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ABSTRACT 

 

THE IMPACT OF CORROSION INHIBITORS AND METALS ON ANTIBIOTIC 

RESISTANCE IN DRINKING WATER DISTRIBUTION SYSTEMS 

 

 

 

Lee Kyle Kimbell 

 

Marquette University, 2022 

 

 

Drinking water distribution systems are important for transporting clean drinking water. 

Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in drinking 

water may pose risks to human and environmental health. Aging infrastructure such as 

metal pipes can experience significant corrosion, which can have impacts on the chemical 

and microbial water quality inside of drinking water systems. Chemicals are commonly 

added to drinking water to prevent corrosion (i.e., corrosion inhibitors). The metal pipe 

materials and corrosion inhibitors containing metals may have impacts on the bacteria 

and ARGs in drinking water systems. This research investigated the presence of ARGs in 

real-world drinking water systems and analyzed the impacts of corrosion inhibitors on 

bacteria and ARGs in laboratory-scale experiments. Results from analysis of full-scale 

water main sampling indicated the presence of multiple types of ARGs and diverse 

bacterial communities in samples collected inside of a cast iron water main. Microbial 

communities in corrosion deposits were dominated by metal-tolerant bacterial genera 

such as Geobacter, Gallionella, Sphingomonas, and Mycobacterium. ARGs and metal 

resistance genes (MRGs) including blaTEM, blaSHV, czcD, copA, and the integrase 

gene of class 1 integrons (intI1) were positively correlated to the presence of several 

bacterial genera. In laboratory microcosm experiments, metal-containing corrosion 

inhibitors (zinc orthophosphate) selected for increased abundance of ARB resistant to 

multiple antibiotics and several different ARGs including sul1, sul2, qacEΔ1, and intI1 

compared to untreated controls. Metagenomic sequencing of microbial DNA from the 

drinking water microcosms was conducted to determine the impact of corrosion 

inhibitors on the resistome in a source drinking water. Analysis of the microbial 

resistome indicated that zinc orthophosphate selected for increased abundance of total 

ARGs compared to sodium silicate, sodium orthophosphate, and untreated controls. 

Future drinking water management decisions should consider the role of pipe materials 

and corrosion inhibitors to determine how engineering decisions can mitigate the spread 

of antibiotic resistance in drinking water systems.
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1 INTRODUCTION 

 

 

1.1 Environmental and Public Health Concerns Associated with Antibiotic 

Resistance and Antimicrobial Resistance 

The prevalent use of antibiotics for clinical and veterinary uses worldwide is of 

particular concern to public health due to resulting impacts on the spread of antibiotic 

resistance (Alanis 2005). Antibiotics are typically classified into several different 

categories such as aminoglycosides, arsenicals, β-lactams, macrolides, penicillins, and 

tetracyclines (Levy 1998; Chopra and Roberts 2001; Bouki et al. 2013; Ju et al. 2016). 

Antibiotic resistance is comprised of two main components, including the antibiotic or 

antimicrobial drug which inhibits susceptible organisms and selects for resistant ones, 

and the genetic resistance determinant (i.e., antibiotic resistance gene) that is selected for 

by a given antibiotic or antimicrobial compound (Levy 2002). The selected antibiotic 

resistance genes (ARGs) and their hosts spread and propagate under continuous selective 

pressures in natural and engineered environments to amplify and exacerbate the problem 

of antibiotic resistance. Widespread antibiotic resistance poses a serious threat to human 

health due to the associated loss of therapeutic potential for antibiotic compounds, 

especially in immunocompromised populations (Levy and Bonnie 2004; Ashbolt et al. 

2013b). In addition, associated healthcare costs to treat antibiotic resistant infections have 

been estimated at $1 billion annually and over 23,000 people die each year in the U.S. 

alone from infections caused by antibiotic resistant bacteria (ARB) (CDC 2013).  

Antibiotic resistance is not a new phenomenon, but the number of resistant 

organisms and geographic locations affected by antibiotic resistance continues to increase 
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at an unprecedented rate (Levy and Bonnie 2004; Alanis 2005).  Resistance to drugs, i.e. 

antibiotics such as sulfonamides, penicillin, and tetracycline, initially appeared in 

hospitals and clinical environments, where the majority of antibiotics were being used 

(Levy 1998).  As early as the 1930s, sulfonamide-resistant Streptococcus pyogenes was 

observed in military hospitals (Barber 1948). Resistance to multiple drugs was first 

documented in enteric bacteria, i.e. Escherichia coli, Shigella and Salmonella, in the 

1950s and 1960s (Watanabe 1963; Levy 2001). Genes for resistance traits can be 

transferred between bacteria in different ecological and taxonomic groups through mobile 

genetic elements (MGEs) such as plasmids, bacteriophages, transposons, or naked DNA 

(Nwosu 2001). Some transposons contain integrons, which are complex genetic elements 

that contain sites for integrating different antibiotic resistance genes and gene cassettes in 

tandem for expression from a single promoter (Hall et al. 1999). Integrons were 

originally discovered in Gram-negative bacteria but have since been observed in Gram-

positive commensal organisms (Nandi et al. 2004). In the absence of plasmids and 

transposons, antibiotic resistance often occurs in bacteria through sequential 

chromosomal mutations (Wang and Dzink-Fox 2001; Levy 2002; Schneiders et al. 2003). 

For example, strains of E. coli and other Enterobacteriaceae have developed increasing 

resistance to fluoroquinolones, which is primarily the result of mutations to the drug 

target (topoisomerases) and an increase in membrane proteins (e.g. efflux pumps) that 

pump the drugs out of the cell (Oethinger et al. 2000; Hooper 2001; Redgrave et al. 

2014). 

The frequency of antibiotic resistance has increased in many different bacteria as a 

result of increasing antibiotic use, especially in developing countries where antibiotics are 
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readily available without prescription and poor sanitation conditions often exist (Levy 

and Bonnie 2004; Wuijts et al. 2017). Poor sanitation conditions and inadequate waste 

treatment allow for the spread of antibiotics, in addition to other potential stressors such 

as pharmaceutical compounds, estrogens, and metals, and enteric bacteria into the 

environment.  Similarly, wastewater treatment plants (WWTPs) have also been 

considered “hot spots” for the development and spread of antibiotic resistance due to 

densely populated biological systems and the presence of potential selective agents such 

as heavy metals, herbicides, disinfectants, and antibiotics (Rizzo et al. 2013; Yuan et al. 

2015; Guo et al. 2017). In addition, ARB and ARGs have been detected in a wide range 

of environmental matrices including sediments, soils, lakes, rivers, WWTP effluents, 

biosolids, and in drinking water distribution systems (DWDSs) (Armstrong et al. 1981; 

Ghosh et al. 2009; Munir and Xagoraraki 2011; Pruden et al. 2012a; Kimbell et al. 2018). 

Some of the most prevalent ARGs detected in various environmental compartments 

include resistance determinants encoding for β-lactam resistance (e.g. blaTEM, blaSHV), 

macrolide resistance (ermB, ermF), sulfonamide resistance (sul1, sul2), fluoroquinolone 

resistance (qnrA, qnrS), and tetracycline resistance (tetA, tetO, tetL, tetW) (Auerbach et 

al. 2007; LaPara et al. 2011; Gao et al. 2012; Mao et al. 2015; Rodriguez-Mozaz et al. 

2015a; Garner et al. 2018a; Su et al. 2018). Similarly, the integrase gene of class I 

integrons (intI1) is frequently detected in the environment and is commonly linked to 

genes conferring resistance to disinfectants, antibiotics and heavy metals (Liebert et al. 

1999; Partridge et al. 2009). Class 1 integrons such as intI1 have been observed in a wide 

variety of pathogenic and non-pathogenic bacteria and have been considered key factors 

contributing to the development and spread of antibiotic resistance (Gillings et al. 2008). 
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The abundance of genes promoting antibiotic resistance, such as intI1, can rapidly 

increase in response to environmental pressures, because class 1 integrons reside in 

diverse bacterial species and are often located on MGEs that can easily be transferred 

between bacteria (Gillings et al. 2015).  

A significant body of literature has documented the occurrence of ARB and ARGs 

in a wide variety of environments. Each environmental compartment, or reservoir, 

consists of complex dynamics that are largely driven by microbial ecological processes 

that ultimately determine the level of prevailing antibiotic resistance (Pruden et al. 2018). 

ARB and ARGs can flow between environmental compartments through a variety of 

methods including classic exposure routes through air, water, and soil, irrigation with 

contaminated water, wastewater and industrial effluent discharges, bacteria carrying 

ARGs on meat or produce, and application of biosolid-derived soil amendments 

(Vikesland et al. 2017; Pruden et al. 2018). Consequently, it is becoming increasingly 

important to identify and monitor ARB and ARGs via environmental exposure routes that 

are directly capable of causing human illness, such as DWDSs.  Indeed, recent 

epidemiological studies have identified DWDSs as an important exposure route for 

disease transmission (Park et al. 2001; Anaissie et al. 2002; Brown-Elliott et al. 2011). As 

a result, studies documenting the occurrence and distribution of ARB and ARGs in full-

scale and laboratory-scale distribution systems can provide vital information necessary 

for protecting public health and preventing the spread of antibiotic resistance.  
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1.2 Impact of Metals, Corrosion Inhibitors, and Corrosion Products on Antibiotic 

Resistance 

After finished drinking water enters the DWDS, it may spend hours to days inside 

the distribution system prior to reaching consumer taps. The predominant components of 

DWDS include reservoirs, water towers, and pumps, in addition to thousands of miles of 

drinking water mains buried underground, which are comprised of various materials 

including plastic, ductile iron, cast iron, copper, brass, and lead. As a result of the 

relatively high surface area to volume ratio in the DWDS environment, previous studies 

have estimated that up to 95% of overall biomass in drinking water distribution networks 

is attached to pipe walls, while only approximately 5% is in the aqueous phase 

(Flemming et al. 2002). Bacteria and other microorganisms present in DWDS biofilms 

may exacerbate corrosion of iron pipes, produce unpleasant tastes and odors, decrease 

residual disinfectant concentrations (e.g. chlorine, chloramines), and shed viable bacterial 

cells into treated drinking water (Bal Krishna et al. 2013; Gomez-Smith et al. 2015; 

Douterelo et al. 2016). Furthermore, biofilms may serve as reservoirs for opportunistic 

pathogens and other microbes harboring ARGs that could be subsequently released into 

finished drinking water in the distribution system.   

Corrosion control treatment is required by the US EPA Lead and Copper Rule, 

which is necessary to protect public health from harmful levels of dissolved metals that 

can cause negative health effects. Corrosion of drinking water infrastructure occurs due 

to chemical and biological oxidation processes of the surface of metal pipe materials and 

can result in the accumulation and deposition of significant amounts of corrosion 

products and microbial biofilms inside of drinking water pipes. Passivation of drinking 
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water pipes occurs over time by the formation of corrosion products on pipe surfaces, and 

the formation of passivating scales in DWDS pipes lowers the potential for metal ions to 

leach into finished drinking water, but also provides increased surface area for bacterial 

attachment and biofilm formation (Zhu et al. 2014; Li et al. 2015). Metals can co-select 

for antibiotic resistance through different mechanisms such as co-resistance (different 

resistance determinants present on the same genetic element) and cross-resistance (the 

same genetic determinant responsible for resistance to antibiotics and metals) (Baker-

Austin et al. 2006). Corrosion products found in DWDS are comprised of scale minerals 

and possibly additional contaminants deposited from drinking water which may impact 

antibiotic resistance and horizontal gene transfer of ARGs in drinking water systems but 

has yet to be investigated.  

Corrosion inhibitors are frequently added to full-scale DWDS to inhibit corrosion 

and reduce levels of dissolved metals that leach from pipes into tap drinking water. 

Phosphate-based corrosion inhibitors such as orthophosphates and polyphosphates are the 

most common type of corrosion inhibitor used according to a 2019 US corrosion control 

survey of drinking water utilities (Arnold et al. 2020). This study and others have 

reported that the use of orthophosphate continues to increase due to its efficacy for 

controlling lead release in drinking water (Woszczynski et al. 2015; Arnold et al. 2020). 

Silicate corrosion inhibitors have limited full-scale use in the US and were reportedly 

used by only 2 utilities that participated in the 2019 survey. The addition of different 

types of corrosion inhibitors exhibits a selective pressure on the microorganisms and 

biofilms present in drinking water pipes, which also impacts the levels of prevailing 

resistance in tap drinking water transported through these systems. However, there is a 
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paucity of research regarding the impacts of different corrosion inhibitors on the 

occurrence and abundance of ARGs or ARB in full-scale DWDS.  

1.3 Research Objectives 

The overall objective of this dissertation research was to determine the impact of 

metals and corrosion inhibitors on phenotypic and genotypic antibiotic resistance in 

drinking water microbial communities. Antibiotic resistant bacteria (ARB) and antibiotic 

resistance genes (ARGs) are frequently detected in tap drinking water and biofilms inside 

drinking water distribution systems (DWDS) and are not readily removed during drinking 

water treatment processes, which poses risks to human health. The general approach was 

to investigate the abundance of target resistance genes inside a full-scale DWDS and to 

use lab-scale batch reactors dosed with known amounts of corrosion inhibitors, metals, 

and disinfectants to evaluate the impact on antibiotic and metal resistance with varying 

water quality and operational parameters. Next generation DNA sequencing technologies 

were also employed to characterize the microbial communities from a full-scale DWDS 

water main and in response to different corrosion inhibitor and disinfectant treatments. A 

review of relevant literature is presented in Chapter 2 and has been published (Kimbell 

et al. 2020).  

The presence of ARGs in full-scale DWDS pipe biofilms has not been well 

documented. The first research objective was to evaluate the presence and abundance of 

ARGs, MRGs, and bacterial communities inside a full-scale water main. Droplet digital 

PCR (ddPCR) was used to quantify the abundance of ARGs and MRGs in different 

biofilm environments inside a full-scale pipe from an active distribution system. 16S 
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rRNA gene amplicon sequencing was conducted to determine the microbial communities 

present in the water main. These experimental results are presented in Chapter 3 and 

have been published (Kimbell et al. 2021).  

The second objective was derived from valuable information on abundant ARGs, 

MRGs, and microorganisms observed in Objective 1. The second objective was to 

determine the impact of different corrosion inhibitors containing metals (zinc 

orthophosphate, sodium orthophosphate, and sodium silicate) on the absolute and relative 

abundance of ARB, ARGs, and MRGs in a source drinking water. The impact of 

different corrosion inhibitor types and corrosion inhibitor concentrations was assessed 

using laboratory-scale drinking water microcosms. ARB were quantified by antibiotic 

resistant heterotrophic plate counts from direct plating of water on media with clinically-

relevant antibiotics and ARGs/MRGs were quantified using qPCR. The results of this 

study are presented in Chapter 4. 

The third objective was to determine the impact of corrosion inhibitor type 

relative to disinfectants (which can also select for resistance) on the antibiotic resistome 

(i.e., entire collection of resistance genes in the microbial community) and microbiome in 

a source drinking water using shotgun metagenomic sequencing. Laboratory-scale 

drinking water microcosms were set up in batch experiments to elucidate impacts of 

corrosion inhibitors and disinfectants. The impact of different chemical additions were 

quantified by heterotrophic plate counts of ARB resistant to clinically-relevant antibiotics 

and by quantification of target resistance genes using qPCR. Shotgun metagenomic 

sequencing was used to evaluate shifts in the antibiotic resistome and the microbiome. 

The experimental results for this objective are in Chapter 5.  
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Finally, the overall conclusions, including a summary of key research findings 

and suggestions for future research, are provided in Chapter 6.  
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2 LITERATURE REVIEW: THE IMPACT OF METAL PIPE MATERIALS, 

CORROSION PRODUCTS, AND CORROSION INHIBITORS ON 

ANTIBIOTIC RESISTANCE IN DRINKING WATER DISTRIBUTION 

SYSTEMS 

 

 

This chapter was published as: 

Kimbell, Lee K., Yin Wang, and Patrick J. McNamara. "The impact of metal pipe 

materials, corrosion products, and corrosion inhibitors on antibiotic resistance in 

drinking water distribution systems." Applied Microbiology and Biotechnology 

104.18 (2020): 7673-7688. 

 

 

It is republished here, with minor adjustments, with permission from the journal. 

2.1 Introduction 

Antibiotic resistance is considered a major global threat in the 21st century, and a 

return to a pre-antibiotic era is predicted without serious or immediate attention (WHO 

2014). Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) occur 

naturally but are selected for and enriched by exposure to antibiotics (Song et al. 2017), 

antimicrobials (Carey and McNamara 2015; Carey et al. 2016; Hartmann et al. 2016; 

Harrison et al. 2020), disinfectants (Chapman 2003; Zhang et al. 2017a), and metals 

(Seiler and Berendonk 2012; Zhang et al. 2018b) in natural and engineered environments. 

ARB and ARGs have been detected in a variety of environments including soils (Knapp 

et al. 2011), lakes (Di Cesare et al. 2015), groundwater (Mackie et al. 2006; Koike et al. 

2007), aquaculture (Seiler and Berendonk 2012), rivers (Pruden et al. 2006; Pruden et al. 

2012b; Kappell et al. 2015a), treated wastewater effluent (Auerbach et al. 2007; LaPara et 

al. 2011; Mao et al. 2015; Di Cesare et al. 2016; Guo et al. 2017; Kappell et al. 2018a; 

Cacace et al. 2019), biosolids (Ma et al. 2011; Munir and Xagoraraki 2011; Kimbell et al. 
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2018), drinking water treatment plants (Xi et al. 2009; Lin et al. 2014; Oh et al. 2018), 

drinking water distribution systems (DWDS) (Xi et al. 2009; Xu et al. 2016; Garner et al. 

2018a), and tap drinking water (Xi et al. 2009; Bergeron et al. 2015). Natural and 

engineered environments are composed of complex dynamics driven by microbial 

ecological processes that ultimately determine the level of prevailing antibiotic resistance 

(Pruden et al. 2018). ARB and ARGs can be transferred between environments via 

exposure routes through air, water, soil, wastewater and industrial effluent discharges, 

bacteria carrying ARGs on meat or produce, and application of biosolid-derived soil 

amendments (Vikesland et al. 2017; Pruden et al. 2018). Environmental hotspots that 

could directly convey ARB and ARGs to people, such as DWDS, are of primary interest 

because management decisions could potentially reduce public health risks.   

Over 100 different ARGs were detected in drinking water from two drinking 

water treatment plants in China with total ARG concentrations ranging from 105 to 1010 

copies/L (Xu et al. 2016). Multiple studies correlated the presence of ARGs with MGEs, 

suggesting that horizontal gene transfer could occur inside the DWDS (Ciric et al. 2011; 

Xu et al. 2016). In general, ARGs can be transferred vertically through microbial growth 

or acquired by horizontal gene transfer, which occurs through the uptake of free DNA 

(transformation), plasmid-mediated transfer (conjugation), and phage-mediated transfer 

(transduction) (Van Hoek et al. 2011). Horizontal gene transfer is a major mechanism for 

sharing ARGs between microorganisms and has been documented between pathogens, 

non-pathogens, and distantly related microbes, such as Gram-positive and Gram-negative 

bacteria (Levy et al. 1976; Courvalin 1994; Pruden et al. 2006). Horizontal gene transfer 

of ARGs is of particular concern for human health if pathogens acquire resistance 
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(Wingender and Flemming 2011; Wang et al. 2014c). Additionally, metal resistance is a 

common phenotype in many microorganisms and metal resistance genes (MRGs) are 

present in genomes isolated from numerous different environments including humans, 

animals, hydrothermal vents, and ocean microplastics (Pal et al. 2017; Yang et al. 2019). 

Metal resistance often occurs with antibiotic resistance (Baker-Austin et al. 2006). 

Stagnant conditions caused by intermittent water demand, which are common in urban 

areas, may also promote the growth of pathogens and other microorganisms potentially 

harboring ARGs and MRGs in DWDS (Lautenschlager et al. 2010; Proctor and Hammes 

2015; Zlatanović et al. 2017; Bédard et al. 2018; Ling et al. 2018). Additionally, locations 

within DWDS that support higher densities of microorganisms (e.g., biofilms, tubercles, 

loose deposits) may aid in the persistence of antibiotic resistance in DWDS (Hallam et al. 

2001). The overall growth of microorganisms and microbial ecology in DWDS is 

influenced by several distribution system characteristics and may have implications on 

the types and abundance of resistance genes in DWDS. Even though metals are known to 

select for antibiotic resistance, and they are present in DWDS due to corrosion of metal 

pipes and addition of corrosion inhibitors, research gaps persist around the impact of 

metals on antibiotic resistance in DWDS.   

 Previous analysis of microbial ecology in DWDS has been accomplished 

primarily through next-generation sequencing (NGS) technologies including 16S rRNA 

gene amplicon sequencing and DNA-based metagenomic analysis (Berry et al. 2006; 

Pinto et al. 2012; Douterelo et al. 2014; Ma et al. 2019). Many of these studies have 

investigated the drinking water microbiome during various stages of drinking water 

treatment and distribution, which can be influenced by many factors including spatial and 
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temporal variations (Pinto et al. 2014; Prest et al. 2016; Potgieter et al. 2018), geography 

(Proctor and Hammes 2015), treatment processes (Ma et al. 2017b; Oh et al. 2018), and 

distribution system characteristics (Sanganyado and Gwenzi 2019). Laboratory-scale 

studies have observed relationships between several distribution system parameters and 

the occurrence of opportunistic pathogens and microbial ecology in simulated DWDS 

including disinfectants (Shen et al. 2017; Zhang et al. 2019a), water age (Wang et al. 

2012b; Wang et al. 2014c), water temperature (Proctor et al. 2017), and pipe materials 

(Wang et al. 2012b; Wang et al. 2014c; Proctor et al. 2017). ARG profiles are impacted 

by the microbial communities in a given environment, and many of these previously 

studied parameters likely have impacts on antibiotic resistance in drinking water systems 

but have yet to be investigated. Additionally, few studies have utilized quantitative 

molecular tools to quantify the abundance of clinically-relevant ARGs or MGEs in 

different phases (planktonic, biofilm, particle-associated, loose deposits, etc.) of full-scale 

DWDS (Garner et al. 2018a).  

In this review, existing information on the impacts of metal pipe materials, 

corrosion inhibitors, and corrosion products on the prevalence of antibiotic resistance in 

DWDS is critically reviewed with the goal of consolidating information to help develop 

more effective monitoring and mitigation strategies along with recommended future 

research directions. As older DWDS get upgraded, there is an urgent need for improving 

our understanding of engineering management decisions such as pipe material selection 

on the dissemination of antibiotic resistance in DWDS. Here, we provide information 

regarding the antimicrobial activity of metals and potential mechanisms of antibiotic 

resistance selection in DWDS with specific emphasis on corrosion products and 
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corrosion inhibitors. This review also summarizes existing information available 

regarding the abundance of ARGs, MRGs, and MGEs in DWDS. Additionally, 

recommendations are provided for future research directions with a focus on improving 

mitigation strategies for antibiotic resistance in DWDS.  

2.2 Quantification of Resistance Genes in Full-Scale Drinking Water Systems 

Understanding the sources and mechanisms of antibiotic resistance dissemination 

in drinking water networks is critical for mitigating risks to public health. Previous 

studies have highlighted that several factors related to drinking water treatment (Sharma 

et al. 2016; Sanganyado and Gwenzi 2019) and distribution system construction and 

operation can influence the abundance of bacteria in drinking water and biofilms 

(Douterelo et al. 2014; Sun et al. 2014a; Douterelo et al. 2016). After finished drinking 

water enters the distribution system, it may spend hours to days inside pipes prior to 

reaching consumer taps, which can alter the chemical and microbiological quality of the 

water (Ji et al. 2015). Corrosion inhibitors, pH, dissolved inorganic carbon, disinfectant 

type/concentration, and other chemicals used during drinking water treatment (e.g., 

coagulants) may impact the presence and distribution of ARB and ARGs in DWDS (Liu 

et al. 2016; Zhang et al. 2017a). A previous laboratory-scale study documented increased 

transfer of ARGs following exposure to disinfectants (free chlorine, chloramine, and 

hydrogen peroxide) and suggested that mechanisms including intracellular reactive 

oxygen species formation, SOS response, increased cell permeability, and altered 

expression of conjugation-relevant genes were responsible for horizontal gene transfer 

(Zhang et al. 2017a). Additionally, Kappell et al. 2019 observed increased selection for 
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ARB and ARGs including sul1, qacH, and intI1 in drinking water microcosms treated 

with zinc-containing corrosion inhibitors compared to controls. This study reported that 

low concentrations of metals such as zinc in drinking water may lead to positive selection 

of bacteria able to assimilate metals, rather than negatively selecting against bacteria 

without metal resistance (Kappell et al. 2019). Although these studies have provided 

some insight into the potential mechanisms of antibiotic resistance selection under 

controlled laboratory conditions, there is a lack of data available regarding the presence 

of clinically-relevant ARGs, MRGs, and MGEs commonly linked to horizontal gene 

transfer processes in full-scale DWDS. ARGs including beta-lactam resistance genes, 

sul1, and MGEs such as intI1 have previously been identified as potential indicators for 

the overall abundance of resistance genes in different environments (WHO 2014; Gillings 

et al. 2015; Ma et al. 2017a). MRGs such as arsB, copA, czcD, and zntA confer 

resistance to metals, and may be co-selected for by bacterial exposure to antibiotics, 

disinfectants, and other contaminants (Pal et al. 2017). Further, a previous study 

documented the co-occurrence of MRGs and ARGs on plasmids in clinically-relevant 

genera including Escherichia, Staphylococcus, Salmonella, Klebsiella, Pseudomonas, and 

Mycobacterium (Pal et al. 2015). However, no studies known to the authors have 

documented MRGs in samples from full-scale DWDS using quantitative molecular 

techniques, i.e., techniques that generate copy numbers on a per L, g, or surface area 

basis. Few studies have employed quantitative techniques to quantify ARGs in full-scale 

DWDS (summarized in Table 2.1).  

Studies documenting the occurrence and abundance of ARGs are important for 

developing effective monitoring strategies for controlling microbial drinking water 
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quality. Total bacterial biomass (e.g., 16S rRNA) can range several orders of magnitude 

(~103 – 1010 copies/L) in drinking water (Table 2.1, Xi et al. 2009; Garner et al. 2018b; 

Garner et al. 2019). ARGs including beta-lactam resistance genes (blaTEM), sulfonamide 

genes (sul1 and sul2), tetracycline resistance genes (tet(W), tet(M), tet(X)), and the 

integrase gene of class 1 integrons (intI1) have been quantified in DWDS at 

concentrations ranging from approximately 101 to 107 copies/L (Table 1, Xi et al. 2009; 

Garner et al. 2018a; Su et al. 2018; Hao et al. 2019; Rocha et al. 2019; Zhang et al. 2020). 

The majority of previous studies focused on measuring ARG abundance in the planktonic 

phase and did not measure gene concentrations in biofilms or corrosion deposits, which 

have been cited as important reservoirs for opportunistic pathogens and ARGs (Balcázar 

et al. 2015). Other studies have utilized high-throughput qPCR (HT-qPCR) for detecting 

ARGs in DWDS, with detections of over 100 different ARGs, transposases, and 

integrons in drinking water samples (Xu et al. 2016; Huang et al. 2019; Waseem et al. 

2019). These studies and others have observed increases in transposase genes, β-lactam 

resistance genes, and MGEs in DWDS water compared to treated drinking water entering 

the DWDS.  

