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CHAPTER 1 INTRODUCTION 

 Combustion is currently the primary source of power for transportation and will likely 

remain so during the next few decades due to its considerable power density and our current 

infrastructure.  Despite its advantages, combustion produces harmful greenhouse gases such as 

carbon dioxide, oxides of nitrogen and volatile organic compounds (VOCs) which impact the 

radiative properties of the atmosphere, resulting in adverse effects on the climate.  While 

substantial emissions reductions have been achieved over the past few decades, more progress is 

needed to meet future regulations and mitigate/reverse unfavorable climate trends that have 

already emerged.  Despite the fact that engines are primary greenhouse gas emitters, and that real-

world engine operation is predominantly transient, the relationships between engine speed/load 

history and emissions are currently not well understood.  This is especially true of speciated VOC 

emissions, which are difficult to accurately measure in a time-resolved manner.  Presented herein 

is the development, validation and application of an Unscented Kalman filter (UKF) for obtaining 

time-resolved, comprehensive estimations of transient engine exhaust composition from Fourier 

transform infrared spectroscopy (FTIR) measurements.  The UKF is a model-based Bayesian 

estimator which effectively filters out transient biasing effects that arise during FTIR 

measurements of chemically evolving samples due to recirculation and signal non-stationarity.  

By improving the fidelity of transient speciation measurements, clearer insights into the 

relationships between engine operation conditions and VOC emissions can be uncovered.   

 This dissertation is outlined as follows.  First, background information regarding transient 

VOC emissions is provided in Chapter 2.  This includes specific atmospheric impacts and 

existing experimental investigations of VOC emissions, as well as an overview of diagnostic 

techniques capable of comprehensive speciation.  FTIR spectroscopy is then introduced, followed 

by a discussion the biasing effects of sample recirculation and signal non-stationarity, which limit 

the applicability of this technique to transient analysis.  This discussion motivates the 
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development of a UKF for effectively filtering out transient biasing effects within FTIR 

measurements.  The UKF is initially formulated in Chapter 3, which begins with a discussion of 

the underlying theory of Bayesian estimation and the fundamental equations within the UKF.  

This is followed by the development of a simple model of the mixing dynamics within a FTIR 

gas cell, which is validated using computational fluid dynamic and mixing network simulations.  

The mixing model is incorporated within the UKF to combat recirculation effects by estimating 

inlet composition according to the evolution of FTIR gas cell composition measurements.  

Chapter 4 exclusively addresses signal non-stationarity effects, which were unknown at the onset 

of this work.  The chapter begins with an experimental illustration of non-stationarity bias, which 

introduces artificial oscillations into measured transient composition profiles.  These oscillations 

are shown to be caused by uneven weighting of composition values that occur when the moving 

mirror within the Michelson interferometer is near the centerburst position, and alternating scan 

directions.  A mathematical proof of uneven weighting during transient measurements confirms 

these observations, which is expanded to predict centerburst weighting values for unique species.  

The UKF is modified to include the effects of centerburst weighting.  Experimental validation of 

the modified UKF is performed by flowing known, transient quantities of acetylene and 

propylene through a FTIR, and filtering the resulting measurements.  Chapter 5 details an 

experimental investigation of transient effects on the emissions of various VOCs (such as 

cyclohexane, ethanol, pentane, acetylene, ethylene, formaldehyde and methane) from a gasoline 

engine using FTIR spectroscopy and the UKF.  The findings from each chapter are then 

summarized in Chapter 6, which also provides future research suggestions.  These include 

opportunities for improving the UKF and potential experimental investigations where the UKF 

could provide important insight. 
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1.1 Original Contributions 

 A brief summary of the original research contributions of this dissertation are outlined 

below. 

• Development and validation of a Bayesian estimator for filtering out transient biasing 

effects from FTIR measurements. These biasing effects emerge due to sample 

recirculation and signal non-stationarity of the incident IR beam.  This tool improves 

estimated engine exhaust composition from FTIR measurements during transient 

operation. 

• Identification of period-dependent artifacts in FTIR measurements of chemically 

evolving samples.  These artifacts occur due to non-stationarity of the incident IR beam, 

which results in the measured/calculated IR spectrum being unevenly weighted by 

spectral intensities during low levels of optical path difference.  The magnitude of these 

artifacts alternate for every other measurement, and depend on whether the moving 

mirror within the interferometer is scanning in the forward direction (increasing optical 

path difference) or backward direction (decreasing optical path difference). 

• Mathematical proof that the Fourier transform of an interferogram from a non-stationary 

IR beam is unevenly weighted by spectral intensities that occur at low levels of optical 

path difference, and that the degree of weighting scales with spectral broadening.  Thus, 

centerburst weighting magnitude varies from species to species, with greater centerburst 

weighting occurring for measurements of broadly absorbing species.  These mathematical 

formulations are corroborated by experimental observations. 

