revealed by numerous mutational studies. For example, in P450 CYP101 
replacing the threonine alcohol side chain with an alanine (T252A) abolished hydroxylation, releasing 
essentially all the reducing equivalents as hydrogen peroxide.21 Similar results were observed in other 
P450 systems. For example, mutations T268A in CYP102A1,22 T302A in CYP2B423 and T303A in 
CYP2E1,24 in most cases resulted in a dramatic perturbation of proton delivery mechanism and 
concomitant enzyme uncoupling. Reactions which can be driven by alternative reactive intermediates, 
such as the peroxo-ferric and hydroperoxo-ferric complexes, are usually not inhibited and sometimes 
even activated in these mutants.24 Taken together, these results suggest that comparison of the 
functional properties of other cytochromes P450 where this conserved Thr is mutated to Ala should 
provide useful mechanistic information about structure of catalytically active iron-oxygen intermediate 
involved in product turnover. 

In the human steroid metabolizing P450 CYP17A1 involved in androgen production,4, 8, 25 the 
corresponding acid/alcohol pair is E305 and T306. In order to explore the role of proton transfer in this 
system, both in the first step of hydroxylation at the C-17 position as well as in the subsequent carbon–
carbon lyase reaction, we mutated the threonine at position 306 to alanine.12 We compared the 
activity of the T306A mutant and wild-type CYP17A1 self-assembled into Nanodiscs for both 
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pregnenolone (Δ5) (PREG) and progesterone substrates (Δ4) (PROG) substrates in C-17 hydroxylation 
activity.12 We also compared the reactivity of 17-OH PREG and 17-OH PROG in the carbon-carbon bond 
scission (lyase) activity.12 These results, in agreement with earlier studies,26 demonstrated that the 
CpdI driven hydroxylation reaction is drastically diminished in the T306A mutant due to the perturbed 
proton delivery mechanism, while the C−C scission reaction for both substrates was not dramatically 
changed. This behavior is similar to other examples of mechanistic observations with this conserved 
threonine mutations in cytochromes P45023, 24 and can be considered as an indication of a definitive 
role played by iron-peroxo intermediate in CYP17A1 catalyzed C−C scission reaction. However, further 
experiments are needed to reveal the detailed mechanistic origin of this altered activity. 

In a series of publications, we described a key difference in the active site of P450 CYP17A1 with the 
17-OH substrates bound.10, 13, 27, 28 Critical is the positioning of the 17-OH group of the corresponding 
Δ4 and Δ5 substrates that allows hydrogen bonding of the substrate alcohol with the heme bound 
oxygen or peroxo fragment.10, 27, 28 Resonance Raman (rR) spectroscopy proved to be a most valuable 
tool to investigate the active site structure and hydrogen bonding network in CYP17A1 and many other 
heme proteins,29-31 with recent studies of cytochromes P450 effectively demonstrating its unique 
potential for revealing differential interactions of active site H-bond donors, including substrates, with 
the key Fe-O-O fragment of enzymatic intermediates.27, 32-35 Thus, in rR studies of WT CYP17A1,10, 13 it 
was clearly shown that the 17OH-PROG substrate, with its relatively low lyase efficiency, includes 
donation of an H-bond to the terminal oxygen (Ot) of the Fe-Op-Ot fragment, whereas the 17-OH PREG 
substrate, more efficiently undergoing the C−C bond cleavage reaction, adopts a position with its OH-
fragment oriented toward the proximal oxygen (Op). This impressive level of structural definition 
provides crucial insight into functional variability, as follows. Generally, H-bonding interactions with the 
bound peroxo-moiety increase its electron density by polarization of the Fe-O-O fragment, as 
evidenced by a lowering of the ν(O-O) stretching mode for both lyase substrates with their H-bonding 
OH-fragments. An H-bonding interaction with the terminal oxygen atom (Ot) of the Fe(Op-Ot) fragment 
significantly lowers its nucleophilicity, diminishing lyase reactivity and enhancing the probability for 
eventual protonation to form the hydroperoxo- intermediate and commitment to Cpd I formation. 
Conversely, an Fe-Op-Ot fragment experiencing an H-bonding interaction with the proximal oxygen 
(Op), as for the enzyme bound with OH PREG, retains significant nucleophilicity of the terminal (Ot) 
oxygen, thereby facilitating peroxo-attack on the C20 carbonyl of this substrate.9, 16, 36 Finally, it is 
important to emphasize that these previously reported spectroscopic results obtained for the WT 
CYP17 samples provided the first direct evidence for the key hemiketal intermediate (shaded area of 
Scheme 1) expected for this peroxo-mediated lyase reaction.10, 13 As will be seen below, corresponding 
data obtained herein for the T306A variant of CYP17 document the appearance of this same 
intermediate, confirming the competence of this variant in catalyzing this critical lyase reaction. 