Many environmental factors exist in DWDS that may influence the abundance of 

ARGs. It is well documented that disinfection practices (e.g., chlorination or 

chloramination), antibiotics, antimicrobials, and metals may exacerbate the prevalence of 

antibiotic resistance in engineered systems such as DWDS. However, the fate of ARGs, 

MRGs, and mechanisms of horizontal gene transfer in full-scale DWDS are not well 

understood. Additionally, previous studies have suggested that extracellular DNA may 

persist in aquatic systems for long periods of time and may represent an important 
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reservoir of ARGs in DWDS (Hao et al. 2019; Sakcham et al. 2019). Due to potential 

public health implications associated with the presence of opportunistic pathogens, 

ARGs, and MRGs in drinking water, this area of research warrants further investigation.  
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Table 2.1 ARGs Quantified in Full-scale Drinking Water Distribution Systems (DWDS) 

 

Reference Garner et al 2018 
Hao et al 

2019 

Rocha 

et al 

2019 

Su et al 

2018 

Xi et al 

2009 

Zhang et 

al 2020 

Sample Type 
Tap 

Water 

Tap 

Water 
Biofilms Biofilms Tap Water 

Tap 

Water 

Tap 

Water 

Tap 

Water 
Tap Water 

Method of 

Quantification 
qPCR qPCR qPCR qPCR qPCR qPCR qPCR qPCR qPCR 

Units 
copies/ 

mL 

copies/ 

mL 

copies/ 

swab 

copies/ 

swab 
copies/L 

copies/ 

mL 
copies/L 

copies/ 

100 mL 

copies/ 

100 mL 

Replicates 44 56 40 21 36 3 9 8 71 

Source Water 
SW, 

GW 
SW, GW SW, GW SW, GW NA NA NA NA SW 

Treatment 

Type(s) 

5-stage 

BF, 

AS, 
DN 

4-stage 
BF, UV, 

biofilter 

dual 

media 

filter, 
MB 

dual 
media 

filter 

NA NA 
Sed., SF, 

PAC, 

GAC, O3 

NA NA 

Pipe 

Material(s) 
NA NA NA NA NA NA NA NA NA 

Disinfectant NH2Cl Cl2 NH2Cl Cl2 Cl2 NH2Cl NA NH2Cl NA 

Observed Mean Absolute Abundance of Target Genes (Log10 scale) 

16S rRNA 4.2 2.3 - 3.3 4.2 3.5  - 6.0 7.0 - 7.6 5.4 - 7.0 5.2 - 7.4 

blaTEM 1.8 1.7 1.5 1.6 3.5 - 5.5  - - 2.2 - 3.4 2.0 - 5.0 

blaSHV -  - - - - - - 0 - 1.5 - 

ermB - - - - 2.5 - 3.8 - 5.0 - 5.5 - ND - 5.0 

intI1 4.7 4.9 4.2 ND - - - - 2.0 - 4.5 

tet(M) - - - - 2.0 - 5.4 - 5.5 - - 

tet(W) - - - - - - 5.6 - 5.8 - ND - 4.5 

tet(X) - - - - 2.2 - 3.8 - ND - - 

qnrA 1.2 ND ND 2.1 2.0 - 3.6 - ND - - 

qnrS - - - - - - 5.0 - - 

sul1 2.7 1.2 - 1.7 3.2 2.1 4.6 - 6.8 2.1 7.5 0.9 - 3.2 3.0 - 6.0 

sul2 - - - - 3.5 - 5.8 - 6.0 0.1 - 4.2 ND - 5.7 

vanA 1.4 1.9 1.5 1.3 0 - 2.5 - - - - 

Notes: AS = activated sludge, BF = Bardenpho, GAC = granular activated carbon, PAC = powdered activated carbon, 

MB = membrane bioreactor, O3 = ozone, Sed. = sedimentation, SF = sand filter, UV = ultraviolet disinfection, NA = 

not available, ND = no detection, “-“ = no measurement or value, qPCR = quantitative PCR. Mean abundance values 

for target genes were adapted from source article(s) text or approximated from figures.  
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2.3 Plausible Mechanisms for Antibiotic Resistance Selection by Metals in DWDS 

Previous studies on lab-scale and full-scale DWDS have focused on the impact of a 

variety of factors on microbial ecology in DWDS including pipe materials (Niquette et al. 

2000; Lehtola et al. 2005; Proctor et al. 2017; Douterelo et al. 2020), flow regime 

(Manuel et al. 2007; Lautenschlager et al. 2010), nutrients (Batte et al. 2003), and 

disinfectant type (chlorine/chloramines) (Wang et al. 2012b; Aggarwal et al. 2018; Dai et 

al. 2019; Waak et al. 2019a), but they have seldomly focused specifically on the impact 

of metals on antibiotic resistance. Drinking water networks are comprised of various 

metal pipe materials including cast-iron, ductile iron (Fe), copper (Cu), brass, and lead 

(Pb). Metal species such as Cu, Fe, and Pb are primarily introduced to drinking water 

through corrosion processes and leaching of metal ions from plumbing materials (Kang et 

al. 2008; Kim and Herrera 2010). Zinc (Zn) is present when added as a corrosion 

inhibitor attached to phosphate (Payne et al. 2016). Additional heavy metals such as 

aluminum (Al), arsenic (As), chromium (Cr), and uranium (U) present at concentrations 

below their maximum contaminant levels (MCLs) or at non-detectable levels in treated 

drinking water can accumulate in deposits and corrosion scales in DWDS (Lytle et al. 

2004; Schock et al. 2008; Peng and Korshin 2011; Peng et al. 2012). The primary 

concern with the presence of trace metals in DWDS is the potential for their release back 

into finished drinking water, which may result in elevated dissolved metal levels in 

domestic tap water (Sun et al. 2017). Heavy metals present in drinking water 

environments at sub-inhibitory concentrations can promote antibiotic resistance and 

horizontal transfer of ARGs (Baker-Austin et al. 2006; Zhang et al. 2018a; Zhang et al. 
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2018b). In addition, positive correlations have previously been observed between 

multiple antibiotic resistance and metal exposure (Cu, Pb, Zn) in drinking water point of 

use samples compared to point of entry to the DWDS, suggesting that bacteria acquired 

antibiotic resistance inside the DWDS (Calomiris et al. 1984).  

 Microorganisms have developed a variety of methods for coping with 

environmental stress, such as exposure to heavy metals. General mechanisms responsible 

for metal resistance in microbial cells include (i) exclusion by permeability barrier, (ii) 

active efflux, (iii) intra- and extracellular sequestration, (iv) enzymatic detoxification, and 

(v) decreased sensitivity of cellular targets to metal ions (Bruins et al. 2000; Harrison et 

al. 2009). Some microorganisms such as Pseudomonas aeruginosa can upregulate the 

expression of extracellular polymers or siderophores (metal-chelating agents) in response 

to metal exposure, which contain functional groups capable of binding to metal ions 

(Lemire et al. 2013). The role of siderophores is mainly to scavenge Fe, but can also form 

complexes with other essential metals (Mo, Mn, Co, and Ni) and make them available for 

microbial cells (Ahmed and Holmström 2014). Extracellular polymers and siderophores 

can precipitate metal ions in the extracellular environment, and soluble siderophores 

bound to metals may be subject to reduced uptake into microbial cells or increased efflux 

out of the cell by membrane transporters (Braud et al. 2009; Hannauer et al. 2012). 

Additionally, biofilms provide an advantageous way for microorganisms to survive on 

metallic pipes in DWDS, and a previous study reported growth of over 107 cells per cm2 

after only 30 days on metal pipe materials including stainless steel and copper (Morvay et 

al. 2011). Molecular mechanisms responsible for stimulating horizontal gene transfer 

after exposure to metals (Cu, Ag, Cr, and Zn) include intracellular reactive oxygen 
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species (ROS) formation, SOS response, increased cell membrane permeability, and 

altered expression of conjugation-relevant genes (Zhang et al. 2018a). This study and 

other studies regarding the potential for horizontal gene transfer following metal ion 

exposure have suggested that selection mechanisms such as co-resistance and cross-

resistance likely play a significant role in the development of antibiotic resistance in 

metal-contaminated environments (Baker-Austin et al. 2006; Seiler and Berendonk 2012; 

Knapp et al. 2017). In addition to co-resistance and cross-resistance, co-regulatory 

mechanisms may also promote the co-selection process, which occurs when a single 

regulatory gene controls multiple resistance genes that confer resistance to different 

compounds (Pal et al. 2017).  

Co-resistance is defined as two or more genetically linked resistance genes, 

indicating that the genes responsible for two or more resistances are located next to each 

other on one MGE (Chapman 2003; Ju et al. 2016). Hasman and Aarestrup (2002) 

observed a correlation between copper resistance and resistance to macrolides and 

glycopeptides in Enterococcus faecium obtained from copper-exposed pigs and 

documented the co-transfer of copper- and macrolide-resistant phenotypes in 

transconjugants (Aarestrup et al. 2002; Hasman and Aarestrup 2002; Hasman and 

Aarestrup 2005). The physical linkage results in the co-selection of other genes located 

on the same genetic element when an organism is exposed to a particular stressor, such as 

an antimicrobial compound or metal (Baker-Austin et al. 2006; Poole 2017). Even at 

environmentally-relevant and sub-inhibitory concentrations, the presence of metals such 

as Cu has been positively correlated with ARGs, which is an indication that sublethal 

levels of Cu can increase ARG prevalence (Knapp et al. 2017; Zhang et al. 2018b). The 
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high redox potential of Cu has also allowed it to serve as an ideal biological co-factor, 

particularly in aerobic microorganisms (Outten et al. 2001; Rensing and Grass 2003). 

Previous studies have suggested that sub-inhibitory levels of copper ions present in 

DWDS can stimulate growth of microorganisms (Zhang et al. 2009b), catalyze decay of 

disinfectant residuals (chloramines) (Nguyen et al. 2012), and cause microbial 

community shifts (Proctor et al. 2017; Rhoads et al. 2017). Alternatively, copper and 

silver ion exposure can inhibit growth of microorganisms such as Legionella 

pneumophila at concentrations ranging from 0.20 – 4.0 mg/L (Liu et al. 1994; Kusnetsov 

et al. 2001; Van Der Kooij et al. 2005) and a strong inhibitory effect on nitrifying bacteria 

has been reported following copper exposure exceeding 0.90 mg/L (Zhang et al. 2008). 

The enrichment of antibiotic resistant microorganisms in metal contaminated 

environments has been attributed to the selection of organisms harboring resistance genes 

for agents (antibiotics and metals) on chromosomes or plasmids (Poole 2017). 

Furthermore, a survey of soils in Scotland demonstrated a significant correlation between 

Cu levels and the occurrence of ARGs including erm(B), erm(F), tet(M), and tet(W) 

(Knapp et al. 2011). This study also observed positive correlations between Fe and Pb in 

soils and the occurrence of ARGs including tet(M), tet(W), blaTEM, and blaOXA.  

Cross-resistance is primarily observed through multidrug efflux pumps which can 

rapidly extrude structurally dissimilar compounds out of the cell, such as heavy metals 

and antibiotics (Baker-Austin et al. 2006; Martinez et al. 2009). Previous research has 

suggested that the abundance of class 1 integrons observed in metal contaminated 

environments were associated with an increase in antibiotic resistance, as class 1 

integrons are closely located to genes encoding for the multidrug efflux pump czcA 
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(which can expel Zn, Cd, and Co) (Seiler and Berendonk 2012). Class 1 integrons are 

genetic elements capable of acquiring and exchanging DNA fragments called gene 

cassettes (Hall et al. 1999). The presence of integrons and other MGEs can mediate a 

selective advantage to microorganisms exposed to stressful environmental conditions 

(e.g., exposure to metals). Previous studies have observed significant positive correlations 

between MGEs and ARGs in aquatic environments including blaTEM, ermA, sul1, tet(O), 

tet(W), and tet(X) (Pruden et al. 2006; Szekeres et al. 2018; Dong et al. 2019).  

Exposure to heavy metals may trigger co-selection responses, but can also 

increase the level of tolerance to antibiotics due to co-regulation of resistance genes 

(Seiler and Berendonk 2012). Guo et. al observed an increase in the tetracycline 

resistance gene (tet(Q)) in gut microbiota of mice exposed to Fe and suggested that iron 

exposure alone could potentially alter the diversity and functions of gut microbiota and 

the abundance of ARGs and MGEs (Guo et al. 2014). Some heavy metals (e.g., Pb) have 

no known function in bacterial cells but can cause oxidative stress, which could promote 

generation of ROS and facilitate horizontal gene transfer in the distribution system 

(Knapp et al. 2011). The dominant mechanisms of co-selection for metal- and antibiotic 

resistance remain relatively unknown, especially in drinking water environments. 

Previous studies have suggested that there may be more limited opportunities for metals 

to drive horizontal gene transfer of antibiotic resistance; however, numerous possibilities 

exist for metals to select for ARB through chromosomal MRGs (Pal et al. 2014; Pal et al. 

2017). Additionally, transposable elements originating in chromosomal DNA can jump to 

plasmids carrying ARGs and MRGs that can easily be transferred to other 

microorganisms through transformation or conjugation.  
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Metal pipe materials, including Cu, Fe, and Pb commonly used in DWDS 

including water mains, service connections, and premise plumbing, can influence 

microbial community composition and the presence of opportunistic pathogens (Rożej et 

al. 2015; Proctor et al. 2017; Neu et al. 2019). In fact, sub-inhibitory exposure to Cu and 

Zn can stimulate antibiotic resistance in water environments at concentrations below their 

respective maximum contaminant levels (MCLs) (Figure 2.1). While MCLs are based on 

direct impacts to human health, these data imply that indirect consequences including 

selection for antibiotic resistance can occur at levels below the MCLs. Co-selection of 

ARGs and MRGs is likely ubiquitous in full-scale DWDS due to the presence of metals, 

disinfectants, and antibiotics. Several bacteria genera commonly detected in DWDS 

contain plasmids with both ARGs and MRGs including E. coli, Staphylococcus, 

Pseudomonas, and Mycobacterium (Pal et al. 2015). Despite existing knowledge 

regarding drinking water biofilms, studies regarding the occurrence or distribution of 

ARGs, MRGs, or MGEs using molecular techniques such as qPCR or droplet digital PCR 

(ddPCR) are limited. Quantitative measurements of ARB, ARGs, and MRGs in drinking 

water and biofilms are essential for improving risk assessments for potable water 

systems. Additionally, fundamental research from laboratory-scale studies and full-scale 

DWDS surveys providing information on pipe materials and antibiotic resistance are both 

necessary to better understand how engineering management decisions impact human 

health.  
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Figure 2.1 Studies documenting antibiotic resistance in response to metal exposure in 

water environments (Cu and Zn). The United States Environmental Protection Agency 

maximum contaminant level (MCL) for drinking water quality is plotted for reference. 

References for data in figure (Stepanauskas et al. 2005; Wright et al. 2006; Zhang et al. 

2018b; Zhang et al. 2018c; Kappell et al. 2019; Zhang et al. 2019b). 



26 

 

 

2.4 Impact of Corrosion Products on Antibiotic Resistance  

Corrosion of drinking water infrastructure occurs due to oxidation processes of 

metal materials and results in subsequent formation and accumulation of corrosion 

products on metal surfaces (McNeill and Edwards 2001). Various chemical oxidation 

processes that occur in drinking water environments can degrade pipe surfaces, valves, 

and connections, and gradually rust metal surfaces. Corrosion of drinking water pipes is 

responsible for destruction of the pipe material and also the deterioration of the drinking 

water quality in the distribution system (Sun et al. 2014b). Corrosion scales are formed 

by the accumulation of corrosion products and other suspended particles on pipe surfaces, 

which reduces the capacity of the system and provides habitats for potentially pathogenic 

microorganisms (Wang et al. 2012b; Sun et al. 2014b).  

Corrosion of drinking water pipes can occur due to a variety of circumstances 

including increased pipe service age, water chemistry, and operational parameters such as 

stagnation time and flow velocity (Flemming et al. 2002; Lehtola et al. 2006; Xie and 

Giammar 2011). Passivation of drinking water pipes occurs over time by the formation of 

corrosion products on pipe surfaces, and the formation of passivating scales in DWDS 

pipes lowers the potential for metal ions to leach into finished drinking water, but also 

provides increased surface area for bacterial attachment and biofilm formation (Zhu et al. 

2014; Li et al. 2015). Corrosion products are comprised of scale minerals and possibly 

additional contaminants deposited from drinking water which may impact antibiotic 

resistance and horizontal gene transfer of ARGs in drinking water systems. Corrosion 

products that form in iron pipes typically consist of iron(III) oxyhydroxides (e.g., goethite 
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(α-FeOOH), lepidocrocite (γ-FeOOH)), iron(II, III) oxides (e.g., magnetite (Fe3O4)), 

and/or iron(II) carbonates (e.g., siderite (FeCO3)) (McNeill and Edwards 2001; Peng et 

al. 2010; Yang et al. 2012). Common lead corrosion products include lead(II) oxides 

(e.g., litharge (α-PbO)), lead(II) carbonates (e.g., cerussite (PbCO3), hydrocerussite 

(Pb3(CO3)2(OH)2)), lead(II) phosphates (e.g., hydroxylpyromorphite (Pb5(PO4)3OH)) and 

lead(IV) oxides (e.g., scrutinyite (α-PbO2), plattnerite (β-PbO2)) (Lytle and Schock 2005; 

Schock et al. 2005b; Schock et al. 2005a; Kim and Herrera 2010; Xie and Giammar 

2011). Compared to iron and lead focused work, very few studies have investigated 

copper corrosion under conditions relevant to drinking water distribution, and cuprous 

oxide (Cu2O) and/or cupric oxide (CuO) are considered the dominant copper corrosion 

products (Feng et al. 1996; McNeill and Edwards 2004; Xiao et al. 2007; Kang et al. 

2008; Lytle and Nadagouda 2010). Further, there is a paucity of research regarding the 

impacts of these metal corrosion products on microbial growth, ecology, and potential 

selection for antibiotic resistance in DWDS.  

Formation of drinking water corrosion products is extremely heterogeneous and is 

strongly affected by water chemistry parameters, such as pH, dissolved inorganic carbon, 

dissolved oxygen, disinfectant type, natural organic matter, and use of corrosion 

inhibitors (Volk et al. 2000; Sarin et al. 2004; Xie et al. 2010b; Noel et al. 2014). For 

instance, PbO2 has been observed as a common lead corrosion product in various 

distribution systems that use free chlorine as the disinfectant, while lead(II) phosphates 

have been identified as the predominant corrosion products in systems using phosphate 

corrosion inhibitors (Lytle and Schock 2005; Kim and Herrera 2010). Furthermore, 

corrosion products in DWDS can exhibit significantly different morphological and 
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structural composition and be sinks for various inorganic contaminants such as As, Cd, 

Cr, manganese (Mn), nickel (Ni), and vanadium (V) (Schock et al. 2008; Peng and 

Korshin 2011; Gerke et al. 2016). For example, some common iron corrosion products, 

such as goethite, lepidocrocite and magnetite have strong affinities to adsorb and 

concentrate trace heavy metals present in drinking water (Sarin et al. 2001; Peng et al. 

2010). Consequently, the corrosion products and additional contaminants that accumulate 

from drinking water on biofilms and pipe surfaces may subsequently impact the 

distribution and abundance of ARB and ARGs present in drinking water systems.  

Similar to dissolved and particulate metals in aquatic environments, exposure of 

bacteria to corrosion products in DWDS may alter microbial communities and increase 

the potential for horizontal gene transfer of ARGs and MRGs. Previous studies have 

suggested that exposure of microbial populations to metal pipe materials and corrosion 

scales that accumulate in DWDS may eliminate some microorganisms while allowing 

metal-tolerant organisms to survive, which can potentially disseminate bacteria resistant 

to both metals and antibiotics in finished drinking water (Calomiris et al. 1984; Baker-

Austin et al. 2006). Furthermore, a previous study demonstrated that exposure to cuprous 

oxide resulted in bacteriostatic effects against gram positive bacteria (Bacillus subtilis, 

Staphylococcus aureus, Streptococcus faecalis) and gram negative bacteria including 

Pseudomonas aeruginosa and Enterobacter cloacae (Pang et al. 2009). Exposure of 

bacterial populations to copper corrosion products such as cuprous oxide and cupric 

oxide could increase selection for copper-related resistance genes and ARGs in 

organisms harboring resistance genes for both agents (Aruoja et al. 2009; Pang et al. 

2009; Hans et al. 2013; Poole 2017). For example, the presence of Cu2+ ions and CuO 
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nanoparticles (1-100 µmol/L) increased the conjugative transfer of ARGs across bacterial 

genera, increased cell membrane permeability, and caused the overproduction of ROS 

(Zhang et al. 2019b). Bacterial exposure to CuO nanoparticles at sub-inhibitory levels 

resulted in expression of stress response genes including dps, sodA, sodB, trxC, katE, and 

katG (Zhang et al. 2019b). Additionally, corrosion scales provide bacteria with organic 

matter and nutrients, consume residual disinfectant concentrations, provide increased 

surface area for bacterial adsorption, and provide iron oxides as potential electron 

acceptors that may increase bacterial activity (Appenzeller et al. 2002; Jang et al. 2012). 

Consequently, bacterial exposure to corrosion scales in DWDS containing copper and 

iron oxides may increase bacterial growth and selection for bacteria harboring ARGs and 

MRGs in finished drinking water.  

There has been limited research conducted regarding different corrosion products 

and their effects on the abundance of ARB, ARGs, or MRGs in biofilms and drinking 

water in DWDS.  Laboratory-scale studies are needed to understand the fundamental 

impacts of different corrosion products such as copper oxides and iron oxides on 

microbial communities and the antibiotic resistome. Full-scale studies are necessary to 

characterize the distribution of different corrosion products, resistance genes, and 

microbial communities in full-scale DWDS. Understanding the relationship of corrosion 

products and antibiotic resistance could provide critical information necessary to improve 

decisions regarding the selection of pipe materials for potable water systems.  
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2.5 Impact of Corrosion Inhibitors on Antibiotic Resistance 

Optimized corrosion control treatment (OCCT) is a specific requirement of the 

Lead and Copper Rule (LCR) introduced in 1991 by the US Environmental Protection 

Agency (US EPA) (Brown et al. 2013). Drinking water utilities have three options for 

corrosion control treatment including adjusting the pH and alkalinity of drinking water, 

developing Pb(IV) scale by maintaining free chlorine residuals throughout the 

distribution system, and using corrosion inhibitors such as orthophosphate or sodium 

silicates (Brown et al. 2013). Corrosion inhibitors commonly applied in drinking water 

systems include polyphosphates, orthophosphate, zinc orthophosphate, and sodium 

silicates (Edwards and McNeill 2002; Schock et al. 2005a; Cartier et al. 2012). Recent 

studies have cited the potential for phosphate-containing corrosion inhibitors to serve as a 

nutrient source for bacterial growth, which has raised concerns in some U.S. drinking 

water utilities (Edwards and McNeill 2002; Fang et al. 2009). Therefore, it is important to 

gain a better understanding of the impacts of different corrosion inhibitors on microbial 

ecology and the abundance of ARGs and MRGs in full-scale DWDS.  

A national survey of water utilities revealed that over 50% of utilities used 

phosphate inhibitors, and zinc orthophosphates were the most common phosphates 

applied (McNeill and Edwards 2002) with over half of utilities reporting doses between 

0.7 – 2 mg/L as phosphate (McNeill and Edwards 2002). Bacteria typically require a ratio 

for C:N:P of approximately 100:10:1, and many DWDS are P deficient (LeChevallier et 

al. 2011; Brown et al. 2013). Research regarding the effects of phosphate addition on 

drinking water microbial communities has yielded mixed results. Several studies have 
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reported increased bacterial growth in drinking water systems with phosphate exposure 

levels ranging from 0.001 to 0.03 mg/L P (Lehtola et al. 2002; Chu et al. 2005; Fang et 

al. 2009; Payne et al. 2016). Phosphorus addition to drinking water can promote biofilm 

cell growth, decrease EPS production, and induce biofilms with increased thickness and 

biomass (Fang et al. 2009). By stimulating microbial growth in drinking water biofilms, 

phosphorus addition may also lead to increased abundance of ARB and ARGs. 

Polyphosphate addition to drinking water may impact biofilm growth resulting in softer, 

thicker biofilms that are more prone to detachment (Shen et al. 2018). Further, the 

addition of polyphosphate can supply nutrients to bacteria for biofilm development, play 

an important role in bacteria metabolic regulation, and increase bacterial resistance to 

environmental stress (Rao and Kornberg 1996; Gangaiah et al. 2009). Zinc 

orthophosphate addition has been shown to increase microbial community diversity in 

drinking water biofilms (Payne et al. 2016). Another study reported that phosphate 

addition did not increase total biomass in biofilm communities, but did cause shifts in 

microbial community composition (Batté et al. 2003). Similarly, Jang et al. observed 

increased community richness and diversity in biofilms that developed on stainless steel 

and ductile cast-iron coupons with phosphate addition compared to controls without 

phosphate addition (Jang et al. 2012). The use of zinc orthophosphate for corrosion 

control may also result in the selection of resistant microorganisms in DWDS due to the 

potential for zinc to select for ARGs and MRGs (Peltier et al. 2010; Kappell et al. 2019). 

As a result, the use of orthophosphate and zinc orthophosphate as corrosion inhibitors 

influences microbial ecology and may also impact the abundance and distribution of 

resistance genes in DWDS. However, limited research has been conducted regarding the 
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effects of different corrosion inhibitor treatments on the presence of ARB, ARGs, and 

MRGs in full-scale DWDS.  

 Sodium silicates are an alternative to phosphate-based corrosion inhibitors and 

have been reported to be an effective strategy for lead control in some systems since the 

1920s (Butler and Ison 1966; Schock et al. 2005a; Lintereur et al. 2010). Similar to 

polyphosphates, the molecular composition of sodium silicates are indeterminate, with 

the chemical formula (Na2O: n(SiO2), where n is a variable ratio (Crittenden et al. 2012). 

Typical dosages of silicates range from 4 to 30 mg/L as SiO2, and higher doses are 

required for drinking water with higher hardness, higher chlorides, and/or higher 

dissolved solids (Lane et al. 1977). Silicates and phosphates act as anodic inhibitors when 

used at low doses for corrosion control treatment of drinking water, which reduces 

corrosion by forming a protective layer of oxide film on pipe surfaces. The Illinois State 

Water Survey conducted extensive testing with corrosion inhibitors and recommended 

that silicates were the best option for corrosion inhibition in galvanized steel and copper-

based piping commonly used in domestic hot-water systems (Lane et al. 1977). The use 

of sodium silicates may have advantages over phosphate-based treatments due to the lack 

of phosphorus and zinc, which could potentially limit microbial growth and levels of 

ARGs in finished drinking water. A previous study observed decreased average bacterial 

growth (e.g., lower ATP concentrations) in biofilms subjected to sodium silicate 

treatment compared to phosphate-containing corrosion inhibitors, but the differences 

were not statistically significant (Kogo et al. 2017a). Additionally, Rompré et al. (2000) 

compared heterotrophic plate counts (HPC) between sodium silicate and phosphate 

treatments in a study conducted with laboratory-scale annular reactors and in a confined 
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section of a full-scale DWDS, but reported no significant differences between corrosion 

control treatments (Rompré et al. 2000). This study also concluded that surface material 

(unlined grey iron vs. polycarbonate) was a larger factor influencing biofilm development 

in DWDS pipes compared to corrosion inhibitor type. Despite previous analysis of 

corrosion inhibitors in DWDS, the impact of corrosion inhibitor type on the abundance of 

ARB, ARGs, and MRGs has yet to be elucidated in full-scale systems. Laboratory-scale 

and full-scale studies investigating the impacts of corrosion inhibitors and their impacts 

on the development of corrosion products and microbial communities are needed to better 

understand mechanisms of antibiotic resistance selection in DWDS.  

Little information exists regarding the impacts of sodium silicates on microbial 

ecology and the proliferation of antibiotic resistance in full-scale drinking water systems. 

A previous study investigated the effects of sodium silicate addition on cucumber 

seedling growth and resistance to the soil-borne pathogen Fusarium oxysporum f.sp. 

cucumerinum Owen (Zhou et al. 2018). The study reported changes in bacterial and 

fungal community structure in response to two mM sodium silicate addition in addition to 

decreased abundance of microbial taxa containing pathogens (Zhou et al. 2018). 

Consequently, the addition of sodium silicates to drinking water for corrosion control 

may also impact bacterial community composition but has yet to be investigated. In order 

to mitigate public health impacts related to corrosion of drinking water infrastructure, 

future studies should consider the impacts of different corrosion inhibitor regimes on 

microbial ecology and the abundance of ARGs and MRGs in drinking water systems.  



34 

 

 

2.6 Conclusions and Research Gaps 

Several studies have documented the presence, though not necessarily the 

quantity, of ARB and ARGs in drinking water environments. Factors such as metal pipe 

materials, corrosion inhibitors, and corrosion products that develop in full-scale DWDS 

may select for bacteria harboring resistance to both metals and antibiotics. There is a lack 

of information regarding the abundance and fate of ARB, ARGs, MRGs, and MGEs in 

different phases of DWDS including planktonic, biofilm, suspended solids, and loose 

corrosion deposits. Previous research has demonstrated that water quality deterioration in 

DWDS can result in increased levels of ARB and ARGs in consumer tap water, which 

poses a risk to human health.  