• Experimental evidence that volatile organic compound emissions from a spark-ignited, 

gasoline engine are substantially influenced by transient and historical operation, with the 

degree of influence depending on the particular species and whether it’s a fuel component 

or combustion intermediate. 
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CHAPTER 2 BACKGROUND AND MOTIVATION 

2.1 Volatile Organic Compound Emissions 

 VOCs are a group of carbon-based, gaseous compounds that participate in atmospheric 

photochemical reactions [1].  VOC emissions substantially influence the radiative properties and 

quality of the atmosphere, most notably by reacting with nitrous oxides (NOx) to produce 

tropospheric ozone, a potent greenhouse gas and fundamental component of smog [2].  

Atmospheric lifetimes of other greenhouse gases are also increased in the presence of VOCs, due 

to competition for oxidants [3].  Furthermore, VOCs form secondary aerosols which scatter 

sunlight and promote cloud formation [4], [5].  The extent to which particular VOCs influence the 

atmosphere depend on many factors such as atmospheric lifetime, reactivity, and reaction 

mechanisms [6], [7].  For example, numerous studies have found that aromatics and alkenes 

possess high ozone creation potential relative to other VOC groups [8]–[10].  Certain VOCs are 

also highly toxic [11].  For instance, exposure to benzene and 1-3 butadiene is linked with 

elevated cancer risk [12]–[15].  Thus, species distribution should be considered when addressing 

the impact of anthropogenic VOC emissions. 

 According to the National Emissions Inventory, vehicles were responsible for over 23% 

of anthropogenic VOCs emitted in the U.S. in 2014, with the other major contributors being 

industrial processes and fires [16].  Even greater contributions from vehicles are typical in urban 

areas [17]–[21], where elevated levels of smog and poor air quality are common [22].  For 

example, approximately 71 and 80% of VOC emissions were attributed to mobile sources in an 

air quality study of two regions in Los Angeles [18].  Vehicle and marine vessel-related sources 

contribute 40-54% of the VOC emissions in Hong Kong in an air quality study that transpired in 

2006-2007 [19].  Furthermore, exhaust and evaporative emissions from gasoline vehicles were 

found to comprise 52% of the VOC emissions in Beijing from ambient composition 
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measurements conducted in August 2005 [20].  Thus, vehicles have become a primary target for 

reducing VOC emissions, as evidenced by the increasingly stringent regulations being placed on 

VOC emissions in the U.S.  The maximum allowable fleet average non-methane organic 

compound (NMOG)+NOx emissions for a light-duty vehicle manufacturer will decrease from 79 

to 30 mg/mile from 2018 to 2025 under the Tier 3 regulations of the U.S. EPA in the absence of 

policy change [23].  Similar reductions are in place for heavy-duty vehicles.  In 2012, the 

California Air Resources Board (CARB) implemented the LEV III emissions regulations, which 

tighten existing hydrocarbon emissions limits from vehicles.  Under LEV III standards, all new 

passenger cars (including light-duty trucks and medium-duty passenger vehicles) with model 

years between 2015 and 2019 must emit fewer than 160 mg/mile of (NMOG)+NOx and 4 mg/mi 

of formaldehyde [24].  Even stricter reductions are imposed for vehicles within the ULEV and 

SULEV ((Super) Ultra-Low Emissions Vehicle) categories.  Achievement of these VOC 

emissions reductions requires further progress in engine efficiency and control strategies.  Such 

progress necessitates elucidation of the relationships between engine conditions and the quantity 

and distribution of VOC emissions.   

 Numerous studies have explored the relationships between VOC emissions and engine 

speed/load.  Wang et al. measured the comprehensive composition of exhaust gas collected from 

three light-duty gasoline vehicles operating under the ECE and EUDC test cycles using gas 

chromatography-mass spectrometry (GC-MS) [25].  It was found that the VOC emissions under 

the ECE, an urban, low speed driving cycle are 16 times greater than the VOC emissions of the 

EUDC, a faster, suburban driving cycle.  In addition, aromatics and alkanes are the most emitted 

groups during ECE and EUDC tests, comprising 38 and 37% of the distribution, respectively.  

Higher levels of the carcinogens toluene and benzene were also detected in the EUDC tests.  

Nakashima et al. measured concentrations of 54 different VOCs from exhaust from three gasoline 

vehicles operating under nine different driving cycles using gas chromatography-flame ionization 

detection [26].  The distributions of alkanes, alkenes, aromatics and aldehydes vary according to 
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driving cycle.  For “cold” driving cycles, the alkanes and alkenes are present in roughly equal 

quantities in exhaust samples, while alkanes are dominant in “hot” cycles.  In a review of VOC 

emission studies in China, Wang et al. compares VOC distributions of emissions for vehicles 

operating at idle and a steady speed of 20 km/hr [27].  It was found that alkanes (66%) and 

alkenes (50%) are dominant during idle and steady operation, respectively.  Ethylene and 

propene, among a few other VOCs are present in high quantities in the idle tests, while VOC 

distribution is more uniform during steady operation. 