Given the significance of a stable membrane bilayer anchor for the protein involved and the need for 
maintaining well-behaved ligand binding and stabilizing the unstable intermediates,11, 37 we combined 
the Nanodisc system with this powerful rR technique to evaluate the role of the T306 residue of the 
conserved acid/alcohol pair in the active site of human CYP17A1. In this publication, rR spectra of the 
T306A variant of CYP17A1, in the presence of both the hydroxylase (PREG) and lyase (OH-PREG) 
substrates, are reported. The results obtained for the unstable dioxy- and peroxo- intermediates 
demonstrate that the proton shuttle is severely disordered, with no stable ferric-hydroperoxo 
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intermediate observed in the presence of hydroxylation substrate PREG. On the other hand, the 
carbon–carbon lyase activity is maintained in the mutant, as reported earlier.12 We have now 
documented, by rR spectroscopy, the hydrogen bonding interactions involving the 17-hydroxyl group 
and associated active site water molecules. The ferrous dioxygen adduct is seen to proceed through 
vibrationally characterized peroxo- and telltale peroxo-hemiketal10 intermediates, which eventually 
lead to the DHEA product. Of special interest is the fact that the behavior of the iron-oxygen vibrational 
frequencies, ν(Fe−O), for the peroxo-intermediates of WT and T306A variant are consistent with the 
previously reported variations in the lyase efficiencies of the two proteins,12 suggesting that the 
efficiency of the lyase reaction is at least partially controlled by the strength and directionality of this 
H-bonding interaction. 

Results and Discussion 
As demonstrated in many previously published works, resonance Raman (rR) spectroscopy has been 
proven to be a powerful method to define the active site structure of Cytochrome P450s, being 
especially effective for the characterization of the status of the Fe-O-O fragment in unstable enzymatic 
intermediates.10, 13, 15, 27, 28, 35, 38-43 Inasmuch as the ν(Fe−O) and ν(O−O) internal modes of the Fe-O-O 
fragment are often weak, and sometimes obscured by the more strongly enhanced heme modes, 
plotting the 16O2/18O2 difference spectrum is helpful in revealing these key modes, which provide 
crucial structural information related to the hydrogen bonding configurations in the active site. 

1 Initial oxygenated intermediate trapped at 77 K 
As shown in Figure 1 A, the dioxygen adduct of the pregnenolone (PREG) bound T306A mutant of 
CYP17A1 exhibits an isotope sensitive ν(16O−16O) mode at 1137 cm−1, with its corresponding ν(18O−18O) 
mode appearing at 1070 cm−1. Also seen are the ν(Fe−16O) mode observed at 537 cm−1, with its 
corresponding ν(Fe−18O) mode appearing at ≈507 cm−1. These isotopic shifts are in reasonable 
agreement with those theoretically predicted.44 These data are to be compared with the rR spectra 
shown in Figure 1 B for the Nanodisc embedded P450 CYP17A1 (ND: CYP17) T306A mutant bound with 
the lyase substrate, OH-PREG. The ν(16O−16O) mode appears at 1134 cm−1, with its corresponding 
ν(18O−18O) stretching mode occurring at 1066 cm−1. The ν(Fe−16O) mode appears at 530 cm−1, with the 
corresponding ν(Fe−18O) mode at 502 cm−1, noting that this internal mode exhibits a frequency ≈7 
cm−1 below that observed for the hydroxylase substrate, PREG. 
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Figure 1 The rR spectra of 16O2-18O2 difference plots of ND: CYP17A1 T306A samples with PREG (A) and 17OH-
PREG (B). Spectra were measured using the 413.1 nm excitation line. 
 