There is a specific need for information regarding presence and distribution of AR 

in DWDS and research should prioritize monitoring the occurrence, fate, and distribution 

of ARB, ARGs, MRGs, and MGEs in multiple phases in full-scale systems. This 

information is critical for gaining a better understanding of the prevalence of antibiotic 

resistance in engineered systems capable of directly impacting human health. Previous 

characterization of DWDS has primarily focused on microorganisms in the planktonic 

phase and studies documenting and quantifying ARB, ARGs, or MRGs in drinking water 

biofilms are lacking. Drinking water biofilms have been cited as important reservoirs for 

opportunistic pathogens and horizontal gene transfer of ARGs (Wingender and Flemming 

2011; Balcázar et al. 2015), however, the dominant pathways of antibiotic resistance 

selection in drinking water are not well documented. In addition to full-scale studies, 

laboratory-scale studies are needed to distinguish the impacts of different pipe materials, 
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corrosion inhibitors, and corrosion products on the abundance of resistance genes in 

drinking water and biofilms. These studies will provide critical information regarding the 

relationship of different system parameters and mechanisms of antibiotic resistance 

selection in engineered systems. Locations with high densities of bacteria, such as 

drinking water biofilms, provide conditions which are suitable for proliferation and 

exchange of resistance genes, and selective pressures (e.g., metals) may increase the 

abundance of resistance genes in these communities. Additional research is needed to 

address the research gaps related to the fate and transport of clinically-relevant resistance 

genes in DWDS.  

Fundamental information regarding the impacts of pipe materials, metals, and 

corrosion inhibitors on pathogens and abundance of resistance genes in DWDS is 

necessary to reduce the prevalence of antibiotic resistance in drinking water. Different 

pipe materials used in full-scale DWDS may influence the composition of microbial 

communities and associated resistance genes that can subsequently be transferred to 

humans through dermal contact, consumption of contaminated drinking water, or 

inhalation of aerosols during bathing (Falkinham 2009; Garner et al. 2018b). Further 

research including quantitative microbial risk assessments (QMRA) are needed to 

determine the concentration of ARB or ARGs that may translate to human health risks 

(Ashbolt et al. 2013b). Research that links ARGs to hosts and distinguishes extracellular 

DNA from intracellular DNA is also needed (Rice et al. 2020). Further, limited 

availability of exposure assessments and dose-response data regarding ARB and ARGs 

for different scenarios hinder the implementation of QMRA approach for evaluating 

human health risks in aquatic environments (Amarasiri et al. 2019). 
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The selection of target genes is also important for improving routine monitoring 

of ARGs, MRGs, and MGEs in full-scale distribution systems. Future research and 

microbial surveillance efforts should consider monitoring clinically-relevant ARGs and 

other genes commonly linked to horizontal gene transfer processes including beta-lactam 

resistance genes, intI1 and sul1 (WHO 2014; Gillings et al. 2015; Ma et al. 2017a). The 

prevalence of dissolved, particulate, and solid phase metals in DWDS warrants further 

investigation regarding their potential for selection of resistance genes in drinking water 

biofilms. Additionally, the collection of samples from multiple locations (biofilm/pipe 

surfaces, corrosion tubercles, under tubercles) within the same distribution system or 

even the same pipe would increase knowledge regarding impacts of biogeographical 

heterogeneity in drinking water biofilms on antibiotic resistance (Liu et al. 2014; Gomez-

Smith et al. 2015; Neu et al. 2019; Cruz et al. 2020). Laboratory and full-scale studies 

regarding pipe materials, corrosion inhibitors, and corrosion products are important for 

gaining insights into microbial functions and could be used to provide guidance to water 

utilities for making engineering decisions in DWDS that could reduce human health 

risks.  

In this dissertation research, the impact of metals and corrosion inhibitors on 

antibiotic resistance was investigated. Specifically, the three research objectives 

addressed were: 

1) Determine the abundance and types of ARGs, MRGs, and microbial 

communities in a full-scale drinking water main. The primary goal of this objective was 

to determine the types and quantities of resistance genes and bacteria in biofilms inside of 

a full-scale water main. The impact of sample location and sample type was evaluated to 
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determine the variability of antibiotic and metal resistance indicator genes, as well as 

bacterial communities, within a single drinking water pipe. This type of information adds 

to the basic scientific literature and knowledge in understanding the abundance and 

distribution of bacterial communities, ARGs, and MRGs in DWDS. Surveillance of 

resistance genes in engineered systems such as DWDS is critical for protecting public 

health and providing data which can be used for future risk assessments for urban water 

systems. These experimental results are presented in Chapter 3. 

2) Evaluation of the impact of corrosion inhibitors on antibiotic and metal 

resistance in a source drinking water. The specific goals for this objective were to 

develop an understanding of the impact of corrosion inhibitor type and concentration on 

the abundance of target resistance genes conferring resistance to antibiotics and metals.  

First, the impact of different types of corrosion inhibitors on antibiotic resistance was 

assessed. Second, the impact of increasing concentration of each type of corrosion 

inhibitor was evaluated. Understanding the impact of chemicals added to drinking water 

for corrosion control and prevention is critical for preserving drinking water 

infrastructure and protecting public health. These experimental results are presented in 

Chapter 4. 

3) Determine the impact of corrosion inhibitor and disinfectant type on the 

antibiotic resistome in a source drinking water. This research objective aimed to assess 

the impact of corrosion inhibitor type on the antibiotic resistome in a source drinking 

water using shotgun metagenomic sequencing. The impact of different corrosion 

inhibitors on the resistome was evaluated by analyzing the changes in abundance of ARB 

and resistance genes in bacterial communities. Both targeted (e.g., qPCR) and non-
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targeted (e.g., metagenomic sequencing) molecular methods of analysis are critical for 

providing information on the occurrence and abundance of AMR in drinking water and 

freshwater microbial communities. Research regarding the impact of corrosion inhibitors 

and disinfectants on the antibiotic resistome will assist in developing a better 

understanding of how engineering decisions impact the drinking water microbiome and 

prevalence of antibiotic resistance in engineered systems and the natural environment. 

These experimental results are presented in Chapter 5.
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3 CAST IRON DRINKING WATER PIPE BIOFILMS SUPPORT DIVERSE 

MICROBIAL COMMUNITIES CONTAINING ANTIBIOTIC RESISTANCE 

GENES, METAL RESISTANCE GENES, AND CLASS 1 INTEGRONS 
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3.1 Introduction 

Antibiotic resistance is a major public health concern stemming from the microbial 

response to the widespread occurrence of antibiotics and other physiological stressors in 

the environment (Levy 2001; Pruden et al. 2006). Approximately 2.8 million people are 

diagnosed with infections caused by antibiotic-resistant bacteria (ARB), and over 35,000 

deaths are attributed to antibiotic resistance annually in the U.S. alone (CDC 2019). 

Antibiotic resistance genes (ARGs) on mobile genetic elements can be acquired by 

pathogens in the human gut (Beaber et al. 2004; Salyers et al. 2004; Kohanski et al. 

2007), creating risks for vulnerable populations that are exposed to ARGs (Bor and 

Epstein 1991). ARGs have been detected in various water environments including 

groundwater (Zhang et al. 2009a), surface water (Pruden et al. 2006; Kappell et al. 

2015a), drinking water treatment plants (Xi et al. 2009; Xu et al. 2016), and tap drinking 
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water (Bergeron et al. 2015; Su et al. 2018; Garner et al. 2019) at concentrations up to 

1010 copies/L (Xu et al. 2016). Consequently, it is becoming increasingly important to 

quantify ARGs in exposure routes that directly convey ARGs to people, including 

drinking water distribution systems (DWDS) (Anaissie et al. 2002; WHO 2014; Pruden et 

al. 2018).  

ARGs in tap water have been shown to increase from the drinking water treatment 

plant effluent to the tap (Xi et al. 2009). While residual disinfectants can select for 

antibiotic resistance (Jia et al. 2015; Zhang et al. 2017a), the actual infrastructure of 

DWDS, i.e. the pipe materials used, could also be an important factor that impacts 

microbial ecology and consequently ARG profiles (Proctor et al. 2016; Aggarwal et al. 

2018; Cruz et al. 2020; Douterelo et al. 2020; Kimbell et al. 2020). DWDS are comprised 

of a variety of metallic pipe materials (e.g., copper, iron, and lead) and additional metals 

in treated drinking water can accumulate in biofilms and corrosion scales (Lytle et al. 

2004; Schock et al. 2008; Peng and Korshin 2011; Peng et al. 2012). Metals select for 

antibiotic resistance through co-resistance and cross-resistance mechanisms (Baker-

Austin et al. 2006; Zhang et al. 2018b). Additionally, microorganisms have evolved 

detoxification strategies, such as metal resistance genes (MRGs) and efflux pumps, to 

mitigate the toxic effects of metals (Pal et al. 2017; Poole 2017). Exposing bacteria to 

metals in DWDS may promote the survival of bacteria resistant to metals and antibiotics 

(Calomiris et al. 1984; Baker-Austin et al. 2006). While studies have documented the 

occurrence of ARGs in tap drinking water and in biofilms (Garner et al. 2018a; Hao et al. 

2019), to the best of our knowledge, no research efforts have quantified ARGs, MRGs, 

and mobile genetic elements from different biofilm sample locations (e.g., surface 
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biofilms, tubercles, under tubercles) in a single pipe to understand if drinking water pipes 

can serve as sources of ARGs.  

The objective of this research was to determine if ARGs, MRGs, and class 1 

integrons (intI1) were quantifiable across multiple sample types in a chloraminated cast 

iron water main and to determine if microbial taxa were correlated to resistance gene 

concentrations. It was hypothesized that ARGs, MRGs, and intI1 would be detected 

regardless of sample type and location. The abundance of bacterial biomass (measured by 

16S rRNA gene copies), ARGs, MRGs, and the integrase gene of the class 1 integron, 

intI1, were quantified in samples collected from different microenvironments using 

droplet digital PCR (ddPCR) and quantitative PCR (qPCR). Microbial communities were 

analyzed using PCR-amplified 16S rRNA gene sequences from each pipe sample (n=24). 

This is the first research to determine if various types of biofilm samples from a single 

full-scale DWDS pipe can serve as potential sources for ARGs.  

3.2 Materials and Methods 

3.2.1 Pipe collection, sampling, and DNA extraction 

A six ft section of cast-iron water main (18” ID, 105 years in operation) that 

transported chloraminated water was extracted, covered with sterile plastic sheeting, and 

immediately transported to the laboratory for sampling and analysis. The water main was 

collected as part of planned maintenance to replace old water mains throughout the 

distribution system. Pipe samples were collected from i) a visible biofilm surface, 

referred to as “biomass surface” (n=6), ii) a pipe surface that did not have biofilm visible 
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to the naked eye, referred to as “pipe surface” (n=6), iii) from three-dimensional 

corrosion tubercles that could be removed, referred to as “corrosion tubercles” (n=6), and 

iv) from the pipe surface on the location where the tubercle was removed, referred to as 

“under corrosion tubercles” (n=6) (see Figure 3A in Appendix 3A). Broadly speaking, all 

samples were microbial biofilms, not bulk water samples, and they were subcategorized 

into the four categories listed for comparison and statistical analysis. Biofilm swab 

samples were collected by firmly pressing a sterile cotton-tipped applicator (Fisher 

Scientific, Waltham, MA) on the biofilm surface and swabbing an area of approximately 

2-5 cm2. For each of the microenvironment types sampled, top (n=3) and bottom (n=3) 

samples of the cast iron water main were collected. Each swab was transferred directly to 

a sterile DNA extraction lysing tube and the stem was snapped and severed to preserve 

only the sample end of the swab (Garner et al. 2018b). Tubercle samples were collected 

into plastic tubes using a flame sterilized spatula, and approximately 0.2 g of corrosion 

tubercle was sub-sampled for DNA extraction. Samples were immediately frozen at -

20°C until DNA extraction was performed. DNA was extracted using the FastDNA Spin 

Kit (MP Biomedicals, Solon, OH). The manufacturer’s protocol was followed with the 

exception that initial cell lysis was conducted using liquid nitrogen freeze thaw cycling 

(3x) (Li et al. 2012; Kappell et al. 2018a; Kimbell et al. 2018; Harrison et al. 2020). DNA 

concentrations in resulting extracts were quantified by microspectrophotometry using a 

Nano-Drop (Nano-Drop™ Lite, Thermo Scientific, Waltham, MA) and stored at -20°C.  
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3.2.2 Quantification of Resistance Genes 

Droplet digital PCR (ddPCR) assays were conducted to quantify gene copies. A 

subset of samples was initially analyzed at 5, 10, 50, and 100-fold dilutions to test for 

inhibition during gene quantification. Based on these results, a 10-fold dilution was 

selected to minimize inhibition for all samples. Reaction mixtures consisted of a total 

volume of 22 µL with 11 µL of QX200 ddPCR EvaGreen Supermix (final concentration 

1x) (Bio-Rad Laboratories Inc., Hercules, CA), 2 µL each of forward and reverse primers 

(final concentration 250 nM each), 4 µL of diluted DNA extract, and 3 µL molecular 

grade water. The ddPCR reaction mixture was added to a 96-well plate, sealed with foil, 

homogenized by vortexing, and centrifuged briefly to ensure that all reaction components 

were at the bottom of the wells. The 96-well plate was equilibrated at room temperature 

for 3 minutes prior to droplet generation. Aliquots of 20 µL for each reaction were 

dispensed into a separate well of an eight-channel droplet generator cartridge (DG8 

Cartridge, Bio-Rad) followed by 70 µL of QX200 Droplet Generation Oil for EvaGreen 

into the oil wells for subsequent droplet generation using the QX100 Droplet Generator. 

Oil-droplet mixtures were transferred to a 96-well plate and sealed at 180°C using the 

PX1 PCR Plate Sealer. The 96-well plate was transferred to the C1000 Touch Thermal 

Cycler for PCR thermal cycling with the following conditions: 5 min at 95°C for 

activation of DNA polymerase, 39 cycles of 95°C for 30 s and 60°C for 60 s, followed by 

signal stabilization at 4°C for 5 min and 90°C for 5 min. Thermal cycling conditions were 

modified for genes with annealing temperatures different from 60°C (see Table 3.1 in 



44 

 

 

Appendix 3B). After thermal cycling, plates were transferred to the QX200 Droplet 

Reader for absolute quantification of target genes.  

Data analysis was performed using the QuantaSoft Analysis Pro software and 

expressed as gene copies µL-1 (V 1.0.596, Bio-Rad). Positive controls were included with 

each ddPCR assay and were produced by ten-fold serial dilution of plasmid DNA 

yielding 104 to 100 copies per reaction. No-template (i.e., reagent only) controls were 

included with each ddPCR assay. All ddPCR negative controls failed to yield 

amplification above the limit of quantification for each assay. Thresholds to discriminate 

between positive and negative droplets were manually applied to each sample and only 

samples with ≥ 3 positive droplets were considered as positive (Di Cesare et al. 2018). 

Furthermore, only reactions with greater than 10,000 accepted droplets were used for 

subsequent analysis (Di Cesare et al. 2018). The limit of the detection (LOD) and limit of 

quantification (LOQ) for each tested gene were determined according to the MIQE 

guidelines (Bustin et al. 2009; Huggett et al. 2013). Additional MIQE guidelines were 

followed and are shown in Table 3.2 in Appendix 3C. DNA extract from each sample 

was analyzed in triplicate for each target gene, and the average value from analyzing each 

DNA sample three times was used for each sample for further analysis.  

Target gene copies were also quantified in triplicate from DNA extracts using 

qPCR with previously published protocols for the 16S rRNA gene (Muyzer et al. 1993), 

ARGs (blaSHV (Xi et al. 2009), blaTEM (Marti et al. 2013), sul1 (Burch et al. 2013), MRGs 

(czcD, copA) (Roosa et al. 2014), and the integrase gene of class 1 integrons (intI1) 

(Goldstein et al. 2001). A subset of biofilm samples was initially analyzed at 5, 10, 50, 

and 100-fold dilutions to determine the optimum dilution for gene quantification. A 10-
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fold dilution was found to yield optimum quantitation for DNA extracts and was utilized 

for all samples. Each qPCR assay consisted of a total reaction volume (20 µL) with 10 

µL PowerUp™ SYBR® Green Master Mix, 2 µL each of forward and reverse primers 

(10 µM), 5 µL of diluted DNA extract, and 1 µL molecular-grade water.  

Following each qPCR assay, melt curves were generated and analyzed to verify 

specific target amplification based on positive controls. Gene concentrations for each 

sample were quantified in triplicate, and the mean value was used for subsequent 

statistical analysis. If only two of the three replicates yielded positive detections in the 

qPCR assay, then the mean value of the two positive replicates was used in subsequent 

analyses (Pruden et al. 2012b; Kimbell et al. 2018). Standard curves for qPCR assays 

were produced by ten-fold serial dilution of plasmid DNA yielding 106 to 100 copies per 

reaction. Standard curves and negative controls were conducted in triplicate and were 

included with each 96-well plate. All qPCR negative controls failed to yield amplification 

above the limit of quantification for each assay. Copy numbers of target genes were log10 

transformed to meet the assumptions of normality for statistical analysis (Burch et al. 

2013). Relative abundance of each target gene was normalized to 16S rRNA gene copies 

for statistical analysis. All qPCR assays were conducted on a Roche LightCycler® 96 

(Roche Molecular Diagnostics, Pleasanton, CA) at the Marquette University Water 

Quality Center in Milwaukee, WI.  

Additional information on specific primer sets, amplicon sizes, annealing 

temperatures, R2 values, efficiencies, and quantification limits are described in the 

Appendix Table 3.1 in Appendix 3B. β-lactam resistance genes such as blaTEM and blaSHV 

are grouped in the most common types of β-lactamases belonging to Enterobacteriaceae 
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and encode resistance to β-lactam antibiotics such as penicillins and cephalosporins 

(Bush and Jacoby 2010). Sulfonamide resistance gene (sul1) and the integrase gene of 

class 1 integrons (intI1) are frequently detected in various natural and engineered 

environments and are considered a good proxy for ARG abundance and anthropogenic 

pollution (Pruden et al. 2012a; Gillings et al. 2015). MRGs quantified in biofilm samples 

from the cast iron water main included the copper resistance gene copA and czcD, which 

is a part of the cation diffusion facilitator mediating resistance to cadmium, zinc, and 

cobalt (Outten et al. 2001; Kloosterman et al. 2007). These genes were selected based on 

their abundance in an initial qPCR assay conducted with over 20 different MRGs 

including genes encoding resistance to metals such as arsenic, copper, iron, lead, and 

zinc.  

3.2.3 PCR and Illumina Sequencing of 16S rRNA gene amplicons 

Microbial communities from biofilm samples were prepared for analysis by 

triplicate PCR-amplifying and pooling V4 hypervariable regions of 16S rRNA genes 

(Caporaso et al. 2012). One extraction blank and mock community (#HM-782D, BEI 

Resources) were included in the sample set. PCR amplicons were sequenced with 

Illumina MiSeq 2x250 paired-end chemistry at the Great Lakes Genomic Center 

(http://greatlakesgenomics.uwm.edu). Primer and barcode sequences were removed from 

reads using cutadapt (Martin 2011). Reads were processed, including filtered, merged, 

error-corrected, and chimera-checked, into amplicon sequence variants (ASVs) using the 

R package DADA2 (Callahan et al. 2016). Taxonomy was assigned using DADA2 from 

the SILVA v. 132 reference database (Quast et al. 2013). ASVs that were classified as 
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mitochondria, chloroplast, or eukaryota were removed. Additional thresholds were set to 

identify and remove ASVs potentially derived from the mock community, 

extraction/PCR blank, and non-target samples that were included in the sequencing run. 

Raw sequences have been uploaded to NCBI under BioProject ID PRJNA692495. 

To prepare biofilm microbial communities for DNA sequence analysis, the V4 

hypervariable region of 16S rRNA genes was PCR-amplified from purified DNA using 

primers 515F/806R with Nextera adapters (Illumina, Inc., San Diego, CA) (Caporaso et 

al. 2012; Garner et al. 2019). One extraction blank and mock community (#HM-782D, 

BEI Resources) were included in the sample set. Reactions (25 µL total volume) were set 

up as follows: 12.5 µL KAPA HiFi HotStart ReadyMix (Roche Sequencing, Pleasanton, 

CA), 5 µM 515F primer, 5 µM 806R primer, 7.5 µL HyClone DNA-free water, and 2 µL 

diluted DNA extract. PCR thermal cycling conditions were as follows: 5 min at 95°C, 40 

cycles of 95°C for 30 s, 50°C for 30 s, and 72°C for 90 s, followed by 5 min at 72°C. 

PCR products were initially screened by electrophoresis on 1.5% agarose gels. Triplicate 

PCR products were pooled in ~75 µL samples, with amplicons less than 100 bp removed 

using 56 μL Agencourt AMPure XP beads in each (Beckman Coulter, Brea, CA). Final 

products were resuspended in 40 μL 10 mM Tris-EDTA. Sample library preparation was 

prepared according to the Illumina MiSeq protocol in the Nextera XT Index kit (Illumina, 

Inc., San Diego, CA) using 2X KAPA HiFi HotStart ReadyMix (Roche, Basel, 

Switzerland). Indexed [LL1] [LL1] PCR amplicons were cleaned with AMPure XP beads 

and the SequalPrep Normalization kit (Thermo Fisher Scientific, Waltham, MA). 

Sequencing was conducted on the Illumina MiSeq platform using a 2x250-cycle paired-

x-webdoc://AF1FF20D-A376-4F09-A931-863E781E61D1/#_msocom_1
x-webdoc://AF1FF20D-A376-4F09-A931-863E781E61D1/#_msocom_1
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end protocol at the University of Wisconsin-Milwaukee Great Lakes Genomics Center in 

Milwaukee, WI (http://greatlakesgenomics.uwm.edu). 

Primer and barcode sequences were removed from reads using cutadapt (Martin, 

2011). Processing of sequence reads was conducted using the open statistical program 

‘R’ utilizing the ‘DADA2’ package, which is a model-based approach for correcting 

amplicon errors without sequence similarity clustering to construct amplicon sequence 

variants (ASVs).(Rosen et al. 2012) Based on quality profiles, the last 20 base pairs of 

forward and reverse reads were removed. Two maximum expected errors were permitted. 

Any reads with ambiguous bases (N) were removed and reads with quality scores lower 

than 10 were removed. Chimeric reads were checked using the “consensus” method and 

removed. Taxonomic classification for the resulting ASVs was assigned using the SILVA 

v132 reference database.(Quast et al. 2013). 

ASVs that were classified as mitochondria, chloroplast, or eukaryota were 

removed. Additional thresholds were set to identify and remove ASVs potentially derived 

from the mock community, extraction/PCR blank, and non-target samples that were 

included in the sequencing run: 1) any ASVs that were exact matches to those in the 

mock community were removed; 2) any ASVs that were three times more abundant in the 

blank sample (negative control) than across the dataset were removed; 3) any ASVs that 

were ten times more abundant in the non-target dataset than the drinking water pipe 

biofilm samples were removed.  

Code for these analyses can be found on GitHub: 

https://github.com/NewtonLabUWM/DrinkingWaterPipe_Ecology. 

https://github.com/NewtonLabUWM/DrinkingWaterPipe_Ecology
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3.2.4 Corrosion Tubercle Characterization  

X-ray diffraction (XRD) analysis was conducted on corrosion tubercles that were 

sampled from the cast iron water main (n=6) to identify the dominant crystalline phases.  

XRD was performed on a Bruker D8 Discover A25 diffractometer using copper Kα 

radiation with step scanning from 2θ of 15 – 70º. The scan speed and step size were 3º 

per min and 0.02º, respectively.  XRD patterns of each corrosion tubercle were compared 

to standard patterns from International Centre for Diffraction Data (ICDD).  

The inorganic elemental composition of corrosion tubercles was determined using 

inductively coupled plasma mass spectrometry (ICP-MS) (Kappell et al. 2019). 

Approximately 0.1 g of each corrosion tubercle was subsampled for elemental analysis. 

Each tubercle sample was homogenized using a sterile mortar and pestle prior to acid 

digestion with nitric acid (2%) and hydrochloric acid (1%) (American Public Health 

Association (APHA) 1975). An Agilent Technologies 7700 Series ICP-MS (Agilent 

Technologies Inc., Santa Clara, CA) was used for elemental composition determination. 

Standard reference materials for elements including Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, 

Cu, Fe, Hg, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Th, Tl, U, V, and Zn were purchased from 

Agilent Technologies.  

3.2.5 Statistical analysis 

Statistical analyses were conducted using RStudio in the open-sourced statistical 

program R (V 3.6.1) (Racine 2012; R Core Team 2018). One-way analysis of variance 

(ANOVA) was conducted using the ‘aov’ function to determine statistical differences 

between abundances of target genes across groups of samples. A significant cutoff of α = 
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0.05 was used for all analyses. For sequence analysis, the BIOM file generated via 

DADA2 was imported into R using the phyloseq package (McMurdie and Holmes 2013). 

R packages ‘phyloseq’ and ‘ggplot2’ were utilized for general visualization of sequence 

data. Alpha and beta diversity metrics and plots were generated using the ‘vegan’ and 

‘ggplot2’ packages. ANOVA was used to determine significance among the alpha 

diversity metrics. Principal coordinate analysis (PCoA) was performed using the ‘ape’ 

package to visualize differences between samples using the Bray-Curtis dissimilarity 

matrix generated in ‘phyloseq’. Canonical correspondence analysis (CCA) was conducted 

in R using the vegan package to identify correlations between the bacterial community 

structure and biofilm sample location. Spearman’s rank sum correlation coefficients were 

calculated in R to assess correlations between ARGs, MRGs, abundant taxa, and biofilm 

sample location. Indicator taxa were identified for each sample location using the multi-

level pattern (indicator species) analysis in the package ‘indicspecies’ (Dufrêne and 

Legendre 1997). Rarefaction curves were generated using the ‘ggrare’ function from the 

phyloseq-extended package of scripts (Mariadassou 2017).  

3.3 Results and Discussion 

3.3.1 Physical Characterization of Corrosion Tubercles 

XRD analysis indicated that the mineral phases present in the interior surfaces of 

the cast iron pipe primarily consisted of goethite (α-FeOOH) and lepidocrocite (γ-

FeOOH) (Figure 3.1). Goethite has been widely found as a main corrosion product in 

cast iron pipes (Wang et al. 2012a; Chen et al. 2013; Wang et al. 2014b; Zhu et al. 2014; 
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Wang et al. 2015; Wang et al. 2018) and several previous studies also reported the 

observation of lepidocrocite in iron pipes from full-scale DWDS (Sarin et al. 2001; Yang 

et al. 2012). The inorganic elemental composition of corrosion tubercles was 

characterized by ICP-MS. Iron was the dominant element in corrosion tubercles, 

representing approximately 98.6% of the measured mass. Other elements detected in 

quantities ranging from 0.1% to 1.0% in the tubercles included Ca (0.64%), Al (0.38%), 

Mg (0.12%), and Mn (0.10%). Elements detected below 0.1% included Na, K, Co, Cu, 

Pb, Zn, V, As, Se, Mo, Ag, Cd, Hg, Ni, and Be. Metals present in corrosion scales and 

tubercles in the cast iron water main may have originated from the pipe material itself, 

especially Fe, but other trace elements were likely deposited over time from the bulk 

drinking water.  
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Figure 3.1 X-Ray Diffraction (XRD) patterns of biofilm tubercle samples (n = 6) 

collected from the chloraminated cast-iron water main. The reference XRD patterns for 

goethite (JCPDS 29-0713) and lepidocrocite (JCPDS 08-0098) are also shown for comparison. 

 

3.3.2 Quantification of Bacterial Biomass 

16S rRNA genes were detected above quantification limits in all 24 samples from 

the cast iron water main (see Figure 3D in Appendix 3D). The mean concentration in 

corrosion tubercles was 4.4 × 107 16S rRNA gene copies/g tubercle. The mean 

concentration in biofilms collected under corrosion tubercles was 3.5 × 105 16S rRNA 

copies cm−2. While these mean values differed by over two orders of magnitude, the 

differences were not significantly different between sample types due to large variability 
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within each sample type (One-way ANOVA, p = 0.38). Previous studies have reported 

similar levels of 16S rRNA in biofilms from chloraminated water mains with averages 

ranging from 3.2 × 105 to 2.5 x 107 copies cm−2 (Gomez-Smith et al. 2015; Waak et al. 

2018; Waak et al. 2019a).   

3.3.3 Quantification of Resistance Genes in Pipe Samples 

3.3.3.1 Detection Frequency by ddPCR and qPCR 

The frequency of gene detects for every gene analyzed across the 24 samples 

using ddPCR was equal to or higher than that for qPCR (Table 3.1; Figure 3E in 

Appendix 3E). The presence of inhibiting substances such as metals or humic acids in 

the biofilm samples are known to impact amplification and primer annealing in qPCR 

assays (Cavé et al. 2016; Taylor et al. 2017). Previous studies also have demonstrated 

that ddPCR as compared to qPCR can have increased precision and accuracy for 

quantifying low concentrations of DNA in variably contaminated samples (Cavé et al. 

