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ABSTRACT 

EXPERIMENTAL & SIMULATION APPROACHES TO STUDY 

NEUROMUSCULAR CONTROL IN PEOPLE WITH CHRONIC ANKLE 

INSTABILITY 

 

Hoon Kim, M.A., A.T.C. 

Marquette University, 2020 

Ankle sprains are among the most common musculoskeletal injuries, and up to 

70% of people who sprain their ankles develop chronic ankle instability (CAI). 

Moreover, people who develop CAI have a significantly higher risk of developing ankle 

osteoarthritis. Recent research has identified neuromuscular deficits that may be 

responsible for the high recurrence rates of ankle sprains and for the progression towards 

ankle osteoarthritis in people with CAI. Unfortunately, current rehabilitation strategies 

are not completely successful because the mechanisms responsible for these deficits are 

not fully elucidated. Therefore, the purpose of this dissertation was to investigate 

individual muscle forces and force generating capacities, the contributions of individual 

muscles to ankle joint contact forces, muscle activation patterns in the time-frequency 

domain, and central nervous system control strategies in people with CAI. 

 

Eleven people with CAI and 11 matched healthy control performed landing, 

anticipated cutting, and unanticipated cutting tasks, while three-dimensional movement, 

ground reaction force, and muscle activation data were collected with motion capture 

system, force plate, and electromyography, respectively. In the first study, a 

musculoskeletal model and static optimization were used to estimate the force and force 

generating capacity of individual muscles. In the second study, an additional joint 

reaction analysis was used in combination with the musculoskeletal model to estimate the 

contribution of individual muscle forces to ankle joint contact forces. In the third study, 

wavelet transformation and principal component analysis were used to analyze the time-

frequency domain of muscle activation patterns. In the final study, non-negative matrix 

factorization was used to extract muscle synergies in order to identify central nervous 

system control strategies. Results from all analyses were compared between people with 

and without CAI. 

 

The primary findings of this dissertation were that, compared to healthy controls, 

people with CAI exhibit 1) greater muscle forces and/or force generating capacities in 

proximal muscles, 2) greater ankle anterior shear forces during early and late stance 

phases of unanticipated cutting, 3) lower intensity of muscle activation and a task-

dependent inability to shift activation towards higher frequencies, and 4) similar 

complexity in neuromuscular control from a central nervous system perspective.
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CHAPTER 1: INTRODUCTION 

About two million people suffer from CAI in the United States each year 

(Waterman, Owens, Davey, Zacchilli, & Belmont, 2010). In particular, 23.4% of athletes 

have CAI and therefore display higher risk of recurring lateral ankle sprains (Tanen, 

Docherty, Van Der Pol, Simon, & Schrader, 2014). Three billion health care dollars are 

spent annually to treat CAI in the US alone (Radwan et al., 2016). Although a variety of 

studies have investigated underlying mechanisms associated with CAI, the research on 

rehabilitation interventions shows that the current intervention protocols are not always 

successful (O'Driscoll & Delahunt, 2011; Song, Rhodes, & Wikstrom, 2018; Tsikopoulos 

et al., 2019; Vallandingham, Gaven, & Powden, 2019), and the prevalence of CAI remains 

high (e.g., 61% of soccer players with CAI) (Attenborough et al., 2014). The lack of 

success of CAI rehabilitation protocols is important because people with CAI have a higher 

risk of additional and more serious clinical sequelae, such as ankle osteoarthritis (OA) 

(Carbone & Rodeo, 2017; Wikstrom, Hubbard-Turner, & McKeon, 2013). 

Dynamic movements during sports activities are thought to present primary 

contributors to the progression of ankle OA (Hunter & Eckstein, 2009) because joint 

contact forces are greater during dynamic movements than daily life activities, such as 

walking (Cleather, Goodwin, & Bull, 2013). Recent research reviewed the kinematic 

characteristics of people with CAI during landing tasks (J. D. Simpson, Stewart, Macias, 

Chander, & Knight, 2019; Theisen & Day, 2019). Greater dorsiflexion and smaller sagittal 

plane range of motion in the ankle joint were consistently found during landing tasks (C. 

Brown, Padua, Marshall, & Guskiewicz, 2008; Caulfield & Garrett, 2002; C. J. Wright, 

Arnold, & Ross, 2016). Furthermore, less knee flexion was also reported in previous 
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research (Gribble & Robinson, 2009; Terada, Pietrosimone, & Gribble, 2014; Theisen & 

Day, 2019). Kinematic differences in people with CAI may also associated  with 

differences in joint kinetics (J. D. Simpson et al., 2019). For example, less ankle sagittal 

plane motion during landing may increase the impact force in the knee and hip joints 

(Doherty et al., 2016; Gribble & Robinson, 2009; Monaghan, Delahunt, & Caulfield, 2006; 

J. D. Simpson et al., 2019), which suggests that people with CAI also have greater risks of 

not only sustaining ankle injuries but also knee injuries (Alentorn-Geli et al., 2009). In 

addition to research on landing motions, cutting motions have also been investigated (Kim, 

Son, Seeley, & Hopkins, 2019). Kim et al. (2019) reported that patients with CAI had less 

dorsiflexion, greater knee and hip flexion angles, and greater inversion and hip adduction 

angles during jump landing-cutting motions (Kim et al., 2019). Overall, these pathologic 

kinematics in people with CAI during dynamic movements may alter lower extremity 

kinetics (Monaghan et al., 2006) in a way that increases ankle joint contact forces and 

precipitates the development of ankle OA. Because pathologic movements originate from 

abnormal neuromuscular control, it is necessary to investigate neuromuscular deficits in 

CAI patients in order to help clinicians treat CAI and prevent the progression of ankle OA 

in this population. 

Neuromuscular deficits in people with CAI manifest as differences in muscle 

function, which have been thoroughly investigated through a variety of experimental 

designs and technologies such as EMG (Feger, Donovan, Hart, & Hertel, 2015; Flevas et 

al., 2017; Kwon, Harrison, Kweon, & Blaise Williams, 2019; Son, Kim, Seeley, & 

Hopkins, 2017), isometric dynamometry (McCann, Terada, Kosik, & Gribble, 2019), or 

ultrasound (DeJong, Mangum, & Hertel, 2019). Although muscular deficits have been 
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characterized in people with CAI, the direct role of each muscle in relation to risk factors 

(e.g., ankle joint contact forces) of ankle OA have not been quantified. A major obstacle is 

that the contribution of each muscle on ankle joint contact forces cannot be evaluated with 

traditional experimental studies because of the difficulty of measuring muscle forces 

directly. This obstacle makes it difficult to identify and target specific muscles during 

rehabilitation for people with CAI. Computer simulations, however, can provide a tool to 

estimate both muscle forces and ankle joint contact forces. In addition, these simulations 

can be used to compute the individual contributions of each muscle to ankle joint contact 

forces. Therefore, the completion and information gained from Specific Aim 1 and 2 will 

provide foundational and quantitative guidance about which muscles contribute to known 

risk factors for ankle OA in people with CAI during dynamic tasks. This may ultimately 

enhance the efficacy of rehabilitation programs by providing clinicians with detailed 

knowledge about which muscles should be targeted during rehabilitation. To complete this 

aim, we will use dynamic neuromusculoskeletal (NMS) simulations, which have not been 

used in the context of CAI, but provide valuable tools to evaluate patient-specific muscle 

function by combining experimental data (e.g., motion capture data) with musculoskeletal 

models.  

Electromyography (EMG) has been commonly used to investigate neuromuscular 

deficits, such as delay (Flevas et al., 2017), weakness (Son et al., 2017), compensation 

(Kwon et al., 2019), or longer duration (Feger et al., 2015) of muscle activations in people 

with CAI. These deficits were found in variables extracted from the time-magnitude 

domain of traditionally filtered and smoothed EMG data. However, the time-frequency 

domain of EMG data also contains important information related to motor unit recruitment 



  

 

4 

strategies of the peripheral nervous system (PNS) (Wakeling, Uehli, & Rozitis, 2006). For 

example, a previous study revealed the characteristics of multi-muscle activation patterns 

in the time-frequency domain in people with ankle OA (von Tscharner & Valderrabano, 

2010). Because CAI leads to ankle OA, it is necessary to investigate the muscle activation 

strategies in the time-frequency domain in people with CAI. Completion of Specific Aim 

3 will strengthen the knowledge by revealing different muscle activation strategies in the 

time-frequency domain in people with CAI.  

In addition, CNS control of muscle activation strategies in people with CAI has not 

been thoroughly investigated. Although some evidence regarding CNS deficits in people 

with CAI has been reported, this has been primarily in static tasks. For example, Rosen et 

al. (2019) reported larger variability in cortical activation with the fNIRS in CAI patients 

compared to healthy controls (A. B. Rosen et al., 2019) and Needle et al. (2013) reported 

correlations between cortical excitability and ankle laxity with transcranial magnetic 

stimulation (TMS) (Needle, Palmer, Kesar, Binder-Macleod, & Swanik, 2013). However, 

the methods used by these authors only allow for the study of CNS deficits during static 

postures. One way to study CNS control of muscle activation strategies is through the use 

of muscle synergy analysis. Muscle synergies can be defined as patterns of activation of 

muscles recruited by a single neural command signal, and have been used to identify CNS 

deficits of neurologic pathologies such as stroke or cerebral palsy (Allen, Kesar, & Ting, 

2019; Shuman, Goudriaan, Desloovere, Schwartz, & Steele, 2019). Non-negative matrix 

factorization (NMF) is commonly used to estimate muscle synergies (d'Avella, Saltiel, & 

Bizzi, 2003; D. D. Lee & Seung, 1999). The results from the NMF analysis provides several 

meaningful insights about CNS control. For example, the number of muscle synergies 
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provides information about the complexity of an individual’s strategies to control 

movements (Safavynia, Torres-Oviedo, & Ting, 2011), where individuals with less 

complexity in multi-muscle activations have fewer muscle synergies (Clark, Ting, Zajac, 

Neptune, & Kautz, 2010). Furthermore, the patterns within each muscle synergy provide 

information about spatiotemporal characteristics of movement control from the perspective 

of the CNS (Safavynia et al., 2011). Because CAI is also considered a neurologic pathology 

(Needle, Lepley, & Grooms, 2017; Needle et al., 2013; A. B. Rosen et al., 2019), it should 

also be investigated with appropriate methods, such as NMF. Completion of Specific Aim 

4 will provide information about CNS control deficits, and about more global aspects of 

neuromuscular control as opposed to the limited scope of previous investigations of 

neuromuscular deficits in people with CAI.  

Specific aims 

Aim 1: Estimate the forces and force generating capacities of individual lower 

extremity muscles and compare these estimates between people with and without CAI 

during landing and cutting tasks. 

Hypothesis 1: Peak muscle forces and force generating capacities would differ 

between groups and that these differences would be task-dependent. 

Aim 2: Investigate the contributions from muscle forces and ground reaction force to 

ankle joint compression and anteroposterior shear forces in people with and without 

CAI during a cutting task. 

Hypothesis 2: Ankle joint compression and anteroposterior shear forces would be 

greater in people with CAI, and that the contribution of specific muscles to these 

forces would differ. 
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Aim 3: Identify differences in the time-frequency domain of muscle activation 

patterns between people with and without CAI during landing, anticipated cutting, 

and unanticipated cutting. 

Hypothesis 3: There would be differences in the frequencies of muscle activation 

patterns between people with and without CAI and that these differences would be 

task-dependent. 

Aim 4: Investigate and compare CNS-based neuromuscular control strategies in 

people with CAI and healthy CON during cutting tasks. 

Hypothesis 4: People with CAI would use fewer (i.e., less complex) muscle 

synergies, exhibit different muscle-specific weightings within muscle synergies, 

and display task-specific these differences in muscle synergies. 
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CHAPTER 2: PEAK FORCES AND FORCE GENERATING CAPACITIES OF 

LOWER EXTREMITY MUSCLES DURING DYNAMIC TASKS IN PEOPLE 

WITH AND WITHOUT CHRONIC ANKLE INSTABILITY 

 

 

INTRODUCTION  

Ankle ligament sprains are common musculoskeletal injuries and occur when the 

angles of talocrural or subtalar joints are excessively large and the forces within the 

ligaments increase beyond their maximal capacity. People who sprain their ankle 

ligaments may develop chronic ankle instability (CAI) (Gribble et al., 2016). People with 

CAI experience recurrent ankle sprains because of mechanical deficits (e.g., 

malalignment(Caputo et al., 2009), laxity (Hubbard-Turner, 2012), and restricted 

dorsiflexion (Tabrizi, McIntyre, Quesnel, & Howard, 2000)) and neuromuscular deficits 

(e.g., proprioceptive errors (Munn, Sullivan, & Schneiders, 2010), delayed activations 

(Hoch & McKeon, 2014), and diminished H-reflex (Hopkins, Brown, Christensen, & 

Palmieri-Smith, 2009)) in the ankle joint. Furthermore, recent studies reported people 

with CAI have a substantially higher risk of developing ankle osteoarthritis because the 

aforementioned deficits can damage the articular surfaces in the talocrural joint 

(Valderrabano, Hintermann, Horisberger, & Fung, 2006; Valderrabano, Horisberger, 

Russell, Dougall, & Hintermann, 2009). Although researchers and clinicians have 

developed rehabilitation protocols to combat the negative effects of CAI, rehabilitation 

outcomes are not always successful (O'Driscoll & Delahunt, 2011; Song et al., 2018; 

Tsikopoulos et al., 2019; Vallandingham et al., 2019), which suggests that the 

mechanisms and deficits in neuromuscular function are not fully understood or that they 

are not being adequately targeted within rehabilitation programs. 
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Previous studies have investigated neuromuscular characteristics in people with 

CAI with a variety of experimental research methods (Feger et al., 2015; Kim et al., 

2019; Jeffrey D Simpson et al., 2020; Suttmiller & McCann, 2020; Willems, Witvrouw, 

Verstuyft, Vaes, & De Clercq, 2002; Wisthoff et al., 2019). For example, 

electromyography (EMG) has been used to record and compare muscle activation 

between people with CAI and matched controls (Feger et al., 2015; Kim et al., 2019; 

Jeffrey D Simpson et al., 2020; Suttmiller & McCann, 2020). Results from these studies 

suggest that people with CAI exhibited greater muscle activation of tibialis anterior 

during a side-cutting task (Jeffrey D Simpson et al., 2020) and greater muscle activation 

of medial gastrocnemius during jump landing-cutting motions(Kim et al., 2019). 

Furthermore, EMG recordings of electrically evoked potentials revealed that people with 

CAI exhibit a greater decrease in spinal reflex excitability (i.e., Hoffmann reflex) of the 

soleus when transitioning from bipedal to unipedal stance (Suttmiller & McCann, 2020). 

