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CHAPTER ONE 

1. INTRODUCTION 

 

 

The age-long ability of humanity to communicate with and control the environment, in which 

humanity resides, has been expressed in different ways. The most fundamental way we as humans 

communicate is through our body. Body parts such as the mouth, eyes, hands and legs are the default 

means of communication and control we have been used to. Traditional communication and control 

is innate and is done using these body parts. In communicating, one may speak, giving explicit vocal 

communication; one may use the eyes or other body parts to give non-verbal gestures, that have 

specific meanings attached to them, passing across information as desired. For control using the 

body, one may make use of the hands to perform tasks. For instance, picking up an object, moving an 

object from one place to another and a wide variety of other control tasks. The use of these body 

parts is very vital and is the default way we have been wired to communicate.  

1.1. Significance 

Over the years, there has been the need to communicate with and control the environment in other 

ways, apart from the use of the default body parts. Apart from the curiosity of humanity, several 

reasons exist for this. Some of these include: 

a) The need to restore functional ability to the neurologically deficient. This is one chief reason for 

several efforts on making communication and control possible, using alternative means. 

Neurologically deficient persons include those who have a dysfunction in the neurological 

system. Examples include persons who have suffered from stroke, spinal cord injury, amyotrophic 

lateral sclerosis (ALS) and other forms of neurological disorders. 

b) The need to more efficiently carry out basic or advanced tasks, which humans perform routinely 

and which can be done with the use of machines. These tasks include but are not limited to 

switching on light bulbs, typing words on a computer, selecting objects on a screen and a wide 

variety of other tasks.  

c) Other reasons include pleasure and entertainment. For instance, controlling objects in a game or 

controlling a vehicle, without the use of one’s hands.  
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These reasons have sparked a wide interest in Brain-Computer Interfaces (BCIs). BCIs are interfaces 

between computers and the brain. As defined by Wolpaw et al (Wolpaw et al., 2002), a BCI conveys 

messages and commands to the external world and allows a person to communicate with or control 

the external world without using the brain's normal output pathways of peripheral nerves and 

muscles. With BCIs, messages and commands are expressed by electrophysiological phenomena, 

rather than muscle contractions (Wolpaw et al., 2002). The ability to communicate and control 

objects, with limited to no use of one’s body parts which perform these tasks, is possible with BCIs. 

The interest in BCIs has grown over the years and will increase much more. This is due to its 

enormous potential in different areas. For instance, its usefulness in health applications is seen in the 

case of neurorehabilitation and it is also seen in non-health applications, such as in gaming. This is 

fascinating, considering that new ways of control can be introduced, with humanity taking advantage 

of them. As stated by Wolpaw et al., the option for restoring function to those with motor 

impairments is to provide the brain with a new, non-muscular communication and control channel, 

which would be a BCI, for conveying messages and commands to the external world (Wolpaw et al., 

2002). 

1.2. Overview of Brain-Computer Interfaces  

Brain-computer can be built using a wide variety of tools and signal processing techniques. BCIs can 

be categorized based on different criteria, some of which are the device used for data collection, the 

operational paradigm, the types of pre-processing, feature extraction and selection technique and the 

type of classifier used. Based on the type of device used, BCIs can be categorized as invasive or non-

invasive. 

1.2.1. Invasive BCIs 

Invasive devices are devices requiring a surgical implant to place the device within or on the surface of 

the brain. This class of devices captures more accurately the brain signals (Jeremy Hill et al., 2012; 

Lebedev & Nicolelis, 2006). Since such devices are placed close to or in the brain, they lie within the 

field of the signals and can capture them with much finer detail. They give better accuracies and even 

capture signals related to actions controlled by brain regions that are either too small or too deep 

within the brain to be captured by scalp methods. However, there are several health concerns 
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associated with such devices. Surgical implants require great care and expertise and are not cheap. 