2016; Verhaegen et al. 2016; Taylor et al. 2017). Our findings in conjunction with 

previous studies suggest that ddPCR is favorable for detecting ARGs in DWDS, 

particularly because these samples often contain low concentrations of DNA and 

contaminants that may interfere with qPCR. Reporting limit of detection and limit of 

quantification will be key for comparing across studies, as these values can differ 

significantly among quantification methods.  
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Table 3.1 Summary of detections of ARGs, MRGs, and intI1 with ddPCR and qPCR.  

Gene 

Mechanism/ 

Mode of 
Action 

ddPCR 

detections 

ddPCR LOQ 

(CN µL-1) 

ddPCR LOQ 

(CN cm−2) 
qPCR 

detections 

qPCR LOQ 

(CN µL-1) 

qPCR LOQ 

(CN cm−2) 

16S 
rRNA 

 

 

 
NA 24 (100%) 

 

 

 
5 

 

 

 
5 x 103 24 (100%) 

 

 

 
500 

 

 

 
5 x 105 

blaSHV 

 

 
Beta lactam 

resistance 24 (100%) 

 

 
 

2 

 

 
 

2 x 103 20 (83%) 

 

 
 

50 

 

 
 

5 x 104 

blaTEM 

 
 

Beta lactam 

resistance 24 (100%) 

 
 

 

2 

 
 

 

2 x 103 24 (100%) 

 
 

 

5 

 
 

 

5 x 103 

copA 

 

 

Copper 
resistance 11 (45%) 

 

 

 
4 

 

 

 
4 x 103 3 (12.5%) 

 

 

 
5 

 

 

 
5 x 103 

czcD 

 

 
Cobalt, zinc, 

cadmium 
efflux 20 (83%) 

 

 
 

 
3 

 

 
 

 
3 x 103 19 (79%) 

 

 
 

 
5 

 

 
 

 
5 x 103 

intI1 

 

 
Integrase 

gene of class 

1 integrons 10 (42%) 

 

 
 

 

4 

 

 
 

 

4 x 103 8 (33%) 

 

 
 

 

5 

 

 
 

 

5 x 103 

sul1 

 

 

Enzymatic 
modification 17 (71%) 

 

 

3 

 

 

 
3 x 103 4 (17%) 

 

 

 
5 

 

 

 
5 x 103 

 
 

tet(L) 

  

 

 
Tetracycline 

efflux 

 
 

0 (0%) 

  

 

 
 

6 

 

 
 

6 x 103 0 (0%) 

  

 

 
 

50 

 

 
 

5 x 104 

Notes: CN – copy numbers, LOQ – limit of quantification, NA – not applicable.  

 

3.3.4 Abundance of Antibiotic Resistance Genes (ARGs) and intI1  

The ARGs blaSHV, blaTEM, and sul1, and intI1 were detected in biofilm samples 

from the chloraminated cast-iron drinking water main at concentrations up to nearly 6 log 

gene copies cm−2, with the highest mean value belonging to gene blaTEM at approximately 

4.8 log gene copies cm−2 (Figure 3.2). A previous study reported the mean absolute 

abundance of ARGs (blaTEM, sul1, qnrA, vanA) and intI1 in biofilms from undefined 
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pipe materials to range from <LOQ to 4.2 log copies swab−1
 (Garner et al. 2018a). Mean 

absolute abundances of ARGs and intI1 in different biofilm microenvironments varied by 

over one log unit, but the mean differences of the sample types were not significantly 

different from each other (One-way ANOVAs, p values > 0.05), indicating that sample 

type did not impact absolute gene abundances. Relative gene abundances (absolute 

normalized to 16S rRNA gene copies) demonstrated higher variability (>2-log units) 

between the different microenvironments sampled, but the mean relative abundance 

values were not significantly different based on sample type (One-way ANOVA, p > 

0.05) (see Figure 3F in Appendix 3F). The variability in relative abundance values for 

ARGs in the different microenvironments was primarily due to differences in levels of 

bacterial 16S rRNA genes between sample locations rather than changes in ARG 

abundance. Indeed, these results indicate that various pipe samples and thus pipe 

infrastructure can serve as sources of ARGs into tap drinking water. 

Absolute concentrations of ARGs remained relatively consistent in the different 

biofilm sample locations. ARGs were detected more frequently in surficial biofilm 

environments but demonstrated similar absolute abundance compared to sub-surface 

environments. One explanation could be that corrosion deposits and tubercles can provide 

relief from disinfectants, advective flow, and shear stress which allows additional biofilm 

development to occur (Lehtola et al. 2006). Observed relative abundance values for 

ARGs in the current study suggest that microbes in sub-surface communities may harbor 

ARGs at similar levels compared to surficial microbes. The presence of ARGs in each of 

the different biofilm sample locations suggests that potential selection for antibiotic 

resistance exerted by disinfectants, metals and other dissolved contaminants exists 
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throughout the cast iron biofilm communities inside the pipe. Additionally, the detection 

of ARGs and class 1 integrons in the biofilm communities suggests that horizontal gene 

transfer may be one plausible explanation for the proliferation of ARGs inside the cast 

iron biofilm communities due to the close proximity of microbial species within biofilms 

(Baker-Austin et al. 2006; Balcázar et al. 2015). Average and median chloramine 

concentrations inside the distribution system were 1.0 to 1.3 mg/L. Residual disinfectants 

such as chloramines present in DWDS at subinhibitory levels have been shown to 

stimulate horizontal gene transfer of ARGs through multiple pathways including reactive 

oxygen species response systems and the SOS response (Zhang et al. 2017a).  
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Figure 3.2 Absolute abundance of antibiotic resistance genes, metal resistance genes, and intI1 

in different biofilm microenvironments from a cast iron drinking water main as measured with 

ddPCR. The biofilm microenvironments include biomass surface (BS), pipe surface (PS), tubercle 

(TUB), and under tubercle (UT). Each biofilm sample is also categorized by top or bottom pipe 

sample location. Sample categories (e.g., Bottom UT, Top BS) are plotted when 1-3 of the 

samples yielded a quantifiable result. Sample categories with no positive detections were left 

blank. Each symbol represents the average of 3 ddPCR technical replicates from a single biofilm 

sample. All biofilm swab samples are plotted as log10 gene copies/cm2. Corrosion tubercle 

samples are plotted as log gene copies/g. The quantification limit (QL) is also plotted for each 

gene as the dash on the right side of the plot. 
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Beta-lactam resistance genes, blaSHV and blaTEM, were detected in all 24 biofilm 

samples ranging from 4.1 to 5.3 log gene copies cm−2. A previous study detected blaTEM 

in drinking water biofilms at lower absolute abundance (mean = 1.5 log gene copies 

swab-1) but with similar relative abundance (mean = -2.3 log ARG copies/16S rRNA 

copies) as in this study (Garner et al. 2018a). These results demonstrate that different 

microenvironments or niches in pipes can serve as reservoirs for bacteria harboring 

resistance genes, indicating that biofilms on DWDS pipes can serve as sources of ARGs 

when biofilms shed viable cells into tap drinking water (Balcázar et al. 2015). The 

sulfonamide resistance gene (sul1) and the integrase gene of class 1 integrons (intI1) are 

frequently detected in various natural and engineered environments and are considered 

potential indicators of horizontal gene transfer of ARGs (Pruden et al. 2012a; Gillings et 

al. 2015). The intI1 gene was detected in 10 biofilm samples at an average concentration 

of 4.5 log gene copies cm−2. The intI1 gene was detected at a higher frequency in biofilm 

surface samples (83%) and was not detected in tubercle samples. The frequency of sul1 

detections for biofilm surface, pipe surface, and under tubercle samples was 83%, 

compared to 33% for corrosion tubercles. Additional variation in ARG abundance was 

observed between samples collected from the top and bottom of the water main, but the 

differences were not statistically different (One-way ANOVA, p values > 0.05). The 

distance of biofilm sample collection inside the water main (12 in., 18 in., and 24 in.) also 

did not have a significant effect on ARG concentrations.   
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3.3.5 Abundance of Metal Resistance Genes (MRGs)  

MRGs quantified in biofilm samples from the cast iron water main included the 

copper resistance gene copA and czcD. The czcD gene was detected in 83% of biofilm 

samples at concentrations ranging from above LOQ to 4.6 log gene copies cm−2. The 

mean czcD absolute abundance in surficial samples (BS, PS) was not significantly 

different compared to sub-surface samples (TUB, UT) according to One-way ANOVA 

results (p>0.05). The czcD gene is part of the cation diffusion facilitator mediating 

resistance to cadmium, zinc, and cobalt (Outten et al. 2001; Kloosterman et al. 2007) and 

has previously been documented in source drinking water treated with the corrosion 

inhibitor zinc orthophosphate (Kappell et al. 2019). The copper resistance gene copA was 

detected above the LOQ in 45% of samples with ddPCR assays. The copA gene encodes 

an ATPase efflux pump that extrudes copper ions, making it one of the main mechanisms 

mediating copper resistance (Yin et al. 2017). The detection of czcD and copA may be 

related to the presence of copper, zinc, cadmium, and cobalt ions in the drinking water 

and corrosion deposits. Previous studies have demonstrated that exposure to sub-

inhibitory levels of Cu(II) and Zn(II) can contribute to horizontal gene transfer of ARGs 

(Zhang et al. 2018b). This is the first study to quantify clinically-relevant ARGs and 

MRGs in biofilm samples from a chloraminated cast iron water main collected from a 

full-scale distribution system.  
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3.3.6 Microbial Community Composition of Pipe Samples 

Corrosion tubercles, especially from the bottom of the water main, exhibited the 

most unique microbial community composition compared to the biomass surface, pipe 

surface, and under tubercle samples (Figure 3.3a). Biofilm microbial communities 

exhibited similar Shannon diversity (1.8 – 4.4) to previous observations of biofilm 

communities in cast iron drinking water mains (Gomez-Smith et al. 2015) (see Figure 

3G in Appendix 3G). A total of 469 microbial genera corresponding to 47 different 

phyla were identified in the biofilm microbial communities from the cast iron water main. 

The most abundant genera observed in the biofilm communities included Mycobacterium 

(0.2-70%), Geobacter (0-57%), Gallionella (0-40%), Phreatobacter (0-25%), 

Desulfovibrio (0-21%), Undibacterium (0-18%), Streptococcus (0-17%), and 

Sphingomonas (0-17%) (Figure 3.3b). Previous studies have also observed high 

abundance of Mycobacterium, Geobacter, Gallionella, Sphingomonas, and 

Undibacterium in corrosion deposits and biofilms in DWDS (Sun et al. 2014b; Wu et al. 

2014; Zhu et al. 2014; Waak et al. 2019b). Other abundant genera observed in the cast 

iron biofilm communities included Hydrogenophaga (0-15%), Rhodoferax (0-15%), 

Galbitalea (0-12%), Corynebacterium (0-11%), Ralstonia (0-8%), and Geothrix (0-6%).  
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Figure 3.3 (A) Principal coordinate analysis (PCoA) using Bray-Curtis dissimilarity of 

microbial communities in biofilm samples from the chloraminated cast-iron drinking water main 

(n = 24). Color of points denote sample type and are as described in Table on top right. Point 

labels refer to sample number in table. (B) Relative abundance of 11 most abundant taxa 

combined down to lowest classification. Samples on x-axis ordered along Axis 1 of PCoA. 

 

 

Biomass surface 
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Mycobacterium represented the most abundant genus in the current study with 22 

unique Mycobacterium ASVs detected in the biofilm communities. These ASVs 

comprised 32% of the total sequences in the biofilm samples and were detected in all 24 

biofilm samples. Mean relative abundance of Mycobacterium spp. was highest in under 

tubercle samples (43%) compared to other sample locations (25-32%), but the differences 

were not statistically significant (One-way ANOVA, p>0.05).  Although the mean values 

were not significantly different, relative abundance of Mycobacterium exhibited wide 

variability across individual samples, ranging from 0.2 to 70%. These findings are 

consistent with previous studies that have reported Mycobacterium as the dominant genus 

in drinking water biofilms from chloraminated cast iron water mains (Gomez-Smith et al. 

2015; Waak et al. 2019a; Waak et al. 2019b). Mycobacterium spp. are frequently detected 

in DWDS (Torvinen et al. 2004; Bautista-De los Santos et al. 2016; Sevillano et al. 2020) 

and have several characteristics that give them a competitive advantage in chloraminated 

DWDS including the ability to form biofilms, resistance to residual disinfectants (Lin et 

al. 2014), and the ability to survive in nutrient-deficient environments (Hall-Stoodley et 

al. 1999; Primm et al. 2004). The prevalence of Mycobacterium in full-scale DWDS is a 

potential concern because the genus contains several opportunistic pathogens (Primm et 

al. 2004; Brown-Elliott et al. 2011; Haig et al. 2018; Dowdell et al. 2019).   

The most abundant taxa were clustered into dendrograms using Bray-Curtis 

dissimilarity (Figure 3.4). Several corrosion-related bacterial genera including 

Sphingomonas, Desulfovibrio, Gallionella, Geobacter, Hydrogenophaga, and 

Rhodobacter were observed in the biofilm communities and have been previously 

documented in cast-iron pipe biofilms and corrosion scales (Li et al. 2010; Li et al. 2014; 
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Sun et al. 2014a; Wang et al. 2014b; Zhu et al. 2014; Gomez-Smith et al. 2015). Bacteria 

inhabiting distribution systems primarily perform functions related to carbon source 

utilization and nitrification, as well as microbial induced corrosion processes (Berry et al. 

2006). Corrosion tubercles contained increased abundance of microorganisms related to 

microbial induced corrosion and redox cycling processes in cast iron pipes including 

genera such as Gallionella, Geobacter, Geothrix, and Undibacterium (Wang et al. 2014b; 

Zhu et al. 2014; Gomez-Smith et al. 2015). Previous studies have demonstrated that the 

abundance of microorganisms in DWDS may be impacted by the presence of corrosion 

tubercles, suspended solids, and other loose corrosion deposits (Liu et al. 2014; Liu et al. 

2018). Additionally, the bottom of water mains can accumulate higher densities of 

bacteria and corrosion deposits, which may also support increased abundance of 

nitrifying bacteria (Liu et al. 2020). Similarly, the biofilm samples from the bottom of the 

cast iron water main displayed increased relative abundance of bacterial genera related to 

iron and nutrient cycling.  
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Figure 3.4 Heatmap of normalized (Z score) abundances of most abundant (maximum relative 

abundance >2% in at least one sample) taxa combined to lowest classification. Samples along x-

axis and taxa along y-axis were clustered into dendrograms using Bray-Curtis dissimilarity. 

Colors of points on x-axis denote sample type. 
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Spearman correlation analysis revealed significant relationships between the co-

occurrence of several corrosion-related bacteria in the biofilm communities (Figure 3H, 

Appendix 3H). The genus Ralstonia demonstrated the most significant relationships with 

other taxa, and it is considered an emerging global opportunistic pathogens in municipal 

water supplies (Ryan and Adley 2014). Positive relationships were observed between the 

co-occurrence of corrosion-related bacteria from Geobacter and Gallionella genera, 

which also made up a large proportion of the communities in corrosion tubercles. 

Geobacter were most prevalent in corrosion tubercles (11.7%) but were also identified in 

lower abundance in pipe surface (3.1%), biofilm surface (0.4%), and under tubercle 

environments (0.4%). The Geobacter genus contains iron-reducing species, and previous 

studies have reported that Geobacter spp. were among the most resistant bacteria to 

monochloramine disinfection in lab-scale disinfection experiments (Chiao et al. 2014). 

Similarly, Gallionella spp. were more abundant in corrosion tubercles (16.5%) compared 

to biofilm surface (3.6%), pipe surface (1.0%), and under tubercle environments (1.9%). 

Gallionella spp. are neutrophilic iron oxidizing bacteria (IOB) that can promote the 

precipitation of iron oxides by converting ferrous iron to ferric iron and have previously 

been observed in association with severe iron corrosion release or “red water” events in 

distribution systems (Volk et al. 2000; Li et al. 2010). Bottom tubercle samples 

demonstrated increased relative abundance of Gallionella and Geobacter (22.5% and 

23%) compared to top tubercle samples (10.5% and 0.4%), but these differences were not 

significant (One-way ANOVA, p values >0.05). 
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Indicator species analysis was employed to identify the most abundant indicator 

organisms in each sample location from the water main. Several corrosion-related genera 

were significant indicator organisms for corrosion tubercle samples including Geothrix, 

Gallionella, Phreatobacter, Thiomonas, and Rhodovastum (all p values < 0.05). 

Methylobacterium were identified as significant indicators for biofilm surface 

communities, while Bradyrhizobium were identified as indicators of pipe surface and 

under tubercle communities. Phreatobacter and Ralstonia genera were identified as 

indicators of communities in samples collected from pipe surfaces, biofilm surfaces, and 

under tubercles. Several of the identified indicator organisms in our study have been 

reported in previous studies analyzing cast iron biofilm communities (Sun et al. 2014b; 

Zhu et al. 2014; Ma et al. 2018). 

3.3.7 Relationship between Sample Location, Resistance Genes, and Microbial 

Community Composition 

Microbial communities and abundances of resistance genes were compared 

between sample locations to determine potential host bacteria harboring ARGs, MRGs, 

and intI1 (Rice et al. 2020). Additionally, the relationships among bacterial community 

composition and different sample types were evaluated using CCA. Biofilm sample type 

significantly influenced microbial community composition and explained 32% of the 

community variability (CCA, p = 0.009). Biofilm samples were taken from 12, 18, and 

24 in. inside of the water main to assess impact of lateral sampling distance. CCA 

indicated that sampling distance into the pipe explained 36% of the variability in bacterial 
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community composition (p = 0.001). These results indicate that biofilm sample location 

was a significant variable influencing microbial communities.  

Spearman correlation analysis was conducted to determine relationships between 

bacterial community composition and abundance of resistance genes. Significant 

correlations were observed between several microbial genera and the abundance of 

resistance genes in the biofilm samples (Figure 3.5). The occurrence of czcD was 

significantly correlated with genera including Desulfovibrio, Ferritrophicum, 

Herbaspirillum, and Rhodoferax (All p values < 0.05). Positive relationships were also 

observed between czcD and corrosion-related genera such as Geothrix, Gallionella, 

Sphingomonas, and Undibacterium.  
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Figure 3.5 Relationships between relative abundance of most abundant taxa and absolute 

abundance of ARGs, MRGs, and intI1 in biofilm samples from cast iron water main. Color 

denotes the result from correlation analysis using Spearman’s rank sum correlation with 

Spearman’s rho value plotted for each comparison. The Rho value for statistically significant 

relationships are also included (p values < 0.05). The lowest available taxonomic classification 

for each observed ASV is provided. 

  

The copper resistance gene copA was positively associated with the occurrence of 

several genera including Galbitalea, Gallionella, Geobacter, Geothrix, and 

Ferritrophicum. A significant negative relationship was observed between copA and 

Phreatobacter. β-lactam resistance genes blaTEM and blaSHV were positively correlated 

with taxa including Burkholderia, Galbitalea, and Mycobacterium. A significant negative 

relationship was observed between blaTEM and the genus Hydrogenophaga (p < 0.05). 

The integrase gene of class 1 integrons (intI1) was positively correlated with genera 

including Desulfovibrio, Galbitalea, Hydrogenophaga, and Mycobacterium. The 

sulfonamide resistance gene sul1 demonstrated a significant positive relationship with the 
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Geobacter genus (Wang et al. 2014a). The presence of statistically significant 

correlations between microbial taxa and resistance genes in the biofilm samples implies 

that at least some of the shifts observed in gene abundance could have resulted from 

shifts in abundances or types of host bacteria (Garner et al. 2018a).  

3.4 Conclusions 

This research established that drinking water main biofilms in a chloraminated 

cast iron water main can serve as sources of resistance genes, regardless of location 

within the pipe. This is the first research to use ddPCR and qPCR to quantify ARGs, 

MRGs, and class 1 integrons in drinking water biofilms from a full-scale distribution 

system. Future research should be conducted to determine the distribution and 

concentrations of resistance genes in different pipe materials and in different locations of 

the same distribution system. Additional research is needed to quantify resistance genes 

and microbial communities in other pipe materials including copper, lead, and plastic that 

are commonly used in full-scale DWDS to understand how engineering management 

decisions can impact sources of antibiotic resistance (Kimbell et al. 2020). Further, full-

scale and laboratory scale studies should be conducted to determine the impacts of 

corrosion inhibitors and corrosion products on the prevalence of antibiotic resistance in 

DWDS. Previous studies have suggested that drinking water biofilms may facilitate 

horizontal transfer of the ARGs from one host to another due to the presence of nutrients 

and high bacterial density and diversity (Zhang et al. 2009a). In the current study, genera 

containing opportunistic pathogens detected in the biofilm samples included 

Mycobacterium, Ralstonia, Staphylococcus, and Sphingomonas. Further research 



70 

 

 

targeting these specific bacterial genera would be necessary to determine the presence of 

any potential opportunistic pathogens. Human exposure routes relevant for potable water 

include consumption of tap drinking water, dermal contact, and inhalation of aerosolized 

drinking water during showering or bathing (Anaissie et al. 2002). Studies documenting 

the occurrence and distribution of ARGs and MRGs in DWDS are critical for human 

health risk assessments evaluating the potential for the transfer and development of 

antibiotic resistance in engineered systems and in the environment (Ashbolt et al. 2013a; 

Rice et al. 2020). Given the potential for bacterial growth in DWDS, it is essential to 

continue to seek water treatment and management options that minimize levels of 

antibiotic resistance. Specific conclusions from key findings are as follows: 

• ARGs (blaTEM, blaSHV, sul1), MRGs (copA, czcD), and class 1 integrons (intI1) 

were detected in every biofilm sample type studied within a chloraminated cast 

iron drinking water main, indicating that pipes could serve as sources for ARGs. 

• ddPCR assays resulted in more positive detections and lower detection limits for 

target genes compared to qPCR assays. Future studies should consider ddPCR for 

environmental samples containing inhibiting substances such as metals, humic 

acids, and other contaminants. 

• Microbial communities varied between different biofilm sample locations and 

were dominated by corrosion-related genera including Mycobacterium, 

Geobacter, Gallionella, and Sphingomonas. 

• Significant relationships were observed for the co-occurrence of ARGs, MRGs, 

intI1 and several microbial taxa. 
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• Further research is warranted to determine the impacts of different pipe materials 

on the abundance of ARGs, MRGs, and intI1 in biofilms inhabiting full-scale 

DWDS.   
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4 CORROSION INHIBITORS INFLUENCE ANTIBIOTIC RESISTANCE AND 

METAL RESISTANCE PROFILES IN A SOURCE DRINKING WATER  

 

 

 

4.1 Introduction 

The proliferation of antibiotic resistance in natural and engineered environments 

is a serious threat to human health (CDC 2019). Bacteria become resistant to antibiotics 

through genetic mutations or by acquiring antibiotic resistance genes (ARGs) from their 

surrounding environment (Levy and Bonnie 2004). ARGs are considered emerging 

contaminants in aquatic ecosystems (Pruden et al. 2006), and the occurrence of ARGs in 

drinking water is a potential risk to human health (Amarasiri et al. 2019). Groundwater 

and surface waters such as lakes and rivers are often used as source waters to drinking 

water treatment plants and are considered important reservoirs for antibiotic resistant 

bacteria (ARB) and associated ARGs (Baquero et al. 2008; Kappell et al. 2015b; 

Szekeres et al. 2018). Drinking water treatment processes do not completely remove 

ARB and ARGs, which are subsequently transported to drinking water distribution 

systems (DWDS) (Sharma et al. 2016; Kimbell et al. 2021). Drinking water disinfection 

processes using chlorine and secondary disinfectants (i.e., chloramines) are used to 

inhibit microbial growth in drinking water and to prevent regrowth during distribution. 

However, studies have demonstrated that chlorine disinfection and exposure to metals 

can also select for antibiotic resistance in water environments such as DWDS (Peltier et 

al. 2010; Zhang et al. 2017a; Zhang et al. 2018b).  

The Lead and Copper Rule (LCR) was introduced by the US Environmental 

Protection Agency (EPA) in 1991, which requires drinking water utilities to perform 
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optimized corrosion control treatment to reduce dissolved copper and lead levels in 

drinking water (Brown et al. 2013). Drinking water utilities have three options for 

corrosion control treatment, including pH adjustment, maintenance of a disinfectant 

residual to develop Pb(IV) scale, and using corrosion inhibitors such as orthophosphates 

and sodium silicates (Schock 1996; Lytle and Schock 2005). The most common method 

of corrosion control in the U.S. is the use of phosphate-based corrosion inhibitors 

including orthophosphates and polyphosphates, with 56% of systems reporting 

orthophosphate dosages from 1-3 mg/L (McNeill and Edwards 2002; Arnold et al. 2020). 

Corrosion inhibitors containing phosphate may serve as a nutrient source for bacterial 

growth and increase microbial community diversity in DWDS (Fang et al. 2009; Payne et 

al. 2016). A recent study demonstrated that zinc orthophosphate addition to drinking 

water can select for increased abundance of ARB and ARGs compared to untreated 

controls (Kappell et al. 2019).  

Sodium silicates have the general formula of Na2O●xSiO2, where “x” varies from 

1.6 to 3.22 for silicates commonly used for drinking water treatment (Schock 1996; 

Thompson et al. 1997). The recommended dosages from some silicate manufacturer’s 

include an initial dose of 24 mg/L as SiO2 for up to 60 days followed by a maintenance 

dosage of approximately 8-12 mg/L SiO2 (Thompson et al. 1997). Silicates are an 

alternative to phosphate-based inhibitors for corrosion control in DWDS and have been 

reported as an effective treatment for dissolved lead control under some conditions 

(Schock et al. 2005a; Lintereur et al. 2010). For instance, silicates may have higher 

efficacy for control of lead release in drinking water with high alkalinity and pH (>7.5) 

(Schock et al. 2005a). Meanwhile, studies have reported sodium silicate dosages ranging 
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from 10 to 48 mg/L as an inferior corrosion control treatment compared to 1 mg/L 

orthophosphate treatment in circumneutral pH water with low to moderate alkalinity 

(Kogo et al. 2017b; Li et al. 2021b). Similar to polyphosphate for corrosion control, 

excess sodium silicate in drinking water may cause increases in lead release (Li et al. 

2021a). The effectiveness of sodium silicates for corrosion control may be primarily due 

to their ability to increase the pH, which also decreases solubility of lead and copper in 

drinking water (Aghasadeghi et al. 2021). Although the mechanism of corrosion control 

by sodium silicates is not well documented, the use of sodium silicates may be 

advantageous compared to phosphate-based treatments due to the lack of phosphorus 

(Kimbell et al. 2020). However, management requirements associated with LCR 

compliance have raised concerns with utilities regarding the use of sodium silicates for 

lead corrosion control (Li et al. 2021a). Consequently, it is imperative to gain a better 

understanding of the impacts of corrosion inhibitors on microbial ecology and antibiotic 

resistance proliferation in distribution systems and household plumbing networks.  

ARB and ARGs in DWDS are selected for or against by the physical, chemical, 

and biological conditions in their surrounding environment and have been quantified in 

DWDS at concentrations ranging from 101 to 1010 copies/L (Zhang et al. 2009a; Xu et al. 

2016; Garner et al. 2018a; Su et al. 2018; Chen et al. 2020; Zhang et al. 2020). Bacterial 

resistance to antibiotics and metals are often genetically linked, indicating mechanisms 

for co-selection of antibiotic resistance during exposure to metals such as copper or zinc 

(Poole 2017). Several studies have reported opportunistic pathogens in drinking water 

systems that are chlorine-resistant and contain ARGs encoding resistance to multiple 

types of antibiotics, which poses risks to human health and drinking water safety (Dai et 
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al. 2019; Sevillano et al. 2020; Hu et al. 2021). The presence of corrosion inhibitors such 

as orthophosphates may also have impacts on antibiotic resistance and microbial 

communities in DWDS. However, there is little information on the relative effect of zinc 

orthophosphate, sodium orthophosphate, and sodium silicates on the abundance of 

antibiotic resistance and metal resistance genes within drinking water systems. 

The objective of this study was to quantify the impact of corrosion inhibitor type 

(zinc orthophosphate, sodium orthophosphate, and sodium silicates) on microbial 

communities and the abundance of antibiotic resistance and metal resistance within the 

bacterial community of a source water for drinking water. It was hypothesized that 

increasing concentrations of corrosion inhibitors would increase the absolute abundance 

and relative abundance of ARB and ARGs within the bacterial communities. This 

relationship was tested through laboratory-scale microcosms of lake water exposed to 

corrosion inhibitors and direct plating on R2A media containing clinically relevant 

concentrations of antibiotics from seven different classes consisting of ampicillin, 

ciprofloxacin, rifampicin, tetracycline, trimethoprim, sulfamethoxazole, and vancomycin. 