 The studies presented above illustrate that species distribution is a strong function of 

engine operating conditions.  This suggests that speed/load points can be strategically selected 

within engine control algorithms to achieve emissions with desired VOC distributions.  However, 

the development of such an algorithm requires a direct input-output relationship between engine 

speed/load and emissions.  The emissions data from the studies presented above are from batch 

measurements, which provide total emissions over an operational regime but provide no 

information on emissions at specific speed/load points.  Furthermore, previous research has 

shown that instantaneous and integrated engine emissions are a function of the speed-load history 

of an engine for real-world driving conditions [28]–[30], which are largely transient [31].  Thus, a 

thorough understanding of transient effects on VOC emissions is required to formulate a model 

that maps emissions to engine operational conditions.  While the literature currently lacks direct 

illustrations of transient effects on comprehensive VOC emissions, an abundance of time-

resolved, transient emissions data of major species, particulates and a few selective VOCs exist.  

A review of these studies is provided below.  

2.2 Transient Engine Emissions   

 Numerous research efforts have explored the differences between engine emissions 

during steady and transient operation in a given speed/load regime.  Some studies have gone a 

step further and attempted to model transient effects to ultimately predict emissions during a 
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given driving cycle.  However, few of these studies have investigated transient effects on VOC 

emissions distribution, despite ample evidence of these effects on individual VOCs, major species 

and particulates.  Thus, to illustrate the future opportunities for uncovering, predicting and 

controlling transient effects on VOC distribution, a general review of transient engine emissions 

is provided.  This includes an overview of experimental examinations of transient emissions, as 

well as existing modelling techniques that could be applied to predict transient VOC emissions 

given sufficient time-resolved measurement data.   

 Gullet et al. measured benzene and carbon monoxide (CO) emissions for cold starts of a 

medium duty diesel engine operating at power output of 45 kW [32].  The maximum benzene and 

CO emissions measured during startup are 20 and 3 times greater than the emissions during 

steady-state, respectively.  These elevated emissions during the cold start are indicative of 

incomplete combustion during the warm-up process, which is mostly attributed to reduced 

temperatures and greater fuel injection mass within the engine.  A cold start is an extreme 

example of a speed/load change.  Numerous examples of the influence of gradual or minor 

speed/load changes on emissions also exist in the literature.  Hagena et al. studied NOx and 

particulate emissions from a diesel engine for tip-ins from 1 to 9 bar at varying ramp rates [33].  

Particulate emissions during an instantaneous load change reaches values 10 times greater that of 

a tip-in spanning 5 seconds.  Furthermore, predictions from a quasi-steady engine map 

underpredict the peak particulate and NOx emissions by about an order of magnitude and 33%, 

respectively.  In another work, positive and negative speed and load ramps were applied to two 

turbocharged non-road diesel engines [34].  Unburned hydrocarbons (HC), CO and NOx 

emissions during the ramps differ significantly (by factors of 2 or 3 in some cases) from the 

steady-state emissions for a given speed/load point, with the magnitude of these differences 

scaling with ramp rate.  For most of the cases, emissions increase for both positive and negative 

ramps.  Increased emissions during ramps is partially attributed to a time-lag in the turbocharger, 

which supplies additional air to the engine during load increases.  This time-lag leads to non-ideal 
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equivalence ratios within the engine, and is a reoccurring problem in turbocharged diesel engines 

[35], [36].   

 Speed/load history has also been demonstrated to alter gasoline engine emissions.  In one 

study, benzene emissions were measured for a variety of gasoline-driven EURO-2 vehicles driven 

on the European UDC and U.S. FTP cycles using chemical ionization mass spectrometry [37].  

To quantify the effects of velocity/acceleration, the data were sorted into different velocity 

classes.  Emissions within identical velocity classes differ substantially for varying levels of 

acceleration, illustrating the influence of speed/load history.  Post-catalyst concentrations of 

benzene within the fastest velocity bin vary by more than 100% between different acceleration 

values.  For slower speeds, benzene emissions fluctuate between negligible and substantial (>20 

ppm) concentrations at negative and positive accelerations, respectively.  In work by Heeb et al., 

emissions of NO, nitrogen dioxide (NO2) and ammonia (NH3) from gasoline-fueled Euro-3 and 

Euro-4 passenger cars were measured using chemical ionization-mass spectrometry for 7 

different driving cycles [38].  It was found that acceleration, deceleration and gear shifts result in 

elevated emissions factors for NO and NH3.  Maricq et al. studied transient effects on mass and 

size distributions of particulate emissions from 21 gasoline vehicles under the FTP driving cycle 

[39].  Peaks in particulate emissions from this study correspond to periods of acceleration.  