They must be performed by a certified surgeon to avoid serious brain damage to the subject (Jeremy 

Hill et al., 2012). Also, concerns about the eroding effect of the metallic devices within the brain over 

time, call for caution. To avoid this, the devices are periodically replaced but this also gives rise to 

another concern – the risks associated with multiple surgeries. Though good, this class of devices are 

typically only used for subjects with severe neurological concerns. Examples of such devices are 

electrocorticographic (ECoG) strips and intracortical microelectrodes (Maynard et al., 1997; Shenoy et 

al., 2007). 

a) Electrocorticography  

Electrocorticography (ECoG), sometimes referred to as intracranial electroencephalography (iEEG), is 

an electrophysiological monitoring equipment that records electrical activity from the cerebral cortex, 

with the use of electrodes placed directly on the exposed surface of the brain. One research area, 

where the use of ECoG is prominent is in epilepsy research (Bozek-Kuzmicki et al., 1994; Iasemidis et 

al., 1988; Jayakar et al., 1994; Sotelo et al., 2013).  

A surgeon first removes a part of the skin to expose the brain surface, before the ECoG strips are 

placed on the surface of the cortex. The placement of electrodes may be epidural, that is, outside the 

dura mater or subdural, that is, under the dura mater.  

 
 

 

Figure 1.1 ECoG strips 

(Schalk & Leuthardt, 2011) 
 

 

b) Intracortical microelectrodes 

Intracortical microelectrodes are implanted in the cortex, and recordings can be taken from individual 

or small populations of neurons (Goss-Varley et al., 2017). They are typically placed in an array or 
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singly within the cortex. Intracortical microelectrodes (IMEs) can be used to survey cortical regions 

fora wide variety of applications and to monitor changes in neuronal behavior (Gaire et al., 2018). 

 
 

 

Figure 1.2 Intracortical microelectrode array 

(Tomashevich & Bobrova, 2017) 
 
 

1.2.2. Non-invasive BCIs 

This class of BCIs do not require surgical implants for monitoring and recording brain activity. They are 

relatively much faster to setup, use and are relatively cheaper than the invasive ones. These devices 

can be used for both clinical populations requiring serious neurological attention and those that do 

not. They generally capture signals well from different parts of the brain; however, some are severely 

limited and cannot capture signals in brain portions that are too far from the surface of the scalp. 

Examples in this class are functional magnetic resonance imaging (fMRI), functional near infrared 

spectroscope (fNIRS), magnetoencephalogram (MEG) and electroencephalogram (EEG).  

a) Functional magnetic resonance imaging (fMRI) 

fMRI measures brain activity by detecting changes associated with blood flow, based on the fact that 

cerebral blood flow and neuronal activation are coupled. Blood flow to a region of the brain increases 

when the region is in use. Functional magnetic resonance imaging (fMRI) is an imaging tool that 

measures changes related to regional cerebral blood flow.  

fMRI can be used to produce activation maps showing which parts of the brain are involved in a 

particular mental process. One major advantage of fMRI is its non-use of radiation, as compared with 

X-rays, computed tomography (CT) and positron emission tomography (PET) scans. It has excellent 

spatial resolution and is quite easy to use. Though the fMRI might have a good spatial resolution, it is 
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quite limited in its temporal resolution. Another limitation of the fMRI is its non-portability. Its non-

portability can limit its use for different research purposes, requiring day-to-day or regular activities 

(Andersson et al., 2013; Binder & Detre, 2000).  

 
 

 

Figure 1.3 Functional magnetic resonance imaging device 

(Temming, 2017) 

 
 

b) Functional near infrared spectroscopy (fNIRS) 

fNIRS is based on neurovascular coupling, by measuring changes in concentration in oxyhemoglobin 

(HbO2) and deoxyhemoglobin (HbR), over brain tissues associated with an increased metabolic 

demand of the brain during neuronal activity. fNIRS has been largely used in cognitive neuroscience. 

fNIRS allows for bodily movements is portable and can be used with a wide range of people, ranging 

from newborns to adults (Paol Pinti et al., 2018; Paola Pinti et al., 2019).  
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Figure 1.4 Functional near infrared spectroscopy device 

(Chuang et al., 2018) 

 
 

c) Magnetoencephalography (MEG) 

MEG is a functional neuroimaging technique that records magnetic field changes within the brain, 

during the performance of an activity. Electromagnetic fields in the brain are generated by the net 

effect of slow ionic current flow in brain cells. The magnetic effect generated by a large number of 

excited localized neurons, say 100, 000, can be measured from outside the head, though negligible if 

only a small number of neurons are excited. MEG works based on this, making it possible to measure 

magnetic fields of excited neurons in a non-invasive manner. 