In addition, investigations of muscle activation timing relative to initial contact during 

walking revealed that people with CAI exhibited earlier activations in anterior tibialis, 

peroneus longus, lateral gastrocnemius, rectus femoris, biceps femoris, and gluteus 

medius muscles than people without CAI (Feger et al., 2015). Moreover, dynamometry 

has been used to investigate strength of ankle muscles in people with CAI (Willems et al., 

2002; Wisthoff et al., 2019). For example, people with CAI exhibited lower concentric 

strength of plantar flexor (Wisthoff et al., 2019) and lower muscle strength of evertor 

during isokinetic contraction test (Willems et al., 2002). Although neuromuscular 

differences between people with CAI and healthy controls are well characterized, less is 

known about forces and activations of deeper muscles or about the function of individual 
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muscles as people with CAI perform dynamic tasks because of limitations associated 

with measurements of superficial muscles (e.g., soleus) from surface EMG. 

Although studies have investigated muscle activation and function via EMG in 

people with CAI, no previous studies have investigated the force-length-velocity 

behavior of individual muscles during functional dynamic tasks, such as jumping or 

cutting, in this population. A major obstacle for experimental studies that use EMG is that 

they do not provide information about the forces and length changes of multiple muscles 

during dynamic tasks. Computer simulations and musculoskeletal modeling, however, 

provide tools to estimate the kinematics and kinetics of individual muscles. These tools 

allow for the dynamic estimation of a muscle’s peak force, and even its force-length (𝑓𝐿) 

and force-velocity (𝑓𝑣) behavior during any given task as long as the instantaneous joint 

kinematics (e.g., joint angle and angular velocity) are also known (Arnold, Hamner, Seth, 

Millard, & Delp, 2013). Further, this information can also be used to estimate a muscle’s 

instantaneous force generating capacity, which allows us to better understand the 

“relative” ability or capacity of a muscle to produce force and thus complements the 

analysis of “absolute” peak muscle forces, which is more traditional. 

Therefore, the purpose of this study was to estimate the forces and force 

generating capacity of individual lower extremity muscles and to compare these estimates 

between people with and without CAI during landing and cutting tasks. We hypothesized 

that the peak muscle forces and force generating capacity would differ between groups 

and that these differences would be task dependent. 
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METHODS  

Participants 

Twenty-two subjects (11 healthy people and 11 CAI) participated in this study 

(Table 2. 1). A questionnaire was used for inclusion into the CAI group by quantifying 

history of ankle sprains and symptoms of the ankle joint (Kipp & Palmieri-Smith, 2013; 

McVey, Palmieri, Docherty, Zinder, & Ingersoll, 2005). In addition, the Foot & Ankle 

Disability Index (FADI) (Intraclass correlation coefficients (ICC) = 0.93) and FADI – 

Sports (ICC = 0.92) questionnaire were used to quantify general and sports-related 

functional deficits, respectively (Hale & Hertel, 2005). People in the control group 

(CON) were matched by sex, age, height, weight, and physical activity level, which was 

quantified via Tegner scores (ICC = 0.8) (Briggs et al., 2009).  

 

 

Table 2. 1 Demographic information. (CAI: chronic ankle instability group, CON: 

control group, FADI: Foot & Ankle Disability Index, FADIS: Foot & Ankle Disability 

Index in Sports, Tegner: Tegner’s score) 

Group Year Height (m) Weight (kg) FADI (%) FADIS (%) Tegner 

CAI 22.1 ± 3.2 1.68 ± 0.11 69.0 ± 19.1 90.3 ± 9.4 88.6 ± 9.1 5.3 ± 1.2 

CON 22.6 ± 4.2 1.74 ± 0.11 66.8 ± 15.5 100 ± 0.0 100 ± 0.0 5.3 ± 1.0 

 

 

Data collection 

The subjects performed three tasks (landing, anticipated cutting, unanticipated 

cutting) with reflective markers attached to the skin over bony landmarks on the pelvis, 

femur, tibia, and foot segments (T. N. Brown, Palmieri-Smith, & McLean, 2009; Kipp & 

Palmieri-Smith, 2012) and 5 EMG electrodes attached over the soleus, fibularis longus, 

tibialis anterior, medial gastrocnemius, and lateral gastrocnemius muscles. For the 
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landing task (LAND), subjects were asked to perform a forward-jump over a 15 cm box 

and land on a force plate on a single leg. The forward-jump distance was set to the 

subject’s leg length. For the anticipated and unanticipated cutting tasks, subjects 

performed the same forward jump, but subsequently also performed a 90° cut 

immediately after landing on the force plate. The cutting direction was indicated with a 

light stimulus, which was turned on 5 sec before jumping during the anticipated condition 

(ANT). For unanticipated cutting (UNANT) the light stimulus came on when subjects 

passed through a light beam that was set halfway between the starting position and the 

force plate. Three-dimensional position of markers, muscle activations, and ground 

reaction forces (GRF) were collected with motion capture cameras (ViconMx,  CA, 

USA), an EMG system (Bagnoli, Delsys, MA, USA), and a force platform (Advanced 

Medical Technologies Inc., MA, USA). Sampling frequencies were set to 240 Hz for the 

cameras and to 1200 Hz for the EMG system and force platform of which data was 

amplified). 

Data processing 

Three-dimensional marker positions and GRFs were filtered with lowpass 

Butterworth filters at cutoff frequencies of 12 Hz. The EMG data were bandpass-filtered 

with Butterworth filters at cutoff frequencies of 20 and 450 Hz. The filtered EMG data was 

rectified and smoothed with a lowpass Butterworth filter at cutoff frequency of 10 Hz to 

obtain an EMG envelope. Then, each EMG signal envelope was normalized by the 

maximum value of the signal (Lai, Schache, Brown, & Pandy, 2016). All data were time-

normalized to 0-100 % of task duration (i.e., 200 ms for the landing task and stance phase 

for cutting tasks).  
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A musculoskeletal model with 23 degree-of-freedom and 92 muscle actuators was 

scaled to data from a static trial for each subject (Delp et al., 1990). Scaling created a 

subject-specific model and considered each subject’s individual geometry (e.g., segment 

size, segment mass, or muscle lengths) (Figure 2. 1.A). Since the dynamic muscle forces 

of the generic model were too low to perform the dynamic tasks in the current study, the 

maximum isometric muscle forces of each subject were scaled by a generic (×3) and a 

subject-specific constant that was based on estimates of lower extremity muscle volume 

(Handsfield, Meyer, Hart, Abel, & Blemker, 2014). Lower extremity muscle volumes were 

estimated based on regression model (Equation 1) (Handsfield et al., 2014). 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑙𝑜𝑤𝑒𝑟 𝑒𝑥𝑡𝑟𝑒𝑚𝑖𝑡𝑦 𝑚𝑢𝑠𝑐𝑙𝑒𝑠 = (47 × 𝐵𝑜𝑑𝑦 𝑚𝑎𝑠𝑠 × 𝐻𝑒𝑖𝑔ℎ𝑡) + 1285 

(Equation 1) 

The inverse kinematics (IK) tool was used to calculate joint angles by minimizing 

differences between virtual model markers and experimental subject markers (Figure 2. 

1.B). Static optimization (SO) was used to estimate muscle forces and activations from 

GRF and joint angle data. SO estimates the activation for each muscle by finding the 

combination of activations that minimizes the sum of squared activations of all muscles to 

match the sum of muscle moments to inverse dynamic based net joint moments. Then, SO 

estimates force for each muscle by multiplying maximal isometric muscle force, estimated 

activation, multipliers from force-length-velocity relationship. (Figure 2. 1.C). All analyses 

with a musculoskeletal model were performed with OpenSim (Delp et al., 2007).  
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Figure 2. 1 Workflow. (IK: inverse kinematics, 𝑭𝒑𝒆𝒂𝒌: peak muscle force, 𝑭𝒊𝒔𝒐: 

maximum isometric force, 𝒂:activation, 𝒇𝑳: effect of muscle length, 𝒇𝒗: effect of muscle 

velocity) 

 

 

Muscle forces from the soleus, medial gastrocnemius, lateral gastrocnemius, tibialis 

posterior, tibialis anterior, fibularis longus, fibularis brevis, vastus lateralis / medialis / 

intermedius (grouped together), rectus femoris, superior / middle / inferior fibers of gluteus 

maximus (grouped together), anterior / middle / posterior fibers of gluteus medius (grouped 

together), biceps femoris long and short heads / semimembranosus / semitendinosus 

(grouped together) were calculated and used for statistical analyses. Peak muscle forces 

from each trial were extracted and normalized by each subject’s body weight (BW) (Figure 

2. 1.E). In addition, the force generating capacity of each muscle group was calculated by 

dividing peak muscle force (𝐹𝑝𝑒𝑎𝑘) by the maximum isometric force (𝐹𝑖𝑠𝑜) and concurrent 

activation (𝑎) (Figure 2. 1.F), which also accounts for the effects of muscle length (𝑓𝐿) and 

velocity (𝑓𝑣 ) (Equation 2) (Arnold et al., 2013). A greater force generating capacity 

indicates that a muscle requires less activation to produce the same amount of muscle force. 
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𝐹𝑜𝑟𝑐𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  
𝐹𝑝𝑒𝑎𝑘

𝐹𝑖𝑠𝑜 × 𝑎
 = 𝑓𝐿  ×  𝑓𝑣   (Equation 2) 

EMG data were used to validate the simulated muscle activity from static 

optimization (Hicks, Uchida, Seth, Rajagopal, & Delp, 2015). Given the absence of 

maximum voluntary isometric contractions for all muscles, the experimental and 

simulated EMG data were normalized to the peak value during the dynamic trials and 

visually compared based on the temporal pattern of muscle activity (Figure 2. 1.D) 

(Hamner & Delp, 2013; Hamner, Seth, & Delp, 2010). 

Statistical analysis 

Separate two-way analyses of variance (ANOVA) were used to compare peak 

muscle forces and force generating capacity of each muscle and muscle group. The 

independent variables were group (CAI and CON) and task (LAND, ANT, and UNANT). 

Significant interaction or main effects were followed by Fisher's least significant difference 

(LSD) procedure to examine pair-wise differences during post-hoc testing. The alpha level 

for each ANOVA was set to 0.05. Omega-Squared (ω2) effect-sizes were also calculated 

(Equation 3).  

𝜔2 =
𝑆𝑆𝑓𝑎𝑐𝑡𝑜𝑟−𝑑𝑓𝑓𝑎𝑐𝑡𝑜𝑟∙𝑀𝑆𝑒𝑟𝑟𝑜𝑟

𝑆𝑆𝑡𝑜𝑡𝑎𝑙+𝑀𝑆𝑒𝑟𝑟𝑜𝑟
  (Equation 3) 

The ω2 was considered as very small if between 0-0.01, small if between 0.01-

0.06, medium if between 0.06-0.14, and large if greater than 0.14 (Field, 2013). All 

statistical analyses were performed in MATLAB (MathWorks, MA, USA).  

 



  

 

15 

RESULTS  

Considering electromechanical delay (Corcos, Gottlieb, Latash, Almeida, & 

Agarwal, 1992), the simulated EMG data exhibited similar patterns as the experimental 

EMG data during all tasks and therefore appear to valid for further analysis and processing 

(Figure 2. 2) (Hicks et al., 2015). 

 

 

 

Figure 2. 2 Mean and standard deviation of the simulated muscle activations from static 

optimization and experimental EMG (blue line and shaded area: chronic ankle instability 

group, red line, and shaded area: control group, green shaded area: measured EMG)  

 

 

There were no significant group by task interactions for any peak muscle forces. 

However, there was a significant group main effect (p = 0.018) and medium effect size (ω2 

= 0.08) for peak gluteus maximus force (Table 2. 2 and Figure 2. 3). Specifically, the CAI 

group generated greater peak gluteus maximus forces during all tasks. 
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Table 2. 2 Mean and standard deviation of muscle force. (CAI: chronic ankle instability 

group, CON: control group, LAND: landing, ANT: anticipated cutting, UNANT: 

unanticipated cutting, SL: soleus, MG, medial gastrocnemius, LG: lateral gastrocnemius, 

TA: tibialis anterior, FL: fibularis longus, VAS: vastus muscles, RF: rectus femoris, GX: 

gluteus maximus, GM: gluteus medius, HAMS: hamstrings, †: significant group main 

effect in two-way ANOVA) 

Muscle 

  Muscle Force (BW)   Two-way ANOVA 

 CAI  CON  Group  Interaction Group Task 

 LAND   ANT   UNANT  LAND   ANT   UNANT  CAI   CON  p ω2 p ω2 p ω2 

SL  4.69 ± 0.78  5.50 ± 1.10  6.04 ± 1.20  4.32 ± 1.23  5.79 ± 0.94  5.80 ± 0.87  5.37 ± 1.14  5.30 ± 1.21  0.560 0.01 0.687 0.01 0.001 0.25 

MG  1.20 ± 0.34  1.55 ± 0.29  1.78 ± 0.53  1.05 ± 0.37  1.59 ± 0.38  1.45 ± 0.28  1.49 ± 0.45  1.37 ± 0.41  0.297 0.01 0.133 0.02 0.001 0.25 

LG  0.29 ± 0.09  0.37 ± 0.11  0.47 ± 0.21  0.26 ± 0.10  0.39 ± 0.15  0.37 ± 0.13  0.37 ± 0.15  0.34 ± 0.14  0.353 0.00 0.308 0.00 0.003 0.16 

TA  0.20 ± 0.10  0.18 ± 0.07  0.24 ± 0.11  0.28 ± 0.19  0.14 ± 0.06  0.26 ± 0.13  0.20 ± 0.10  0.23 ± 0.15  0.335 0.00 0.464 0.01 0.025 0.09 

FL  0.14 ± 0.18  0.76 ± 0.33  0.95 ± 0.49  0.10 ± 0.07  0.85 ± 0.52  0.60 ± 0.27  0.59 ± 0.48  0.52 ± 0.46  0.136 0.02 0.268 0.00 0.001 0.44 

VAS  6.98 ± 0.88  7.49 ± 0.76  8.13 ± 1.43  6.66 ± 1.41  8.20 ± 1.82  8.42 ± 2.11  7.49 ± 1.10  7.76 ± 1.91  0.522 0.01 0.543 0.01 0.008 0.13 

RF  1.35 ± 0.41  1.11 ± 0.53  1.87 ± 0.97  1.70 ± 0.64  1.28 ± 0.24  1.58 ± 0.44  1.42 ± 0.70  1.52 ± 0.49  0.201 0.02 0.605 0.01 0.016 0.10 

GX  1.77 ± 0.64  1.70 ± 0.61  1.92 ± 0.73  1.33 ± 0.38  1.46 ± 0.49  1.54 ± 0.52  1.79 ± 0.64 
† 
1.44 ± 0.46 

† 
0.843 0.03 0.018 0.08 0.579 0.01 

GM  3.31 ± 0.53  2.48 ± 0.69  3.09 ± 1.04  3.19 ± 0.51  2.39 ± 0.60  2.90 ± 0.87  2.95 ± 0.82  2.83 ± 0.73  0.976 0.03 0.479 0.01 0.002 0.17 

HAMS   1.24 ± 0.39   1.68 ± 0.30   1.99 ± 0.69   1.16 ± 0.27   1.53 ± 0.54   1.91 ± 0.54   1.61 ± 0.55   1.53 ± 0.55   0.963 0.02 0.394 0.00 0.001 0.29 
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Figure 2. 3 Task-averaged gluteus maximus muscle forces (x body weight) for people 

with (CAI) and without (CON) chronic ankle instability 

 

 

There was a significant group by task interaction (p = 0.009) with medium effect 

size (ω2 = 0.11) for force generating capacity of vastii (Table 2. 3). Fisher’s post hoc test 

revealed that force generating capacity of vastii was significantly greater in CAI group 

compared to the CON group during UNANT (p = 0.001) (Table 2. 3 and Figure 2. 5). 