 While time-resolved measurements of speciated emissions during transient operation are 

limited due to the difficulties associated with such measurements [40], there are a handful of 

techniques capable of transient speciation.  The following is a brief review of studies where 

transient speciation of engine exhaust is conducted.  In a study by CARB, a group of 20 light duty 

gasoline vehicles with classifications ranging from Tier 0 to partial-zero emissions (PZEV) are 

tested on the Unified Cycle (UC) [40].  Transient speciation measurements are executed at 

intervals of 6 seconds using proton-transfer-reaction mass spectrometry, which show that an 

overwhelming majority of total benzene, acetaldehyde and aliphatic compounds emissions during 

a driving cycle are emitted during the cold start.  Gierczak et al. also explored cold start emissions 
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of various VOCs using Fourier transform infrared spectroscopy [41].  They found elevated levels 

of ethanol, acetaldehyde, formaldehyde, and non-methane hydrocarbons during the first 100 

seconds of the FTP driving cycle.  In another study, compositions of benzene, toluene and C2-

benzene from emissions of various vehicles within the Swiss car fleet were measured during a 

driving cycle using chemical ionization-mass spectrometry [42].  Mixing ratios between these 

three species vary considerable throughout a driving cycle due to velocity and acceleration 

effects.  Lastly, emissions of 27 gas-phase species from a 1999 Toyota Sienna minivan were 

measured using a portable Fourier transform infrared spectrometer [43].  Emissions of each 

species behave differently throughout the driving cycle, although spikes in toluene and m-xylene 

emissions occur during the cold-start, and 1,3 butadiene and benzene emissions rise steadily 

throughout. 

 The studies outlined above clearly indicate that transient effects impact engine emissions.  

For future engine designs and control algorithms to be updated to reduce VOC emissions, these 

transient effects must be modelled.  Below is a review of various transient emissions modelling 

techniques that could be applied to predict VOC distributions given sufficient time-resolved, 

transient VOC measurement data.  

2.2.1 Emissions Modelling 

 Predictive modelling is a key element of engine design and operation optimization [44], 

[45].  Due to the vast number of operational points of an engine, it is extremely burdensome to 

experimentally optimize each operational parameter (i.e. fuel injection timing, injection mass, 

exhaust gas recirculation level and boost pressure for diesel engines, etc.) for a sufficient number 

of speed/load points.  This task is even more formidable if transient effects are to be captured, 

since experiments at the same speed/load point must be repeated for numerous speed/load 

histories.  Hence, models are often employed for this purpose.  Predictive engine models vary 

appreciably in approach and complexity.  One of the most common approaches is quasi-steady 
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engine mapping, where engine performance is optimized for a limited number of steady-state 

speed/load points, and the optimal parameters for the remaining points are estimated using 

binning or interpolation [46]–[49].  While this method is simple and efficient, it fails to account 

for speed/load history and provides an overly-simplified and inaccurate portrayal of the 

relationship between operating parameters and performance.   

 For example, in work by Ericson et al., quasi-steady maps of fuel consumption, CO, HC, 

NOx and particulate matter (PM) were developed for three Euro 3-class diesel engines using 

steady-state experiments [46].  These values are compared with fuel consumption and emissions 

from experiments for four different transient cycles.  Discrepancies of 60-70% between the 

transient experimental values and those predicted from the quasi-steady model are common.  

Turbocharger lag is believed to contribute to these discrepancies, as the resulting fuel-richness 

within the engine during a load ramp yields incomplete combustion.  To account for this effect, 

an empirical relationship between turbocharge delay and load rate was developed.  However, 

while this method improves transient CO emissions predictions significantly, little to no 

improvement is seen for PM and HC in most cases.  Other various modifications to the quasi-

steady model exist in the literature [46], [50]–[52].  In a study by Bishop et al., emissions maps 

for three different diesel-powered vehicles were generated using experimental data from transient 

driving cycles [50].  Each measured species from an experiment was binned according to the 

current speed and load.  The emissions value assigned to that speed/load bin is the average of all 

measured values whose speed/load lie within that bin.  Cumulative CO, CO2 and NOx predictions 

from this approach are shown to agree with experiments over entire driving cycles.  However, 

there are substantial errors in instantaneous emissions at most points.  These results are likely 

explained by the cumulative fashion in which emissions are treated.  While this method fails to 

account for the effects of specific speed/load trajectories, the resulting errors are cancelled out 

when integrated over entire driving cycles. 
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 In another approach, emissions predictions from steady-state maps are modified with a 

physics-based engine temperature model with empirically determined constants [52].  It is 

theorized in this work that emissions deviate from steady-state predictions according to 

temperature development within the engine.  A first order differential equation for the “warmth” 

of the engine is prescribed which accounts for heat addition and loss mechanisms.  This warmth 

parameter is ultimately used to modify the emissions prediction, with the steady-state and 

transient predictions being equal for a fully-warmed engine.  Predictions of HC, CO and NOx 

were compared to measured emissions from a Mercedes diesel and Saab gasoline engine over a 

LA4 and US06 driving cycle.  Improvements in instantaneous and integrated emissions 

predictions from this method are achieved in most cases.  However, the method has notable 

difficulty predicting HC emissions, with the modified method yielding significantly worse 

predictions than the steady-state map in some cases, especially for instantaneous emissions. 