 
 

 

Figure 1.5 Magnetoencephalogram 
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d) Electroencephalography 

Electroencephalography (EEG) records electric signals generated by many excited neurons within the 

brain. The electric field is noticeable where many localized neurons are excited but negligible where 

only a few are. As opposed to MEG, which records magnetic fields, it records electrical activity 

instead. The electric potential can be measured by means of electrodes placed on the scalp. Typical 

electric potential amplitudes are within the range of -100 μV and +100 μV. Voltage values for 

abnormal conditions due to wrong electrode placements or abnormal neurological conditions, such as 

epilepsy tend to be outside of that range (Blinowska & Durka, 2006). EEG is one of the most popular 

device types used for BCI research. It has a good temporal resolution but is limited in its spatial 

resolution; however, it is portable. More details on EEG will be provided in later sections of this write-

up. 

 
 

 

Figure 1.6 Electroencephalogram 

 
 

1.3. BCI paradigms 

In building BCIs, several paradigms have been introduced, explored and enhanced, with certain 

waveform potentials associated with them. These are generally designed for eliciting the necessary 

signals for the intended application. Some of these paradigms include Steady State Visually Evoked 

Potential (SSVEP), positive 300 (P300), negative 200 posterior contralateral (n2pc), covert attention 

and motor imagery (MI). There are other paradigms, which are being used in BCI, with specific brain 

dynamics being associated with them. 
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a) Steady state visually evoked potential 

The Steady State Visually Evoked Potential (SSVEP) is a paradigm commonly used with speller 

applications and also used in controlling devices (Müller-Putz & Pfurtscheller, 2008). Several 

stimulation methods have been explored in using this paradigm (D. Zhu et al., 2010). In using SSVEP in 

an experiment, a user is presented with a matrix of objects, each flickering at a different frequency. 

The user is asked to pay attention by fixating on the object of choice. The SSVEP is then observed 

mainly in electrodes over the occipital and parietal lobes of the brain as the subject attends to the 

specific stimuli, as there would be an increase in the amplitude of the signal at the frequency of the 

attended stimuli and the frequency’s harmonics (Işcan & Nikulin, 2018). SSVEPs are reported to be 

attractive due to their high signal to noise ratio (SNR) (Srinivasan et al., 2006). 

b) Positive 300 (P300) 

The P300 is a peak positive deflection in the human event-related potential, usually noticed around 

300ms of the experiment, hence the name P300. In unhealthy individuals, particularly those with 

decreased cognitive ability, it tends to occur later than 300ms and is not as high as seen in healthy 

individuals. It is an endogenous, rather than exogenous, paradigm and is usually elicited using the 

"oddball" paradigm, when a subject detects an infrequent "target" stimulus amongst different 

presented stimuli (Picton, 1992). The P300 only occurs when a subject is actively engaged in a 

detection task. An example experimental setup is one where a subject is told to pay attention to a 

target stimulus, say the sound of a bell. The subject is then presented several stimuli, comprising the 

target and many non-targets. Examples of non-target stimuli could be sounds of cats, dogs, trains, 

birds and goats. The target stimulus - the bell sound – is presented with non-target stimuli, though 

infrequently. At the presentation of the target, the P300 is noticed and is larger compared to when a 

non-target stimulus is presented (Picton, 1992). 

c) Negative 200 posterior contralateral (n2pc) 

The n2pc component, just like the P300 is an event related potential (ERP) component and is very 

popular in attention research. It occurs over the visual cortex contralateral to the direction of 

attention of a subject. If a subject is paying attention to the right side of the subject’s visual field, the 

n2pc is noticed on the left hemisphere and vice-versa. This can be used in detecting the direction of 

attention of a subject (Eimer, 1996; Kiss et al., 2008; Mazza et al., 2009). 
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d) Covert attention 

Covert attention is an attention paradigm, which entails detecting the direction of attention of a 

subject, without eye movements. As opposed to overt attention, where the eyes are in the direction 

the subject is paying attention to, covert attention requires the eyes to be fixated on one thing, whilst 

the attention is on another (Tonin et al., 2012, 2013). This is a paradigm being explored for potential 

communication with individuals suffering from neurodegenerative diseases and are in a state where 

they might not be able to make overt eye movements for communication.  