As mentioned earlier, the behavior observed for these key vibrational modes serves as a sensitive 
structural probe of this important Fe-O-O molecular fragment. The dioxygen adduct of the OH PREG-
bound T306A protein, with its H-bonding 17-OH group, exhibits a ν(O−O) mode which is shifted to 
lower frequency compared to the PROG-bound enzyme, consistent with that seen for H-bonded forms 
of other oxy-P450 enzymes,33, 41 and carefully designed model compound studies.45, 46 Importantly, 
even deeper insight is gained from comparison of the observed ν(Fe−O) modes of these oxy-
intermediates. Thus, as was shown in earlier experiments,28 and supported by computational 
studies,35, 47, 48 H-bonding interactions with the terminal oxygen atom (Ot) of the Fe-Op-Ot fragment 
leads to shifts to higher frequency compared to non-H-bonded fragments, while H-bonds to the 
proximal oxygen (Op) causes shifts to lower frequency. In the present case, the 7 cm−1 shift seen for 
OH-PREG, as compared to the value observed for the PREG sample, confirms the presence of a 
hydrogen-bonding interaction with the proximal oxygen of the Fe-Op-Ot fragment, as proposed in 
Scheme 2.35 Such behavior is similar with that observed for the wild-type CYP17A1 protein,10, 28 where 
the ν(Fe−O) mode of hydroxylated substrates is 9 cm−1 downshifted from that for the non-H-bonding 
PREG sample.28 The essential point is that mutation of this highly conserved Thr306 residue, while 
possibly causing some rearrangements of the active site structure, apparently results in the persistence 
of an H-bonding interaction of the substrate, or some other active site group, with the proximal oxygen 
atom of the Fe-Op-Ot fragment, an interaction that can have important functional consequences (vide 
supra). 

 

https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0033
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0041
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0045
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0046
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0028
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0035
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0047
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0048
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-fig-5002
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0035
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0010
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0028
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0028
https://chemistry-europe.onlinelibrary.wiley.com/cms/asset/016754fa-7231-4070-ac24-cdd6040de976/chem202003181-fig-0001-m.jpg


 
Scheme 2 Cytochrome P450 17A1 protein-substrates H-bond interactions. 
 

2 The peroxo/hydroperoxo states: Irradiated samples of ND:CYP17A1 T306A bound with 
PREG 
Focusing on the rR spectra obtained for the irradiated samples, the 16O2−18O2 difference trace of the 
irradiated oxygenated ND: CYP17A1 T306A mutant containing PREG is shown in Figure 2. A set of 
oxygen isotope sensitive modes is clearly seen, with a ν(16O−16O) mode occurring at 811 cm−1, and its 
corresponding ν(18O−18O) at 774 cm−1; a ν(Fe−16O) mode is observed at 552 cm−1, with its ν(Fe−18O) 
mode at 527 cm−1. Based on the results from many previous rR studies of peroxo- and hydroperoxo- 
species in various heme proteins,15, 33, 39, 42 these modes are most reasonably assigned to a ferric 
peroxo-intermediate. 

 

 
Figure 2 rR spectra data for irradiated dioxygen adducts of PREG bound CYP 17A1(T306A). Spectra were 
measured with 442 nm excitation at 77 K. 
 

As shown in Figure S1 in the Supporting Information, the rR spectral results demonstrate that 
annealing of the PREG-bound T306A sample to 165 K reveals no evidence of oxygen isotope sensitive 
modes, other than those associated with residual dioxygen adduct appearing at 1137 and 1070 cm−1; 
i.e., the oxy precursor species that were not cryoreduced in the irradiation chamber and, being 
relatively stable, persist even at higher temperatures. It is noted that this behavior represents a drastic 
departure from the wild-type (WT) enzyme, where in earlier studies it was shown that the peroxo- 
intermediate of the PREG-bound sample of WT ND: CYP17A1 begins to convert to the hydroperoxo-
intermediate even at 77 K, converting fully to the protonated species at 165 K.10 This present result 
reflects the well-established tendency for the TxxxA mutation of the highly conserved “proton shuttle” 
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assembly of many P450s, including the T252A variant of CYP101,49-52 to disarrange productive proton 
transfer and destabilize the iron-hydroperoxo intermediate. While the hydroperoxo-intermediate was 
observed for the T252A variant of CYP101, our results for T306A CYP17 provide no evidence for its 
formation at 77 K or at 165 K, though its formation and disappearance at intermediate temperatures 
cannot be ruled out. However, as was the case for the T252A mutation of CYP101, the T306A 
replacement in CYP17 presumably causes destabilization of this species, preventing subsequent 
protonation-assisted O−O bond cleavage and formation of Compound I. In the absence of effective 
proton delivery, the peroxo-intermediate degrades at higher temperatures, being released eventually 
as a hydrogen peroxide by-product due to the disordered proton shuttle assembly and highly 
decoupled hydroxylase chemistry.18-21, 49-52 