The quantification of genetic determinates was determined via qPCR for β-lactam 

resistance (blaTEM), sulfonamide resistance (sul1 and sul2), zinc efflux/resistance (czcC 

and czcD), copper resistance (copA), quaternary ammonium compound resistance 

(qacEΔ1), and the integrase gene of class 1 integrons (intI1).  
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4.2 Materials and Methods 

4.2.1 Microcosm Setup 

Microcosm experiments were set up to test the impacts of three different 

corrosion inhibitors, zinc orthophosphate, sodium orthophosphate, and sodium silicate, 

on the abundance of ARB, ARGs and MRGs in lake water that is used as a source water 

for multiple drinking water treatment plants. Drinking water treatment significantly alters 

microbial communities during treatment processes such as filtration and chlorination 

(Pinto et al. 2012; Sharma et al. 2016). Therefore, a source water for drinking water was 

used in these experiments to observe selection for ARB and ARGs by the tested 

chemicals and to reduce the confounding effects of different treatment processes,  

disinfectant residuals, and corrosion inhibitors, such as those found in tap drinking water 

(Kappell et al. 2019). Additionally, the lake water used for experiments allowed for the 

observation of a broader potential for selection of antibiotic resistance compared to using 

treated drinking water.  

Microcosm experiments with corrosion inhibitors (CI) consisted of 1 L glass 

bottles with 1 L of source water. Experiments were performed in triplicate at the 

following conditions: Set 1 (Normal CI concentration, lake water collected from drinking 

water intake pipe), Set 2 (Normal CI concentration, lake water collected at recreational 

beach), and Set 3 (10X CI concentration, lake water collected at recreational beach). The 

lake water for Set 1 was collected from a local drinking water treatment plant (DWTP) 

directly from the intake pipe to the DWTP. The recreational beach lake water for Sets 2 

and 3 were collected from off a breakwater structure at Atwater park north of Milwaukee 
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harbor (Milwaukee, WI) approximately 50 meters into Lake Michigan. All samples were 

collected with a 45 L disinfected carboy for water homogeneity. The sample was 

transported immediately to the laboratory where 1 L subsamples were aseptically added 

to sterile 1 L clear glass bottles.  

Corrosion inhibitors including 99% purity zinc orthophosphate (Zn3(PO4)2) 

(Fisher Scientific, Waltham, MA), monobasic sodium orthophosphate (NaH2PO4) (98-

102% purity, Fisher Scientific, Waltham, MA), and sodium metasilicate (Na2SiO3) (49.5-

52.5% Na2O, Sigma Aldrich, St. Louis, MO) were added to the microcosms at two 

different concentrations to simulate conditions in DWDS. Sodium metasilicate was used 

as a representative silicate-based corrosion inhibitor. Previous studies have suggested that 

different sodium silicate formulations may have different efficacy for lead corrosion 

control (Li et al. 2021a). A national survey of U.S. drinking water utilities reported 

concentrations of phosphate corrosion inhibitors ranging from 0.2 to 3.0 mg/L in DWDS, 

with over 50% of utilities dosing between 0.7 and 2.0 mg/L as PO4 (McNeill and 

Edwards 2002). Microcosms with corrosion inhibitor concentrations to simulate full-scale 

DWDS conditions (Sets 1 and 2) consisted of the following: 1 mg/L zinc orthophosphate 

as PO4, 1 mg/L sodium orthophosphate as PO4, and 10 mg/L sodium silicate as SiO2. 

Typical recommended dosages of sodium silicates for water treatment purposes range 

from 8 to 55 mg/L as SiO2 (Thompson et al. 1997; Schock et al. 2005a). Experiments 

conducted with high levels of corrosion inhibitors (Set 3) consisted of the following: 10 

mg/L zinc orthophosphate as PO4, 10 mg/L sodium orthophosphate as PO4, and 100 

mg/L sodium silicate as SiO2. These experiments were conducted to observe the potential 

selection for antibiotic resistance under high nutrient conditions. Microcosms were 
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operated for a total duration of 7 days. While residence time of water in a DWDS is not 

expected to be 7 days, the additional time allowed for identification of slow-growing 

microorganisms that were selected for in the community via plating. Water samples were 

collected on Days 0, 3, and 7 for microbiological and chemical analysis. The microcosms 

were placed on an orbital mixer at 150 rpm, to keep cells suspended and water 

homogenized, at room temperature (25.0±2.0°C) in darkness.  

4.2.2 Quantification of Antibiotic Resistant Heterotrophic Bacteria  

Water from the microcosms was collected on days 0, 3, and 7 and then plated on 

R2A media with and without antibiotics to determine relative abundance of antibiotic 

resistant heterotrophic bacteria. Subsamples and dilutions in R2A media from day 0 at 

were plated directly onto R2A containing 100 µg/mL of cycloheximide to inhibit fungal 

growth. Antibiotics were added to R2A at diagnostic concentrations inferring failure of 

treatment or clinical resistance based on CLSI dilution method (CLSI 2015). The 

antibiotics were ampicillin (AMP; 32 µg/mL), ciprofloxacin (CIP; 4 µg/mL), rifampicin 

(RIF; 4 µg/mL), sulfamethoxazole (SULF; 100 µg/mL), tetracycline (TET; 16 µg/mL), 

trimethoprim (TRIM; 16 µg/mL), and vancomycin (VAN, 32 µg/mL). Subsamples were 

taken after 3 and 7 days of exposure to corrosion inhibitors and plated. The plates were 

incubated for 5 days at 30°C in an incubator with a container of tap water to keep relative 

humidity constant and not allow the plate to dehydrate. Counts were performed manually. 



79 

 

 

4.2.3 Quantification of Antibiotic Resistance Genes, Metal Resistance Genes, and 

Class 1 Integrons 

The remaining water from each microcosm was aseptically quantified by 

graduated cylinder and harvested by vacuum filtration onto a 0.22 µm Millipore Express 

PLUS Membrane filter (MilliporeSigma, Burlington, MA). Filters were placed in sterile 2 

mL tubes and stored at -20°C until DNA was extracted. FastDNA Spin Kits (MP 

Biomedicals, Solon, OH) were used for DNA extraction, in accordance with the 

manufacturer’s protocol, with the exception of the initial cell breakage, as described 

below. Tubes were placed in liquid nitrogen and filters homogenized by grinding with a 

sterile pipet tip. The CLS-TC lysis buffer (1.0 mL) was added and the tube was subjected 

to freeze-thaw cycles (x3) in liquid nitrogen and thawing at room temperature with 

vortexing between cycles (Kimbell et al. 2018; Kappell et al. 2019; Harrison et al. 2020; 

Kimbell et al. 2021). Yield of DNA was determined by microspectrophotometer analysis 

with Nanodrop One (Thermo Scientific, Waltham, MA).  

Genes in the extracted DNA were enumerated by quantitative PCR (qPCR) using 

primers previously published for bacterial 16S rRNA (Muyzer et al. 1993), blaTEM (Marti 

et al. 2013), copA (Roosa et al. 2014), czcC (Roosa et al. 2014), czcD (Roosa et al. 2014), 

intI1 (Goldstein et al. 2001), sul1 (Burch et al. 2013), sul2 (Kappell et al. 2019), and 

qacEΔ1 (Stedtfeld et al. 2018). All qPCR reactions were performed with 20 µL total 

reaction volumes with 1x PowerUp SYBR Green Master Mix (Applied Biosystems, 

USA), F/R primers at a final concentration of 1.0 uM each, and 5 µL of DNA template. 

DNA templates were diluted to 1:10 for all genes except for 16S rRNA that was diluted 

to 1:100 to achieve concentrations within the standard curve. Each sample was run in 
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duplicate on qPCR and the results were averaged. The replicates from microcosms were 

averaged (n = 3 from a triplicate experiment, and each of the three values stemmed from 

the average of duplicate qPCR runs). Microcosm samples with results below the 

quantification limit were reported as the quantification limit. No template controls and 

standards containing target gene DNA between 100 and 107 copies were performed in 

duplicate with each qPCR assay. Cycling conditions were conducted as previously 

described (Kappell et al. 2018b; Kimbell et al. 2018; Kimbell et al. 2021). Specificity of 

amplification of target genes was confirmed by melt curves consistent with that of each 

standard. Amplification efficiency was determined by the resulting standard curve and 

was considered acceptable between 0.9 and 1.1. Reactions were performed using a 

LightCycler 96 (Roche Molecular Systems Inc., USA). Results were reported as copies 

per L and normalized to 16S rRNA gene copies to observe trends in relative abundance. 

The qPCR limit of quantification was determined for each gene according to MIQE 

guidelines (Bustin et al. 2009). Specific primer sets, annealing temperatures, efficiencies, 

and detection limits are described in Table 4.1A in Appendix 4A.   

4.2.4 Water Quality Analysis 

Water quality for the source drinking water was characterized on the day of 

collection (Day 0) for the following parameters: alkalinity, pH, hardness, dissolved 

oxygen, ammonia, phosphate, dissolved metals, silicate, and total organic carbon (TOC). 

Water was aseptically removed from the microcosms on Days 3 and 7 and analyzed for 

pH, dissolved metals, TOC, phosphate, and silicate. A Thermo Fisher Scientific pH probe 

was used for measuring pH for the microcosms. Sodium silicate, alkalinity, hardness, 
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dissolved oxygen, and ammonia were measured according to appropriate standard 

methods using Hach kits (Hach Company, Loveland, CO). Phosphate was measured 

using the ascorbic acid method (Standard Method 4500-P) (APHA et al. 1998). Dissolved 

metal concentrations were quantified using an Agilent 7700s inductively coupled plasma 

mass spectrometer (ICP-MS) (Agilent Technologies, Santa Clara, CA). Water samples 

analyzed for TOC were filtered with 0.45 uM PTFE filters prior to acidification to <2 pH 

with HCl (36.5-38.0%) and quantification using a Shimadzu TOC analyzer (Shimadzu, 

Kyoto, Japan). Water quality measurements are included in Appendix 4B.  

4.2.5 Statistical analysis 

Statistical analysis was performed using Graphpad Prism V 9.3.1 (α<0.05). Two-way 

Analysis of variance (ANOVA) was used to determine significant differences among the 

concentrations and treatment types for absolute and relative abundance measurements of 

ARB, ARGs, MRGs, and intI1 on Days 0, 3, and 7. Post hoc multiple pairwise 

comparisons were conducted by using Tukey’s honest significant differences test.  

4.3 Results and Discussion 

4.3.1 Quantification of Heterotrophic Antibiotic Resistant Bacteria (ARB) 

4.3.1.1 Impact of Corrosion Inhibitor Type and Concentration 

ARB were quantified in water samples collected from each of the microcosms on 

days 3 and 7 to determine the effect of corrosion inhibitors on the abundance of 

phenotypic antibiotic resistance. There was a significantly greater absolute abundance of 
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ARB per liter in the zinc orthophosphate treatment at 1 mg/L compared to untreated 

controls on day 3 for R2A and all seven antibiotic types tested (Two-way ANOVA; all p 

values < 0.05) (Figure 4.1). Sodium orthophosphate treatment at 1 mg/L also resulted in 

significantly greater absolute abundance of R2A, RIF, SULF, TRIM, and VAN compared 

to untreated controls by day 3 (Two-way ANOVA; all p values < 0.05). At high 

concentrations, sodium orthophosphate treatment at 10 mg/L also resulted in significantly 

greater absolute abundance of ARB resistant to SULF compared to untreated controls 

(Two-way ANOVA; p value < 0.05). Similarly, there was a significantly greater absolute 

abundance of ARB in the zinc orthophosphate treatment at 10 mg/L compared to 

untreated controls on day 3 for bacteria resistant to SULF (Two-way ANOVA; p values < 

0.05). Sodium silicate treated communities demonstrated significantly greater resistance 

to RIF and SULF resistant bacteria at 100 mg/L as SiO2 by day 3. At normal 

concentrations found in DWDS (10 mg/L as SiO2), sodium silicate treatment did not 

select for increased absolute or relative abundance of ARB relative to untreated controls 

by day 3.  
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Figure 4.1. Log difference in absolute abundance of total heterotrophic bacteria (R2A) 

and antibiotic resistant bacteria on Day 3 and Day 7 based on direct plating of from 

microcosms containing different types and concentrations of corrosion inhibitors. The 

difference in counts of colony forming units (CFU) in Log10 per liter of water for each 

treatment microcosm was determined relative to the control microcosm on Days 3 and 7 

are shown on the y-axis. The type of media or antibiotic is denoted on the x-axis. 

Corrosion inhibitor type is indicated by color. Different experimental conditions are 

denoted with shapes including circle (Set 1 – Normal concentration (1x) of CI’s, lake 

water from DWTP intake pipe), triangle (Set 2 – Normal concentration (1x) of CI’s, lake 

water collected at recreational beach), and square (Set 3 – High concentration (10x) of 

CI’s, lake water collected at recreational beach).   
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By day 7, absolute abundance of ARB was significantly greater in 1 mg/L zinc 

orthophosphate treatment for CIP, SULF, TRIM, and VAN resistant bacteria compared to 

untreated controls (Two-way ANOVA; all p values < 0.05) (Figure 4.1). The addition of 

10 mg/L zinc orthophosphate resulted in the highest ARB growth out of all of the tested 

conditions on day 7, with significantly higher absolute abundances of total heterotrophic 

bacteria (R2A) and ARB resistant to AMP, CIP, RIF, SULF, TET, TRIM, and VAN 

compared to untreated controls by day 7 (Two-way ANOVA; all p values < 0.05). 

Sodium orthophosphate addition at 10 mg/L exhibited significantly greater absolute 

abundance of ARB resistant to CIP and VAN compared to untreated controls by day 7 

(Two-way ANOVA; p values < 0.05). Sodium silicate treatment at 10 mg/L did not result 

in any selection for ARB by day 7 compared to untreated controls. However, absolute 

abundance of ARB was significantly greater for the sodium silicate treatment at 100 

mg/L for AMP, CIP, RIF, and VAN compared to untreated controls by day 7 (Two-way 

ANOVA; p values < 0.05).  

The increase in abundance of total heterotrophic bacteria and ARB indicate that 

the addition of zinc orthophosphate and sodium orthophosphate may be providing 

limiting nutrients to bacterial communities. Zinc is an essential trace metal and can 

stimulate microbial growth in aquatic systems, as shown previously (Kappell et al. 2019). 

Bacterial exposure to zinc at increased concentrations may stimulate metal resistance 

mechanisms and co-select for antibiotic resistance within bacterial populations (Baker-

Austin et al. 2006). Orthophosphate can be readily used by heterotrophic bacteria and 

previous studies have documented increased microbial growth after phosphate addition 
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ranging from 0.03 to 3 mg/L (Fang et al. 2009; Kogo et al. 2017a). Similarly, zinc 

orthophosphate addition at 1-3 mg/L as PO4 increased microbial community diversity and 

richness in drinking water biofilms grown on lead and copper coupons (Payne et al. 

2016). The results observed in this study indicate that the addition of zinc orthophosphate 

and sodium orthophosphate resulted in increased positive selection for heterotrophic 

bacteria resistant to multiple types of antibiotics at concentrations typically used for 

corrosion control in DWDS (1 mg/L as PO4) when compared to sodium silicate treatment 

and untreated controls. Interestingly, the addition of orthophosphates at normal 

concentrations (1 mg/L) resulted in larger increases in absolute abundance of ARB on 

day 3 compared to higher concentrations in the 10 mg/L treatment. However, by day 7 

the absolute abundance of the high dosages of corrosion inhibitors resulted in the highest 

levels ARB growth compared to untreated controls. Sodium silicate addition at 100 mg/L 

also resulted in increased positive selection for ARB resistant to multiple types of 

antibiotics.   

Analyzing the change in relative abundance of ARB provided an indication of 

phenotypic selection for ARB in the presence of different corrosion inhibitor types and 

concentrations. When corrected for total heterotrophic bacteria there was a significantly 

greater relative abundance of VAN-resistant bacteria in the 10 mg/L zinc orthophosphate 

treatment compared to untreated by day 3 (Two-way ANOVA; p value < 0.05) (see 

Figure 4C in Appendix 4C). Similar selection for VAN resistance was observed at 1 

mg/L zinc orthophosphate but the differences were not statistically significant. There was 

also a significant increase in relative abundance of VAN-resistant bacteria in the zinc 

orthophosphate compared to the sodium silicate treatment at 1 mg/L (Two-way ANOVA; 
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p value < 0.05). Sodium silicate addition at higher dosages (100 mg/L) significantly 

increased the relative abundance of RIF-resistant bacteria compared to untreated controls 

and both phosphate corrosion inhibitor treatments by day 3 (Two-way ANOVA; p values 

< 0.05). By day 7, the changes in relative abundance for each of the corrosion inhibitor 

treatments were not significantly different from the untreated controls (see Figure 4D in 

Appendix 4D). Similarly, a previous study suggested that the selection of ARB was 

transient in nature due to the initial influx of zinc and assimilation through population 

growth (Kappell et al. 2019). The increased time of exposure of bacterial populations to 

the different corrosion inhibitor treatments may have caused the resistant populations that 

developed by day 3 through intrinsic and/or acquired resistance mechanisms to be 

outcompeted by other bacteria by day 7.  

4.3.1.2 Impact of Source Water on Antibiotic and Metal Resistance  

The impact of source water selection was evaluated through comparing results 

from microcosm experiment sets 1 and 2, which were both operated under normal 

corrosion inhibitor concentrations found in full-scale DWDS (i.e., 1 mg/L as PO4 and 10 

mg/L as SiO2 dosages). The influent source water collected from the DWTP did not 

display the same patterns of selection for phenotypic resistance compared to the surface 

water collected from the Atwater Beach (Figure 4.1). There were no observed significant 

changes in absolute or relative abundance for ARB for the samples collected from the 

DWTP in experiment set 1 relative to untreated controls. The DWTP intake pipe extends 

more than 2 miles from the shore and collects lake water at a depth of approximately 40 

feet. The bacterial community and concentrations of contaminants present in this water 
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sample were lower in comparison to the source water collected for microcosm set 2 at 

Atwater Beach. The source water from Atwater Beach is likely more representative of the 

surrounding landscape with increased amounts of nutrients, bacteria, and other 

contaminants from stormwater runoff entering the lake and continuous mixing with the 

sand and sediment at the beach shore.  

The source water collected for microcosm experiment set 2 contained greater than 

0.05 mg/L of orthophosphate on day 0, but the day 0 sample collected from microcosm 

Set 1 was below the detection limit for orthophosphate (<0.05 mg/L as PO4). The silicate 

concentration for set 1 was below the detection limit (<1 mg/L as SiO2); however, the 

silicate concentration for set 2 on day 0 was approximately 2 mg/L as SiO2. The source 

water for set 2 also had slightly higher TOC values ranging from 2.05 to 2.99 mg/L 

compared to 2.16 to 2.92 mg/L for set 1. TOC values for surfaces waters used for 

drinking water range from approximately 0.1 to 20 mg/L (Volk et al. 2002).  

4.3.2 Quantification of Genotypic and Phenotypic Antibiotic Resistance 

4.3.2.1 Impact of Corrosion Inhibitor Type and Concentration  

ARGs, MRGs, and the integrase gene of class 1 integrons (intI1) were quantified 

in water samples collected from each of the microcosms on days 3 and 7 to determine the 

effect of corrosion inhibitors on the abundance of genotypic antibiotic resistance and 

metal resistance. There was a significantly greater absolute abundance of ARGs per liter 

in the zinc orthophosphate treatment at 1 mg/L compared to all other treatments for sul1 

and qacEΔ1 on day 3 (Two-way ANOVA; p values < 0.05) (Figure 4.2). Zinc 
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orthophosphate addition at 10 mg/L selected for significantly greater absolute abundance 

of ARGs including copA, intI1, sul1, sul2, and qacEΔ1 compared to untreated controls 

on day 3 (Two-way ANOVA; all p vales < 0.05). Sodium orthophosphate addition at 1 

mg/L did not result in significant increases in growth by day 3, but 10 mg/L addition 

increased the absolute abundance of blaTEM and copA to levels significantly higher than 

untreated controls (Two-way ANOVA; p values < 0.05). Sodium silicate addition at 10 

mg/L did not result in any significant changes in ARG or MRG abundance relative to 

untreated controls by day 3. Sodium silicate addition at high concentrations (100 mg/L) 

selected for significantly lower absolute abundance of 16S rRNA and ARGs including 

blaTEM, copA, czcC, sul1, sul2, and intI1 by day 3 compared to untreated controls, 

sodium orthophosphate and zinc orthophosphate treatments.  
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Figure 4.2. Log difference in absolute abundance of total bacterial biomass (16S rRNA), 

antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and intI1 on Day 3 

and Day 7 based on qPCR analysis from microcosms containing different types and 

concentrations of corrosion inhibitors. The difference in counts of gene copies in Log10 

per liter of water for each treatment microcosm was determined relative to the control 

microcosm on Days 3 and 7 are shown on the y-axis. The type of gene is denoted on the 

x-axis. Corrosion inhibitor type is indicated by color. Different experimental conditions 
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are denoted with shapes including circle (Set 1 – Normal concentration (1x) of CI’s, lake 

water from DWTP intake pipe), triangle (Set 2 – Normal concentration (1x) of CI’s, lake 

water collected at recreational beach), and square (Set 3 – High concentration (10x) of 

CI’s, lake water collected at recreational beach).   

 

By day 7, zinc orthophosphate treatment at 1 mg/L resulted in significantly 

greater absolute abundance of sul1, sul2, qacEΔ1, and intI1 compared to untreated 

controls (Two-way ANOVA; all p values < 0.05) (Figure 4.2). Zinc orthophosphate 

treatment at 10 mg/L also resulted in significantly greater absolute abundance of 16S 

rRNA and ARGs including sul1, qacEΔ1, and intI1 compared to untreated controls 

(Two-way ANOVA; p value < 0.05). Sodium orthophosphate addition did not exhibit 

similar growth patterns compared to zinc orthophosphate at the same concentrations 

tested, indicating that the addition of zinc may be promoting increased abundance of 

antibiotic resistance within the microbial communities. Zinc is an essential micronutrient 

required for proper structure and function of many proteins in bacterial cells (Dow and 

Prisic 2018). The addition of zinc may also promote P scavenging in bacterial 

communities since bacterial cells require zinc for production of phosphatase enzymes 

(e.g., alkaline phosphatase) (Coleman 1992). A previous study observed similar operons 

in several different bacterial species containing genes for heavy metal translocating 

ATPases and phosphatases (Hynninen et al. 2009). Communities without zinc 

orthophosphate addition may have been lacking sufficient zinc for phosphatase 

formation, thus limiting P scavenging and bacterial growth. Similarly, Kappell et al. 2018 

observed similar selection for ARB and ARGs with both zinc chloride and zinc 

orthophosphate addition, indicating zinc as the selecting agent for observed increased 
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resistance in the microbial communities. Similar to results on day 3, sodium silicate 

addition at 100 mg/L significantly decreased the absolute abundance of several genes 

including 16S rRNA and ARGs including czcC, czcD, sul1, sul2, and intI1 compared to 

untreated controls, sodium orthophosphate and zinc orthophosphate treatments.  

Analyzing the change in relative abundance of resistance genes provided an 

indication of genotypic selection in the presence of different corrosion inhibitor types and 

concentrations. When normalized to 16S rRNA gene copies, there was a significantly 

greater relative abundance of sul1, qacEΔ1, and intI1 gene copies in the zinc 

orthophosphate treatment at 1 mg/L compared to untreated controls, sodium silicate, and 

sodium orthophosphate by day 3 (Two-way ANOVA; p values < 0.05) (Figure 4.3). 

Similar selection for ARGs was observed at 10 mg/L zinc orthophosphate, which also 

exhibited significantly greater relative abundance of sul1, qacEΔ1, and intI1 compared to 

untreated controls and sodium orthophosphate by day 3 (Two-way ANOVA; p values < 

0.05). Sodium orthophosphate addition at 1 and 10 mg/L did not result in any significant 

changes in relative abundance of ARGs, MRGs, or intI1 relative to untreated controls by 

day 3. Sodium silicate addition at higher dosages (100 mg/L) significantly increased the 

relative abundance of intI1 compared to untreated controls and sodium orthophosphate by 

day 3 (Two-way ANOVA; p values < 0.05).  
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Figure 4.3. Relative abundance of ARGs, MRGs, and intI1 on Day 3 of microcosm 

experiments as determined by qPCR. The average relative abundance is based on 

triplicate measurements from microcosms containing different types and concentrations 

of corrosion inhibitors. The relative abundance of each target gene is shown on the y-

axis. The type of gene is denoted on the x-axis. Treatment type is indicated by color. 

Different experimental conditions are plotted on different graphs including Set 1 – 

Normal concentration (1X) of CI’s, lake water collected from DWTP (top), Set 2 – 

Normal concentration (1X) of CI’s, lake water collected at beach (middle), and Set 3 – 

High concentration (10X) of CI’s, lake water collected at beach (bottom). 

 

By day 7, there was a significantly greater relative abundance of intI1 and 

qacEΔ1 in the zinc orthophosphate compared to untreated controls and sodium 

orthophosphate addition (Figure 4.4) at 1 mg/L (Two-way ANOVA; p values < 0.05). 

Similar selection was observed at 10 mg/L zinc orthophosphate, which exhibited 

significantly greater relative abundance of intI1, sul1, and qacEΔ1 by day 7 (Two-way 

ANOVA; p values < 0.05). Similar to results from day 3, sodium orthophosphate addition 

at 1 and 10 mg/L did not result in any significant changes in relative abundance of ARGs, 

MRGs, or intI1 relative to untreated controls. Interestingly, by day 7 sodium silicate 

addition at 100 mg/L resulted in significantly increased relative abundance of several 

genes including blaTEM, czcD, copA, intI1, and sul2 compared to untreated controls and 

sodium orthophosphate addition (Two-way ANOVA; p values < 0.05).  
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Figure 4.4. Relative abundance of ARGs, MRGs, and intI1 on Day 7 of microcosm 

experiments as determined by qPCR. The average relative abundance is based on 

triplicate measurements from microcosms containing different types and concentrations 

of corrosion inhibitors. The relative abundance of each target gene is shown on the y-

axis. The type of gene is denoted on the x-axis. Corrosion inhibitor type is indicated by 

color. Different experimental conditions are plotted on different graphs including Set 1 – 

Normal concentration (1X) of CI’s, lake water collected from DWTP (top), Set 2 – 

Normal concentration (1X) of CI’s, lake water collected at beach (middle), and Set 3 – 

High concentration (10X) of CI’s, lake water collected at beach (bottom). 

 

Overall, the absolute and relative abundance of zinc orthophosphate at 

concentrations ranging from 1 to 10 mg/L exhibited increased selection for ARB and 

ARGs compared to sodium orthophosphate addition. The sub-inhibitory concentrations of 

zinc allowed a growth or survival advantage for bacteria harboring the sul1, sul2, 

qacEΔ1, and intI1 genes. Similar to the changes observed in abundance of antibiotic 

resistant heterotrophic bacteria, the presence of zinc and not orthophosphate was 

determined to be the major factor contributing to selection of ARGs and intI1. The 

integrase gene of class 1 integrons (intI1) plays an important role in the proliferation of 

acquired resistance to antibiotics, metals, and disinfectants through the ability to 

incorporate gene cassettes (Gillings et al. 2008; Ma et al. 2017a). The sul1 and sul2 genes 

encode dihydropteroate synthase that are not inhibited by sulfonamides (Antunes et al. 

2005). The sul1 gene is normally linked to other resistance genes in class 1 integrons, 

while sul2 is usually located on small non-conjugative plasmids or large transmissible 

multi-resistance plasmids (Enne et al. 2001; Antunes et al. 2005). The qacEΔ1 gene 

encodes resistance to quaternary ammonium compound disinfectants and is commonly 

observed on the same mobile resistance gene cassettes as sul1 and intI1 (Nandi et al. 