e) Motor imagery 

Motor imagery (MI) is a state of imagination of the performance of a particular action. This involves 

thinking as though performing the action. From previous research, it has been shown that motor 

imagery and the actual performance of an activity have similar neural mechanisms, as observed over 

the sensorimotor cortex (Decety, 1996; G. Pfurtscheller & Neuper, 2001). This means that the 

imagination of action can be used as a tool for controlling a device. Typical motor imagery 

experiments have included imagined movements of body parts such as the left and right hands, 

tongue and feet (Ehrsson et al., 2003; Kwon et al., 2020; Morash et al., 2008), with specific noticeable 

changes over the sensorimotor cortex during the performance of the activity .   

Other paradigms used include error-related potentials (ErrP), which is noticed when there is a wrong 

action/feedback from a BCI, slow cortical potentials (SCP), movement related cortical potentials 

(MRCP), auditory and olfactory paradigms (Abiri et al., 2019). It is also worth noting that some of 

these paradigms eliciting potentials are classified as ERP paradigms.  

1.4. Motor imagery using EEG 

A brief introduction of motor imagery was presented earlier. This section aims to provide more 

details, with respect to its peculiarities and application.  

1.4.1. Motor imagery data recording protocol 

Most motor imagery data collection procedures are tailored similarly. Beforehand, a set of imagined 

tasks to be performed by a subject is defined. The tasks, specified by cues, which could be visual or 

auditory, are then presented to the user. Visual cues are more frequently used in MI experiments. The 

setup of collection has the pre-programmed task presented to the user and then the user performs 
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the activity for a specified duration. Typically, the user sits in a comfortable position with a screen 

placed before the user. A cue is presented, signifying the beginning of a trial and/or the beginning of 

the imagery period. Some experiments use a cue to signify the beginning of the trial, as different from 

the commencement of the imagery period. For instance, a “Start” sign might be displayed to the user, 

indicating that a trial has begun. Afterwards, an image of the body part for which action should be 

imagined is then presented, signifying that the user should perform the task. After the performance 

of the imagery, a cue is presented, signifying the end of the imagery period and/or trial, after which 

there is an inter-trial rest period. The end of the trial might be signified with a “Stop” sign, as well. A 

new trial begins afterwards, and this continues in cycles for the number of trials in the session (C. 

Brunner et al., 2008; H. Cho et al., 2017; Kaya et al., 2018; Leeb et al., 2008; Lindig-Leon & Bougrain, 

2016; Schlögl, 2005; Schlögl & Pfurtscheller, 2005). Audio cues could also be used throughout the 

experiment. The user is informed ahead of the cue presentation mode to be used and is accustomed 

to the cues, knowing what to do when a particular cue is presented. The imagery experiments could 

vary in the total duration of the trial, which is typically between five to seven seconds. 

 

 

 

Figure 1.7 Schematic representation of the data recording protocol for a 7-second MI trial 

 
 

1.4.2. EEG electrode placement 

Experiments utilizing EEG devices follow certain patterns, in placing the electrodes over the brain. 

Different international standards exist for the placement of the electrodes and these are usually 

followed in EEG experiments; however, manufacturers of EEG headsets usually have their own 
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configuration for the headsets. While some of these configurations are based on the predefined 

standards, there might be differences in the implementations, resulting in differing configurations. 

a) The 10-20 standard 

The international 10-20 standard was introduced, following the first international EEG congress, in 

1947. It was introduced as a way of providing a uniform arrangement of electrodes, for experiments. 

A researcher, H.H. Jasper, studied different methods for the placement and the 10-20 standard was 

born (Jasper, 1958). In following the 10-20 standard, first, certain reference points are marked out, 

along the head: for instance, the nasion and the inion, for the vertical references and the left and 

right pre-auricular points, for horizontal references. Next, the total distance between the reference 

points are measured, both vertically and horizontally. Afterwards, the electrodes are placed vertically 

or horizontally, with adjacent electrodes being placed at 10% or 20% of the total distance. 21 

electrodes were used in the original 10-20 system (Klem et al., 1999).  