Furthermore, there was a significant group main effect (p = 0.021) with medium effect size 

(ω2 = 0.06) for force generating capacity of gluteus maximus (Table 2. 3 and Figure 2. 4). 

Specifically, force generating capacity of gluteus maximus was significantly greater in CAI 

group compared to the CON group regardless of task. 
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Table 2. 3 Mean and standard deviation of force generating capacity. (CAI: chronic ankle 

instability group, CON: control group, LAND: landing, ANT: anticipated cutting, 

UNANT: unanticipated cutting, SL: soleus, MG, medial gastrocnemius, LG: lateral 

gastrocnemius, TA: tibialis anterior, FL: fibularis longus, VAS: vastus muscles, RF: 

rectus femoris, GX: gluteus maximus, GM: gluteus medius, HAMS: hamstrings, †: 

significant group main effect in two-way ANOVA, ‡, §, ¶, #: significant differences in 

Fisher’s LSD post hoc testing) 

Muscle 

  Force generating capacity     Two-way ANOVA 

 CAI  CON  Group  
 
Interaction Group Task 

 LAND   ANT   UNANT  LAND   ANT   UNANT  CAI   CON   p ω2 p ω2 p ω2 

SL  1.34 ± 0.08  0.95 ± 0.25  1.08 ± 0.15  1.36 ± 0.12  0.92 ± 0.14  0.98 ± 0.16  1.13 ± 0.24  1.08 ± 0.24   0.506 0.01 0.341 0.01 0.001 0.55 

MG  1.29 ± 0.11  0.52 ± 0.28  0.77 ± 0.40  1.20 ± 0.14  0.49 ± 0.28  0.85 ± 0.38  0.86 ± 0.43  0.85 ± 0.40   0.668 0.01 0.879 0.01 0.001 0.54 

LG  1.38 ± 0.11  0.54 ± 0.33  0.80 ± 0.47  1.29 ± 0.15  0.48 ± 0.32  0.95 ± 0.45  0.91 ± 0.48  0.91 ± 0.46   0.492 0.01 0.994 0.01 0.001 0.52 

TA  0.55 ± 0.07  0.66 ± 0.18  0.53 ± 0.07  0.62 ± 0.12  0.68 ± 0.17  0.55 ± 0.12  0.59 ± 0.13  0.62 ± 0.14   0.765 0.02 0.269 0.01 0.008 0.13 

FL  1.26 ± 0.17  0.61 ± 0.25  0.62 ± 0.18  1.34 ± 0.18  0.54 ± 0.05  0.69 ± 0.17  0.84 ± 0.37  0.86 ± 0.38   0.348 0.01 0.536 0.01 0.001 0.78 

VAS  1.45 ± 0.07 
‡ 

1.37 ± 0.15 
¶ 
1.48 ± 0.09 

¶# 
1.46 ± 0.08 

§ 
1.38 ± 0.12  1.29 ± 0.16 

‡§# 
1.43 ± 0.12  1.38 ± 0.14   0.009 0.11 0.061 0.04 0.080 0.04 

RF  1.46 ± 0.18  1.25 ± 0.34  1.50 ± 0.16  1.34 ± 0.19  1.30 ± 0.27  1.49 ± 0.13  1.40 ± 0.26  1.38 ± 0.21   0.504 0.01 0.672 0.01 0.012 0.11 

GX  1.08 ± 0.18  0.91 ± 0.07  0.97 ± 0.14  0.95 ± 0.16  0.84 ± 0.15  0.90 ± 0.14  0.99 ± 0.15 
† 

0.90 ± 0.15 
†  0.768 0.02 0.021 0.06 0.011 0.11 

GM  1.28 ± 0.12  1.08 ± 0.17  1.11 ± 0.18  1.25 ± 0.07  1.01 ± 0.10  1.06 ± 0.12  1.16 ± 0.17  1.11 ± 0.14   0.846 0.02 0.167 0.01 0.001 0.34 

HAMS   0.72 ± 0.09   0.88 ± 0.10   0.81 ± 0.12   0.69 ± 0.06   0.82 ± 0.15   0.78 ± 0.07   0.80 ± 0.12   0.76 ± 0.11     0.859 0.02 0.110 0.02 0.001 0.23 
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Figure 2. 4 Task-averaged gluteus maximus force generating capacity muscle forces for 

people with (CAI) and without (CON) chronic ankle instability. 
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Figure 2. 5 Vastii muscle group force generating capacity for people with group (CAI) 

and without (CON) chronic ankle instability during the landing (LAND), anticipated 

cutting (ANT), and unanticipated cutting (UNANT) tasks  

 

 

DISCUSSION 

The purpose of the current study was to estimate peak forces and force generating 

capacity of lower extremity muscles and to compare these estimates between a group of 

people with CAI and a healthy control group as they both performed landing and cutting 

tasks. The results showed that people with CAI exhibited greater peak gluteus maximus 

muscle forces and a greater capacity to generate gluteus maximus force than people in the 

CON group across all tasks. In addition, the CAI group also exhibited greater vastii force 

generating capacity than the CON group during the unanticipated cutting task. Together, 
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these results partially supported our hypotheses that people with CAI would exhibit 

different peak muscle forces and force generating capacity, and that these differences 

would depend on the respective task. 

A primary finding of the current study was that people with CAI generated greater 

peak gluteus maximus forces than people in the CON group across all tasks. More 

specifically, people with CAI generated on average approximately 24% greater peak 

gluteus maximus forces during all landing and cutting tasks. This finding agrees with 

previous studies, which reported that people with CAI exhibit compensatory muscle 

activations at proximal joints (DeJong, Mangum, & Hertel, 2020; Kim et al., 2019; Rios, 

Gorges, & dos Santos, 2015). For example, Kim et al. (2019) observed greater activations 

of knee and hip joint muscles (e.g., vastus lateralis, adductor longus, gluteus maximus, and 

gluteus medius) in CAI patients during the transition phase (i.e., after landing and before 

takeoff) of landing/cutting tasks (Kim et al., 2019). Similarly, Rios et al. (2015) reported 

that people with CAI activated muscles at proximal joints more during the single-leg stance 

phase of ball-kicking tasks than a group of healthy controls (Rios et al., 2015). 

Furthermore, DeJong et al. (2020) observed that the difference in ultrasound-based gluteus 

maximus muscle thickness, which is a purported surrogate of muscle activation, between 

resting and exercise conditions during a dynamic balance task were greater in a group of 

people with CAI than a group of healthy controls (DeJong et al., 2020; Mangum, 

Henderson, Murray, & Saliba, 2018). The authors of these studies suggested that people 

with CAI adopt greater activation of proximal muscles as a compensatory postural control 

strategy to mitigate neuromuscular deficits at the ankle joint (DeJong et al., 2020; Kim et 

al., 2019; Rios et al., 2015). However, since muscle activation assessed via EMG or 
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ultrasound only provide indirect, and somewhat tenuous, information about muscle forces 

the results of the current study provide more direct evidence that compensatory muscle 

function in people with CAI also extends to the generation of force in proximal muscles. 

Collectively, these findings therefore suggest that people with CAI exhibit neuromuscular 

differences in the function of proximal muscles, which may reflect a strategy to compensate 

for deficits at the ankle joint.  

Another finding of the current study was that people with CAI exhibited an 

approximately 10% greater gluteus maximus force generating capacity during all tasks. 

Given that a muscle’s force generating capacity results from the interaction of the force-

length (𝑓𝐿) and force-velocity (𝑓𝑣) behavior that it exhibits during dynamic tasks, the above 

result indicates that people with CAI performed all landing and cutting tasks with the 

gluteus maximus operating closer to its optimal length and/or with slower shortening 

velocities than people in the CON group. It is thus likely that people with CAI generated 

greater gluteus maximus force because their chosen movement strategy allowed them to 

operate at a greater force generating capacity. It is also interesting to note that people with 

CAI exhibited an approximately 15% greater force generating capacity of vastii, but only 

during the UNANT task. In contrast to the results about group differences in the gluteus 

maximus force generating capacity, the difference in force generating capacity of the vastii 

muscles between groups therefore appears to be task-dependent. The task-dependent 

difference in force generating capacity likely indicates that during unanticipated tasks, 

people with CAI alter their movement strategy to allow them to increase the force 

generating capacity of the vastii , in addition to that of the gluteus maximus, in order to 

compensate for the uncertainty that is inherent in this task. Although the difference in vastii 
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force generating capacity did not lead to changes in peak vastii muscle force, it may still 

be a part of a compensatory strategy that people with CAI use to mitigate neuromuscular 

deficits at the ankle joint. 

We acknowledge several limitations and provide considerations for future study. 

First, the markers that were used to define the foot segment in the current study were 

attached to the outside of the participant’s shoes, and it is acknowledged that movement of 

these markers may not directly represent movement of the foot segment. Second, we 

assumed that the foot segment is one rigid body in this study. However, single-segment 

foot models may not adequately represent the exact kinematics of the ankle joint  (Kim & 

Kipp, 2019). The use of multi-segment foot model can be used for better capturing foot 

and ankle movement for the future study. Third, the validation of simulated muscle 

activations involved only five ankle muscles and did not include proximal muscles. 

However, the cost function of the SO algorithm minimizes the sum of squared activations 

of all muscles (proximal and distal), and all estimates fell within reasonable ranges. 

Although previous research suggests that results from the SO algorithm provides a better 

match with experimental data than other algorithms (Karabulut et al., 2019), future studies 

should consider collecting EMG from other muscles for a more comprehensive validation 

of simulated results. Fourth, the force generating capacity calculation does not provide the 

detailed information about which of muscle length or shortening velocity makes group 

differences because it does not calculate multipliers separately from force-length and force-

velocity relationship. This limitation suggests that future study should consider the separate 

analysis of multipliers from force-length and force-velocity relationship to show the 

detailed muscle behaviors.  
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CONCLUSION 

The current study bolsters the evidence of neuromuscular deficits and task-

specific compensatory movement strategies in CAI patients during dynamic movements. 

Compensatory movement strategies in the CAI patients, such as a “proximal dominant 

landing strategy”, have been reported in previous studies based on EMG or joint 

kinematic/kinetic findings (Kim et al., 2019). The current findings provide additional 

evidence that previously observed disparities in muscle function also extend to 

differences in muscle forces and force generation capacities (i.e., force-length-velocity 

behavior) of proximal muscles, and should thus also be considered part of a 

compensatory landing strategy, in people with CAI. Because compensatory function of 

proximal muscles suggested that people with CAI exhibited greater muscles force and 

larger force generation capacities, future research about CAI rehabilitation interventions 

that aim to prevent recurrent injuries should consider training proximal movement 

patterns (e.g., kinematic profile) rather than only strengthening muscles, especially during 

dynamic tasks that include unanticipated decision making elements. 
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CHAPTER 3: MUSCLE FORCE CONTRIBUTIONS TO ANKLE JOINT 

CONTACT FORCES DURING AN UNANTICIPATED CUTTING TASK IN 

PEOPLE WITH CHRONIC ANKLE INSTABILITY 

 

 

INTRODUCTION 

 

More than 70% of people who suffer a sprain of the lateral ligaments of the ankle 

joint develop chronic ankle instability (CAI) (Gribble et al., 2016). Based on the current 

model of CAI and its causes (Hertel & Corbett, 2019), the deficits associated this pathology 

can be categorized into three main categories of impairments i.e., pathomechanical (e.g., 

ankle joint laxity (Hubbard-Turner, 2012), limited dorsiflexion (Yoon, Hwang, An, & Oh, 

2014)), sensory-perceptual (e.g., impaired proprioception (Willems et al., 2002)), and 

motor-behavioral (e.g., delayed muscle activation (Flevas et al., 2017), diminished H-

reflex (K.-M. Kim, Ingersoll, & Hertel, 2012)). In combination, these impairments 

manifest as recurrent ankle sprains, feelings of ‘giving way’ or instability, pain, and 

swelling all of which decreases the levels of physical activity and quality of life in people 

with CAI (Houston, Van Lunen, & Hoch, 2014). 

The functional impairments that characterize CAI appear to be associated with 

damage of the articular surface of the talocrural joint at the distal end of the tibia, which is 

more commonly damaged than the articular surfaces between the talus and the medial and 

lateral malleoli, and may be the reason that people with CAI have a significantly higher 

risk of developing ankle osteoarthritis (Carbone & Rodeo, 2017). The occurrence of ankle 

osteoarthritis in people with CAI is approximately 70% (Hintermann, Boss, & Schafer, 

2002). One of the purported risk factors for the development and progression of 

osteoarthritis is the magnitude of the joint contact force. With respect to the ankle joint, 
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simulation studies show that joint contact forces and stress increased in the presence of 

ankle ligament rupture or ankle joint malalignment (Bae, Park, Seon, & Jeon, 2015; Kim 

& Kipp, 2020). Although the results of these studies have clinical implications about the 

influence of ankle joint integrity on joint loading, the results were based on simulations 

and data collected from healthy participants, and not from people with CAI. Only one 

recent study investigated joint loads in people with CAI (Li, Wang, & Simpson, 2019). 