2004).  
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The metal resistance genes targeted in this study, czcC, czcD, and copA, were 

targeted because they indicate the presence of zinc and other related metal resistance 

mechanisms (Kloosterman et al. 2007). The lack of significant changes in gene 

abundance for zinc-related resistance genes may support the evidence that low 

environmental zinc concentrations were limiting microbial growth for communities not 

treated with zinc orthophosphate. The addition of zinc led to positive selection for 

bacteria able to influx zinc, rather than zinc negatively selecting against bacteria without 

metal resistance (Kappell et al. 2019). Zinc is an essential nutrient for bacterial cells and 

plays an important role in phosphatase regulation (Coleman 1992). Protein phosphatases 

are involved in metabolic homeostasis, stress response, and other essential biological 

mechanisms. Zinc orthophosphate treated communities were likely more efficient at 

scavenging P, which increased bacterial growth compared to sodium orthophosphate or 

sodium silicate treated communities.  

4.4 Conclusions 

Environmental factors such as metal pipe materials, corrosion inhibitors, and 

corrosion products that develop in DWDS may be preferentially selecting for bacteria 

harboring resistance to both metals and antibiotics (Calomiris 1984; Stepanauskas et al. 

2005; Kimbell et al. 2020). The results in this study indicate that corrosion inhibitors such 

as zinc orthophosphate, which are commonly used in drinking water systems, can alter 

resistance profiles and promote the occurrence of ARB, ARGs, and intI1 in bacterial 

communities. Significant increases in absolute and relative abundance of ARB resistant 

to multiple clinically-relevant antibiotics including CIP, SULF, TRIM, and VAN and 
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ARGs including sul1, sul2, qacEΔ1, and intI1 were observed in response to zinc 

orthophosphate addition at concentrations typically found in distribution systems (~1 

mg/L). The presence of zinc orthophosphate may lead to positive selective pressure for 

ARB, which causes increases in the abundance and types of resistance genes they harbor 

(Kappell et al. 2019). Zinc orthophosphate resulted in the highest selection of ARB and 

associated ARGs compared to controls, sodium orthophosphate, and sodium silicate 

treatment. Sodium silicate dosage at 10 mg/L resulted in decreased bacterial growth as 

measured by heterotrophic plate counts and qPCR, when compared to zinc and sodium 

orthophosphate treatments. High doses of silicates at 100 mg/L increased the growth of 

ARB resistant to RIF and VAN and several ARGs and MRGs including blaTEM, czcD, 

copA, intI1, and sul2 relative to untreated controls. High levels of zinc orthophosphate 

(10 mg/L) and sodium silicate (100 mg/L) exhibited similar selection of ARGs including 

intI1, sul2, and qacE by day 7.  

The results of this study suggest that utilities using zinc orthophosphate as a 

corrosion inhibitor may be promoting increased occurrence of bacteria and ARGs in tap 

drinking water. According to a 2019 AWWA survey, zinc orthophosphate is the most 

common form of corrosion control with over 38% of utilities reporting its use for LCR 

compliance (Arnold et al. 2020). Implementation of sodium silicate as an alternative 

corrosion inhibitor may be beneficial for limiting bacterial growth, however, silicates 

may have reduced ability to mitigate lead release and protect against galvanic corrosion 

compared to orthophosphates (Li et al. 2021b). Others have noted that sodium silicate 

addition can result in the formation of a passivation layer on the interior surface of pipes, 

which may help to inhibit corrosion (Thompson et al. 1997; Schock et al. 2005a). Studies 
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documenting silicate usage have reported higher lead release when compared to 

orthophosphates for lead and copper control (Rompré et al. 2000; Lintereur et al. 2010; 

Woszczynski et al. 2015; Aghasadeghi et al. 2021). Future research should be conducted 

to determine the potential implications and unintended consequences of corrosion 

inhibitor usage on bacterial communities and antibiotic resistance in DWDS, in addition 

to lead and copper corrosion control. 

Management practices should be considered that minimize the impact of 

chemicals added for water treatment purposes on the spread of antibiotic resistance. 

Corrosion inhibitors that simultaneously minimize dissolved metal concentrations and 

bacterial growth in drinking water should be prioritized for protection of public and 

environmental health. The experiments in this study were conducted with a source 

drinking water without the presence of disinfectants such as chlorine to analyze the 

impact of specific corrosion inhibitors on antibiotic resistance selection patterns. It is 

widely documented that disinfectants including free chlorine and chloramines can 

increase the occurrence of ARGs and ARB in bacterial communities (Shi et al. 2013; Dai 

et al. 2019). Research that considers the combined effects of disinfectants and corrosion 

inhibitors would be beneficial for deciphering the complex interactions between 

chemicals added for water treatment purposes and their potential impacts on antibiotic 

resistance. Metagenomic analysis of bacterial communities treated with different 

corrosion inhibitors could provide valuable information regarding selection for antibiotic 

resistance through analyzing the effects on the microbiome and resistome.  
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5 METAL-CONTAINING CORROSION INHIBITORS AND DISINFECTANTS 

INCREASE OCCURRENCE AND TYPES OF ANTIBIOTIC RESISTANCE 

GENES IN THE ANTIBIOTIC RESISTOME OF A DRINKING WATER 

SOURCE 

 

 

 

5.1 Introduction 

Antimicrobial resistance (AMR) is a global health problem which may result in a 

financial burden of over 100 trillion USD by 2050 (O’Neill 2016). Resistance can be 

intrinsic in bacterial cells, occur through point mutations conferring target modification, 

or by acquiring antibiotic resistance genes (ARGs) from the environment (Levy 2002; 

Levy and Bonnie 2004). Antibiotic resistant bacteria (ARB) and associated ARGs are 

ubiquitous in the natural environment (Berglund 2015) and in engineered systems such as 

drinking water treatment plants (Xi et al. 2009; Jia et al. 2020) and wastewater treatment 

plants (LaPara et al. 2011; Munir et al. 2011; Mao et al. 2015). ARGs and ARB are 

transported between different environments and can be enriched for through horizontal 

gene transfer (HGT) and reproduction of host ARB. Mobile genetic elements (MGEs) 

such as plasmids, transposons, and integrons enable ARGs to be spread rapidly between 

bacteria, which poses risks to human health (Guo et al. 2017). Bacterial cells are exposed 

to many environmental factors that may contribute to the development and proliferation 

of antibiotic resistance, including antibiotics (Rodriguez-Mozaz et al. 2015b), 

antimicrobials (Carey and McNamara 2016; Harrison et al. 2020), disinfectants such as 

chlorine and chloramines (Zhang et al. 2017b), and metals (Poole 2017; Zhang et al. 

2018b). Engineered systems such as drinking water distribution systems (DWDS) are 

primarily composed of metal pipe materials and employ disinfectants such as chlorine 
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and chloramines, which may contribute to the proliferation of ARB and ARGs in tap 

drinking water (Xi et al. 2009; Kimbell et al. 2020).  

The presence of chlorine, metals, antibiotics, and other antimicrobial compounds 

in DWDS may preferentially select for bacterial communities resistant to both antibiotics 

and metals (Calomiris et al. 1984; Baker-Austin et al. 2006). Several studies have 

reported pathogens in drinking water systems that are chlorine-resistant and contain 

ARGs encoding resistance to multiple types of antibiotics, which potentially poses risks 

to human health and drinking water safety (Dai et al. 2019; Sevillano et al. 2020; Hu et 

al. 2021). Additionally, previous studies have demonstrated that the use of phosphate-

containing corrosion inhibitors such as zinc orthophosphate can increase total and relative 

abundance of ARB and ARGs in a source water used for drinking water (Kappell et al. 

2019). The use of sodium silicates as an alternative corrosion inhibitor to phosphate-

based inhibitors has been considered due to the potential for limiting bacterial growth and 

biofilm development (Kogo et al. 2017a; Aghasadeghi et al. 2021). However, the 

mechanism of lead and copper sequestration by sodium silicates is not well documented 

and some researchers have suggested sodium silicate addition does not offer any 

additional benefits compared to pH adjustment for corrosion control (Li et al. 2021a). 

Compliance with the Lead and Copper Rule (LCR) is the primary goal of corrosion 

control in DWDS, but there may be unintended consequences stemming from the 

addition of corrosion inhibitors such as phosphates and sodium silicates to drinking 

water.  

Non-targeted methods of analysis such as shotgun metagenomics have revealed 

insights into the effects of drinking water treatment processes such as chlorination (Jia et 
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al. 2015) and filtration (Pinto et al. 2012) on bacterial communities in drinking water. 

Characterizing the antibiotic resistome (i.e., collection of all resistance genes in a 

community) is vital for understanding the spread of antibiotic resistance and identifying 

novel resistance elements (Dias et al. 2020). It is widely documented that chlorine 

disinfection causes systemic changes in the microbiome and resistome in microbial 

communities in DWDS (Shi et al. 2013; Jia et al. 2015). The addition of phosphate-based 

corrosion inhibitors can supply nutrients to bacteria for growth and biofilm development, 

play key roles in metabolic regulation, and increase bacterial resistance to environmental 

stressors (Rao and Kornberg 1996; Gangaiah et al. 2009; Payne et al. 2016). Phosphate 

may also select for microorganisms with enhanced capabilities related to phosphorus 

metabolism and heavy metal resistance in chlorinated systems (Del Olmo et al. 2020). 

However, there is a paucity of research related to the impacts of corrosion inhibitors 

including sodium silicates, sodium orthophosphate, and zinc orthophosphate on the 

prevalence and transmission of AMR in DWDS.  

The objective of this study was to quantify the impact of disinfectants (free 

chlorine/chloramines) and corrosion inhibitors (zinc orthophosphate, sodium 

orthophosphate, and sodium silicates) on the microbial community structure and 

resistome within the bacterial community of a source water used for drinking water. This 

relationship was tested through laboratory-scale microcosms of lake water exposed to 

corrosion inhibitors and direct plating on R2A media containing clinically relevant 

concentrations of antibiotics from 7 different classes: ampicillin, ciprofloxacin, 

rifampicin, tetracycline, trimethoprim, sulfamethoxazole, and vancomycin. The 

quantification of genetic determinates including 16S rRNA, quaternary ammonium 
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compound resistance (qacEΔ1), and the integrase gene of class 1 integrons (intI1) were 

determined using qPCR. The microbiome and antibiotic resistome in each of the 

communities was analyzed using shotgun metagenomics.  

5.2 Materials and Methods 

5.2.1 Microcosm Setup 

Microcosm experiments were set up to test the impacts of three corrosion 

inhibitors, zinc orthophosphate, sodium orthophosphate, and sodium silicate, on the 

abundance of ARB, ARGs, and microbial communities in lake water that is used as a 

source water for multiple drinking water treatment plants. Drinking water treatment 

significantly alters microbial communities during treatment processes such as filtration 

and chlorination (Pinto et al. 2012; Sharma et al. 2016). A source water for drinking 

water was used in these experiments to observe selection for ARB and ARGs by the 

tested chemicals and to reduce the confounding effects of different treatment processes, 

corrosion inhibitors, and disinfectant residuals, such as those found in tap drinking water 

(Kappell et al. 2019). Additionally, lake water contains a more diverse microbial 

community which allowed for a broader potential for selection compared to using treated 

drinking water for microcosm experiments.  

Corrosion inhibitors including 99% purity zinc orthophosphate (Zn3(PO4)2) 

(Fisher Scientific, Waltham, MA), monobasic sodium orthophosphate (NaH2PO4) (98-

102% purity, Fisher Scientific, Waltham, MA), and sodium metasilicate (Na2SiO3) (49.5-

52.5% Na2O, Sigma Aldrich, St. Louis, MO) were added to the microcosms to simulate 
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conditions in DWDS using different types of corrosion control. Sodium metasilicate was 

used as a representative silicate-based corrosion inhibitor. Previous studies have 

suggested that different sodium silicate formulations may have different efficacy for lead 

corrosion control (Li et al. 2021a). A previous national survey of U.S. drinking water 

utilities reported concentrations of phosphate corrosion inhibitors ranging from 0.2 to 3.0 

mg/L in DWDS, with over 50% of utilities dosing between 0.7 and 2.0 mg/L as PO4 

(McNeill and Edwards 2002).  

The source drinking water was collected from off a breakwater structure at 

Atwater park north of Milwaukee harbor (Milwaukee, WI) approximately 50 meters into 

Lake Michigan. All samples were collected with a 45 L disinfected carboy for water 

homogeneity. The samples were transported immediately to the laboratory where 1 L 

subsamples were aseptically added to sterile 1 L clear glass bottles. Microcosm 

experiments with different disinfectants and corrosion inhibitors consisted of 1 L glass 

bottles with 1 L of source water performed in triplicate. Experimental conditions for the 

disinfectant experiment included the addition of free chlorine at 1.6 mg/L as Cl2, 

chloramine (NH2Cl) at 1.6 mg/L, and ammonia (NH4). Free chlorine was added as 5.65-

6.0% sodium hypochlorite (NaClO) (Fisher Scientific, Waltham, MA). Monochloramine 

formation was achieved through the addition of sodium hypochlorite and ammonia 

chloride (NH4Cl), as described previously (Xie et al. 2010a). Ammonia experiments were 

conducted by adding ammonium chloride to achieve the same molar ratio of nitrogen as 

the chloramine experiment. The second set of experimental microcosms were conducted 

with each of the corrosion inhibitors and free chlorine to simulate full-scale DWDS 

conditions, which consisted of the addition of 1 mg/L zinc orthophosphate as PO4, 1 
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mg/L sodium orthophosphate as PO4, and 10 mg/L sodium silicate. Free chlorine was 

dosed at 1.6 mg/L as Cl2 in each of the microcosms testing different types of corrosion 

inhibitors. Additional microcosm experiments were conducted to determine the impact of 

natural organic matter (NOM) in addition to corrosion inhibitors used in DWDS, without 

the presence of chlorine or other disinfectants. These experiments were conducted with 

the same corrosion inhibitor concentrations as previously stated with the addition of 5 

mg/L Suwanee River NOM (International Humic Substances Society, Minneapolis, MN).  

Microcosms were operated for a total duration of 7 days. Water samples were collected 

on Days 0, 3, and 7 for microbiological and chemical analysis. The microcosms were 

placed on an orbital mixer at 150 rpm, to keep cells suspended and water homogenized, 

at room temperature (25.0±2.0°C) in darkness.  

5.2.2 Quantification of Antibiotic Resistant Bacteria 

Water from the microcosms collected on days 0, 3, and 7 was plated on R2A 

media with and without antibiotics to determine the absolute and relative abundance of 

antibiotic resistant heterotrophic bacteria. Subsamples and dilutions in R2A media from 

day 0 were plated directly onto R2A containing 100 µg/mL of cycloheximide to inhibit 

fungal growth an. Antibiotics were added to R2A at diagnostic concentrations inferring 

failure of treatment or clinical resistance based on CLSI dilution method (CLSI 2015). 

The antibiotics were ampicillin (AMP; 32 µg/mL), ciprofloxacin (CIP; 4 µg/mL), 

rifampicin (RIF; 4 µg/mL), sulfamethoxazole (SULF; 100 µg/mL), tetracycline (TET; 16 

µg/mL), trimethoprim (TRIM; 16 µg/mL), and vancomycin (VAN, 32 µg/mL). 

Subsamples were taken after 3 and 7 days of exposure to corrosion inhibitors and 
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disinfectants and plated. R2A plates with sample were incubated for 5 days at 30°C in an 

incubator with a container of tap water to keep relative humidity constant and not allow 

the plated to dehydrate. Counts were performed manually. 

5.2.3 DNA Extraction and Quantification of Resistance Genes  

The remaining water from each microcosm was aseptically quantified by 

graduated cylinder and harvested by vacuum filtration onto a 0.22 µm Millipore Express 

PLUS Membrane filter (MilliporeSigma, Burlington, MA). Filters were placed into 

sterile 2 mL tubes and stored at -20°C until DNA was extracted. For DNA extraction, the 

manufactures protocol of FastDNA Spin Kit (MP Biomedicals, Solon, OH) was used 

with the exception of the initial cell breakage. Tubes were placed in liquid nitrogen and 

filters homogenized by grinding with a sterile pipet tip. The CLS-TC lysis buffer (1.0 

mL) was added and the tube was subjected to freeze-thaw cycles (x3) in liquid nitrogen 

and thawing at room temperature with vortexing between cycles (Kimbell et al. 2018; 

Kappell et al. 2019; Harrison et al. 2020; Kimbell et al. 2021). DNA yield was 

determined by microspectrophotometer analysis with a Qubit 4 Fluorometer (Thermo 

Fisher Scientific, Waltham, MA).  

Target genes in the extracted DNA were enumerated by qPCR using primers 

previously published for bacterial 16S rRNA (Muyzer et al. 1993), intI1 (Goldstein et al. 

2001),  and qacEΔ1 (Stedtfeld et al. 2018). The intI1 gene was targeted with qPCR due to 

its use as an indicator gene for horizontal gene transfer, and the qacEΔ1 gene was 

quantified because it confers resistance to disinfectants such as chlorine. All qPCR 

reactions were performed with 20 µL total reaction volumes with 1x PowerUp SYBR 
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Green Master Mix (Applied Biosystems, USA), F/R primers at a final concentration of 

1.0 uM each, and 5 µL of DNA template. DNA templates were diluted to 1:10 for all 

genes except for 16S rRNA that was diluted to 1:100 to achieve concentrations within the 

standard curve. Each sample was run in duplicate on qPCR and the results were averaged. 

The replicates from microcosms were averaged (n = 3 from a triplicate experiment, and 

each of the three values stemmed from the average of duplicate qPCR runs). Microcosm 

samples with results below the quantification limit were reported as the quantification 

limit. No template controls and standards containing target gene DNA between 100 and 

107 copies were performed in duplicate with each qPCR assay. Cycling conditions were 

conducted as previously described (Kappell et al. 2018b; Kimbell et al. 2018; Kimbell et 

al. 2021). Specificity of amplification of target genes was confirmed by melt curves 

consistent with that of each standard. Amplification efficiency was determined by the 

resulting standard curve and was considered acceptable between 0.9 and 1.1. Reactions 

were performed using a LightCycler 96 (Roche Molecular Systems Inc., USA). Results 

were reported as copies per L and normalized to 16S rRNA to observe trends in relative 

abundance. The qPCR limit of quantification was determined for each gene according to 

MIQE guidelines (Bustin et al. 2009). Specific primer sets, annealing temperatures, 

efficiencies, and detection limits are described in Table 5.1A in Appendix 5A. 

5.2.4 Shotgun Metagenomic Sequencing  

To profile the microbiome and antibiotic resistome, shotgun metagenomic 

sequencing was conducted on DNA extracted from the microcosms on each collection 

date as described with sequencing conducted on an Illumina HiSeq with 2 × 100-cycle 
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paired end reads at the Microbial Genome Sequencing Center (Pittsburgh, PA). 

Metagenomic reads were trimmed using Trimmomatic v0.36 (Bolger et al. 2014).  

Taxonomy was assigned to trimmed reads using Kaiju v1.7.3 (Menzel et al. 2016). 

Quality of merged metagenomic reads was assessed using FastQC. Reads were 

assembled using MetaSPAdes version 3.15.3 (Nurk et al. 2017). Assembled contigs were 

binned using MaxBin2 v2.2.4 (Wu et al. 2016). The abundance of known ARGs was 

determined by annotating metagenomic reads against the CARD (Comprehensive 

Antibiotic Resistance Database) (McArthur et al. 2013).  

5.2.5 Water Quality Analysis 

Water quality for the source drinking water was characterized on the day of 

collection (Day 0) for the following parameters: alkalinity, pH, hardness, dissolved 

oxygen, ammonia, chloride, phosphate, dissolved metals, silicate, and total organic 

carbon (TOC). Water was aseptically removed from the microcosms on Days 3 and 7 and 

analyzed for pH, dissolved metals, TOC, phosphate, free and total chlorine, and silicate. 

A Thermo Fisher Scientific pH probe was used for measuring pH for the microcosms. 

Silicate, alkalinity, hardness, dissolved oxygen, and ammonia were measured according 

to appropriate standard methods using Hach kits (Hach Company, Loveland, CO). 

Phosphate was measured using the ascorbic acid method (Standard Method 4500-P) 

(APHA et al. 1998). Dissolved metals were quantified using an inductively coupled 

plasma mass spectrometer (ICP-MS) in the Marquette Water Quality Center. TOC was 

quantified using a Shimadzu TOC analyzer in the Marquette University Water Quality 
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Center. Free chlorine and total chlorine were measured according to the standard method 

(APHA et al. 1998).  

5.2.6 Statistical analysis 

Statistical analysis of heterotrophic plate counts and qPCR gene abundances were 

performed using Graphpad Prism V 9.3.1. Analysis of variance (ANOVA) was used to 

determine significant differences among the concentrations and treatment types for 

absolute and relative abundance measurements of ARB and targeted resistance genes on 

Days 0, 3, and 7. Post hoc multiple pairwise comparisons were conducted by using 

Tukey’s honest significant differences test. Significant differences were defined as p-

values less than 0.05.  

5.3 Results and Discussion 

5.3.1 Quantification of Phenotypic Antibiotic Resistance 

5.3.1.1 Impact of Disinfectant Type 

ARB were quantified in samples collected from each of the microcosms on days 3 

and 7 to determine the effect of different corrosion inhibitors and disinfectants on the 

abundance of phenotypic antibiotic resistance. By day 3, free chlorine disinfection 

resulted in significantly lower observed absolute abundance for ARB resistant to AMP, 

CIP, TET, and TRIM compared to untreated controls (Figure 5.1; all p values < 0.05). 

The average concentration of free chlorine in the microcosms by day 3 was 

approximately 0.2 – 0.3 mg/L (initially dosed at 1.6 mg/L as Cl2 on day 0). Disinfection 
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with chloramine resulted in significantly lower absolute abundance of total heterotrophic 

bacteria (R2A) and ARB resistant to AMP, CIP, RIF, TET, TRIM, and VAN compared 

to untreated controls by day 3 (all p values < 0.05). The residual chloramine 

concentration in the microcosms on day 3 ranged from 0.8 to 0.9 mg/L as total Cl2, which 

is above the minimum selectable concentration (MSC) for bacteria such as Bacillus sp., 

Acidovorax sp., and Micrococcus sp. (Khan et al. 2017). Chloramine treatment resulted in 

a more stable residual chlorine concentration compared to free chlorine and was more 

effective at limiting microbial growth in the drinking water microcosms. These results are 

consistent with previous research that has demonstrated the ability of disinfectants such 

as chlorine and free chlorine for inactivation of microorganisms and ARB in water 

environments (Zhang et al. 2017b; Zhang et al. 2019a). ARB resistant to SULF exhibited 

the highest levels of resistance to chlorine and chloramine disinfection. The addition of 

nitrogen as ammonia at 0.6 mg/L exhibited similar growth patterns compared to untreated 

controls by day 3. 
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Figure 5.1. Log difference in absolute abundance of total heterotrophic bacteria (R2A) 

and antibiotic resistant bacteria on Day 3 and 7 based on direct plating of from 

microcosms containing different types and concentrations of corrosion inhibitors and 

disinfectants. The difference in counts of colony forming units (CFU) in Log10 per liter of 

water for each treatment microcosm was determined relative to the control microcosm on 

each day is shown on the y-axis. The type of antibiotic or media is denoted on the x-axis. 

Corrosion inhibitor and disinfectant type is indicated by color and shape.  
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By day 7, microcosms disinfected with free chlorine exhibited increased absolute 

abundance of total heterotrophic bacteria (R2A) and ARB resistant to AMP, CIP, RIF, 

TET, and VAN compared to the addition of chloramines, ammonia, and untreated 

controls (Figure 5.1; all p values < 0.05). The subinhibitory concentrations of chlorine 

present in the microcosms selected for bacterial communities with increased resistance to 

multiple types of clinically-relevant antibiotics. Previous research has demonstrated that 

subinhibitory levels of disinfectants such as free chlorine and chloramines can stimulate 

intragenera conjugative transfer by increasing reactive oxygen species formation, SOS 

response, increased cell membrane permeability, and altered expressions of conjugation-

relevant genes (Zhang et al. 2017b). By day 7, chloramine-treated microcosms exhibited 

significantly lower growth of total heterotrophic bacteria and ARB resistant to CIP, TET, 

and TRIM compared to untreated controls (p values < 0.05). The absolute abundance of 

ARB in ammonia-treated communities were not significantly different from untreated 

controls by day 7.  

5.3.1.2 Impact of Corrosion Inhibitor Type 

The impact of different types of corrosion inhibitors on the prevalence of ARB in 

drinking water in combination with free chlorine was conducted to simulate conditions in 

chlorinated distribution systems. By day 3, all corrosion inhibitor and chlorine-treated 

microcosms exhibited significantly lower absolute abundance of total heterotrophic 

bacteria (R2A) and ARB resistant to AMP, RIF, SULF, TET, TRIM, and VAN (Figure 

5.1; all p values < 0.05) compared to untreated controls. The chlorine concentrations on 
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day 3 ranged from below detection to 0.1 mg/L as Cl2 for free chlorine and 0.2 to 0.3 

mg/L as Cl2 for total chlorine.  

By day 7, communities treated with all three types of corrosion inhibitors and free 

chlorine exhibited significantly higher absolute abundance of ARB resistant to RIF, 

SULF, and VAN compared to untreated controls (Figure 5.1; p values < 0.05). The 

addition of phosphate-based inhibitors (sodium orthophosphate and zinc orthophosphate) 

at 1 mg/L also resulted in significantly higher absolute abundance of ampicillin-resistant 

bacteria compared to untreated controls and sodium silicate addition at 10 mg/L (p values 

< 0.05). Additionally, zinc orthophosphate selected for significantly higher absolute 

abundance of TET-resistant bacteria by day 7 compared to sodium silicate addition and 

untreated controls (p values < 0.05). Sodium orthophosphate stimulated increased growth 

of TRIM-resistant bacteria by day 7 to levels that were significantly greater than 

untreated controls (p value < 0.05). These results indicate that the nutrients added in the 

form of corrosion inhibitors enabled the growth of bacteria resistant to subinhibitory 

levels of metals and antibiotics. These results are consistent with previous research that 

has documented increased growth of bacteria and ARB in response to addition of 

corrosion inhibitors including zinc orthophosphate and sodium orthophosphate at 

concentrations ranging from 0 to 10 mg/L (Kogo et al. 2017a; Kappell et al. 2019).  

5.3.1.3 Impact of NOM 

The impact of NOM addition to each of the types of corrosion inhibitors was 

evaluated to simulate conditions with excess nutrients such as carbon, nitrogen, and 

phosphorus. The addition of zinc orthophosphate and NOM resulted in significantly 
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higher absolute abundance of total heterotrophic bacteria (R2A) and ARB resistant to 

AMP, CIP, SULF, and VAN compared to untreated controls by day 3 (Figure 5.1; all p 

values < 0.05). Sodium orthophosphate addition in the presence of NOM resulted in 

significantly higher absolute abundance of total heterotrophic bacteria (R2A) compared 

to untreated controls (p value < 0.05). Sodium silicate addition with NOM did not 

significantly change the absolute abundance of ARB by day 3 relative to untreated 

controls but did exhibit significantly lower absolute abundance of TRIM and VAN 

resistant bacteria compared to zinc orthophosphate (p values < 0.05).  

By day 7, communities treated with zinc orthophosphate resulted in significantly 

higher absolute abundance of total heterotrophic bacteria (R2A) and ARB resistant to 

AMP, CIP, and SULF compared to untreated controls (Figure 5.1; all p values < 0.05). 

Sodium orthophosphate addition also selected for increased absolute abundance of AMP 

and TET-resistant bacteria compared to untreated controls by day 7 (p values < 0.05). 

The absolute abundance of ARB resistant to CIP, SULF, and VAN was significantly 

lower in communities treated with sodium silicate compared to zinc orthophosphate by 

day 7 (all p values < 0.05). Sodium silicate addition resulted in consistently lower 

absolute abundance of ARB and R2A compared to phosphate-based inhibitors on days 3 

and 7. Previous studies have demonstrated that orthophosphate can stimulate microbial 

growth and increase microbial community diversity (Fang et al. 2009; Payne et al. 2016).  

Zinc orthophosphate selected for the highest levels of ARB in the presence of 

NOM compared to other corrosion inhibitors (sodium orthophosphate and sodium 

silicate). However, in the presence of free chlorine – the levels of ARB between the 

different corrosion inhibitor treatments were not significantly different from each other. 
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This suggests that chlorine disinfection likely exhibits a stronger impact on the 

development of antibiotic resistance compared to corrosion inhibitor addition on bacterial 

communities in drinking water. This is supported by the observed increased growth of 

ARB in free chlorine-treated microcosms compared to the addition of corrosion inhibitors 

and NOM alone by day 7. The subinhibitory levels of chlorine induced the growth of 

ARB resistant to multiple types of antibiotics tested. Similarly, previous research has 

demonstrated that disinfectant type and dose exert the strongest influence on microbial 

communities in simulated DWDS (Wang et al. 2012b). This study and others have noted 

that the interactions between pipe materials and disinfectants also play a pivotal role in 

governing microbial proliferation and antibiotic resistance in DWDS (Niquette et al. 