 
 

 

Figure 1.8 10-20 electrode arrangement 

(Rojas et al., 2018) 

   
 

b) The 10-10 standard 

The 10-10 standard was introduced as an enhanced version of the initial 10-20 system. The 10-20 

system consisted of just 21 electrodes, however, the need to cover much more spatial details 

prompted the need for the addition of more electrodes. In this case, adjacent electrodes are placed at 
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10% of the total distance between the reference points. The number of electrodes increased to 74 for 

the 10-10 standard (Acharya et al., 2016; Chatrian et al., 1985; Jurcak et al., 2007).  

 
 

 

Figure 1.9 10-10 electrode arrangement 

(Acharya et al., 2016) 

 
 

c) The 10-5 standard 

The 10-5 is based on both the 10-20 and 10-10 systems. The system allows for up to 300 electrodes, 

with adjacent electrodes placed at 5% of the total distance between the reference points (Oostenveld 

& Praamstra, 2001). The electrode names and numbers are indicators of the lobes and the 

hemisphere, where they are located. The starting letter indicates the lobe: F (Frontal), T (Temporal), P 

(Parietal), O (Occipital) and other combinations, such as Fp (prefrontal), PO (parieto-occipital), C 

(Central), CP (Central-parietal) mostly indicate regions between two lobes. The numbers 

accompanying the electrodes indicate the hemisphere where the electrode is located. Odd numbered 

electrodes are on the left and even-numbered electrodes are on the right hemisphere. For instance, 

F1 is located in the frontal lobe and in the left hemisphere. 
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Figure 1.10 10-5 electrode arrangement 

(Oostenveld & Praamstra, 2001) 

 
 

1.5. Challenges 

It has been established that BCIs enable communication between humans and machines (Schalk et al., 

2004). Of the different paradigms used in BCIs, motor imagery has been widely explored across many 

studies. The similarity in elicited neuronal mechanisms between actual action and MI have made it 

suitable for control (G. Pfurtscheller & Neuper, 2001) and makes it widely applicable in many fields, 

such as robotics, neurorehabilitation and gaming (Cantillo-Negrete et al., 2018; T. Li et al., 2017; 

Tayeb et al., 2019; Zhihua Wang et al., 2019). This makes motor imagery a worthy paradigm to study. 

It is, therefore, necessary to ensure that the decoding process of motor imagery is done correctly. 

From data acquisition to the signal processing and final classification stages, there is the need to 

ensure the correct processing of the data to give the desired outcome. Some of the challenges 

prevalent in EEG experiments include but are not limited to: 

a) Low signal-to-noise (SNR) ratio. EEG signals are easily affected by artifacts. Biological artifacts, 

such as noise from the hair for the subject, head movements affecting the signal, eye blinks, 
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movements and saccades. Also, environmental artifacts, such as power line noise at 50Hz or 60Hz 

affect the signals; and instrumentation artifacts, such as bad equipment or faulty sensors used in 

the experiment. 

b) Within-subject variability (Tarkesh Esfahani, 2012; Tonin et al., 2013). 

c) Across-subject variability (Tarkesh Esfahani, 2012; Tonin et al., 2013). 

d) Lack of interpretation of the decoding process. 

Some techniques exist for solving some of these challenges, particularly the ones on artifact 

contamination. Such processing techniques aim at repairing artifacts, rejecting trial epochs that 

cannot be repaired and cleaning up the signal, to give a better signal-to-noise ratio. Other challenges, 

however, remain and are still quite prevalent in MI EEG experiments. Traditional decoding techniques 

mostly make use of feature extraction techniques such as common spatial patterns (CSP), power 

spectral density (PSD), with classifiers such as support vector machine (SVM) and linear discriminant 

analysis (LDA) (Padfield et al., 2019). More on this is presented in Chapter 2. While these approaches 

are quite good, they have certain shortcomings, which are proposed to be solved with specific aims 

targeted in this dissertation. These techniques generally rely on a priori knowledge of relevant 

frequencies for feature extraction. Such may limit potential improvements in the decoding process 

(Forney, 2019).  

1.6. Aims and Anticipated Contributions 

Considering the existing challenges in EEG experiments, this work aims to solve some of these 

challenges. An examination of the prevalent feature extraction techniques, which might be limiting 

the potential for improved classification, shows the need to place less reliance on specific feature 

engineering. Current trends in processing in other fields, show the continued rise of deep learning. 