That study, however, investigated differences in knee joint contact forces between people 

with and without CAI and found that both groups exhibited comparable tibiofemoral 

contact forces during a drop landing on a tilted surface. Although this study provides 

evidence that CAI does not affect contact forces at  proximal joints (Li et al., 2019), which 

is clinically relevant for musculoskeletal injuries secondary to CAI (e.g., ACL injury), the 

effects of CAI on contact forces in the ankle joint are still not known.  Furthermore, given 

that joint contact forces are the result of ground reaction forces (GRF) (Wang, Ma, Hou, & 

Lam, 2017) and muscle forces (W. Herzog, Longino, & Clark, 2003; Sasaki & Neptune, 

2010), investigating their respective contributions to the joint contact forces in people with 

CAI may identify specific muscles that could be targeted during CAI rehabilitation to 

restore normal loading environment and possibly prevent the onset and progression of 

ankle osteoarthritis. Investigating the individual contributions from specific muscles and 

the GRF to the joint contact forces would therefore fill n clinically important research gap. 

Therefore, the purpose of this study was to investigate the contributions from 

muscle forces and GRF to ankle joint compression and anteroposterior shear forces in 

people with and without CAI during a cutting task. We hypothesized that the ankle joint 
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compression and anteroposterior shear forces would be greater in people with CAI, and 

that the contribution of specific muscles to these forces would differ. 

 

METHODS  

Participants 

Twenty-two participants (11 people with CAI group: 22.1±3.2 years old, 

1.68±0.11 m, 69.0±19.1 kg, 11 healthy controls (CON): 22.6 years old, 1.74±0.11 m, 

66.8±15.5 kg) participated in this study. Inclusion criteria for the CAI group were based 

on a modified ankle instability instrument  (Hale & Hertel, 2005; Kipp & Palmieri-Smith, 

2013; McVey et al., 2005). A group of healthy controls were matched to the CAI group 

by sex, age, height, weight, and physical activity level, which was based on Tegner 

scores. The Foot & Ankle Disability Index (FADI) (CAI: 90.3±9.4; CON: 100±0.0) and 

Foot & Ankle Disability Index in Sports (FADIS) (CAI: 88.6±9.1; CON: 100±0.0) were 

used to assess functional ability.  

Data collection and experimental protocol 

All participants were outfitted with 32 reflective skin markers attached to their 

pelvis (anterior superior iliac spine, posterior superior iliac spine, iliac crest), femur 

(greater trochanter, medial and lateral epicondyle, anterior thigh), tibia (fibular head, lateral 

shank, medial and lateral malleoli), and foot (calcaneal tuberosity, 1st metatarsal base and 

head, 5th metatarsal head) (T. N. Brown et al., 2009; Kipp & Palmieri-Smith, 2012) and 5 

EMG electrodes attached over the muscle bellies of the soleus, medial gastrocnemius, 

lateral gastrocnemius, tibialis anterior, and fibularis longus muscles. 
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Each participant was asked to perform three to five successful trials of 

unanticipated cutting. For this task, participants stood one leg length away from a landing 

area. Each participant performed a forward jump over a 15 cm box, landed on a single 

leg, and immediately executed a 90° cut away from the landing leg. The landing leg and 

cutting direction were indicated by a visual stimulus that was displayed on a computer 

screen that was set at waist level just behind the force plate. The stimulus was triggered 

by the breaking of a light beam, which was positioned at the mid-point between the 

takeoff and position and the landing area (Kim, Palmieri-Smith, & Kipp, 2020). Three-

dimensional positions of the reflective markers were collected with motion capture 

cameras (ViconMx, CA, USA) at a sampling frequency of 240 Hz. Muscle activations 

were recorded with a Bagnoli electromyography system (Delsys, MA, USA) at a 

sampling frequency of 1200 Hz. GRF were recorded with an in-ground force plate 

(Advanced Medical Technologies Inc., MA, USA) at a sampling frequency of 1200 Hz. 

Data processing  

The position and GRF data were both lowpass-filtered with Butterworth filter at a 

cutoff frequency of 12 Hz. Muscle activation data were bandpass-filtered with 

Butterworth filters at cutoff frequencies of 20 and 450 Hz. The filtered muscle activation 

data were further smoothed with an additional lowpass Butterworth filter at a cutoff 

frequency of 10 Hz. The amplitudes of the smoothed muscle activation data were 

normalized by the maximum activation of each signal and time-normalized (0 to 100 %) 

to the duration of the stance phase of the cutting task.  

The analysis consisted of a standard OpenSim processing pipeline (Figure 3. 1) (Delp et 

al., 2007). A musculoskeletal model with 23 degree-of-freedom and 92 muscle actuators 
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was scaled to the static trial of each subject (Delp et al., 1990). The scaling process created 

a subject-specific model for each participant based on their respective anthropometrics 

(e.g., segment lengths) (Figure 3. 1. A). The maximum isometric muscle forces within the 

generic model were initially scaled via generic (C) and subject-specific (S) multipliers that 

were based on each participant’s estimated muscle volume, which in turn were based on 

their respective body mass and height (Equation 1, 2, and 3) (Handsfield et al., 2014).  

𝐹𝑆𝑢𝑏𝑗𝑒𝑐𝑡
𝑀𝑎𝑥𝐼𝑠𝑜 = 𝐹𝐺𝑒𝑛𝑒𝑟𝑖𝑐

𝑀𝑎𝑥𝐼𝑠𝑜 × (𝐶 × 𝑆) (Equation 1) 

𝑆 =
𝑀𝑢𝑠𝑐𝑙𝑒𝑉𝑜𝑙𝑢𝑚𝑒𝑆𝑢𝑏𝑗𝑒𝑐𝑡

𝑀𝑢𝑠𝑐𝑙𝑒𝑉𝑜𝑙𝑢𝑚𝑒𝑀𝑜𝑑𝑒𝑙
 (Equation 2) 

𝑀𝑢𝑠𝑐𝑙𝑒𝑉𝑜𝑙𝑢𝑚𝑒 = (47 × 𝐵𝑜𝑑𝑦 𝑀𝑎𝑠𝑠 × 𝐵𝑜𝑑𝑦 𝐻𝑒𝑖𝑔ℎ𝑡) + 1285 (Equation 3) 

 

The inverse kinematics (IK) tool was used to calculate the joint angles by 

minimizing differences between virtual model markers and experimental subject markers 

(Figure 3. 1. B). Static optimization (SO) was used to estimate muscle forces and 

activations by minimizing the sum of squared activations of each muscle (Figure 3. 1. C). 

The three-dimensional ankle joint contact forces were computed with the joint reaction 

analysis tool (Figure 3. 1. E), which used the subject-specific model, IK kinematics, SO-

based muscle forces, and GRF data (Steele, Demers, Schwartz, & Delp, 2012). The joint 

reaction analysis tool was used to calculate the contribution of individual ankle muscles 

and GRF to the three-dimensional ankle joint contact forces (Figure 3. 1. F) (Maniar, 

Schache, Sritharan, & Opar, 2018). Given the absence of maximum voluntary isometric 

contractions, the simulated muscle activations were validated against the processed 

experimental EMG data through visual inspection and comparison of the muscle 
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activation patterns (Figure 3. 1. D and Figure 3. 2) (Hamner et al., 2010; Hicks et al., 

2015). 

 

 

 

Figure 3. 1 Workflow. A: scaling of model. B: inverse kinematics (IK). C: static 

optimization (SO). D: validation by comparing pattern of measured muscle activation and 

simulated activation. E: joint reaction analysis with all forces (e.g., ground reaction force 

(GRF) and individual muscle). F: separate joint reaction analysis for each force (e.g., 

GRF or individual muscle) 
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Figure 3. 2 Mean±SD normalized muscle activations from EMG and simulation in 

people with chronic ankle instability (CAI) and healthy controls (CON) during 

unanticipated cutting. SL: soleus, MG: medial gastrocnemius, LG: lateral gastrocnemius, 

TA: tibialis anterior, FL: fibularis longus. 

 

 

Statistical testing 
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The independent variable for the statistical analysis was group (CAI vs CON). 

The dependent variables for the statistical analysis were ankle joint (i.e., talocrural joint) 

compression and anteroposterior shear forces and the contributions of individual muscles 

and GRF. The normality of all dependent variables was assessed with the Kolmogorov–

Smirnov test (Ö ner & Deveci Kocakoç, 2017). Independent t-tests were used to compare 

dependent variables between the CAI and CON groups. The alpha level was set at 0.05. 

Effect sizes (Cohen’s d) were also calculated for each comparison. Cohen’s d was 

considered small if between 0.2-0.5, medium if between 0.5-0.8, and large if greater than 

0.8 (J. Cohen, 2013). All statistical analyses were performed in MATLAB (MathWorks, 

MA, USA). 

 

RESULTS  

The independent t-test showed that there was no significant difference between 

the CAI and CON groups in peak compression force during unanticipated cutting (Figure 

3. 3). Furthermore, there were no significant differences between CAI and CON groups 

in the contributions of individual muscles or GRF to peak ankle joint compression force 

(Figure 3. 5). 
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Figure 3. 3 Mean±SD normalized time-series ankle joint compression force (top) and 

anteroposterior shear force (bottom) in people with chronic ankle instability (CAI) and 

healthy controls (CON) during unanticipated cutting. 
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Figure 3. 4 Averaged and normalized ankle joint compression (top row) and 

anteroposterior (bottom row) forces and contributions from ground reaction forces and 

individual muscles in people with chronic ankle instability (CAI) and healthy controls 

(CON) during anticipated cutting. JCF: joint contact force, GRF: ground reaction force, 

SL: soleus, MG: medial gastrocnemius, LG: lateral gastrocnemius, TP: tibialis posterior, 

TA: tibialis anterior, FB: fibularis brevis, FL: fibularis longus 
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Figure 3. 5 Mean±SD normalized contribution of ground reaction force and individual 

muscles at time of peak ankle joint compression force in people with chronic ankle 

instability (CAI) and healthy controls (CON) during unanticipated cutting. JCF: joint 

contact force, GRF: ground reaction force, SL: soleus, MG: medial gastrocnemius, LG: 

lateral gastrocnemius, TP: tibialis posterior, TA: tibialis anterior, FB: fibularis brevis, FL: 

fibularis longus 
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Figure 3. 6 Mean±SD normalized contribution of ground reaction force and individual 

muscles at time of first anterior, posterior, and second anterior peaks of ankle joint 

anteroposterior (AP) shear force in people with chronic ankle instability (CAI) and 

healthy controls (CON) during unanticipated cutting. JCF: joint contact force, GRF: 

ground reaction force, SL: soleus, MG: medial gastrocnemius, LG: lateral gastrocnemius, 

TP: tibialis posterior, TA: tibialis anterior, FB: fibularis brevis, FL: fibularis longus, *: 

significant difference with p < 0.05 

 

 

The independent t-tests showed that there were significant differences between the 

CAI and CON groups for the first (p = 0.048, Cohen's d = 0.98) and third (p = 0.017, 

Cohen's d = 1.21) peaks in anteroposterior shear forces during unanticipated cutting 

(Figure 3. 3). Specifically, the two peaks in anterior shear forces in the CAI group were 

approximately 30% and 92% greater in the CON group.  
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 The contribution of individual muscles and GRF to the first and second peaks in 

anterior shear forces were also significant different between the CAI and CON groups 

(Figure 3. 6). Specifically, people with CAI exhibited greater contribution from the GRF 

to the first peak in anterior shear force (p = 0.026, Cohen's d = 1.12) (Figure 3. 6). 

Furthermore, people with CAI exhibited greater contributions from the lateral 

gastrocnemius (p = 0.026, Cohen's d = 1.12), medial gastrocnemius (p = 0.048, 

Cohen's d = 0.98), tibialis posterior (p = 0.017, Cohen's d = 1.22), fibularis brevis (p = 

0.035, Cohen's d = 1.05), and fibularis longus (p = 0.023, Cohen's d = 1.15) to the 

second peak in anterior shear force (Figure 3. 6). 

 

DISCUSSION 

The purpose of this study was to investigate the contributions from muscle forces 

and GRF to ankle joint compression and anteroposterior shear forces in people with and 

without CAI during a cutting task. We found that people with CAI exhibited the greater 

peaks of ankle joint anterior shear, but not compression forces than the CON group. In 

addition, people with CAI exhibited greater contribution from GRF to the first peak in 

ankle joint anterior shear force during early stance, and exhibited greater contribution from 

lower leg muscles to the second peak in ankle joint anterior shear force during late stance. 

Together, these results partially supported our hypotheses in that some ankle joint contact 

forces were greater in people with CAI, and in that these differences were the result of 

different stance phase specific contributions from individual muscles and GRF. 

A primary finding of the current study was that people with CAI exhibited greater 

ankle joint anterior shear forces during unanticipated cutting compared to people in a CON 
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group. The observed significance in the differences in anterior shear forces were also 

associated with a large effect size, which suggests that the differences are both significant 

and clinically meaningful. This finding is important because previous studies indicated that 

ankle joint shear forces are strongly associated with the progression of ankle osteoarthritis 

(N. P. Cohen, Foster, & Mow, 1998; Lane Smith et al., 2000). Interestingly, findings from 

the current study suggest that the differences in anterior shear forces are the result of stance-

phase specific muscle and GRF contributions. Specifically, people with CAI exhibited 

greater GRF contribution to the first peak in anterior ankle joint shear force compared to 

people in CON group. The first peak in anterior shear force occurred immediately after 

foot touchdown during the early stance phase of the cutting task. This phase is also 

associated with an impact transient in the GRF, which may contribute to the first peak in 

anterior shear force as the tibia pushes forward against a relatively fixed talus during the 

landing phase of the cutting task. Previous studies suggest that people with CAI land with 

protective movement strategies that are characterized by stiffening the ankle joint and 

adopting a more close-packed ankle position (Son et al., 2017), which could arguably lead 

to greater peaks in anterior shear force during the early stance phase of cutting. 

Consequently, this result may indicate that the arthrokinematics and protective movement 

strategies in people with CAI are partially responsible for the greater peak anterior ankle 

joint shear forces during at the early stance phase of unanticipated cutting. 

Another important finding relates to the group differences in phase-specific 

contributions by individual muscles to the anterior ankle joint shear forces in people with 

CAI. Specifically, several muscles exhibited significant differences between-group 

differences with large effect sizes at the time of the second peak in anterior ankle joint 
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shear force. This result supports our initial hypothesis and suggests that the greater 

observed peak in anterior shear force at the ankle joint in people with CAI is the results of 

different muscle contributions. Greater anterior shear force contributions were observed in 

some of the plantar flexor (lateral gastrocnemius, medial gastrocnemius, and tibialis 

posterior) and evertor (fibularis brevis and fibularis longus) muscles during the late stance 

phase of unanticipated cutting in people with CAI. Notably, the fibularis longus and brevis 

as well as the tibialis posterior appeared to be the largest contributors to the anterior shear 

force at the ankle and exhibited the greatest differences in force contributions between the 

CAI and CON groups. Given that the fibularis longus and brevis are often implicated within 

the etiology and impairments associated with CAI these findings are perhaps not surprising 

(Donnelly, Donovan, Hart, & Hertel, 2017; McLeod, Gribble, & Pietrosimone, 2015), but 

uniquely underscore the importance of restoring appropriate ankle joint function from a 

mechanical and clinical perspective because these results provide direct links between 

aberrant ankle joint shear forces and muscle actions. Researchers and clinicians should thus 

try to establish if restoring fibularis longus function normalizes anterior shear forces and 

helps mitigate the progression of ankle osteoarthritis in people with CAI.  