3.Irradiated samples of ND:CYP17A1 T306A bound with OH-PREG 
Figure 3 A shows the rR spectra of the 17OH-PREG-bound CYP17A1 T306A mutant, where 
this lyase substrate contains an additional H-bonding 17-OH group. The initial product of cryoradiolysis 
exhibits a clear positive band at 795 cm−1, shifting to lower energy by 37 cm−1 upon 18O2 substitution. 
The corresponding ν(Fe−16O) mode occurs at 547 cm−1(Δ16/18=25 cm−1). As summarized above for the 
dioxygen adducts, a large amount of structural information is realized by comparing these results with 
those obtained for the hydroxylase substrate, PREG, given in Figure 2 and Figure S1. The 16 cm−1 down 
shift of the ν(O−O) mode, relative to that of the PREG-bound enzyme, documents the presence of an 
H-bonded ferric peroxo- species, while the ≈5 cm−1 lower frequency of the ν(Fe−O) frequency seen for 
the OH-PREG-bound T306A peroxo form compared to that of the PREG-bound sample (552 cm−1), 
suggests the presence of an H-bonding interaction between the -OH group of this lyase substrate and 
the proximal oxygen (Op) of the Fe-Op-Ot fragment;10, 13 i.e., this H-bonding pattern persists in the 
peroxo species. As discussed above and in several publications,16, 28, 36 such an H-bonding arrangement 
retains substantial nucleophilicity of the terminal oxygen atom (Ot) of the peroxo group favoring lyase 
catalysis. 
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Figure 3 rR difference spectra data for irradiated and annealed dioxygen adducts of 17OH-PREG bound CYP 
17A1(T306A). (A) The rR difference spectrum of irradiated oxy samples. (B) The corresponding samples after 
annealing to 165 K and spectra were measured with 442 nm excitation line. (C) The corresponding samples after 
annealing to 165 K and spectra were measured with 406.7 nm excitation line. 
 

Given the results obtained for the hydroxylase substrate, PREG, it is not surprising that, even upon 
annealing the sample containing OH-PREG to 165 K, the rR spectra show no evidence for formation of 
the hydroperoxo- intermediate (Figure 3 B), where it is seen that only the modes associated with the 
peroxo-intermediate are retained. However, it is interesting to note that the intensity of the ν(O−O) 
mode of the peroxo- intermediate (795 cm−1) has decreased relative to the intensity of the 1134 
cm−1 mode observed for the residual oxyP450 precursor; i.e., the remaining dioxygen adduct that was 
not reduced in the irradiation chamber, and is relatively stable even at temperatures above 165 K, 
provides a reliable internal standard to compare the amount of the peroxo- intermediate before and 
after annealing. The evident decrease in the amount of the peroxo-intermediate signals a decay of this 
species and possible conversion to another intermediate that is not enhanced with 442 nm excitation. 
To this point, it is noted that earlier rR spectroscopic results obtained for the WT protein, using violet 
excitation lines (406.7 nm), documented the presence of the intermediate depicted in the center of 
Scheme 1,10, 13 a species which spontaneously converts to the DHEA lyase product.10 

Similar experiments were conducted here for the T306A mutant, using the 406.7 nm excitation line of 
the krypton ion laser. The rR difference spectrum for the same OH-PREG-bound T306A sample that had 
been annealed to 165 K is shown in Figure 3 C. There it is seen that the ν(16O−16O) and ν(Fe−16O) modes 
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associated with a new intermediate are observed at 786 cm−1 and 577 cm−1, a spectral pattern almost 
identical with that obtained for the WT enzymatic intermediate depicted in the center of Scheme 1. It 
is important to emphasize that such results are in good agreement with the earlier functional studies 
demonstrating that the T306A mutation of CYP17A1 dramatically diminished the hydroxylase activity, 
with the product formation rate reduced by 94 %.12 However, the C−C lyase chemistry conducted by 
CYP17A1 T306A mutant was not largely impacted, showing a similar rate of NADPH oxidation (21 vs. 17 
nmol min−1 nmol−1 P450 for WT and T306A mutant) and a slight different coupling efficiency (4 % vs. 
2 % for WT and T306A mutant).12 This important finding reveals that the T306A CYP17A1 variant, for 
which the proton shuttle is disordered and unable to support Compound I formation, maintains lyase 
activity via a nucleophilic peroxo-intermediate (Figure 3 B) and remains competent to facilitate the C−C 
bond cleavage reaction, forming the same key peroxo-hemiketal intermediate (Figure 3 C) depicted in 
Scheme 1 for the WT enzyme. 