These neural network-based methods have shown wide success in image and audio processing and 

other fields (Al-Saffar et al., 2017; Rajanna et al., 2016; Lei Zhang et al., 2016), suggesting alternative 

decoding methods that could be adapted for motor imagery classification. Neural networks have been 

shown to be capable of detecting features, with limited to no specific or manual feature extraction. 

This lends credence to their usability and possible adaptation in motor imagery. The aims proposed 



15 
 

for this dissertation are based on the use of deep learning techniques, with neural networks at their 

core, for the decoding process.  

1.6.1. Aim 1: Develop an efficient MI classifier using neural networks. 

It is hypothesized that neural networks can perform as good as traditional techniques, with little to no 

specific feature engineering. This has the significance that the specific feature engineering may be 

minimal or eliminated and less reliance would be placed on a priori knowledge, which is much needed 

in prevalent feature extraction techniques. This is also innovative in that it explores, in detail, the use 

of neural networks, specifically for MI, introducing the possibility of having little to no specific feature 

extraction.  

The approach proposed for this aim was as follows: 

a) Perform an extensive exploration of convolutional neural networks (CNNs), recurrent neural 

networks (RNNs), long short-term memory (LSTM) networks, gated recurrent units (GRUs) and 

their variants for the decoding of MI EEG signals. 

b) Design various architectures of these networks, with the goal of finding out the networks and 

architectures that give optimal results in classification.  

c) Explore different training strategies, with a target of determining the optimal strategy which can 

enhance the classification. Two strategies proposed to be explored were: trial-wise training and 

cropped training. The trial-wise strategy entails feeding the whole block of the motor imagery 

trial into the network for training and prediction. The cropped strategy, on the other hand does 

not make use of the whole block but, rather, generates slices from each trial, giving slices the 

same label, for training.  

d) Evaluate the work done, first, by making comparisons between networks and architectures and 

then by comparisons with state-of-the-art SVM and LDA models. 

1.6.2. Aim 2: Enhance the decoding process by developing a novel calibration method using 

transfer learning. 

The hypothesis of this aim is that the non-stationarity problem common with EEG motor imagery 

experiments can be solved using transfer learning techniques. Transfer learning is a popular approach 

in image classification (Y. He & Ding, 2020; Hussain et al., 2019; H. C. Shin et al., 2016). It can be 
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applied in many ways, both in the feature space and in the classifier space. The significance of this aim 

lies in its offering of a solution to the non-stationarity problem. Also, this offers a shorter calibration 

time for training a classifier on a subject’s data. With this technique, a classifier can be trained on data 

available from other subjects and subsequently adjusted for individual subjects, eliminating the need 

to train from scratch and providing a learning base, upon which other subjects can be trained. With 

this approach, a classifier can output predictions for each task, while adapting to the subject, based 

on already predicted tasks. The approach proposed for this aim was as follows: 

a) Perform within-subject transfer – This involves training a classifier on a subject’s data from one 

session and testing on the data from the same subject, from another session.  

b) Perform across-subject transfer – This involves training on one subject and testing on another 

subject. This will be carried out in 2 ways. The first approach in performing the across-subject 

transfer involves training on all data, except the data for the current subject and then, testing on 

the current subject’s data. The second approach involves training on the best-performing subject 

and testing on the current subject, as long as the best performing subject is not the subject being 

considered. 

c) Evaluate the aim by making comparisons with subject-specific models trained from scratch, 

following intra- and inter-subject modes of comparison. 

1.6.3. Aim 3: Introduce a methodology/pipeline for interpreting the EEG decoding process. 

It is hypothesized that MI predictions can be understood by following a particular process of 

interpretation. This helps in understanding the spatial, temporal & spectral dynamics of the motor 

imagery. It also offers more than just a prediction for action, but an explanation on the feature-model 

interactions, which are vital to the decoding process and an evidence that the classifier learns task-

relevant features. With a framework such as this, the reasons for the model’s decisions become 

clearer. Also, considering the need for interpretability and explain-ability of models, it is important to 

consider not just the output of the model, but also how the model generates such outputs. The 

approach proposed for this aim was as follows: 

I. Perform decoding using only data from specific regions of the brain, to determine region 

contributions. 
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II. Perform region contribution and sensitivity comparisons by analyzing the contributions of 

the brain regions to the decision of the network, based on the accuracy of prediction, noting 

most significant contributions.  