   Due to the limitations of quasi-steady modelling and its modifications, more rigorous 

methods for predicting transient emissions have been pursued in the literature.  One such 

implementation is the artificial neural network (ANN) [53], which is a machine learning tool that 

optimizes the relationships between specific inputs and outputs by training a set of “artificial 

neurons” on existing input/output data [54].  In transient emissions modelling, current and 

historic engine operation parameters (such as speed, load, equivalence ratio, etc.) serve as the 

input data, while transient emissions measurements serve as the output.  Numerous 

implementations of ANN for predicting engine performance exist in the literature [55].  For 

example, an ANN for predicting transient NOx emissions from a Honda 2.2L i-DTEC diesel 

engine according to engine speed, injected fuel mass, air-to-fuel ratio, air mass flow, boost 

pressure and exhaust gas temperature was developed by Fischer [56].  The ANN was trained 

using a variety of transient driving cycles including the New European Driving cycle (NEDC) 

and the US06.  Cumulative estimations of NOx for the Artemis Urban test cycle are within 1.57% 

of the measured values.  Instantaneous NOx emissions agree well with measured values over 
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certain regions of the driving cycle, although the discrepancy over the entire cycle wasn’t 

quantified.  In work by Domínguez-Sáez et al., an ANN was used to predict CO2, NOx and 

particulate number concentration for a 2.0 Euro 4 diesel engine fueled with diesel fuel and animal 

fat using vehicle speed and acceleration, engine speed and torque, air intake temperature, boost 

pressure, mass air flow and fuel consumption [57].  The ANN was trained and validated over 4 

repetitions of the New European driving cycle and 5 steady state conditions.  Correlation (R2) 

values of 0.91, 0.78, 0.87 and 0.81 were achieved for CO2, NOx, particles concentration and 

geometric mean diameter between measured and predicted values. 

2.2.1.1 VOC Emissions Models 

 Currently, few engine emissions models of VOC speciation, or even individual VOCs 

exist in the literature.  Perhaps the most well-known model for predicting VOC emissions is the 

EPA Motor Vehicle Emissions Simulator (MOVES) [58].  However, MOVES primarily serves as 

a tool for estimating emission inventories at the national or regional level over a time span given 

vehicle population and travel data.  This tool estimates emissions in a bulk manner and isn’t 

appropriate for detailed prediction of engine performance with respect to operating conditions 

[59].  Steady state engine maps of VOCs such as methane, ethane and formaldehyde were 

composed from data from a zero-dimensional stochastic reactor model of a homogeneous charge 

compression ignition (HCCI) engine in a study by Maurya and Akhil [60].  The emissions were 

tabulated with respect to engine speed and indicated mean effective pressure (IMEP).  In work by  

Wei et al., formaldehyde and methanol emissions were measured from a three-cylinder spark-

ignited engine operating at various speeds/loads at steady-state [61].  At each speed/load, tests 

were conducted for a variety methanol-gasoline blends.  This data was used to formulate steady-

state maps of formaldehyde and methanol emissions for each fuel blend.  It is important to note 

that the two studies listed developed steady-state models.   
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 It is apparent that the literature lacks predictive models for VOC emissions during 

transient engine operation.  However, the development of such models requires 

training/validation with transient, time-resolved VOC speciation data from experiments.  Such 

data are also sparse within the literature, since there are few routine diagnostic techniques capable 

of continuously measuring VOC emissions during transient engine operation.  In the following 

sub-section, a brief review of exhaust gas speciation techniques and their limitations is provided.  

This is followed by an introduction to Fourier Transform Infrared (FTIR) spectroscopy, which 

measures VOC emissions in real-time and possesses the measurement frequencies necessary for 

time-resolved speciation, but is biased during transient measurements.  These transient biasing 

effects are discussed, which ultimately motivate the implementation of a Bayesian estimation 

model for filtering out these effects from FTIR measurements of engine exhaust. 

2.3 VOC Emissions Diagnostics 

 A variety of techniques are available for comprehensive speciation of VOC engine 

emissions during transient driving cycles.  However, most conventional methods measure 

composition from batch samples from entire driving cycles.  Thus, these techniques are limited to 

quantifying total emissions during lengthy driving cycles, and therefore provide scant information 

on transient effects.  One of the most prevalent batch techniques is gas chromatography-mass 

spectrometry (GC-MS) [62].  This technique involves continuously drawing exhaust sample into 

a bag via a constant volume sampler, diluting the mixture, and eluting the contents through the 

capillary tubes of a GC.  The GC separates each component of the sample according to its 

characteristic elution time, which is a function of its tendency to remain in the stationary phase of 

the capillary tubes.  Each component exits the GC and enters the MS, where the sample is 

ionized.  The mass-to-charge ratio of the ionized molecules – which indicate their chemical 

structure – is then determined by simultaneously accelerating the sample and exposing it to a 

magnetic field.  A detector with multiple channels senses the deflected ions and their relative 
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abundance, with the particular channel indicating the deflection of the ion, and therefore mass-to-

charge ratio [63].  While very accurate and sensitive due to the concurrent use of two separation 

techniques, the elution process is slow and there performed offline, preventing transient 

measurements.  A similar technique that is often employed is GC-Flame Ionization Detection 