There are some limitations associated with the methods and results of this study. 

First, the musculoskeletal model used in the current study does not account for the gliding-

sliding joint kinematics of the talocrural joint, including more degrees-of-freedom into the 

musculoskeletal model may produce more realistic ankle joint kinematics and reveal 

additional details about joint loads and contributions from muscles. Second, only lower leg 

muscles were included in the estimating of the muscular contributions to ankle joint contact 

forces. Given that muscles that do not span a joint can still contribute to the contact force 
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at that joint (Maniar et al., 2018), including and estimating the effects from other (more 

proximal) muscles (e.g., quadriceps or gluteus maximus) may provide more additional 

information for clinicians about which muscles may serve as targets during rehabilitation 

protocols. Third, the ankle joint shear forces in the mediolateral direction were not 

considered in the current study. Although mediolateral shear forces in the joint may also 

damage the joint articular tissue (N. P. Cohen et al., 1998), the magnitudes of the 

mediolateral shear forces in the current study were much smaller (e.g., peak mediolateral 

shear force was approximately 25% of peak anteroposterior shear force.) than the joint 

contact forces in the other two directions, which led us to not disregard them in the current 

context. Lastly, the results of the current study are based on a sample of 22 people, which 

could be considered a relatively small sample. Given the general need for replication and 

extension of research into the areas mentioned above, future studies may thus also consider 

recruiting larger samples of people with CAI. Additional considerations and directions for 

future research also relate to the development and use of more detailed and subject-specific 

models based on a patient’s ankle joint morphology with e.g., X-ray or fluoroscopy. 

Second, the unanticipated cutting task that was chosen for this investigation is an example 

of a common high-intensity sport task. However, investigating joint contact forces and the 

specific muscle and GRF contributions during activities of daily living (e.g., walking) may 

also provide additional insights about how to ameliorate deleterious joint loading and 

mitigate the progression of ankle osteoarthritis in people with CAI in the long term (Lenton 

et al., 2018). 
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CONCLUSION 

This study compared joint contact forces and the respective contribution of 

individual muscles and GRF between people with and without CAI. People with CAI 

exhibited greater anterior shear forces in the ankle during the early and late stance phases 

than people without CAI. Furthermore, the greater anterior shear forces were the result of 

greater GRF contribution during the early stance phase and greater muscle contribution 

during the late stance phase. It is suggested that clinicians and researchers investigate if 

targeting these stance phase specific contributions provides a way to also decrease 

anterior shear forces in an effort to eventually prevent ankle osteoarthritis in people with 

CAI.  
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CHAPTER 4: TIME-FREQUENCY ANALYSIS OF MUSCLE 

ACTIVATION PATTERNS IN PEOPLE WITH CHRONIC ANKLE 

INSTABILITY DURING LANDING AND CUTTING TASKS 

 

 

INTRODUCTION  

Ankle sprains are among the most common injuries in athletes and physically 

active people (M. M. Herzog, Kerr, Marshall, & Wikstrom, 2019). Up to 70% of the 

general population has experienced at least one ankle sprain (McKay, Goldie, Payne, & 

Oakes, 2001). A previous study also reported that up to 74% of people with a history of 

ankle sprains develop chronic ankle instability (CAI), which is a condition characterized 

by recurring or repeated giving away of the ankle during dynamic activities (Gribble et 

al., 2014; M. M. Herzog et al., 2019). Recurrent ankle sprains are associated with 

mechanical and functional deficits and become a critical issue in people with CAI 

because it limits their physical activities (Hubbard & Wikstrom, 2010), and leads to 

residual symptoms such as pain, swelling, or feeling of giving away (Hertel, 2002). In 

addition, CAI is associated with the development of ankle osteoarthritis due to damage of 

the talocrural joint surface (Hintermann et al., 2002; Wikstrom et al., 2013). Furthermore, 

people with CAI exhibit different neuromuscular strategies, such as altered muscle 

activations, as they walk or perform sport-related landing or cutting motions (Kim et al., 

2019; Son, Kim, Seeley, & Hopkins, 2019). 

Electromyography (EMG) is an important research tool to investigate the 

neuromuscular strategies during sport-related motions, and several studies have used 

EMG to identify altered neuromuscular strategies of people with CAI compared to people 

without CAI. (Feger et al., 2015; Herb, Grossman, Feger, Donovan, & Hertel, 2018; 
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Hertel & Corbett, 2019; Kim et al., 2019; Kunugi et al., 2018; Son et al., 2017). Previous 

studies revealed different muscle activation strategies during dynamic tasks, such as 

landing or cutting, in people with CAI compared to healthy people. For example, in some 

studies people with CAI exhibit less activation of the fibularis longus, tibialis anterior, 

medial gastrocnemius, and gluteus medius during a jump land and cut task (Son et al., 

2017) and diagonal single-leg rebound jumping (Kunugi et al., 2018) compared to 

healthy controls in previous studies. In contrast, a different study showed that people with 

CAI muscles exhibit greater activation of the medial gastrocnemius, fibularis longus, 

adductor longus, vastus lateralis, gluteus medius, and gluteus maximus compared to 

healthy controls, but only during specific time periods of a jump land and cut task (Kim 

et al., 2019). Furthermore, fibularis longus, rectus femoris, tibialis anterior, and soleus 

muscle activations after initial contact did not differ between people with and without 

CAI during single leg drop jumps (Delahunt, Monaghan, & Caulfield, 2006b). Since 

results from previous studies show inconsistent findings in the amplitude of muscle 

activation during dynamic movements, it is possible that investigating and comparing 

only the amplitudes of muscle activation of people with and without CAI may not 

provide adequate insight into neuromuscular deficits. 

EMG data in studies that investigate neuromuscular control in people with CAI 

are frequently filtered and smoothed (e.g., band-pass filtered with cutoff frequencies of 

20 and 450 Hz and smoothed with root mean square algorithms), which removes, and 

essentially ignores, information about the frequency domain of EMG data and the 

neuromuscular recruitment strategies of different muscles (Wakeling et al., 2006). Some 

studies have investigated the time-frequency domain of EMG data in order to 
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differentiate between people with different impairments or knee injury history  (Jewell, 

Hamill, von Tscharner, & Boyer, 2019; Kuntze, von Tscharner, Hutchison, & Ronsky, 

2015; Mohr, von Tscharner, Emery, & Nigg, 2019; von Tscharner, 2000; von Tscharner 

& Valderrabano, 2010). For example, von Tscharner and Valderrabano (2010) 

succesfully used time-frequency features of muscle activations to accurately classify 

people with ankle osteoarthritis and healthy people (von Tscharner & Valderrabano, 

2010). However, no study to date has investigated muscle activation characteristics in the 

time-frequency domain of people with CAI. Given that investigating muscle activation in 

the time-frequency domain may reveal information about motor unit and muscle 

recruitment strategies, which are relevant to designing targeted clinical interventions, 

studying the characteristics of clinically important muscles (e.g., fibularis longus) in this 

domain in people with CAI seems warranted. 

To better understand the neuromuscular strategies used by people with CAI it 

would be important to investigate the muscle activation patterns in the time-frequency 

domain. Therefore, the purpose of the current study was to identify differences the time-

frequency domain of muscle activation patterns between people with and without CAI 

during athletic tasks (e.g., landing, anticipated cutting, and unanticipated cutting). We 

hypothesized that 1) there would be significant differences in the frequencies of muscle 

activation patterns between people with and without CAI and 2) that these differences 

would be task-dependent.  

 

METHODS  

Participants 



  

 

45 

Eleven people with CAI (22.4±3.2 years, 1.68±0.11 m, 69.0±19.1 kg) and 11 

healthy people (22.6±4.2 years, 1.74±0.11 m, 66.8±15.5 kg) were recruited for this study. 

All participants signed an informed consent form that was approved by an Institutional 

Review Board, which ensured that the research complied with the ethical principles of the 

Declaration of Helsinki. Inclusion criteria for the CAI group were based on a modified 

version of the Ankle Instability Instrument, which used nine questions to assess various 

aspects of a person’s history of ankle sprains and associates symptoms (Docherty, 

Gansneder, Arnold, & Hurwitz, 2006; McVey et al., 2005). The Foot & Ankle Disability 

Index (FADI) and FADI-Sport (FADI-S) questionnaires were additionally used to 

quantify the function and disability in the ankle joint (FADI, CAI group: 90.3±9.4%, 

CON: 100±0%; FADI-S, CAI: 88.6±9.1%, CON: 100±0%) (Houston, Hoch, & Hoch, 

2015; Kipp & Palmieri-Smith, 2013). Participants from the control group were matched 

to the CAI group based on sex, age, height, weight, and physical activity level, which was 

assessed via Tegner scores (Kipp & Palmieri-Smith, 2013). 

Data collection  

Participants were instrumented with five electromyographical (EMG) sensors 

(Bagnoli 8-Channel Desktop System, Delsys, Boston, MA, USA). These EMG sensors 

were attached over the muscle bellies of the lateral gastrocnemius (LG), medial 

gastrocnemius (MG), fibularis longus (FL), soleus (SL), and tibialis anterior (TA) after 

cleaning of skin with an alcohol swab on the EMG attached area. Each participant 

performed three tasks: 1) double-leg forward jump with single-leg landing, 2) double-leg 

forward jump with single-leg landing and anticipated cutting, and 3) double-leg forward 

jumping with single-leg landing and unanticipated cutting. The order of the three tasks 
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remained the same for each participant so that the difficulty increased progressively (e.g., 

landing, anticipated cutting, unanticipated cutting). For each task, participants were asked 

to perform the double-leg forward-jump over a 15cm box and to land on a force plate 

(AMTI OR6, Advanced Medical Technology Inc., Watertown, MA, USA). The distance 

between initial position and the force plate was each participant’s leg length which was 

measured from anterior superior iliac spine and medial malleolus. For the single-leg 

landing task, participants were asked to land and stabilize their body for 5 seconds. For 

the single-leg landing and anticipated cutting task, participants were asked to perform a 

90° cut away from their landing leg immediately after landing on the force plate. The 

single-leg landing and unanticipated cutting task were similar to the anticipated cutting 

task, but the landing leg and the cutting direction were presented to participants by a 

visual stimulus that was displayed on a laptop monitor, which was positioned at waist 

height just behind the force plate, and came on as participants broke a light beam set 

halfway between the take-off and landing area. Participants were asked to perform 

between three to five successful trials of each task. Trials were considered successful if 

participants performed the task according to instructions and landed with their foot 

entirely on the force plate. 

Data processing  

Force plate and EMG data were recorded during the stance phase of each task at 

1200 Hz. EMG data were amplified by a factor of 1000. The beginning of stance phase 

was defined as the point when the vertical ground reaction force (GRF) data exceeded 10 

N. The end of the stance phase for the single-leg landing was defined as 200ms after the 

beginning of stance phase, whereas for both cutting tasks it was defined as the point when 
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the GRF fell below 10 N. We excluded one subject in the control group because of technical 

problems with the GRF. In addition, two participants in the CAI group were not able to 

perform the unanticipated cutting task. Therefore, the total number of trials included in the 

analysis was 183 i.e., 15 less (one CON: 3 tasks x 3 trials; two CAI: 1 task x 3 trials) than 

if the data set had been complete and included all 198 trials (22 subjects × 3 tasks × 3 

trials). 

Wavelet transformations allow for the simultaneous analysis of EMG signals in the 

time and frequency domains with various resolutions (von Tscharner, 2000). The intensity 

of  the EMG signal was calculated with a wavelet intensity analysis in which EMG data 

was transformed in the time-frequency domain with a set of 11 nonlinearly scaled Cauchy 

wavelets (w1-w11) (Jewell et al., 2019; von Tscharner, 2000). The center frequencies of 

the wavelets were 6.90, 19.29, 37.71, 62.09, 92.36, 128.48, 170.39, 218.08, 271.50, 330.63, 

and 395.46 Hz to capture the full range of the EMG signal spectrum (von Tscharner, 2000). 

The intensities were time-normalized to make 0-100% of stance phase (Figure 4. 1). The 

intensity from w1 was excluded for further analyses because it was considered to reflect 

movement artifacts (Conforto, D'Alessio, & Pignatelli, 1999). The total intensities of each 

wavelet (w2-w11) were compiled into a matrix. The matrix had 915 rows representing (183 

trials × 5 muscles) and 10 columns representing total intensity from w2-w11. A principal 

component analysis was applied to the matrix to find the principal components (PC) that 

accounted for 90% of the total variance (VAF).  

 

 



  

 

48 

 

Figure 4. 1 Time-frequency heatmaps for mean wavelet intensities of the lateral 

gastrocnemius (first row), medial gastrocnemius (second row), fibularis longus (third 

row), soleus (fourth row), and tibialis anterior (fifth row) during 200 ms of the landing 

task (left two columns) and during the stance phases of the anticipated cutting task 

(middle two columns) and unanticipated cutting task (right two columns). 

 

 

Statistical analysis 

For the statistical analysis, the dependent variables were the extracted PC scores. 

The independent variables were group (CON and CAI), task (landing, anticipated cutting, 

and unanticipated cutting), and muscles (SL, FL, TA, MG, and LG). The Kolmogorov-

Smirnov test was used to check the normal distribution of the PC scores. Separate three-

way ANOVAs for each PC Score were used to analyze the interactions and main effects 

of all experimental conditions. Fisher’s Least Significant Difference procedure was used 

during post hoc testing to investigate pair-wise differences for any significant interactions 

or main effects. Two-way interactions not involving group as a factor and main effects 

other than group were not investigated because they did not directly relate to the purpose 
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of the study (e.g., task × muscle differences were not of interest). Alpha value was set to 

0.05. 

 

RESULTS  

The PCA extracted two PCs, which accounted for 71% and 18% of the total 

variance in the EMG input data (Figure 2). The first PC captured variation in the magnitude 

of the wavelet intensities whereas the second PC captured variation related to a shift in the 

center frequencies of wavelet intensity. 

 

 

 

Figure 4. 2 Variation in wavelet intensity captured by the two principal components (PC). 

The effects of positive and negative PC scores on wavelet intensities are illustrated by 

simulating a one standard deviation (1SD) change in the PC on the mean intensity of the 

EMG data and can be visualized by the dashed lines and the + and – symbols, respectively. 