2000; Lehtola et al. 2005; Wang et al. 2012b; Aggarwal et al. 2018).  

5.3.2 Quantification of Genotypic Antibiotic Resistance  

5.3.2.1 Impact of Disinfectant Type 

Quantification of total bacterial biomass (16S rRNA gene copies), an ARG 

encoding resistance to disinfectants and quaternary ammonium compounds (qacEΔ1) and 

the intI1 gene, as an indicator of potential for horizontal gene transfer, was conducted on 

DNA extracted on days 0, 3, and 7. There was a significant difference in the absolute 

abundance of 16S rRNA, qacEΔ1, and intI1 genes in response to the addition of different 

disinfectant and corrosion inhibitor types on days 3 and 7. Free chlorine disinfection 

significantly decreased the absolute abundance of the 16S rRNA, qacEΔ1, and intI1 

genes by day 3 (Figure 5.2; all p values < 0.05). However, by day 7 the absolute 
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abundance of intI1 and qacEΔ1 in the free chlorine treated communities was significantly 

greater compared to untreated controls, ammonia, and chloramine treatments (p values < 

0.05). Ammonia addition at 0.6 mg/L did not result in any significant changes in gene 

abundance relative to untreated controls. Chloramine disinfection resulted in the greatest 

changes in absolute abundance with significantly lower absolute abundance of 16S 

rRNA, intI1, and qacEΔ1 detected in communities on day 3 and day 7 (p values < 0.05).  
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Figure 5.2. Log difference in absolute abundance of total bacterial biomass (16S rRNA), 

qacEΔ1, and intI1 on Day 3 based on qPCR analysis from microcosms containing 

different types and concentrations of corrosion inhibitors. The difference in counts of 

gene copies in Log10 per liter of water for each treatment microcosm was determined 

relative to the control microcosm on Day 3 is shown on the y-axis. The type of gene is 

denoted on the x-axis. Corrosion inhibitor and disinfectant types are indicated by shape 

and color.  
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The combined impact of free chlorine and each of the three corrosion inhibitors 

was evaluated to simulate conditions in chlorinated distribution systems. By day 3, the 

absolute abundance of 16S rRNA, intI1, and qacEΔ1 genes were significantly lower for 

all communities treated with corrosion inhibitors and free chlorine compared to untreated 

controls (p values < 0.05). By day 7, there was a significant increase in the absolute 

abundance of intI1 and qacEΔ1 in the communities amended with free chlorine and zinc 

orthophosphate compared to untreated controls and sodium silicate addition (Figure 5.3; 

p values < 0.05).  
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Figure 5.3. Log difference in absolute abundance of total bacterial biomass (16S rRNA), 

qacEΔ1, and intI1 on Day 7 based on qPCR analysis from microcosms containing 

different types and concentrations of corrosion inhibitors. The difference in counts of 

gene copies in Log10 per liter of water for each treatment microcosm was determined 

relative to the control microcosm on Day 7 is shown on the y-axis. The type of gene is 

denoted on the x-axis. Corrosion inhibitor and disinfectant types are indicated by shape 

and color. 



117 

 

 

5.3.2.2 Impact of Corrosion Inhibitor Type 

By day 3, the addition of different corrosion inhibitors in the presence of free 

chlorine did not exhibit significant differences in gene abundance from each other but did 

exhibit significantly lower absolute abundance compared to untreated controls (all p 

values < 0.05). The chlorine concentrations on day 3 ranged from below detection to 0.1 

mg/L as Cl2 for free chlorine and 0.2 to 0.3 mg/L as Cl2 for total chlorine. By day 7, there 

was a significantly greater absolute abundance of gene copies per liter in the zinc 

orthophosphate treatment compared to untreated controls and sodium silicate addition for 

intI1 and qacEΔ1 (Figure 5.3; p values < 0.05). Sodium orthophosphate addition did not 

result in significant increases in absolute abundance of target genes relative to untreated 

controls.  These results are congruent with previous data suggesting that addition of zinc 

may promote an increase in abundance of resistance genes related to horizontal gene 

transfer and conferring resistance to disinfectants (Kappell et al. 2019).  

5.3.2.3 Impact of NOM 

By day 3, the addition of sodium silicate and sodium orthophosphate in the 

presence of NOM did not exhibit significant increases in target gene abundance 

compared to untreated controls (Figure 5.2). Zinc orthophosphate addition resulted in the 

highest levels of all target genes by day 3 but were not significantly different from 

untreated controls. However, by day 7 there was a significantly greater absolute 

abundance of gene copies per liter in the zinc orthophosphate treatment compared to 

untreated controls and sodium silicate addition for intI1 and qacEΔ1 (Figure 5.3; p 
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values < 0.05). Similar to results from previous experiments, sodium orthophosphate and 

sodium silicate addition did not result in significant increases in absolute abundance of 

target genes relative to untreated controls by day 7. These results reiterate the potential 

for zinc as a selecting agent for antibiotic resistance in DWDS.  

5.3.3 Metagenomic Characterization of the Antibiotic Resistome 

5.3.3.1 Impact of Disinfectant Type on Antibiotic Resistome 

Shotgun metagenomic sequencing was conducted to investigate the abundance of 

known ARGs by annotating reads against the CARD database. Thirty-eight different 

classes of antibiotic resistance were identified across all samples (n = 45, Figure 5.4). 

Across the data set, >500 different AMR genes were annotated. The most abundant 

ARGs detected in all of the samples included an aminoglycoside resistance gene (ranA), 

a fosfomycin resistance gene (abaF), a bacitracin resistance gene (bcrA), a tetracycline 

resistance gene (tetA), a macrolide resistance gene (macB), a vancomycin resistance gene 

(vanR), and several multidrug resistance genes (adeL, evgS, yajC, mexT, parS). The most 

frequently detected antibiotic drug classes included macrolides, fluoroquinolones, 

tetracyclines, penams, aminoglycosides, cephalosporins, carbapenems, phenicols, and 

peptides. The average number of metagenomic sequence reads per sample was 

13,637,280 (see Table 5F in Appendix 5F).  

 Chlorine disinfection resulted in a significant increase of ARGs classified with the 

antibiotic efflux resistance mechanism compared to untreated controls, ammonia, and 

chloramine disinfection by day 7 (p values < 0.05). Similarly, previous studies have 

demonstrated that chlorine exposure can induce over expression of the MexEF-OPrN 
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efflux pump in Pseudomonas aeruginosa (Hou et al. 2019). The most common ARGs 

detected in the chlorine-treated communities included qacEΔ1, sul4, yajC, adeF, rsmA, 

and soxR. Free chlorine selected for significantly higher abundance of ARGs 

corresponding to several different classes including aminoglycoside, carbapenem, 

cephamycin, cephalosporin, fluoroquinolone, macrolide, penam, phenicol, tetracycline, 

and peptide compared to untreated controls (all p values < 0.05). Subinhibitory levels of 

chlorine can stimulate horizontal gene transfer of ARGs through multiple pathways, 

including ROS formation, SOS response, increased cell membrane permeability, and 

altered gene expression of conjugation-relevant genes (Zhang et al. 2017a). The addition 

of chloramine and ammonia alone did not exhibit significant impacts on the abundance of 

ARGs classified with CARD on day 7.  

 

 

 



120 

 

 

C
ontr

ol D
0

C
ontr

ol D
7

N
H 4

 D
7

N
H 2

C
l D

7

Fre
e 

C
l 2
 D

7

0

1×10 -4

2×10 -4

3×10 -4

4×10 -4

5×10 -4

Sample  Type

R
e
la

ti
v
e
 A

b
u

n
d

a
n

c
e

 (
T

o
ta

l 
A

R
G

s
 /

 T
o

ta
l 
R

e
a

d
s
)

Aminoglycoside

Aminocoumarin

Carbapenem

Cephamycin

Cephalosporin

Disinfecting agents/intercalating dyes

Fluoroquinolone

Glycopeptide

Macrolide

Tetracycline

Penam

Phenicol

Peptide

Sulfonamide

Monobactam

Triclosan

Others

 

Figure 5.4. Relative abundance of ARGs classified by antibiotic drug class as determined 

by CARD for each type of disinfectant or nutrient condition tested. ARG abundance was 

normalized to total metagenomic reads for each sample. ARGs are grouped by antibiotic 

drug class to which they confer resistance. The y-axis represents the mean relative 

abundance of ARGs classified for each sample type for triplicate samples. The x-axis 

represents the different experimental conditions including untreated controls, ammonia 

(0.6 mg/L), chloramine (1.6 mg/L as Cl2), and free chlorine (1.6 mg/L as Cl2). The 

sample collection day is denoted by D0 (day 0) and D7 (day 7).  

5.3.3.2 Impact of Corrosion Inhibitor Type on Antibiotic Resistome 

Corrosion inhibitor type had a significant impact on ARGs classified with the 

antibiotic efflux resistance mechanism with zinc orthophosphate exhibiting the highest 

levels compared to other corrosion inhibitors and untreated controls by day 7 (p values < 

0.05). Zinc orthophosphate also selected for significantly higher ARGs related to 

antibiotic target alteration compared to untreated controls (p value < 0.05). ARGs 

conferring resistance through this mechanism modify the target for a particular antibiotic 

in the bacterial cell. The addition of zinc was linked to an increase in the total number of 
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ARGs detected and ARGs related to antibiotic efflux (Figure 5G, Appendix 5G), which 

enables bacterial cells to extrude antibiotics and metals through the cell membrane (Pal et 

al. 2017). Significant increases in the abundance of efflux-related ARGs in the sodium 

silicate and sodium orthophosphate-treated communities were also observed compared to 

untreated controls on day 7 (p values < 0.05).  
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Figure 5.5. Relative abundance of ARGs classified by antibiotic drug class as determined 

by CARD for each type of corrosion inhibitor. ARG abundance was normalized to total 

metagenomic reads for each sample. ARGs are grouped by antibiotic drug class to which 

they confer resistance. The y-axis represents the mean relative abundance of ARGs 

classified for each sample type for triplicate samples. The x-axis represents the different 

experimental conditions including sodium silicate (10 mg/L as SiO2) + free chlorine (1.6 

mg/L as Cl2), sodium orthophosphate (1 mg/L as PO4) + free chlorine (1.6 mg/L as Cl2), 

and zinc orthophosphate (1 mg/L as PO4) + free chlorine (1.6 mg/L as Cl2). The sample 

collection day is denoted by D0 (day 0) and D7 (day 7). 
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Zinc orthophosphate addition in the presence of free chlorine resulted in 

significantly higher abundance of ARGs belonging to classes including aminoglycoside, 

aminocoumarin, carbapenem, cephamycin, cephalosporin, fluoroquinolone, macrolide, 

tetracycline, penam, phenicol, peptide, and monobactam compared to untreated controls 

on day 7 (Figure 5.5; all p values < 0.05). Sodium orthophosphate also selected for 

increased ARGs belonging to the aminoglycoside, carbapenem, cephamycin, 

cephalosporin, fluoroquinolone, macrolide, tetracycline, penam, and phenicol classes 

compared to untreated controls (all p values < 0.05). Sodium silicate resulted in less 

overall selection for ARGs compared to corrosion inhibitors containing orthophosphate. 

However, sodium silicate addition in the presence of chlorine did promote increased 

abundance of ARGs corresponding to the fluoroquinolone, macrolide, tetracycline, and 

penam classes compared to untreated controls (all p values < 0.05). These results indicate 

that corrosion inhibitors can select for increased types and abundances of ARGs and may 

play a key role in the proliferation of AMR, especially in chlorinated DWDS.  

5.3.3.3 Impact of NOM + Corrosion Inhibitor Type on Antibiotic Resistome 

The results of the addition of Suwannee River NOM to each of the three types of 

corrosion inhibitors indicated a significant increase in antibiotic efflux ARGs in the zinc 

orthophosphate amended communities compared to sodium orthophosphate, sodium 

silicate, and untreated controls on day 7 (p values < 0.05). Sodium orthophosphate 

addition at 1 mg/L resulted in the lowest total abundance of ARGs as classified by CARD 

on day 7. Sodium silicate addition at 10 mg/L exhibited similar resistance profiles 

compared to untreated controls by day 7. The addition of NOM did not have a significant 
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impact on the antibiotic resistance profiles of the bacterial communities in the drinking 

water microcosms by day 7. In fact, there were significantly less total ARGs and efflux-

related ARGs in all of the NOM-amended microcosms compared to untreated controls on 

day 0 with the exception of the zinc orthophosphate treatment (all p values < 0.05).  
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Figure 5.6. Relative abundance of ARGs classified by antibiotic drug class as determined 

by CARD for each type of corrosion inhibitor with NOM. ARG abundance was 

normalized to total metagenomic reads for each sample. ARGs are grouped by antibiotic 

drug class to which they confer resistance. The y-axis represents the mean relative 

abundance of ARGs classified for each sample type for triplicate samples. The x-axis 

represents the different experimental conditions including sodium silicate (10 mg/L as 

SiO2) + NOM (5 mg/L), sodium orthophosphate (1 mg/L as PO4) + NOM (5 mg/L), and 

zinc orthophosphate (1 mg/L as PO4) + NOM (5 mg/L). The sample collection day is 

denoted by D0 (day 0) and D7 (day 7). 

 

 Zinc orthophosphate addition in the presence of NOM resulted in significantly 

higher abundance of ARGs belonging to classes including fluoroquinolone, macrolide, 

tetracycline, and penam compared to untreated controls, sodium silicate, and sodium 
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orthophosphate treatment on day 7 (Figure 5.6; all p values < 0.05). Sodium 

orthophosphate and sodium silicate addition in the presence of NOM did not significantly 

increase the abundance of ARGs.  

5.3.4 Metagenomic Characterization of the Microbiome 

Metagenomic characterization of microbial communities in the drinking water 

samples revealed a core community dominated by Proteobacteria, Bacteroidetes, 

Actinobacteria, and Planctomycetes at the phylum level (Figure 5.7). Bacterial 

communities present in day 0 from each of the three different microcosm experiments 

exhibited similar core microbial communities. The addition of free chlorine resulted in a 

significant increase in the relative abundance of bacteria belonging to the Proteobacteria 

phylum compared to untreated controls and non-disinfected microcosms (p values < 

0.05). Chloramine disinfection significantly reduced the relative abundance of 

microorganisms in the phylum Planctomycetes compared to untreated controls and 

ammonia addition by day 7 (p values < 0.05). Proteobacteria are common inhabitants of 

drinking water systems and have several members that are resistant to disinfectants such 

as chlorine and chloramine (Douterelo et al. 2013; Mi et al. 2015). Additionally, the 

addition of zinc orthophosphate in the presence of NOM significantly increased the 

abundance of the phylum Bacteroidetes compared to sodium orthophosphate, sodium 

silicate, and untreated controls on day 7 (p values < 0.05). The phylum Bacteroidetes is 

primarily composed of gram-negative bacteria and are frequently detected in metal pipe 

biofilms and drinking water samples (Revetta et al. 2010; Yu et al. 2010). Sodium silicate 

addition with NOM did not result in significant changes to the bacterial community 
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relative to untreated controls. These results demonstrate that the addition of corrosion 

inhibitors and disinfectants can exhibit significant impacts on microbial community 

structure.  
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Figure 5.7. Relative abundance of metagenomic reads classified at the phylum level by 

sample day and treatment type. Each stacked bar represents the mean of triplicate 

samples. Bacterial phylum is indicated by color. Day of sample collection is denoted by 

D0 (day 0) and D7 (day 7).  

  

 At the genus level, the most detected genera across the data set included 

Limnohabitans, Flavobacterium, Rhodoferax, Polaromonas, Hydrogenophaga, 

Pseudomonas, Sphingomonas, Roseimicrobium, Luteolibacter, and Microbacterium. The 

most abundant genera detected in the microbial communities on day 0 included 
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Limnohabitans, Flavobacterium, and Rhodoferax, which are commonly found in 

freshwater ecosystems and in DWDS (Newton and McLellan 2015; Liu et al. 2017). 

Chlorine disinfection resulted in a significant increase in microbial genera including 

Hydrogenophaga, Pseudomonas, and Sphingomonas compared to untreated controls and 

ammonia addition on day 7 (p values < 0.05). These bacterial genera contain several 

members classified as opportunistic pathogens and resistant to chlorine disinfection (Jia 

et al. 2015; Hou et al. 2019). The addition of chloramines also significantly increased the 

relative abundance of the genus Pseudomonas compared to untreated controls on day 7 (p 

value < 0.05). The addition of ammonia did not exhibit significant changes to the 

microbiome compared to untreated control communities.  

The addition of corrosion inhibitors in the presence of free chlorine resulted in 

increased selection for several microbial genera. Sodium silicate addition in the presence 

of free chlorine selected for increased relative abundance of genera including 

Pseudomonas, Limnobacter, Porphyrobacter, Methylophilus, and Hydrogenophaga 

compared to untreated controls (p values < 0.05). Similarly, a previous study observed 

impacts from chlorine exposure on Pseudomonas aeruginosa including increased ROS 

production, which promoted the development of resistance through over expression of 

drug efflux pumps (e.g., MexXY-OprM multidrug efflux system) (Hou et al. 2019). 

Sodium orthophosphate and zinc orthophosphate addition also resulted in increased 

selection of genera including Pseudomonas, Limnobacter, Porphyrobacter compared to 

untreated controls on day 7 (p values < 0.05). These results suggest that the combination 

of corrosion inhibitors and free chlorine may promote increased growth of bacterial 

genera containing opportunistic pathogens commonly found in DWDS. Previous research 
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has demonstrated that chlorination can enrich the prevalence of ARB in drinking water 

(Bai et al. 2015). In fact, Shi et al. observed a higher proportion of ARB resistant to 

cephalothin, chloramphenicol, and trimethoprim following chlorination (Shi et al. 2013). 

Bacterial exposure to free chlorine in the current study resulted in the enrichment of ARB 

resistant to multiple types of antibiotics and several genera that contain pathogenic 

bacteria relevant to DWDS. Further, the addition of corrosion inhibitors, particularly 

phosphates, can promote formation of heterogeneous biofilms with increased number of 

microorganisms (Liu et al. 2016).  

 The addition of NOM and corrosion inhibitors resulted in the least significant 

changes to the microbial community structure by day 7. Sodium silicate addition in the 

presence of NOM selected for increased abundance of the microbial genera Tabrizicola.  

Sodium orthophosphate in the presence of NOM selected for increased abundance of 

microorganisms belonging to the genus Hydrogenophaga. Zinc orthophosphate and 

NOM addition selected for increased abundance of genera including Halicomenobacter 

and Lacunisphaera. These results highlight the importance of considering the 

microbiological impacts of corrosion inhibitor addition in DWDS. The proportions of 

bacterial subclasses in DWDS vary widely depending on many factors including biofilm 

age (Martiny et al. 2003), pipe materials (Ji et al. 2015), and phosphate treatment 

(commonly used for corrosion control) (Appenzeller et al. 2001), as well as disinfection 

practices (Batté et al. 2003; Gomez-Alvarez et al. 2012). Corroded pipe materials and 

biofilms can retain nutrients including carbon, nitrogen, and phosphorus which can 

subsequently be utilized by bacteria inhabiting DWDS (Morton et al. 2005). Gaining a 

better understanding of the complex interactions between corrosion inhibitors, corroded 
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pipe materials, and growth of microorganisms is vital for effective and safe management 

of DWDS.  

This is the first research to quantify the impacts of different corrosion inhibitors 

on the antibiotic resistome and microbiome in a source water for drinking water. ARB 

and ARGs in natural freshwater systems can withstand drinking water treatment 

processes and, in turn, be transported with finished drinking water to consumer taps. 

Previous studies have highlighted DWDS as important routes for disease transmission 

(Anaissie et al. 2002) and ARB/ARGs are increasingly being considered as emerging 

contaminants due to their potential to impact public health (Pruden et al. 2006). There 

remains a paucity of research regarding the interactions between freshwater and drinking 

water microbial communities and the transmission of ARB and ARGs in drinking water 

supplies.  

5.4 Conclusions 

The results presented in this study provide evidence that corrosion inhibitors such 

as zinc orthophosphate and disinfectants such as free chlorine can lead to significant 

changes to the antibiotic resistome and microbiome in a source for drinking water. This 

study provides a head-to-head comparison of corrosion inhibitors and disinfectants and 

their impact on AMR. Targeted and non-targeted methods of molecular analysis were 

employed to characterize the antibiotic resistome and microbial communities. 

Disinfectants and corrosion inhibitors increased the occurrence of phenotypic resistance 

to multiple clinically-relevant antibiotics observed through direct plating of antibiotic-

resistant heterotrophic bacteria and genotypic antibiotic resistance including genetic 
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determinants related to disinfectant resistance (qacEΔ1) and horizontal gene transfer 

(intI1). Metagenomic characterization of the resistome indicated increased types and 

abundances of ARGs related to antibiotic efflux in communities treated with free chlorine 

and zinc orthophosphate.  

Free chlorine disinfection selected for significantly higher abundance of ARGs 

corresponding to several different classes including aminoglycoside, carbapenem, 

cephamycin, cephalosporin, fluoroquinolone, macrolide, penam, phenicol, tetracycline, 

and peptide compared untreated controls. Similarly, phosphate-based corrosion inhibitors 

promoted increased abundances of ARGs belonging to the aminoglycoside, carbapenem, 

cephamycin, cephalosporin, fluoroquinolone, macrolide, tetracycline, penam, and 

phenicol classes. Chlorine exhibited the strongest selection for ARB, ARGs, and 

microbial communities according to HPC, qPCR, and metagenomic characterization of 

samples collected from the microcosms on day 7. Out of the corrosion inhibitors tested, 

zinc orthophosphate resulted in highest selection of ARB and associated ARGs compared 

to controls, sodium orthophosphate, and sodium silicate treatments. Sodium silicate 

dosage at 10 mg/L resulted in decreased bacterial growth as measured by heterotrophic 

plate counts and qPCR when compared to zinc and sodium orthophosphate treatments. 

The addition of corrosion inhibitors in the presence of chlorine selected for increased 

relative abundance of several microbial genera including Pseudomonas, Limnobacter, 

Porphyrobacter compared to untreated controls.  

The results of this study suggest that utilities using phosphate-based corrosion 

inhibitors and disinfectants may be preferentially selecting for bacterial communities with 

the increased occurrence of ARGs, ARB, and microbial genera containing opportunistic 
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pathogens. This is the first research to quantify the impacts of different corrosion 

inhibitors on AMR gene indicators and the antibiotic resistome. This area of research 

warrants further investigation due to the potential risk of humans acquiring antibiotic-

resistant infections related to the consumption of drinking water containing ARB and 

ARGs. However, there is currently no method to directly translate ARG abundance to 

human health risks. Another challenge is that ARGs occur naturally in aquatic 

ecosystems, and levels of prevailing resistance across different seasons and geographic 

locations can vary substantially. This highlights the need for further research to identify 

and quantify ARG targets and concentrations that may pose risks to human health in full-

scale DWDS and in source waters used for drinking water.  

Profiling the resistome and microbiome in aquatic environments is vital to gaining 

a better understanding of AMR dynamics and developing mitigation approaches that 

protect human and environmental health. Characterizing microbial communities and the 

resistome in DWDS and freshwater environments is critical to help track the 

dissemination and spread of AMR. Additionally, this type of research can help identify 

new variants of AMR genes and identify potential novel microorganisms. As bacterial 

communities are influenced by temporal and biogeographical factors, it is necessary to 

analyze the transport and fate of ARB and AMR genes in many different environments 

and geographical locations to help better understand the complex dynamics of AMR 

proliferation in natural and engineered systems. Engineering practices related to selection 

of pipe materials, corrosion inhibitors, and disinfectant regimes in DWDS should 

consider impacts on microbial communities and AMR. System parameters should be 

evaluated to determine their impacts on AMR indicator genes and the abundance of ARB, 
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which can contribute to horizontal gene transfer of resistance genes and the emergence of 

novel AMR genes. With increased monitoring and data related to AMR it is possible to 

identify a baseline of current AMR conditions for each DWDS, for example, and to 

evaluate its role in the dissemination and spread of ARB and ARGs in the environment. 

Further, improved surveillance of AMR’s genetic indicators in environmental reservoirs 

such as DWDS or freshwater sources would enable a more comprehensive understanding 

of the problem at a global scale.   
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6 CONCLUSIONS 

 

 

The possible risks to humans due to exposure of ARB and ARGs as a result of 

their passage through conventional drinking water has driven the effort to develop safe 

and effective DWDS. ARB and ARGs are considered emerging contaminants and are 

important factors in the spread of AMR. Increased monitoring of resistance determinants 

and microorganisms in the natural environment and engineered systems is required to 

gain a better understanding of AMR at a global scale, identify and track new resistance 

variants, and to develop engineering management programs that consider impacts on 

bacterial communities and the spread of AMR. The overall objective of this dissertation 

was to determine the impact of select metals and corrosion inhibitors on phenotypic and 

genotypic antibiotic resistance. The evaluation was completed by testing the impact of 

different corrosion inhibitors containing metals and disinfectants on the abundance of 

ARB and ARGs. The relationships were evaluated under varying water quality 

conditions, which provided essential information regarding the effects of different 

corrosion inhibitor addition and their specific impact on the antibiotic resistance profile in 

the microbial communities tested.  

6.1 Key findings 

The first objective was to evaluate the presence and abundance of ARGs, MRGs, 

and bacterial communities inside a full-scale water main. Droplet digital PCR (ddPCR) 

was used to quantify the abundance of ARGs and MRGs in different biofilm 

environments inside a full-scale pipe from an active distribution system. 16S rRNA gene 
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amplicon sequencing was conducted to determine the microbial communities present in 

the different biofilm environments. 

The results demonstrated that ARGs and class 1 integrons were detected in every 

biofilm sample type studied from a chloraminated cast iron drinking water main, 

indicating that pipes could serve as potential sources and important reservoirs for ARGs. 

Assays conducted with ddPCR resulted in more positive detections and lower detection 

limits for target genes compared to qPCR assays. Future studies should consider ddPCR 

for environmental samples containing inhibiting substances such as metals, humic acids, 

and other contaminants. Microbial communities varied among different biofilm sample 

locations and were dominated by corrosion-related genera including Mycobacterium, 

Geobacter, Gallionella, and Sphingomonas. Significant relationships were observed for 

the co-occurrence of ARGs, MRGs, intI1 and several microbial taxa. 

The second objective was to determine the impact of different corrosion inhibitors 

containing metals (zinc orthophosphate, sodium orthophosphate, and sodium silicate) on 

the absolute and relative abundance of ARB, ARGs, and MRGs in a source water for 

drinking water. The impact of different corrosion inhibitor types and corrosion inhibitor 

concentrations was assessed using laboratory-scale drinking water microcosms. ARB 

were quantified by heterotrophic plate counts from direct plating of water on media with 

clinically-relevant antibiotics and ARGs/MRGs were quantified using qPCR. 

The results in this study indicate that corrosion inhibitors such as zinc 

orthophosphate, which are commonly used in drinking water systems, can alter resistance 

profiles and promote the occurrence of ARB, ARGs, and intI1 in bacterial communities. 

Significant increases in absolute and relative abundance of ARB resistant to multiple 
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clinically-relevant antibiotics including CIP, SULF, TRIM, and VAN and ARGs 

including sul1, sul2, qacEΔ1, and intI1 were observed in response to zinc orthophosphate 

addition at concentrations typically found in distribution systems (~1 mg/L). The 

presence of zinc orthophosphate can lead to positive selective pressure for ARB, which 

increases the abundance and types of resistance genes they harbor. Zinc orthophosphate 

resulted in highest selection of ARB and associated ARGs compared to corrosion 

inhibitor-free controls, sodium orthophosphate, and sodium silicate treatment. Sodium 

silicate dosage at 10 mg/L resulted in decreased bacterial growth as measured by 

heterotrophic plate counts and qPCR, when compared to zinc and sodium orthophosphate 

treatments. High doses of silicates at 100 mg/L increased the growth of ARB resistant to 

RIF and VAN and several ARGs and MRGs including blaTEM, czcD, copA, intI1, and 

sul2 relative to untreated controls. High levels of zinc orthophosphate (10 mg/L) and 

sodium silicate (100 mg/L) exhibited similar selection of ARGs including intI1, sul2, and 

qacEΔ1 by day 7. The observed increases in total and relative abundance of ARB and 

ARGs suggests that enrichment for multiple types of antibiotic resistance occurred within 

the bacterial communities as a result of the addition of the selected corrosion inhibitors.  