(FID) [64], [65].  In this method, a FID is placed downstream of the GC, which measures the 

masses of each separated compound according the number of ions detected during oxidation of 

the sample with a hydrogen flame [66].  It should be noted that the FID itself is a fast-response 

technique, but requires a separation technique which may be slow (such as a GC), or only 

effective for certain compounds (such as a non-methane cutter) [67].  Instances of using high-

performance liquid chromatography (LC)-MS by reacting sample VOCs with an acid solution and 

measuring the resulting stable products are also found in the literature [68]. 

 Although less widespread than batch measurements, there are a few online techniques 

capable of time-resolved, transient speciation.  One such method is to eliminate the GC in the 

GC-MS system and simply perform mass spectrometry.  Such approaches usually employ 

chemical ionization by introducing the sample to a chemically-charged reagent gas [69], [70].  

This method is less prone to fragmentation of the sample VOCs than electron ionization [71].  

One disadvantage with chemical ionization-mass spectrometry (CI-MS) is that it detects 

components based on mass only, and therefore cannot differentiate isomers and isobaric 

compounds.  Furthermore, the species that can be detected with CI-MS are limited to those with 

sufficient affinity for ionization.  For example, a specific CI-MS method called proton-transfer-

reaction mass spectrometry (PTR-MS) utilizes hydronium (H3O+) as the reagent, which induces a 

proton transfer to species with proton affinities greater than that of water .  This prevents the 

detection of important alkanes (such as methane, ethane and pentane) and ethylene [72].  

Different reagents can be selected to relax these proton affinity restrictions.  However, using such 

reagents requires significant dilution of the sample to prevent depletion of the reagents from 

ionization of the substantial quantities of water/O2 in the sample [73].  Also, typical measurement 
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times of PTR-MS lie between 3 and 10 seconds [72], which may be inadequate to capture certain 

transients. 

 Another online technique used for transient speciation is tunable laser diode absorption 

spectroscopy (TDLAS).  As the name suggests, this method uses a tunable diode laser to emit 

modulated light over a relatively narrow wavenumber range (1-2 cm-1) by altering current 

injection density.  The light travels through the optically accessible sample and onto a 

photodiode, where its incident intensity is measured [74].  Incident intensity is indicative of 

absorbance and therefore sample concentration.  For engine exhaust applications, the sample is 

usually drawn through a White cell, which contains directly facing mirrors which increase the 

traversed distance of emitted light through the sample, thereby improving sensitivity [75].  While 

advantageous for transient and cycle-by-cycle analysis due to its exceptional measurement 

frequency (up to 10 GHz), each diode laser is capable of measuring only a single species due to 

its narrow frequency range.  Thus, the number of species that can be measured is limited to the 

number of mirror pairs that can fit within a White cell [76].  A similar transient speciation 

technique that also utilizes the characteristic light absorbance features of specific compounds is 

Fourier transform infrared (FTIR) spectroscopy.  FTIR spectroscopy and its applicability to 

transient speciation is a primary focus of this work.  Thus, its operating principles, advantages 

and drawbacks are discussed in detail. 

2.3.1 Fourier Transform Infrared Spectroscopy 

 FTIR spectroscopy utilizes broadband, infrared radiation to infer the light absorbance of a 

sample over a wide spectral range, permitting comprehensive speciation with a single 

measurement.  A FTIR determines absorbance by traversing an IR beam composed of broad 

spectral components through a sample and measuring the incident intensity.  The interference 

properties of light are utilized to modulate the IR beam in a predictable manner that allows its 

incident spectral components to be deduced from the resulting measurement via the Fourier 
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transform.   Figure 2-1 displays a general schematic of a FTIR.  A typical FTIR consists of a 

Michelson interferometer (right) which produces the modulated IR beam, a White gas cell (left) 

that contains the sample, and a detector for measuring the downstream incident intensity of the 

modulated IR beam. 

 

Figure 2-1:  General Schematic of an FTIR spectrometer.   