3 Structural insight for the mechanism of lyase activity in CYP17. 
The rR spectroscopic studies described in this publication using the T306A mutant of human P450 
CYP17A1 incorporated into Nanodiscs (ND:CYP17A1 T306A) containing the hydroxylase substrate, 
PREG, clearly demonstrate that the crippled proton shuttle assembly of this mutant, like TxxxA variants 
of many P450s,21, 53 fails to stabilize the iron-hydroperoxo intermediate, which is required for a 
productive hydroxylase pathway. This accounts for the 94 % loss in hydroxylase efficiency. On the other 
hand, the present rR studies of this enzyme bound with the lyase substrate, 17-OH PREG, reveal the 
presence of an initially trapped peroxo-intermediate experiencing an H-bond interaction of the 17-OH 
group with the proximal oxygen of the Fe-Op-Ot fragment, an interaction which facilitates the lyase 
reaction.28 It has not escaped our attention that the smaller H-bond induced shift of the ν(Fe-Op) mode 
observed for the mutant (≈5 cm−1) is approximately one half of that observed for the WT enzyme (≈9 
cm−1) (see Table 1), mirroring the coupling efficiency observed for this reaction (about 1:2, 
respectively).12 This observation is consistent with the proposal that the efficiency of the lyase reaction 
is at least partially controlled by the strength and directionality of this H-bonding interaction, critically 
depending upon substrate positioning with respect to dioxygen moiety.10, 13 

https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-fig-5001
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0012
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0012
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-fig-0003
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-fig-0003
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-fig-5001
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0021
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0053
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0028
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-tbl-0001
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0012
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0010
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202003181#chem202003181-bib-0013


Table 1. Summary of the ν(Fe−O) and ν(O−O) Modes in different intermediates for Wild-Type and T306A CYP17A1 
  Oxy 

complex 
 Peroxo-

intermediate 
 Hydroperoxo-

intermediate 
 Hemiketal-

intermediate 
 

  ν(Fe−O) ν(O−O) ν(Fe−O) ν(O−O) ν(Fe−O) ν(O−O) ν(Fe−O) ν(O−O) 
WT PREG 535 1140 554 802 572 775 NA NA 
WT PROG 536 1140 NA NA 575 772 NA NA 
WT 17OH-
PREG 

526 1135 546 796 NA NA 579 791 

WT 17OH-
PROG 

542 1131 562 790 576 771 573 785 

                  
T306A PREG 537 1137 552 811 NA NA NA NA 
T306A 17OH-
PREG 

530 1134 547 795 NA NA 577 786 

 



Conclusion 
While the WT CYP17A1 efficiently catalyzes both the hydroxylase and lyase reactions of susceptible 
substrates, the T306A mutant, with its disordered proton delivery network, exhibits only residual 
hydroxylase activity, but retains significant lyase efficiency.12 The resonance Raman spectroscopic 
studies conducted here confirm that, in the presence of the typical hydroxylase substrate PREG, this 
variant fails to stabilize the key ferric-hydroperoxo intermediate, thereby accounting for the greatly 
diminished hydroxylase efficiency. Most significantly, this mutation did not significantly affect lyase 
activity with the substrate, 17OH-PREG; i.e., upon annealing to 165 K, the peroxo-ferric complex, 
documented at 77 K, converts to the hemiketal intermediate, whose characteristic Raman signature 
was observed with 406.7 nm excitation, a result quite similar to our previous results for the wild-type 
CYP17A1 protein.10 This new resonance Raman spectroscopic result provides additional evidence for 
the peroxo-mediated C17−C20 scission mechanism of 17OH-PREG in CYP17A1. 

Experimental Section 
Details for expression and purification of CYP17A1 T306A mutant, incorporation into Nanodiscs, 
preparation of samples for rR Spectroscopy and the resonance Raman measurements can be found in 
the Supporting Information. 
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