The effects. VAF – variance accounted for by the given PC. 

 

 

None of the three-way interactions between group, task, and muscle were 

significant for either PC (Table 1). In addition, neither of the two-way interactions that 

included Group as a factor were significant for the first PC. There was, however, a 
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significant (p = 0.041) two-way interaction between Group and Task for the second PC 

(Figure 3). Post hoc testing revealed that the scores of PC2 were significantly (p = 0.009) 

lower in all muscles of the CAI group during the anticipated cutting task only. Lastly, there 

was also a significant (p = 0.009) main effect of group for the scores of the first PC, which 

showed that the CAI group exhibited lower PC1 scores across all tasks and for all muscles 

(Figure 4). 

 

 

Table 4. 1 Principal component (PC) scores (means and standard deviation) for lateral 

gastrocnemius (LG), medial gastrocnemius (MG), fibularis longus (FL), soleus (SOL), and 

tibialis anterior (TA) in people with chronic ankle instability (CAI) and for healthy controls 

(CON) for the landing (Land), anticipated cutting (Ant), and unanticipated cutting (Unant) 

tasks.   

PC1 score  PC2 score 

Muscle Group Land Ant Unant  Land Ant Unant 

LG 

CAI -12.60 ± 1.73 -6.48 ± 6.84 -7.16 ± 5.89  -7.72 ± 1.54 -2.11 ± 6.31 -3.08 ± 4.58 

CON -10.87 ± 2.89 -0.89 ± 12.95 -0.44 ± 11.17  -6.88 ± 2.77 5.14 ± 13.85 1.08 ± 7.85 

                     

MG 

CAI -6.65 ± 7.21 -2.34 ± 7.92 0.48 ± 7.90  -5.92 ± 3.82 -1.61 ± 4.12 -1.61 ± 3.19 

CON 10.13 ± 87.45 16.27 ± 77.59 -1.30 ± 7.39  -

10.06 
± 38.11 2.83 ± 18.50 0.17 ± 6.01 

                     

FL 

CAI 5.49 ± 34.98 2.62 ± 22.47 2.54 ± 13.36  3.26 ± 14.91 1.30 ± 7.81 3.04 ± 9.33 

CON -4.68 ± 16.25 1.63 ± 24.68 3.95 ± 22.18  -0.84 ± 13.54 6.67 ± 24.11 0.01 ± 15.66 

                     

SOL 

CAI 0.69 ± 17.88 -8.18 ± 5.90 -7.97 ± 5.78  2.53 ± 14.53 -4.24 ± 4.68 -3.95 ± 5.35 

CON 7.27 ± 21.97 -9.08 ± 4.86 -7.89 ± 7.54  7.41 ± 17.23 -4.70 ± 5.69 -3.99 ± 6.12 

                     

TA 

CAI -5.72 ± 4.29 4.60 ± 8.78 5.74 ± 11.10  -2.27 ± 4.24 7.36 ± 8.33 5.82 ± 8.69 

CON 8.00 ± 48.28 11.31 ± 30.70 13.75 ± 35.19  -7.06 ± 11.43 10.58 ± 19.51 9.82 ± 23.65 
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Figure 4. 3 Muscle- and task-averaged PC1 scores (i.e., magnitude of the wavelet 

intensities) for people with chronic ankle instability (CAI) and for people in the control 

group (CON) 
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Figure 4. 4 Muscle-averaged PC2 scores (i.e., shift in center frequencies of wavelet 

intensities) for people with chronic ankle instability (CAI) and for people in the control 

group (CON) during the landing, anticipated cutting, and unanticipated cutting task. 

 

 

DISCUSSION 

The purpose of the current study was to investigate differences in the time-

frequency domain of muscle activation patterns between people with and without CAI 

during athletic tasks (e.g., landing, anticipated cutting, and unanticipated cutting). We 
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hypothesized that people with CAI would exhibit different activation patterns and that 

these differences would depend on the respective task. The results generally supported our 

hypotheses in that people with CAI exhibited lower wavelet intensities across all muscles 

and tasks, and were not able to increase wavelet intensities at higher frequency ranges 

during the anticipated cutting task.  

The main effect for PC1 indicated that compared to the CON group, people with 

CAI exhibited lower PC1 scores in all muscles and across all tasks. Since PC1 captured the 

general magnitude of wavelet intensities across all frequencies, people with CAI therefore 

exhibited lower wavelet intensities across all frequency ranges in all muscles and tasks. 

People with CAI thus appear to use a neuromuscular strategy characterized by activating 

ankle muscles at lower wavelet intensities during landing and cutting tasks. Previous 

studies that investigated neuromuscular function in people with CAI during dynamic 

movements presented inconsistent findings with respect to the peak amplitude of the 

smoothed EMG signal in that they show that people with CAI exhibit either less activation 

of the FL, TA, and MG muscles (Son et al., 2017) or more activation of the FL and MG 

muscles (Kim et al., 2019) than healthy controls. The intensity of a wavelet provides a good 

approximation of  power of the EMG signal at that respective frequency, is related to 

changes in the Root Mean Square of EMG, and provides insight into the number of active 

motor units (Jewell et al., 2019; von Tscharner, 2000; von Tscharner & Valderrabano, 

2010). The current finding therefore suggests that people with CAI recruit fewer motor 

units in ankle muscles regardless of task, and is in agreement with research that showed 

less activation ankle muscles in people with CAI (Son et al., 2017). The current study thus 

expands on previous results since the wavelet analysis accounts for the intensities across a 
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wide range of activation frequencies, and presumably motor units (von Tscharner, 2000). 

Collectively, these findings suggest CAI rehabilitation may need to include resistance 

training exercises that aim to increase muscle force production across a large range of 

activation frequencies so that all motor units are adequately trained. In other words, 

resistance training exercises should include not only various loads (e.g., heavy vs light 

loads) but also various  speeds (e.g., slow joint movement vs fast joint movement). 

The group by task interaction effect for PC2 indicated that people with CAI 

exhibited similar PC2 scores across all tasks, whereas people in the CON group did not. 

Specifically, post hoc testing revealed that people in the CON group exhibited greater PC2 

scores than the CAI group during the anticipated cutting task. Since PC2 captured a shift 

among the range of frequencies where the wavelet intensities were most prominent, the 

increase in PC2 scores in the CON group suggests that this group exhibited an increase in 

wavelet intensities at higher frequency ranges during the anticipated cutting task. In other 

words, people with CAI seemed unable to increase wavelet intensities in higher frequency 

ranges during anticipated cutting. The frequency domain of a muscle’s activation profile is 

influenced by the recruitment of different motor unit types because the conduction velocity 

of motor units differs based on the electric properties of the motor units i.e., faster motor 

units exhibit higher conduction velocities and greater wavelet frequencies during muscle 

activation than slower motor units (Buchthal, Guld, & Rosenfalck, 1955; Wakeling & 

Syme, 2002). Since cutting motions require rapid muscle activation, these movements also 

likely require that motor units are recruited at higher frequencies (S. S. Lee, de Boef Miara, 

Arnold, Biewener, & Wakeling, 2013). Based on the analysis of PC2 scores, it thus appears 

that people with CAI are not able to recruit motor units during the anticipated cutting task 
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in the same manner as people in the CON group. This finding may indicate that people 

with CAI are not able to adequately scale the recruitment of motor units in the frequency 

domain in response to different task demands. Given that movements are controlled with 

not only the intensity of muscle activations but also speed of motor unit recruitment, which 

suggests that people with CAI may stem from incapacity to scale frequency of muscle 

activations during the dynamic tasks. Perhaps, performing resistance training exercises 

during CAI rehabilitation at fast velocities may facilitate the recruitment and increase the 

firing rate of faster motor units and thus improve the capacity to shift wavelet intensity 

towards higher frequency during muscle activation in people with CAI.  

There are several limitations with the current study. First, the FADI and FADI-

Sport questionnaires were used to assess self-reported ankle function in the current study. 

Other studies, however, have used questionnaires such as the Cumberland Ankle Instability 

Tool (Gribble et al., 2014). Although the Cumberland Ankle Instability Tool is commonly 

used, FADI and FADI-Sport are considered to adequately describe functional deficits in 

people with CAI (Houston et al., 2015). In addition to the FADI and FADI-Sport, we also 

used another questionnaire to evaluate the history and symptoms of ankle sprain (McVey 

et al., 2005), which enhanced the CAI inclusion criteria. Second, the current study did not 

include a group of “copers” (i.e., people who have a history of lateral ankle sprain but have 

no recurrent ankle sprains or functional deficits). A previous study revealed that copers 

exhibit different sensorimotor function than people with CAI (Wikstrom et al., 2012). For 

this reason, recruiting a copers group in addition to people with CAI and healthy controls 

may provide better clinical insights and more detailed information about the spectrum of 

functional deficits in people with CAI. Third, only the landing and stance phases during 
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three tasks were analyzed in this study. However, the phase immediately before foot 

contact can provide information about preparatory strategies during the dynamic tasks and 

has been widely analyzed in previous CAI studies (Minoonejad, Karimizadeh Ardakani, 

Rajabi, Wikstrom, & Sharifnezhad, 2019; A. Rosen et al., 2013). Therefore, analyzing 

muscle activation in the frequency domain during the preparatory phase of dynamic tasks 

in people with CAI in future studies may also provide additional information. Fourth, we 

only collected and analyzed EMG of distal muscles (i.e., at the ankle joint). Including 

proximal muscles for time-frequency analysis in future studies may also be useful because 

previous research suggests that people with CAI also exhibit different activation patterns 

of proximal muscles, such as the vastus lateralis and gluteus maximus (Kim et al., 2019). 

Lastly, the sample size of people with CAI in this study is relatively small, which may 

suggest that the results and interpretations should be considered as preliminary and should 

be replicated in a larger sample. 

To our knowledge, this study is the first study to investigate the time-frequency 

domain of muscle activation patterns in people with CAI. There are several clinical 

implications of the results from the current study. We found that people with CAI exhibited 

lower wavelet intensities across all tasks and all muscles and did not change the muscle 

activation in the time-frequency domain in response to different tasks. Collectively, people 

with CAI appear to activate fewer motor units in all ankle muscles we analyzed during all 

studied dynamic tasks, and recruit slower motor units within all analyzed ankle muscles 

during anticipated cutting. Given that people with CAI exhibited neuromuscular deficits in 

both wavelet intensity and frequency of  ankle muscle activations in the current study, 

rehabilitation to improve neuromuscular control and decrease risk of recurrent injuries in 
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people with CAI will likely need to include exercises that focus on the velocity component 

of contraction (e.g., anticipated and unanticipated tasks with various moving directions) in 

addition to the intensity component (e.g., loads) of contraction. 

 

CONCLUSION 

People with CAI exhibited muscle activation patterns characterized by differences 

in the time-frequency domain compared to healthy people. Specifically, people with CAI 

activated all ankle muscles with lower wavelet intensities across the entire frequency 

spectrum, regardless of task. In addition, people with CAI did not exhibit an increase in 

wavelet intensity in higher ranges of the frequency spectrum during the anticipated 

cutting task. These findings suggest that rehabilitation efforts for people with CAI should 

consider that this population exhibits differences in neuromuscular control that exist not 

only in the overall magnitudes, but also in the time-frequency domain, of muscle 

activation patterns.  
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CHAPTER 5: MUSCLE SYNERGIES IN PEOPLE WITH CHRONIC 

ANKLE INSTABILITY DURING ANTICIPATED AND UNANTICIPATED 

CUTTING TASKS 

 

 

INTRODUCTION  

A sprain of the ligaments that are located on the lateral side of the ankle joint is one 

of the most common musculoskeletal injuries. Up to 70% of people who sprain their ankles 

develop chronic ankle instability (CAI) and experience lingering mechanical and 

functional deficits (Gribble et al., 2016). Although researchers have investigated and 

developed rehabilitation strategies for people with CAI, three billion health care dollars 

continue to be spent annually to treat CAI in the United States (Radwan et al., 2016). 

Furthermore, people with CAI face higher risks of developing more serious clinical 

sequelae, such as ankle osteoarthritis (Carbone & Rodeo, 2017; Wikstrom et al., 2013). 

Researchers have previously investigated neuromuscular function in people with 

CAI and identified numerous deficits (Hertel & Corbett, 2019). Electromyography has 

been widely used in these studies and revealed a variety of neuromuscular deficits, such as 

less muscle activity (Son et al., 2017), delayed activation (Flevas et al., 2017), 

compensatory control of proximal joints (DeJong et al., 2020; Kim et al., 2019; Rios et al., 

2015), or longer duration of activation (Feger et al., 2015) in people with CAI. While these 

studies primarily described neuromuscular function of the peripheral nervous system, few 

studies have investigated deficits in neuromuscular control at the level of the central 

nervous system (CNS) in people with CAI. The CNS, however, plays an important roles in 

controlling muscle activity and joint stiffness and in stabilizing joints during movement 

(Humphrey & Reed, 1983; Swanik, Covassin, Stearne, & Schatz, 2007). Despite the 
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importance of these roles, CNS-based control of neuromuscular activation or muscle 

activation strategies have not been investigated in people with CAI. Although some 

researchers have investigated, and found evidence for, deficits in CNS function in people 

with CAI, the methods used by these researchers (e.g., functional near-infrared 

spectroscopy or transcranial magnetic stimulation) only allow for the study of the CNS 

during static tasks (e.g., single-limb standing) (Needle et al., 2013; A. B. Rosen et al., 

2019). Given that ankle sprains frequently occur during fast and dynamic movements, it is 

necessary to extend the investigation of CNS control in relation to neuromuscular 

activation patterns to such movements. 

One way to study CNS control of muscle activation patterns or strategies is via the 

analysis of muscle synergies through the use of non-negative matrix factorization (NMF) 

(d'Avella et al., 2003; D. D. Lee & Seung, 1999; Rabbi et al., 2020). The analysis of muscle 

synergies has been used to identify CNS deficits in patients with neurological pathologies, 

such as stroke or cerebral palsy (Allen et al., 2019; Shuman et al., 2019). This analysis 

provides meaningful insights about CNS control, such as the complexity of an individual’s 

strategy to control the activations of multiple muscles during movement, which is reflected 

in the number of muscle synergies that are present during a specific task (Safavynia et al., 

2011). People who exhibit a smaller number of muscle synergies appear to use a less 

complex control strategy, as demonstrated by patients with neurological pathologies who 

appear to control muscle activations with broader and merged versions of muscle synergies 

found in healthy people (Safavynia et al., 2011). In addition, the similarity among synergies 

between people with neurological pathologies and healthy people are used to identify 

similarities in CNS control signals and impairments in descending neural commands 
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(Safavynia et al., 2011). Given that CAI is also often considered to affect CNS function 

similar to other neurological pathologies (Needle et al., 2017; Needle et al., 2013; A. B. 