 The detailed operating principles of FTIR spectroscopy are as follows.  A source is 

heated to elevated temperatures (~1500 K) to induce the emittance of broadband, IR radiation at 

intensities near that of a blackbody.  This IR radiation is focused and directed toward a beam-

splitter, where half of the beam is reflected/transmitted toward a moving mirror, the other half 

toward a stationary mirror.  The two beams reflect off their respective mirrors and coalesce at the 

beam splitter having travelled separate optical path distances.  Due to constructive/destructive 

interference between photons of identical wavenumbers, the intensity of each spectral component 

within the IR beam modulates in a sinusoidal fashion as a function of optical path difference, with 

the wavenumber of these modulations equaling the wavenumber of the spectral component.  The 

modulated spectral components of the IR beam also interfere with one another, yielding a total 

beam intensity that is also a function of optical path difference.  The coalesced, modulated beam 

travels through the sample, contained within the gas cell, where its intensity is reduced due to 

absorption.  After making multiple passes through the gas cell, the coalesced beam reaches a 
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detector, where its intensity is measured.  This process is repeated for numerous optical path 

differences, beginning with the initial moving mirror position called the centerburst – where all 

light constructively interferes, yielding a “burst” of intensity – and ending with the maximum 

mirror position.  The measured intensity profile is Fourier transformed with respect to optical 

path difference to deduce the spectrum of incident intensity versus IR wavenumber.  This 

spectrum is subtracted from a background spectrum obtained from a non-absorbing sample 

(usually N2) to determine the intensity of IR absorbed at each wavenumber of interest.  Since 

certain species absorb IR at specific wavenumbers and the level of IR absorption scales with mole 

fraction via Beer-Lambert’s law, this information can be used to quantitatively determine the 

chemical composition of the sample.  A illustration of the composition quantification process is 

provided in Figure 2-2. 



18 

 

 

Figure 2-2:  Illustration of the process for inferring composition from FTIR measurements.  An 

interferogram (intensity with respect to optical path difference) is measured, which is Fourier 

transformed to yield the spectral components of the incident IR beam.  The resulting spectral 

absorbance is calculated using the baseline spectrum, from which compositions are inferred 

according to the known absorbance features of specific chemical species.   

2.3.2 FTIR Limitations for Transient Measurements  

 FTIR spectroscopy presents many advantages for engine exhaust characterization over 

other conventional techniques.  First, FTIR measurements are performed online and in real-time, 

permitting transient analysis.  Furthermore, typical FTIR measurements frequencies reach as high 

as 5 Hz, greatly exceeding the frequencies of CI-MS.  Secondly, each measurable species has a 

distinguished spectrum, allowing a wide range of VOCs to be measured simultaneously, unlike 

TDLAS.  Despite the advantages of FTIR spectroscopy, its suitability for studying engine 
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transients is limited.  A FTIR gas cell must have sufficient volume to allow multiple passes of the 

IR beam through the sample.  Because of its large volume, residence times within a gas cell can 

be significantly greater than the measurement period of a FTIR, with a time constant of 

approximately 500 ms for a flowrate of 10 slpm.  Consequently, FTIR data are obscured by 

historical emissions, preventing time-resolved analysis.  An illustration of how engine exhaust 

composition and an FTIR measurement at a given time can differ is shown in Figure 2-3.  This 

issue isn’t necessarily mitigated by simply increasing the sample flow rate through the gas cell to 

decrease residence times, as this can cause turbulence-induced scintillation which increases noise 

in the measured IR intensity [77], as well as reduce pressures within the gas cell, rendering 

absorbance calibrations invalid.  FTIR flow rates for engine exhaust characterization in the 

literature vary, but are typically between 1 and 12 liters per minutes (lpm) [41], [78]–[85].  

Another issue with transient FTIR measurements is that the spectral intensity calculated by the 

Fourier transform is unevenly weighted by spectral intensities at/near the centerburst optical path 

difference.  This bias is referred to herein as non-stationarity bias, since it’s caused by the 

intensity of certain spectral components being non-stationary due to evolving levels of 

absorbance during a scan.  This issue, which was unknown at the onset of this work, is discussed 

in detail and addressed in Chapter 4. 
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Figure 2-3:  Illustration of how average composition within an FTIR gas cell evolves due to a step 

change in inlet composition.  As shown, FTIR measurements can differ considerably from the 

composition of engine exhaust entering the FTIR gas cell at a given time.  

 One way to address sample recirculation effects on transient FTIR measurements is by 

estimating the instantaneous composition of exhaust entering the FTIR gas cell [86].  This 

requires a known/assumed relationship between gas cell inlet composition and total gas cell 

composition.  In previous research, the FTIR gas cell was modelled as a well-mixed system [81], 

[87].  The equation for the well-mixed model is given in 2-1. 

𝒁𝑐𝑒𝑙𝑙(𝑡) = 𝒁𝑖𝑛(𝑡 − 1) (1 − 𝑒
−
∆𝑡

𝜏 ) + 𝒁𝑐𝑒𝑙𝑙(𝑡 − 1)𝑒
−
∆𝑡

𝜏           (2-1) 

In the equation above, total gas cell mass composition and inlet gas cell mass composition are 

represented by 𝒁𝑐𝑒𝑙𝑙 and 𝒁𝑖𝑛, respectively.  These values can be vectors containing many species 

or a scalar for a single species.  Current and previous measurement times are represented by 𝑡 and 

𝑡 − 1, respectively.  The characteristic time scale (mass of sample inside the gas cell divided by 

mass flow rate) is given by 𝜏.  In work by Truex et al., the composition of exhaust entering the 
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gas cell during a measurement period (𝒁𝑖𝑛(𝑡 − 1)) is back-calculated according to Equation 2-1 

and the current and previous FTIR measurement (𝒁𝑐𝑒𝑙𝑙(𝑡) and 𝒁(𝑡 − 1)) [81].  While this method 

improves the overall trend in estimated instantaneous engine exhaust compared to raw 

measurements, noise from the FTIR measurements greatly exacerbates the noise of the estimated 

inlet composition, yielding considerable errors in instantaneous emissions estimates.  However, 

this issue can be mitigated by filtering the FTIR data with a Bayesian estimation model (BEM).  