III. Compare most contributing regions across subjects. 

IV. Make inferences based on I, II and II.  

1.6.4. Aim 4: Investigate data augmentation strategies for enhancing the decoding process. 

Data augmentation has yielded improvements in many predictive modeling tasks, particularly in cases 

where small amounts of data are available. This aim was geared towards exploring several data 

augmentation strategies with a comparative approach, to determine the most suitable techniques for 

MI EEG data augmentation. The approach proposed for this aim was as follows: 

I. Run experiments using six data augmentation strategies, which may be applied in MI 

EEG decoding. 

II. Evaluate these techniques based on the following criteria – accuracy of prediction, 

Fréchet Inception Distance (FID), topographic and clustering plots.  

III. Validate the approaches using two datasets, with different number of target classes.  

The aims presented here were proposed for this dissertation. More on the approaches followed in 

achieving them is presented in Chapters 3, 4, 5 and 6, where each of the aims is presented in detail. 

1.7. Structure of the Dissertation 

This introductory chapter presented the problem, background of brain-computer interfaces, with 

categorizations of BCIs, either invasive or non-invasive. Also, the paradigms used in BCIs were stated, 

with a section explaining motor imagery and the data recording protocol typical in MI experiments. 

Finally, the existing challenges in EEG-based experiments were stated and the specific aims proposed 

to solve some of these existing challenges were presented. The remainder of this dissertation is 

structured as follows: 

a) Chapter 2: Literature review  

In the literature review, several existing works on motor imagery and EEG-based experiments are 

reviewed, with more focus on relevant works and adaptations from other fields, which can 

potentially be applied in motor imagery. 
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b) Chapter 3: Efficient MI decoding using neural networks 

This chapter presents the methodology applied in implementing neural network-based classifiers 

for motor imagery. More details on the strategies applied, results, comparisons and challenges 

faced in achieving the first aim, are presented here.  

c) Chapter 4: Enhancing motor imagery decoding via transfer learning 

This chapter presents the work done in implementing a novel calibration method for MI 

detection, based on transfer learning. More details on the approaches to applying transfer 

learning, results, comparisons and challenges faced in achieving the second aim, are presented 

here.  

d) Chapter 5: Interpreting motor imagery decoding in neural networks  

This chapter presents the work done in interpreting the MI EEG decoding process. More details 

on the approaches to developing the interpretation framework, the results, comparisons, 

inferences and challenges faced in achieving the third aim, are presented here.  

e) Chapter 6: Data Augmentation Strategies for EEG-based motor imagery decoding 

This chapter presents the comparative study done on data augmentation for MI EEG decoding. 

More details on the augmentation techniques, results, comparisons, inferences and challenges 

faced in achieving the fourth aim, are presented here.  

f) Chapter 7: Conclusion 

This chapter concludes the dissertation, bringing to the fore, key components of the study, 

inferences made and future efforts for the continuity of the work and enhancement of the 

results. 
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CHAPTER TWO 

2. LITERATURE REVIEW 

 

 

 

Figure 2.1 BCI process flow 

 
 

The flow of operations in a BCI system are depicted in Figure 2-1 above. The stages in BCI 

implementation include the: a) Signal acquisition b) Preprocessing c) Feature extraction d) 

Classification e) Control; and f) Feedback stages. 

At the signal acquisition stage, the user performs the experiment and the signals are collected using a 

device such as EEG. During the preprocessing stage, different preprocessing tasks are performed on 

the acquired signals such as filtering, baseline correction, common average referencing (CAR), artifact 

repair and artifact rejection. At the feature extraction stage, certain techniques are applied to the 

data, to extract the discriminatory patterns in the signals. Several techniques can be applied at this 

stage. Further discussion is given on some of these feature extraction techniques in this chapter. At 

this stage, feature extraction and selection are performed. At the classification stage, a classifier is 

trained to classify the signals into the different classes that exist. Several classifiers exist for this task 

and more on some of these classifiers is seen in later sections. The last 2 stages are typically of a 

deployed online system, where the classification is then translated into a command used in 

communication and for control of an object, after which feedback is given to the user, concerning the 