Rosen et al., 2019), investigating muscle synergies in people with CAI may provide unique 

insight into their neuromuscular control strategies during dynamic tasks.  

Therefore, the purposes of this study were to use NMF and extract muscle synergies 

in order to investigate and compare CNS-based neuromuscular control strategies in people 

with CAI and healthy CON during cutting tasks. We hypothesized that people with CAI 

would 1) use fewer (i.e., less complex) muscle synergies, 2) exhibit different muscle-

specific weightings within muscle synergies, 3) display task-specific these differences in 

muscle synergies. 

 

METHODS  

Participants 

Eleven people with CAI (22 ± 3 years, 1.68 ± 0.11 m, 69.0 ± 19.1 kg) and 11 

healthy controls (CON) (23 ± 4 years, 1.74 ± 0.11 m, 66.8 ± 15.5 kg) were recruited to 

participate in the current study. Initial screening and inclusion into the CAI group was 

based on a questionnaire (McVey et al., 2005). In addition, the foot and ankle disability 

index (FADI) and FADI-Sport questionnaires were used to assess ankle joint function 

(Hale & Hertel, 2005), and Tegner scores were used to quantify physical activity level of 

each participant. 

Data collection  

Ground reaction forces (GRF) were recorded with a force platform (AMTI, MA, 

USA) and muscle activations were recorded with a desktop EMG system (Bagnoli, 
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Delsys, MA, USA). Muscle EMG and GRF data were collected at sampling frequencies 

of 1200 Hz. Five EMG electrodes were attached on lateral gastrocnemius (LG), medial 

gastrocnemius (MG), fibularis longus (FL), soleus (SL), and tibialis anterior (TA) 

muscles. Each participant performed a brief warm-up, after which they were asked to 

perform up to five trials each of an anticipated and unanticipated cutting task. For both 

tasks, participants performed a forward jump over a 15 cm box and onto a force plate. 

The distance between the initial position and the force plate was normalized to each 

participant’s leg length, which was defined as distance between the anterior superior iliac 

spine and the medial malleolus of the same leg. Participants were asked to land on their 

involved leg and perform a 90° cut away from their landing leg as quick as possible after 

landing on the force plate. During the anticipated cutting task (Ant), the direction of the 

cut was given to each participant before each jump. During the unanticipated cutting task 

(Unant), the direction of the cut was indicated to each participant via an electronic signal 

displayed on a computer screen, which was positioned at waist-height in front of the 

force plate. The signal was triggered once a participant broke a light beam that was 

projected from a light gate, which was positioned halfway between the initial start 

position and the force plate. Data from one participant in the CON group had to be 

excluded because of problems with the GRF data. In addition, two people in the CAI 

group were not able to perform the unanticipated cutting tasks. The total number of trials 

included in this study was 9 less than 132 trials (22 subjects × 2 tasks × 3 trials). 

Data processing  

Data were analyzed from the stance phase of each task. The stance phase of the 

cutting tasks was based on GRF thresholds of 10 N for both touchdown and takeoff. The 
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EMG data was low-pass filtered with a cutoff frequency of 450 Hz and high-pass filtered 

with a cutoff frequency of 20 Hz. The filtered EMG data were rectified and smoothed with 

a low-pass filter at cutoff frequency of 10 Hz. The smoothed activation data for each muscle 

were normalized to the maximum activation observed during all trials and time-normalized 

to 101 data points such that 0% represented touchdown and 100% represented takeoff 

(Figure 5. 1) (Banks, Pai, McGuirk, Fregly, & Patten, 2017). The smoothed and time-

normalized muscle activation data from each subject and each task were organized into a 

5 by 303 matrix (i.e., 5 rows for all 5 muscles and 303 columns for 3 trials of 101 data 

points). Each muscle’s activation was further divided by its standard deviation to obtain 

unit variance so that NMF can extract equally weighted muscle synergies (Chvatal & Ting, 

2013). NMF was set to extract time-invariant muscle synergy vectors (𝑊) and time-variant 

muscle activation coefficients (𝐶) from the 5 x 303 EMG matrix based on the following 

equation (Equation 1) (Chvatal & Ting, 2013). 

Μ = ∑ 𝑊𝑖𝐶𝑖
𝑁𝑠𝑦𝑛𝑒𝑟𝑔𝑦

𝑖=1
+  𝜀  (Equation 1) 

The total variance accounted for (VAFTotal: Equation 2) and variance accounted for 

by each muscle (VAFEach: Equation 3) were calculated iteratively with continuously greater 

number of synergies until the following criteria were met: 1) VAFTotal was ≥ 90% and 2) 

VAFEach ≥ 75% (Chvatal & Ting, 2013). In most data sets, three synergies were the 

appropriate number of muscle synergies with the criteria. Muscle synergies were sorted 

based on timing of peak activation coefficient and Cosine-Similarity of synergy vectors 

(Boccia, Zoppirolli, Bortolan, Schena, & Pellegrini, 2018). 

𝑉𝐴𝐹𝑇𝑜𝑡𝑎𝑙 = 1 − 
∑ ∑ (𝑒𝑖,𝑗)2𝑛

𝑗=1
𝑝
𝑖=1

∑ ∑ (𝐸𝑖,𝑗)2𝑛
𝑗=1

𝑝
𝑖=1

 (Equation 2) 
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𝑉𝐴𝐹𝐸𝑎𝑐ℎ𝑚
= 1 −  

∑ (𝑒𝑚,𝑗)2𝑛
𝑗=1

∑ (𝐸𝑚,𝑗)2𝑛
𝑗=1

 (Equation 3) 

 

 

 

Figure 5. 1 Mean±SD normalized muscle activity in people with chronic ankle instability 

(CAI) and healthy controls (CON) during anticipated (Ant) and unant (Unant) cutting. 

SL: soleus, MG: medial gastrocnemius, LG: lateral gastrocnemius, TA: tibialis anterior, 

FL: fibularis longus. 

 

 

Statistical analysis 

The independent variables for the statistical analyses were group (CAI and CON) 

and task (Ant and Unant). The dependent variables for the statistical analyses were the 
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number of muscle synergies, the VAFTotal of each synergy, and the muscle-specific 

weightings from each of the extracted synergies. Zero-lag cross-correlation and cosine-

similarity values were used to test the similarity of activation coefficients and synergy 

vectors, respectively, between each group and task for each synergy (i.e., CON Ant vs 

Unant, CAI Ant vs Unant, CON vs CAI Ant, CON vs CAI Unant). These tests were used 

to ensure that the extracted time-variant of the original EMG activation profiles 

components (i.e., activation coefficients) and the time-invariant components of the muscle 

synergy vectors (i.e., weighting coefficients) were similar between groups and across 

conditions, and thus appropriate for subsequent analysis and statistical comparisons. Data 

with cross-correlation and cosine-similarity values greater than 0.80, respectively, were 

considered to exhibit high similarity (Boccia et al., 2018). 

The normality of all dependent variables were checked with the Jarque-Bera test 

(Ö ner & Deveci Kocakoç, 2017). A Wilcoxon rank sum test was used to compare the 

number of synergies between CAI and CON groups separately for each task (Ant and 

Unant). A two-way analysis of variance (ANOVA) was used to compare the VAFTotal 

between CAI and CON groups across group and task. Separate two-way ANOVAs were 

used to compare the muscle-specific weightings for each of the extracted synergies. 

 

RESULTS  

Based on the VAF results, two to four synergies were determined as the appropriate 

number of synergies to represent the EMG data of each trial. In most cases, three synergies 

were sufficient to reconstruct the EMG data (Figure 5. 2) and the average VAFTotal for three 

synergies was approximately 93%. There was no significant difference in the number of 
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synergies expressed by the CAI and CON groups during either of the tasks. In addition, 

there were no significant interaction or main effects for VAFTotal. 

 

 

 

Figure 5. 2 Variance accounted for the synergies for each group during each task (CAI: 

chronic ankle instability group, CON: healthy control, Ant: anticipated landing-cutting, 

Unant: unanticipated landing-cutting). 

 

 

The cosine similarity values for synergy vectors of Synergy 1 and Synergy 2 were 

greater than 0.80 for all group and task comparisons (Table 5. 1). In contrast, the cosine 

similarity values for synergy vectors of Synergy 3 were less than 0.8 for all but one group 

comparison (Table 5. 1). Specifically, the cosine similarity value for the synergy vectors 

of the CON Unant and CAI Unant comparison was 0.85. The zero-lag cross-correlation 

coefficients of all activation coefficients from all respective group and task comparisons 

were greater than 0.80 (Table 5. 2). 

 

 

Table 5. 1 Cosine-similarity coefficients for each synergy vector comparison (CAI: 

chronic ankle instability group, CON: healthy control, Ant: anticipated landing-cutting, 

Unant: unanticipated landing-cutting). 

 Synergy #1 Synergy #2 Synergy #3 

CON Ant vs. CON Unant 0.98 ± 0.02 0.82 ± 0.13 0.78 ± 0.17 

CON Ant vs. CAI Ant 0.98 ± 0.02 0.81 ± 0.12 0.72 ± 0.22 

CON Unant vs. CAI Unant 0.98 ± 0.01 0.85 ± 0.10 0.85 ± 0.14 

CAI Ant vs. CAI Unant 0.99 ± 0.01 0.83 ± 0.12 0.78 ± 0.20 
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Table 5. 2 Zero lag cross-correlation coefficients for each activation coefficient 

comparison (CAI: chronic ankle instability group, CON: healthy control, Ant: anticipated 

landing-cutting, Unant: unanticipated landing-cutting) 

 Synergy #1 Synergy #2 Synergy #3 

CON Ant vs. CON Unant 0.85 ± 0.11 0.88 ± 0.10 0.88 ± 0.08 

CON Ant vs. CAI Ant 0.84 ± 0.10 0.90 ± 0.09 0.89 ± 0.07 

CON Unant vs. CAI Unant 0.86 ± 0.08 0.90 ± 0.06 0.90 ± 0.06 

CAI Ant vs. CAI Unant 0.87 ± 0.07 0.91 ± 0.06 0.89 ± 0.06 

 

 

The activation coefficient of Synergy 1 reflected muscle activation during the early 

and late stance phase of the cutting tasks. The muscle-specific weightings within the 

synergy vector of Synergy 1 reflected mainly TA activation. It therefore seems that 

Synergy 1 functions to control the ankle angle at ground contact and during late stance. 

The activation coefficient of Synergy 2 captured muscle activation during the middle 

stance phase of the cutting tasks, and the muscle-specific weightings within the synergy 

vector associated with this synergy indicated that it reflected primarily FL activation. Given 

that the FL acts primarily to evert the ankle in the frontal plane, the function of Synergy 2 

thus seems to be related to the transition from forward to lateral motion during the mid-

portion of the cutting tasks. Similarly, the activation coefficient of Synergy 3 also captured 

muscle activation in middle stance phase of the cutting tasks. Unlike synergy 2, however, 

the muscle-specific weightings within the synergy vector for Synergy 3 were associated 

with activation of the MG, LG, and SL. Thus, Synergy 3 seems to play propulsive role and 

helps accelerate the body towards the new cutting direction.  

There were no significant group by task interactions for any of the individual 

muscle weightings for any of the synergy vectors and synergies. However, there were 
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significant main effects for group in the weightings for the TA and SL within the synergy 

vector of Synergy 1 (Figure 5. 3). Specifically, the task-averaged weightings of the TA 

were larger (p = 0.023) in the CAI group than in the CON group, whereas the task-averaged 

weightings of the SL were smaller (p = 0.033) in the CAI group than in the CON group. 

There were also significant main effects for task in the individual muscle weightings of the 

FL and MG within the synergy vector of Synergy 2 (Figure 5. 3). In particular, the group-

averaged weightings of FL were smaller (p = 0.029) during Ant than Unant cutting, and 

the group-averaged weightings of MG were larger (p = 0.032) during Ant than during 

Unant cutting. 

 

 

 

Figure 5. 3 Muscle synergy vectors (and muscle-specific weightings) and activation 

coefficients extracted from each group during each task (CAI: chronic ankle instability 

group, CON: healthy control, Ant: anticipated landing-cutting, Unant: unanticipated 

landing-cutting, SL: soleus, MG: medial gastrocnemius, LG: lateral gastrocnemius, TA: 

tibialis anterior, FL: fibularis longus, G: main effect for group, T: main effect for task). 
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DISCUSSION 

The purposes of this study were to use NMF and extract muscle synergies in order 

to investigate and compare CNS-based neuromuscular control strategies in people with 

CAI and healthy CON during cutting tasks. The results showed that there was no significant 

difference in the dimensionality of muscle synergies between CAI and CON during Ant 

and Unant cutting tasks. While the first two muscle synergies were similar for both groups 

and tasks, a third synergy accounted for individual differences in both groups and tasks. 

People with CAI exhibited greater TA weightings and smaller SL weightings in Synergy 1 

than people in CON group. Both groups exhibited smaller MG weightings and greater FL 

weightings in Synergy 2 during the Unant than Ant task. Together, these results partially 

supported our initial hypotheses in that people with CAI exhibited different weightings 

within specific muscle synergies, but this difference did not depend on task. Conversely, 

the results did not support our hypothesis that people with CAI used a different 

neuromuscular control strategy than CON. 

The dimensionality of muscle synergies did not differ between the CAI and CON 

groups. This finding did not agree with our initial hypotheses that people with CAI would 

exhibit a smaller number of muscle synergies or that each muscle synergy would exhibit a 

greater VAFTotal. These hypotheses were based on research that suggested that people with 

neurological pathologies exhibit fewer muscle synergies and simpler neuromuscular 

control strategies (Safavynia et al., 2011). Fewer muscle synergies, as observed in people 

with neurological pathologies, may be due to greater co-contractions and result in less 

efficient movements (da Silva Costa, Moraes, Hortobagyi, & Sawers, 2020; Safavynia et 

al., 2011). However, since people in the CAI group exhibited the same number of muscle 
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synergies during both cutting tasks, it appears that they use a similar CNS-based 

neuromuscular control strategy during cutting tasks regardless of the associated cognitive 

load. 