BEMs calculate the most statistically probable values for system states (i.e. composition of 

sample entering a FTIR gas cell) using a system model and known/assumed measurement noise 

statistics [88].  This estimation technique uses a-priori knowledge of the underlying system 

dynamics to correct for errors in state estimations caused by measurement noise.  Since a FTIR 

gas cell can be modelled as a well-mixed system, and the degree of non-stationarity bias can be 

reasonably approximated (as discussed in Chapter 4), the problem of estimating the composition 

of sample entering a FTIR gas cell is well-suited for Bayesian estimation.  The work presented 

herein aims to develop and validate this BEM for obtaining time-resolved engine exhaust 

measurements.  A BEM which addresses sample recirculation effects is developed and 

computational validated in Chapter 3.  In Chapter 4, a mathematical derivation of non-stationarity 

bias for each measurable species is developed, which is incorporated into a modified version of 

the BEM.  This modified BEM is then experimentally validated.  Results from the application of 

the BEM to FTIR measurements of exhaust from a gasoline engine during transient load ramps 

are presented in Chapter 5. 
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CHAPTER 3 BAYESIAN ESTIMATOR OF COMPREHENSIVE ENGINE EMISSIONS  

 FTIR spectroscopy is an attractive diagnostic for time-resolved, comprehensive engine 

exhaust speciation due to its ability to measure concentration of individual VOCs from 

continuously replenished exhaust samples at high frequencies.  However, sample recirculation 

and evolving absorbance complicate the interpretation of FTIR measurements during transient 

engine operation.  This chapter is dedicated to the development and computational validation of a 

Bayesian estimation model (BEM), which extracts instantaneous exhaust composition from 

biased FTIR measurements of chemically evolving exhaust samples.  The BEM utilizes a simple 

sample residence time sub-model and measurement noise statistics to estimate the composition of 

sample entering a FTIR gas cell during a measurement period.  Only sample recirculation is 

addressed in the development of the BEM in this chapter, as this topic is extensive by itself.  

Furthermore, most of the analysis in this chapter, including the computational validation of the 

sample residence time sub-model and quantification of performance limits of the BEM can be 

performed while neglecting the effects of evolving absorbance.  The introduction of a modified 

measurement sub-model which accounts for these effects is reserved for Chapter 4, since its 

derivation is rigorous and constitutes a sizable fraction of the next chapter, and its implementation 

is necessary for the experimental validation portion of this work.   

 This chapter begins with a brief discussion of the fundamentals of Bayesian estimation in 

Section 3.1.  From this discussion, the Unscented Kalman filter (UKF), which is the Bayesian 

estimator employed for this work, is introduced.  The underlying approach of the UKF for 

optimal estimation is established, followed by the overview of its equations and estimation 

process.  Section 3.2 presents the development of specific UKF sub-models that pertain to 

estimating instantaneous exhaust composition from FTIR measurements.  This includes the state 

transition and measurement models (3.2.1) and process noise covariance model (3.2.2).   In 

Sections 3.3 and 3.4, computational methods for validating the UKF are presented.  
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Computational fluid dynamics (CFD) and mixing network (MN) models for simulating the flow 

of sample with transient composition through a FTIR gas cell are presented.  CFD simulations are 

used to validate the well-mixed assumption utilized in the state transition model (3.4.1), as well as 

generate synthetic FTIR measurements from which the lower limits of composition fluctuation 

duration that can be captured by the UKF are quantified (3.4.2).   Synthetic FTIR measurements 

of engine exhaust from driving cycles are generated from MN simulations.  These measurements 

are processed by the UKF and it is demonstrated that the UKF significantly improves 

instantaneous exhaust composition estimations compared to raw FTIR measurements (3.4.3).  

The relationships between UKF performance and inlet composition process noise are also 

explored. 

3.1 Bayesian Estimation 

 A Bayesian filter is a recursive algorithm that estimates the most probable states of a 

system at a given time based on predictions from a physical model of the underlying dynamics of 

the system and measurements.  Fundamentally, a Bayesian filter appropriately weighs model 

predictions and measurements, each with their inherent uncertainty distribution, to compose a 

statistically optimized estimation of the state with a smaller uncertainty distribution than the 

model predictions and measurements alone.  This is illustrated in Figure 3-1.  Bayesian filters are 

effective signal processing tools that increase confidence in state estimations from noisy 

measurements. 