Analysis of the individual muscle weightings within each synergy indicated both 

group and task main effects. Specifically, within Synergy 1, the weighting of the TA 

muscle was greater for the CAI group than for the CON group, which indicates that people 

with CAI recruited the TA muscle to a greater extent than people in CON group. Given 

that the activation coefficient of Synergy 1 captured muscle activity during the early phase 

of stance during the cutting tasks, this result may suggest that people with CAI emphasize 

sagittal plane positioning of the ankle around touchdown or takeoff to a greater extent, 

which is clinically important as ankle positioning affects foot ground clearance and 

mitigates risk of unanticipated contact (C. Brown, 2011; Delahunt, Monaghan, & 

Caulfield, 2006a). In addition, computer simulations suggest that greater ankle dorsiflexion 

at the instance of foot contact is associated with a smaller external moment arm of the 

ground reaction forces about the subtalar joint, which could mitigate the risk of subsequent 

ankle sprains (I. C. Wright, Neptune, van den Bogert, & Nigg, 2000). In addition, a 

dorsiflexed position also increases stability of the ankle joint because the surfaces of the 

ankle joint become more congruent as dorsiflexion increases. People with CAI are thought 

to compensate for their lack of stability by dorsiflexing the ankle joint in order to achieve 

a more close-packed and stable position (Son et al., 2017). Lastly, greater emphasis on TA 

activation during the early stance phase may also increase coactivation and ankle joint 

stability (Baratta et al., 1988). Although group differences existed in the weighting of the 

SL for Synergy 1, the magnitudes of this weighting were very small (i.e., well below the 
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0.3 threshold) and may thus not reflect clinically or functionally important differences in 

muscle coordination between CAI and CON groups (Milosevic et al., 2017).  

In addition to the group difference between CAI and CON in individual muscle 

weightings for Synergy 1, the results also revealed a task difference between the Ant and 

Unant task for Synergy 2. Specifically, both groups exhibited greater weighting of the FL 

and smaller weighting of the MG during Unant than during Ant cutting. Based on the 

timing of muscle activity, the activation coefficient for Synergy 2 suggests that people use 

this synergy to control muscle activation during the middle phase of stance during cutting. 

The increase in FL weighting may therefore reflect greater emphasis on transitioning from 

forward to lateral motion through greater activation of frontal plane muscles. In addition, 

greater FL weighting may also reflect an attempt to maintain balance and ankle joint 

stability in the frontal plane when the cutting task is performed with more uncertainty and 

without knowing the direction of movement (Meinerz, Malloy, Geiser, & Kipp, 2015). 

Interestingly, the increase in FL weighting was accompanied by a decrease in MG 

weighting – although, based on the thresholds, the changes in MG weighting within 

synergy 2 suggest that the MG would only be considered an ‘active’ muscle during the Ant 

task but not during the Unant task. Given that the MG is an important contributor to 

propulsive forces during cutting tasks (Maniar, Schache, Cole, & Opar, 2019), this change 

in neuromuscular control may further suggest that both groups emphasize frontal plane 

stability over cutting performance during the Unant task. 

There are some limitations in the current study. First, we only recorded EMG from 

5 lower leg muscles. A small number of muscles may lead to over-estimation of the VAF 

by NMF (Steele, Tresch, & Perreault, 2013). However, the 5 muscles in the current study 
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capture the major kinesiological functions of the ankle joint (i.e., plantar flexion, 

dorsiflexion, eversion), and thus likely still adequately represent neuromuscular strategies 

of ankle motions from a CNS control perspective. Considering that previous studies 

reported that people with CAI exhibit functional deficits in proximal muscles, it would be 

of value if future studies included these muscles (e.g., gluteus maximus) to better 

characterize, and more comprehensively understand, CNS control of muscle activation in 

people with CAI. Second, the current study included only people with CAI and healthy 

controls. Another group that is often studied in the literature are “copers” (e.g., those who 

have normal ankle functions after an initial ankle sprain). Investigating muscle synergies 

in “copers” may help further understand neuromuscular activation patterns and CNS 

control in people with CAI and may provide further insights for the development of 

rehabilitation strategies. Third, we analyzed only cutting tasks in a laboratory setting. Since 

ankle sprains can also occur during other movements (e.g., walking) or other environments 

(e.g., uneven/inclined surfaces), investigation of muscle synergies across  a variety of tasks 

and conditions may also would reveal additional information that could hold important 

clinical implications. 

 

CONCLUSION 

Across the various Ant and Unant cutting tasks, people with CAI used global 

neuromuscular control strategies that were similar to healthy controls. However, regardless 

of cutting task people with CAI exhibited slight differences in how they recruited their 

ankle dorsiflexor muscles. Specifically, people with CAI relied on greater tibialis anterior 

weighting within the synergy that controlled muscle activation during the early and late 
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stance phase of cutting tasks. These findings suggest that although people with CAI exhibit 

similar complexity of CNS control during dynamic tasks, they also tune neuromuscular 

control strategy in muscle-specific manner that is consistent with mitigating risks of 

reinjury and increasing joint stability.  
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CHAPTER 6: CONCLUSION 

 

 

The purpose of this dissertation was to study neuromuscular control in people 

with CAI using experimental and simulation approaches. Crucially, the series of four 

studies included in this dissertation clearly elucidated clinical implications related to 

muscle forces and force generating capacities (Chapter 2), contributions of muscles to 

ankle joint contact forces (Chapter 3), motor unit recruitment strategies (Chapter 4), and 

CNS control strategies (Chapter 5) during dynamic tasks in people with CAI compared to 

healthy controls. These studies also showed that musculoskeletal modeling and 

simulation, frequency analysis, and factorization techniques can be leveraged to answer 

clinically important knowledge gaps about neuromuscular deficits in people with CAI 

through the use of experimental data (e.g., motion capture data, EMG data). This chapter 

summarizes key findings of this dissertation and proposes directions for future studies. 

The first study (Chapter 2) in this dissertation aimed to estimate the forces and 

force generating capacities of individual lower extremity muscles and to compare these 

estimates between people with and without CAI during landing and cutting tasks. We 

hypothesized that the peak muscle forces and force generating capacities would differ 

between groups and that these differences would be task-dependent. While previous 

studies revealed differences in terms of muscle strengths, these findings were based on 

single-joint dynamometry (e.g., Biodex) under isometric or isokinetic conditions. 

Although dynamometry represents a standard method to quantify the strength of isolated 

muscle groups (e.g., knee extensor strength) during a seated posture, it is difficult to 

measure the individual muscle forces during dynamic tasks. In addition, it is difficult to 
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understand how individual muscles generate force given force-length-velocity constraints 

behavior based on joint-specific kinematics during dynamic tasks. Thus, the simulation 

approach in the current study was used to estimate the individual muscle force and force 

generating capacity resulting from muscle behavior during landing-cutting tasks. The 

results showed that people with CAI exhibited greater force and force generating capacity 

of the gluteus maximus during all tasks and greater force generating capacity of the vastii 

muscles during unanticipated cutting compared to healthy controls. Interestingly, all 

significant differences were observed in proximal muscles (e.g., gluteus maximus and 

vastii) rather than distal muscles (e.g, soleus). This finding is consistent with previous 

studies where authors found proximal joint compensatory movement strategies in muscle 

activation, joint kinematics, and joint kinetics in people with CAI. This study enhanced 

the evidence of “proximal dominant landing strategy” in people with CAI by providing 

evidence regarding 1) individual muscle forces and 2) force generating capacity (i.e., 

muscle length-velocity-force behaviors). Therefore, these findings suggest that clinicians 

or coaches focus on restoring proximal movement patterns and muscular strengthening 

rather than just muscular strengthening in ankle joint muscles to prevent recurrent ankle 

injuries in people with CAI. 

The second study (Chapter 3) in this dissertation investigated the contributions 

from muscle forces and GRF to ankle joint compression and anteroposterior shear forces 

in people with and without CAI during a cutting task. We hypothesized that the ankle 

joint compression and anteroposterior shear forces would be greater in people with CAI, 

and that the contribution of specific muscles to these forces would differ. Although 

epidemiological studies show that people with CAI tend to develop ankle osteoarthritis, 
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there is a research gap to identify the reason for the progression of ankle osteoarthritis in 

people with CAI. To seek possible solutions that prevent ankle osteoarthritis, 

investigating differences between people with and without CAI in specific risk factors of 

osteoarthritis appear warranted. Because ankle joint contact forces are a risk factor of 

progression of ankle osteoarthritis, ankle joint compression and anteroposterior shear 

forces were investigated in this study. In addition, because a recent study revealed that 

joint loads are strongly related to individual muscle forces, the contribution of individual 

muscle to joint contact force was also investigated in this study. The results showed that 

people with CAI exhibited greater anterior shear forces during the early and late phase of 

stance compared to CON. Specifically, the greater observed anterior shear forces during 

the early stance phase were the result of passive contributions from the GRF, while the 

greater anterior shear forces during late stance phase were the result of active 

contributions from lower leg muscles. These phase-specific differences were meaningful 

for understanding the mechanism behind greater joint loading in relation to joint contact 

forces in people with CAI compared to healthy controls. Although this study does not 

provide a direct link between CAI and OA, the results from the current study provide 

meaningful evidence for a framework that shows phase-specific increases of ankle 

anterior shear force and different contributions from GRF and lower leg muscles in 

people with CAI.  This study suggests a future research direction to investigate if 

targeting the phase-specific contribution from GRF and lower leg muscles can decrease 

anterior shear force in relation to prevention of ankle osteoarthritis in people with CAI. 

The third study (Chapter 4) in this dissertation identified differences in the time-

frequency domain of muscle activation patterns between people with and without CAI 
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during athletic tasks (e.g., landing, anticipated cutting, and unanticipated cutting). We 

hypothesized that 1) there would be significant differences in the frequencies of muscle 

activation patterns between people with and without CAI and 2) that these differences 

would be task-dependent. Previous studies have thoroughly investigated deficits in 

peripheral nervous system and muscle activation patterns in people with CAI with tools 

such EMG. Although previous studies revealed several findings about muscle activation 

and neuromuscular control, there was a research gap regarding motor unit recruitment 

strategies during dynamic tasks in people with CAI. Wavelet transform analysis was used 

in this study to identify the characteristics of muscle activation patterns in the time-

frequency domain to provide clinical information about motor unit recruitment strategies. 

The results showed that people with CAI exhibited lower intensity across the entire 

frequency spectrum regardless of tasks and did not scale muscle activations towards 

higher frequencies during anticipated cutting. This research adds to growing evidence 

that people with CAI have not only lower intensity of muscle activations but also 

inability to shift muscle activation towards higher frequency spectrum. The latter is 

clinically important because the inability to shift muscle activation towards higher 

frequency spectrum indicates that people with CAI may not be able to rapidly activate 

higher-threshold motor units in lower leg muscles during dynamic tasks. Based on this 

finding, it is suggested that clinicians and coaches should consider rehabilitation to 

facilitate fast contractions of lower leg muscles, given that activation of more fast motor 

unit and greater firing rate are considered an important aspect in the prevention of injuries 

during dynamic tasks. 
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The fourth study (Chapter 5) in this dissertation investigated and compared CNS-

based neuromuscular control strategies between people with CAI and healthy CON 

during cutting tasks. We hypothesized that people with CAI would 1) use fewer (i.e., less 

complex) muscle synergies, 2) exhibit different muscle-specific weightings within muscle 

synergies, and 3) display task-specific differences in these muscle synergies. In contrast 

to a lot of previous work on CAI related deficits in peripheral nervous system function, 

there is a lack of information about CNS deficits in people with CAI. The main reason for 

the lack of evidence about CNS deficits in people with CAI is a limited access to measure 

CNS signals during dynamic tasks. In this study, NMF (i.e., a matrix factorization 

technique) was used to extract muscle synergies based on experimentally measured 

muscle activations during anticipated and unanticipated cutting tasks. The results showed 

that people with CAI control their movements with similar complexity but different 

weightings for specific muscles. Specifically, people with CAI exhibited CNS control 

strategies in relation to diminishing risks of recurrent ankle injuries by recruiting the 

tibialis anterior muscle with greater weightings via a descending signal, which likely 

helps to make the ankle joint more stable during the early stance phase. This study 

enhanced the body of literature about neuromuscular control in people with CAI by 

confirming that CNS control of neuromuscular activation patterns in people with CAI 

controls exhibits a similar complexity but manifests in a more protective manner in the 

ankle joint compared to healthy controls.  

Despite novel findings from each of the four studies in this dissertation, there are 

limitations to be considered. First, activations were measured from only five lower leg 

muscles. Although we found meaningful differences in neuromuscular characteristics in 
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people with CAI, including EMG from proximal muscles such as gluteus maximus, 

hamstrings, or quadriceps would provide a broader spectrum of information about 

neuromuscular movement strategies. In particular, including proximal muscles as well as 

distal muscles would provide information about motor unit recruitment strategies and 

muscle synergies in time-frequency and NMF analysis, respectively. In addition, 

including more muscles would provide an additional data for validating simulated muscle 

activations (Chapter 2 and Chapter 3). Second, a more realistic musculoskeletal model is 

necessary for future studies. In the first two studies (Chapter 2 and Chapter 3), the muscle 

forces and joint contact forces were estimated based on generic muscle parameters, 

except for maximum isometric muscle forces. A recent study revealed that the muscle 

forces and joint contact forces are strongly related to muscle parameters such as optimal 

muscle fiber lengths, tendon slack lengths, and muscle moment arms (Serrancolí, Kinney, 

& Fregly, 2020). Thus, modeling muscles with subject-specific parameters would provide 

more accurate findings about muscle forces and joint contact forces. In addition, the 

musculoskeletal model we used in the first two studies included an ankle-foot complex 

with 2 segments: a talus segment and a foot segment (calcaneus to toe). Since a recent 

study revealed that a model with at least 3 segments (talus, calcaneus to metatarsal bone, 

and separate toe) may be more adequate for calculating ankle joint kinematics, muscle 

lengths, and ligament lengths during dynamic performances (Kim & Kipp, 2020), a 

multisegment foot model should therefore be considered in future studies. Third, this 

dissertation did not recruit copers who have a history of ankle sprain but have no CAI or 

neuromuscular deficits. Recruiting a group of copers as well as people with CAI and 

healthy controls would provide more detailed neuromuscular characteristics of CAI 
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because previous studies revealed that people with CAI have different sensorimotor 

function compared to copers (Wikstrom et al., 2012).  

In summary, this dissertation demonstrated that people with CAI have different 

neuromuscular control strategies during landing and cutting tasks compared to healthy 

controls. Specifically, people with CAI exhibit 1) greater muscle forces and force 

generating capacities of the gluteus maximus and greater task-dependent force generating 

capacities of the vastii muscles, 2) greater ankle anterior shear forces during early and 

late phase during unanticipated cutting due to respectively greater phase-specific GRF 

and lower leg muscle forces, 3) lower overall intensity of ankle muscle activation and a 

task-dependent inability to shift activation towards higher frequencies, and 4) similar 

complexity in CNS-based neuromuscular control strategy but with greater tibialis anterior 

specific weightings and activations during the early stance phase of cutting tasks. 
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