The third objective was to determine the impact of corrosion inhibitor type and 

disinfectant type on the microbiome and entire collection of resistance genes in the 

microbial community (i.e., the resistome) in a source drinking water as determined by 

shotgun metagenomic sequencing. The approach to this study was to determine the 

impact of different types of corrosion inhibitors and disinfectants on the antibiotic 

resistome using laboratory-scale drinking water microcosms. The impact of different 

chemical additions were quantified by heterotrophic plate counts of ARB resistant to 
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clinically-relevant antibiotics and by quantification of target resistance genes using 

qPCR. Shotgun metagenomic sequencing was used to evaluate the impact of disinfectants 

and corrosion inhibitors on the antibiotic resistome and microbiome.  

The results presented in this study provide evidence that corrosion inhibitors such 

as zinc orthophosphate and disinfectants such as free chlorine exhibit significant changes 

to the antibiotic resistome and microbiome of a source water for drinking water. 

Disinfectants and corrosion inhibitors increased the occurrence of phenotypic resistance 

to multiple clinically-relevant antibiotics, and genotypic antibiotic resistance including 

genetic determinants related to disinfectant resistance (qacEΔ1) and horizontal gene 

transfer (intI1). Metagenomic characterization of the resistome indicated increased types 

and abundance of ARGs related to antibiotic efflux in communities treated with free 

chlorine and zinc orthophosphate. Free chlorine disinfection selected for significantly 

higher abundance of ARGs corresponding to several different classes including 

aminoglycoside, carbapenem, cephamycin, cephalosporin, fluoroquinolone, macrolide, 

penam, phenicol, tetracycline, and peptide compared untreated controls. Similarly, 

phosphate-based corrosion inhibitors promoted increased abundances of ARGs belonging 

to the aminoglycoside, carbapenem, cephamycin, cephalosporin, fluoroquinolone, 

macrolide, tetracycline, penam, and phenicol classes. Zinc orthophosphate resulted in 

highest selection of ARB and associated ARGs compared to controls, sodium 

orthophosphate, and sodium silicate treatments.  

This was the first research conducted on the impacts of corrosion inhibitors on 

antibiotic resistance using targeted and non-targeted molecular methods of analysis. This 

is an important development in understanding the dissemination of AMR in aquatic 
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environments such as DWDS. This research establishes that zinc and other metals such as 

iron can promote increased occurrence of ARB and ARGs in DWDS and the natural 

environment. This research can better the lives of many by providing the data needed to 

guide management and engineering decisions related to decreased risk of occurrence of 

bacteria and AMR genes in potable drinking water. Improved monitoring and 

surveillance of microbial communities and AMR indicator genes is required to develop a 

more comprehensive understanding of the fate and transport of ARB and ARGs through 

engineered systems such as DWDS. Engineering management decisions such as pipe 

material selection, corrosion inhibitor selection, and disinfectant type and dosage should 

be evaluated for their impact on the abundance of specific ARGs and/or ARB. Each 

DWDS is unique and contains microbial communities that have been preferentially 

selected for based on the geographical, temporal, spatial, and physicochemical factors 

inside of the system. In order to better identify potential areas for improvement or 

mitigation of ARB and ARGs in DWDS, improved monitoring of the transport and fate 

of bacteria and genes across different reservoirs such as freshwater source waters and 

drinking water is imperative.  

6.2 Future work recommendations and implications  

Future research on antibiotic resistance in DWDS should focus on monitoring the 

occurrence, fate, and distribution of ARB, ARGs, MRGs, and MGEs in multiple phases 

in full-scale systems. This information is critical for gaining a better understanding of the 

prevalence of antibiotic resistance in engineered systems capable of directly impacting 

human health. Factors such as metal pipe materials, corrosion inhibitors, and corrosion 
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products that develop in full-scale DWDS may select for bacteria harboring resistance to 

both metals and antibiotics. However, there is a lack of information regarding the 

abundance and fate of ARB, ARGs, MRGs, and MGEs in different phases of DWDS, 

including planktonic cells, biofilm, suspended solids, and loose corrosion deposits. 

Previous characterization of DWDS has primarily focused on microorganisms in the 

planktonic phase and studies documenting and quantifying ARB, ARGs, or MRGs in 

drinking water biofilms are lacking.  

In addition to full-scale studies, laboratory-scale studies such as those performed in 

this study are needed to distinguish the impacts of different pipe materials, corrosion 

inhibitors, and corrosion products on the abundance of resistance genes in drinking water 

and biofilms. These studies will provide critical information regarding the relationship of 

different system parameters and mechanisms of antibiotic resistance selection in 

engineered systems. Locations with high densities of bacteria, such as drinking water 

biofilms, provide conditions which are suitable for proliferation and exchange of 

resistance genes, and selective pressures (e.g., metals) may increase the abundance of 

resistance genes in these communities. Additional research is needed to address the 

research gaps related to the fate and transport of clinically-relevant resistance genes in 

DWDS.  

Fundamental information regarding the impacts of pipe materials, metals, and 

corrosion inhibitors on pathogens and abundance of resistance genes in DWDS is 

necessary to reduce the prevalence of antibiotic resistance in drinking water. Further 

research including QMRA is needed to determine the concentration of ARB or ARGs 

that may translate to human health risks (Ashbolt et al. 2013b). Additionally, research 
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that links ARGs to potential hosts and distinguishes extracellular DNA from intracellular 

DNA is also needed (Rice et al. 2020). The limited availability of exposure assessments 

and dose-response data regarding ARB and ARGs for different scenarios hinders the 

implementation of QMRA approach for evaluating human health risks in aquatic 

environments (Amarasiri et al. 2019). 

Lastly, the selection of target genes is also important for improving routine 

monitoring of AMR in full-scale distribution systems and aquatic environments. Future 

research and microbial surveillance efforts should consider monitoring clinically-relevant 

ARGs and other genes commonly linked to horizontal gene transfer processes. 

Laboratory and full-scale studies regarding pipe materials, corrosion inhibitors, and 

corrosion products are important for gaining insights into microbial functions and could 

be used to provide guidance to water utilities for making engineering decisions in DWDS 

that could reduce human health risks.  
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Appendices  

Appendix 3A.  Pipe Diagram  

Figure 3A. Diagram of different biofilm sample locations from chloraminated cast iron 

drinking water main. Sample locations included biomass surface (BS), pipe surface 

scrape (PS), tubercles (TUB), and under tubercles (UT). Biomass surface samples were 

collected in areas with increased corrosion deposits and/or biofilm development. Pipe 

surface samples were collected by swabbing areas of the pipe with the least amounts of 

biofilm development.  
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Appendix 3B. qPCR Methodology  

Table 3.1. Primers, annealing temperatures, amplification efficiencies, and R2 values 

for qPCR analysis of target genes 

 

 

 

 

 

 

 

 

 

Gene 

Annealing 

Temp. 

(°C) 

Forward Primer & Reverse Primer 

 

Size 

(bp) 

Efficiency 

Avg. (%) 
R2 Reference 

16S 

rRNA 
60 

F- (5'-CCTACGGGAGGCAGCAG-3')                 

R- (5'-ATTACCGCGGCTGCTGG-3') 

 

202 
 

98.5% 0.98 
(Muyzer et al. 

1993) 

blaSHV 64 
F- (5'-CGCTTTCCCATGATGAGCACCTTT-3')           

R- (5'-TCCTGCTGGCGATAGTGGATCTTT-3') 

 

94 
 

95% 1.0 (Xi et al. 2009) 

blaTEM 60 
F- (5'-GCKGCCAACTTACTTCTGACAACG-3')                  

R- (5'-CTTTATCCGCCTCCATCCAGTCTA-3') 

 

257 
 

107% 0.98 
(Marti et al. 

2013) 

copA 63 
F- (5'-ATGTGGAACSARATGCGKATGA-3')            

R- (5'-AGYTTCAGGCCSGGAATACG-3') 

 

193 
 

101% 0.99 
(Roosa et al. 

2014) 

czcD 55 
F- (5'-TCATCGCCGGTGCGATCATCAT-3')            

R- (5'-TGTCATTCACGACATGAACC-3') 

 

272 
 

99% 0.98 
(Roosa et al. 

2014) 

intI1 60 
F- (5'-CCTCCCGCACGATGATC-3')                  

R- (5'-TCCACGCATCGTCAGGC-3') 

 

280 
 

96.5% 1.0 
(Goldstein et 

al. 2001) 

sul1 60 
F- (5'-CCGTTGGCCTTCCTGTAAAG-3')            

R- (5'-TTGCCGATCGCGTGAAGT-3') 

 

67 
 

97% 1.0 
(Burch et al. 

2013) 

tet(L) 60 
F- (5'-TCGTTAGCGTGCTGTCATTC-3')            

R- (5'-GTATCCCCACCAATGTAGCCG-3') 

 

276 
 

99% 0.99 
(Ng et al. 

2001) 
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Appendix 3C. MIQE Guidelines/Checklist  

Table 3.2. MIQE Guidelines/Checklist 

 

Item to check Importance* Comments 

Experimental Design   

Definition of experimental and control groups E Yes 

Number within each group E Yes 

Assay carried out by core lab or investigator’s 

lab? 

D 
Yes 

Power analysis D NA 

Sample   

Description E Yes 

Volume or mass of sample processed E Yes 

Microdissection or microdissection E NA 

Processing Procedure E Yes 

If frozen – how and how quickly? E Yes 

If fixed – with what, how quickly? E NA 

Sample storage conditions and duration E Yes 

Nucleic acid extraction   

Quantification – instrument/method E Yes 

Storage conditions: temperature, 

concentrations, duration, buffer 

E 
Yes 

DNA or RNA quantification E Yes 

Quality/integrity, instrument/method, e.g. 

RNA integrity/R quality index and trace or 

3’:5’ 

E 

NA 

Template structural information E Yes 

Template modification (digestion, sonication, 

preamplification., etc.) 

E 
NA 

Template treatment (initial heating or 

chemical denaturation) 

E 
NA 

Inhibition dilution or spike E NA 

DNA contamination assessment of RNA 

sample 

E 
NA 

Details of DNase treatment where performed E NA 

Manufacturer of reagents used and catalogue 

number 

D 
Yes 

Storage of nucleic acid: temperature, 

concentration, duration, buffer 

E 
Yes 

RT (if necessary)   

cDNA priming method + concentration E NA 

One- or 2-step protocol E NA 

Amount of RNA used per reaction E NA 

Detailed reaction components and conditions E NA 

RT efficiency D NA 



174 

 

 

Estimated copies measures with and without 

addition of RT 

D 
NA 

Manufacturer of reagents used and catalogue 

number 

D 
NA 

Reaction volume (for 2-step RT reaction) D NA 

Storage of cDNA: temperature, concentration, 

duration, buffer 

D 
NA 

dPCR target information   

Sequence accession number E Yes 

Amplicon location D No 

Amplicon length E Yes 

In silico specificity screen (BLAST, etc.) E No 

Pseudogenes, retro-pseudogenes or other 

homologs 

D 
NA 

Sequence alignment D NA 

Secondary structure analysis of amplicon 

and GC content 

D 
NA 

Location of each primer by exon and intron E Yes 

Where appropriate, which splice variants are 

targeted? 

E 
No 

dPCR oligonucleotides   

Primer sequences and/or amplicon context 

sequence 

E 
Yes 

RTPrimerDB identification number D NA 

Probe sequences D NA 

Location and identity of any modifications E NA 

Manufacturer or oligonucleotides D Yes 

Purification method D NA 

dPCR protocol   

Complete reaction conditions E Yes 

Reaction volume and amount of 

RNA/cDNA/DNA 

E 
Yes 

Primer, (probe), Mg++ and dNTP 

concentrations 

E 
Yes 

Polymerase identity and concentration E Yes 

Buffer/kit catalogue no. and manufacturer E Yes 

Exact chemical constitution of the buffer D NA 

Additives (SYBR green I, DMSO, etc.) E Yes 

Plate/tubes catalogue No and manufacturer D Yes 

Complete thermocycling parameters E Yes 

Reaction setup D Yes 

Gravimetric or volumetric dilutions D Yes 

Total PCR reaction volume prepared D Yes 

Partition number E NA 

Individual partition  E NA 

Total volume of the partitions measured 

(effective reaction size) 

E NA 

Partition volume variance/SD D Yes 



175 

 

 

Comprehensive details and appropriate use of 

controls 

E Yes 

Manufacturer of dPCR instrument E Yes 

dPCR validation   

Optimization data for the assay D Yes 

Specificity (when measuring rare mutations, 

pathogen sequences etc.) 

E 
NA 

Limit of detection of calibration control D Yes 

If multiplexing, comparison with singleplex 

assays 

E 
NA 

Data analysis   

Mean copies per partition E Yes 

dPCR analysis program E Yes 

Outlier identification and disposition E NA 

Results of no-template controls E Yes 

Examples of positive(s) and negative 

experimental results as supplemental data 

E 
Yes 

Where appropriate, justification of number 

and choice of reference genes 

E 
NA 

Where appropriate, description of 

normalization method 

E 
NA 

Number and concordance of biological 

replicates 

D 
Yes 

Number and stage (RT of dPCR) of technical 

replicates 

E 
NA 

Repeatability (intraassay variation) E NA 

Reproducibility (interassay/user/lab etc. 

variation) 

D 
Yes 

Experimental variance or CI E Yes 

Statistical methods used for analysis E Yes 

Data submission using RDML (real-time PCR 

data markup language) 

D 
No 

* Essential information (E) submitted with the manuscript if applicable to the study.  

Desirable information (D) submitted if possible. NA = not applicable, Yes = provided in 

manuscript, No = not performed or provided in manuscript.  

*Table adapted from (Bustin et al. 2009).  
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Appendix 3D. 16S rRNA qPCR results  
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Figure 3D. Absolute abundance of 16S rRNA genes in different biofilm 

microenvironments from a cast-iron drinking water main as measured with droplet digital 

PCR (ddPCR) (Figure A) and quantitative PCR (qPCR) (Figure B). The biofilm 

microenvironments include biomass surface (BS), pipe surface (PS), tubercle (TUB), and 

under tubercle (UT). Each bar represents a different sample category which includes 

triplicate biofilm samples (n=3). The mean absolute gene abundance (left y-axis: log10 

gene copies/cm2, right y-axis: log10 gene copies/g) for each of the biofilm samples is 

plotted on the y-axis with one standard deviation. The right y-axis only applies to 

corrosion tubercle (TUB) samples, which were analyzed by weight. 
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Appendix 3E. ddPCR and qPCR comparison  
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Figure 3E. Comparison of absolute gene abundance of ARGs, MRGs, and intI1 as 

measured with ddPCR and qPCR assays. The biofilm microenvironments include 

biomass surface (BS), pipe surface (PS), tubercle (TUB), and under tubercle (UT). Each 

biofilm sample is also categorized by top (T) or bottom (B) pipe sample location. Each 

point represents the average of technical replicates for each biofilm sample (n=3). The 

mean absolute gene abundance (left y-axis: log10 gene copies/cm2, right y-axis: log10 gene 

copies/g) for each of the biofilm samples is plotted. The right y-axis only applies to 

corrosion tubercle (TUB) samples, which were analyzed by weight. ddPCR 

concentrations are denoted with solid black circles and qPCR concentrations are denoted 

with red squares. The quantification limit (QL) is also plotted for each gene. 
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Appendix 3F. Relative abundance of ARGs, MRGs, and intI1  
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Figure 3F. Relative abundance of antibiotic resistance genes, metal resistance genes, and 

intI1 in different biofilm microenvironments from a cast-iron drinking water main as 

measured with droplet digital PCR (ddPCR). The biofilm microenvironments include 

biomass surface (BS), pipe surface (PS), tubercle (TUB), and under tubercle (UT). Each 

biofilm sample is also categorized by top or bottom pipe sample location. Each point 

represents the average of technical replicates for each biofilm sample (n=3).  
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Appendix 3G. X-Ray Diffraction Patterns  

 

 

Figure 3G. Sample information for drinking water pipe samples (left). Shannon alpha 

diversity measurements of microbial communities characterized by 16S rRNA gene 

sequencing (right). Color of points denote biofilm microenvironments (sample type). 

Point labels indicate sample number as in table on left.   
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Appendix 3H. Spearman correlation between microbial genera  

 

Figure 3H. Relationships between relative abundance of most abundant bacterial genera 

observed in biofilm samples from cast iron water main. Color denotes the result from 

correlation analysis using Spearman’s rank sum correlation with Spearman’s rho value 

plotted for each comparison. The Rho value for statistically significant relationships are 

also included (p values < 0.05). The lowest available taxonomic classification for each 

observed ASV is provided. 
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Appendix 4A. qPCR Methodology  

 

Table 4.1A Primers, annealing temperatures, amplification efficiencies, and R2 

values for qPCR analysis of target genes 

 

 

 

 

 

 

 

 

 

Gene 

Anneal 

Temp. 

(°C) 

Forward Primer & Reverse Primer 

Size 

(bp) 
Efficiency 
Avg. (%) 

R2 Reference 

16S 

rRNA 
60 

F- (5'-CCTACGGGAGGCAGCAG-3')                 

R- (5'-ATTACCGCGGCTGCTGG-3') 

 
202 

 

98% 0.98-1.0 
(Muyzer et 

al. 1993) 

blaTEM 60 
F- (5'-GCKGCCAACTTACTTCTGACAACG-3')           

R- (5'-CTTTATCCGCCTCCATCCAGTCTA-3') 

 
257 

 

92% 0.99-1.0 
(Marti et al. 

2013) 

copA 63 
F- (5'-ATGTGGAACSARATGCGKATGA-3')            

R- (5'-AGYTTCAGGCCSGGAATACG-3') 

 
193 

 

90% 0.98-0.99 
(Roosa et al. 

2014) 

czcC 62 
F- (5’-AGCCGYCAGTATCCGGATCTGAC-3’) 

R- (5’-GTGGTCGCCGCCTGATAGGT-3’) 

 
418 90% 0.98-1.0 

(Roosa et al. 

2014) 

czcD 55 
F- (5'-TCATCGCCGGTGCGATCATCAT-3')            

R- (5'-TGTCATTCACGACATGAACC-3') 

 
272 

 

95% 0.98-0.99 
(Roosa et al. 

2014) 

intI1 60 
F- (5'-CCTCCCGCACGATGATC-3')                  

R- (5'-TCCACGCATCGTCAGGC-3') 

 
280 

 

95% 0.98-1.0 
(Goldstein et 

al. 2001) 

sul1 60 
F- (5'-CCGTTGGCCTTCCTGTAAAG-3')            

R- (5'-TTGCCGATCGCGTGAAGT-3') 

 
67 

 
92% 0.99-1.0 

(Burch et al. 
2013) 

sul2 60 
F- (5'- TCCGATGGAGGCCGGTATCTGG-3')            
R- (5'- CGGGAATGCCATCTGCCTTGAG-3') 

 
191 

 
90% 0.98-1.0 

(Muziasari et 
al. 2014) 

qacEΔ1 
60 

F- (5’-CCCCTTCCGCCGTTGT-3’)  

R- (5’-CGACCAGACTGCATAAGCAACA-3’) 

 

101 95% 0.98-1.0 
(Zhu et al. 

2013) 
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Appendix 4B. Day 0 Water Quality 

Table 4B. Day 0 Water Quality Characteristics for Microcosm Experiments 

 

Experiment Set 

Microcosm 

Set 1 

Microcosm 

Set 2 

Microcosm 

Set 3 

Sample Location 

DWTP 

Intake Pipe 

Atwater 

Beach 

Atwater 

Beach 

Description Day 0 Day 0 Day 0 

pH (standard units) 8.20 8.15 8.05 

Temp (°F) 62 63 50 

Silica (mg/L as SiO2) <1 2 4 

H2S (mg/L) <0.1 <0.1 <0.1 

Chloride (mg/L as Cl) 20 30 25 

Free Chlorine (mg/L as Cl) <0.1 <0.1 <0.1 

Total Chlorine (mg/L as Cl) <0.1 <0.1 <0.1 

Dissolved Oxygen (mg/L as O2) 13 9 13 

Ammonia (mg/L) 0.1 0.1 0.2 

Calcium Hardness (mg/L as CaCO3) 100 120 120 

Total Hardness (mg/L as CaCO3) 180 180 160 

Total Alkalinity (mg/L as CaCO3) 140 160 140 

Phenolphthalein Alkalinity (mg/L) 0 0 0 

Orthophosphate (mg/L as PO4) <0.05 0.05 0.25 

DOC (mg/L as C) 2.57 2.80 1.85 

 

Notes: DOC = dissolved organic carbon, mg/L = milligrams per liter, DWTP = drinking 

water treatment plant, CaCO3 = calcium carbonate, C = carbon, °F = degrees Fahrenheit 
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Appendix 4C. Day 3 and 7 Water Quality  

Table 4C. Day 3 and 7 Water Quality for Microcosm Experiments 

 

 

 

Notes:  DOC = dissolved organic carbon, mg/L = milligrams per liter, NA = not 

applicable, PO4 = orthophosphate 
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Appendix 4D. Relative abundance of ARB 
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Figure 4D. Relative abundance of heterotrophic plate counts observed on Day 3 for microcosm 

experiments. The average relative abundance of antibiotic resistant bacteria (ARB) based on 

direct plating of from microcosms containing different types and concentrations of corrosion 

inhibitors. The relative abundance of ARB is shown on the y-axis. The type of antibiotic is 

denoted on the x-axis. Corrosion inhibitor type is indicated by color. Different experimental 

conditions are plotted on different graphs including Set 1 – Normal concentration (1X) of CI’s, 

lake water collected from DWTP (A - top), Set 2 – Normal concentration (1X) of CI’s, lake water 

collected at beach (B - middle), and Set 3 – High concentration (10X) of CI’s, lake water 

collected at beach (C - bottom). 



185 

 

 

AMP SULF RIF TET CIP

10 -5

10 -4

10 -3

10 -2

10 -1

100

Day 7 Relative Abundance

Antibiotic

L
o

g
1
0
  

(A
R

B
/T

H
B

)

Control

SS

NaPO4

ZnPO4

 

A
M

P
C
IP

R
IF

S
U
LF

TET

TR
IM

V
A
N

10 -3

10 -2

10 -1

100

Day 7 Relative Abundance

Antibiotic

L
o

g
1
0
  

(A
R

B
/T

H
B

)

Control

SS

NaPO4

ZnPO4

 

AMP CIP RIF SULF TET TRIM VAN

10 -4

10 -3

10 -2

10 -1

100

Day 7 Relative Abundance

Antibiotic

L
o

g
1
0
  

(A
R

B
/T

H
B

)

Control

SS

NaPO4

ZnPO4

 

Figure 4E Relative abundance of heterotrophic plate counts observed on Day 7 for 

microcosm experiments. The average relative abundance of antibiotic resistant bacteria 

(ARB) based on direct plating of from microcosms containing different types and 

concentrations of corrosion inhibitors. The relative abundance of ARB is shown on the y-

axis. The type of antibiotic is denoted on the x-axis. Corrosion inhibitor type is indicated 

by color. Different experimental conditions are plotted on different graphs including Set 

1 – Normal concentration (1X) of CI’s, Drinking water collected from DWTP (top), Set 2 

– Normal concentration (1X) of CI’s, surface water collected at beach (middle), and Set 3 

– High concentration (10X) of CI’s, surface water collected at beach (bottom). 
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Table 4F. Summary of differences of absolute abundance (Log10 scale) of total 

heterotrophic bacteria (R2A) and antibiotic resistant bacteria (ARB) measurements 

obtained from direct plating onto R2A-media with antibiotics. Values represent the 

different between the absolute abundance of untreated controls and the average of 

triplicate treatment reactors for each condition tested. 

 

Treatment 
Type 

Conc. 
(mg/L) 

Source 
Water 

Day R2A AMP CIP RIF SULF TET TRIM VAN 

SS 10 SW 3 -0.237 -0.130 0.174 -0.206 -0.046 -0.239 NA NA 

NaPO4 1 SW 3 -0.370 0.097 0.291 -0.082 -0.247 -0.653 NA NA 

ZnPO4 1 SW 3 0.011 0.039 0.125 0.266 -0.062 -0.349 NA NA 

SS 10 SW 7 -0.210 -0.143 -0.227 0.107 0.087 0.593 NA NA 

NaPO4 1 SW 7 -0.763 0.097 -0.080 0.130 0.710 1.393 NA NA 

ZnPO4 1 SW 7 -0.280 -0.003 0.000 -0.157 0.127 -0.333 NA NA 

  

AVG -0.308 -0.007 0.040 0.010 0.115 0.093 NA NA 

SD 0.340 0.565 0.423 0.352 0.820 0.822 NA NA 

SS 10 SW 3 0.284 0.069 0.110 0.252 0.037 -0.564 0.064 0.078 

NaPO4 1 SW 3 0.554 0.527 0.484 1.082 0.970 -0.292 0.559 0.810 

ZnPO4 1 SW 3 0.771 0.979 1.080 1.093 1.449 0.858 0.713 1.369 

SS 10 SW 7 0.439 0.124 0.420 0.308 0.062 0.386 0.161 0.270 

NaPO4 1 SW 7 0.292 0.269 0.442 0.172 0.216 0.332 0.179 0.268 

ZnPO4 1 SW 7 0.663 0.774 0.857 0.722 1.069 0.572 0.950 1.290 

  
AVG 0.501 0.457 0.565 0.605 0.634 0.215 0.438 0.681 

SD 0.291 0.475 0.457 0.542 0.629 0.569 0.363 0.570 

SS 100 SW 3 0.425 0.261 0.296 1.719 0.732 -0.713 0.704 0.800 

NaPO4 10 SW 3 0.585 0.706 0.481 0.483 1.087 -0.016 0.619 1.000 

ZnPO4 10 SW 3 0.697 0.383 0.133 0.683 0.999 0.593 0.927 1.429 

SS 100 SW 7 0.654 0.462 0.727 1.667 0.486 0.235 0.923 1.243 

NaPO4 10 SW 7 0.020 0.126 0.458 -0.013 0.214 -0.167 0.412 0.438 

ZnPO4 10 SW 7 0.962 0.958 0.979 1.222 1.256 1.535 0.956 2.000 

  

AVG 0.557 0.483 0.512 0.960 0.796 0.245 0.757 1.152 

SD 0.468 0.453 0.345 0.684 0.421 0.787 0.351 0.602 

 

Notes: NA = not analyzed, SW = surface water, SS = sodium silicate, ZnPO4 = zinc 

orthophosphate, NaPO4 = sodium orthophosphate, mg/L = milligrams per liter, AVG = 

average of absolute abundance measurements, SD = standard deviation of absolute 

abundance measurements. Yellow highlight indicates any change in relative abundance 

that was greater than the observed standard deviation. Bold values indicate each result 

that was statistically different compared to the untreated control (all p values < 0.05).  
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Table 4G. Summary of differences of absolute abundance (Log10 scale) of total bacterial 

biomass (16S rRNA), antibiotic resistance genes (ARGs), and metal resistance genes 

(MRGs) measurements obtained from qPCR. Values represent the difference between the 

average (n=3) absolute abundance of untreated controls and the average absolute 

abundance of treatment reactors for each condition tested (n=3). 

 

 

    

Average Log10 Difference in Absolute Abundance for Target Genes with qPCR (Treatment - 
Control) 

 Type 
Conc. 
(mg/L) 

Source 
Water 

Day 
16S 

rRNA 
blaTE

M 
czcC czcD copA intI1 sul1 sul2 qacEΔ1 

SS 10 SW 3 0.050 -0.028 0.385 0.160 0.000 -0.264 -0.007 -0.52 -0.206 

NaPO4 1 SW 3 0.541 0.448 0.278 0.429 -0.045 0.279 0.13 0 0.274 

ZnPO4 1 SW 3 0.528 0.306 0.312 0.397 -0.121 0.414 0.167 -0.867 0.355 

SS 10 SW 7 0.386 -0.147 0.066 0.166 0.229 0.381 -0.083 -0.391 0.425 

NaPO4 1 SW 7 0.226 0.051 -0.203 -0.104 0.029 -0.024 -0.353 -0.396 0.017 

ZnPO4 1 SW 7 0.122 0.017 -0.038 -0.034 0.000 0.357 -0.412 0 0.426 

 

AVG 0.309 0.081 0.088 0.169 0.002 0.190 -0.078 -0.479 0.215 

SD 0.263 0.280 0.234 0.256 0.192 0.357 0.266 0.269 0.345 

SS 10 SW 3 0.248 -0.021 0.185 0.220 0.125 0.091 0.125 -0.077 0.226 

NaPO4 1 SW 3 0.256 -0.349 0.040 0.109 -0.103 0.178 0.292 0.144 0.193 

ZnPO4 1 SW 3 0.120 -0.216 -0.152 -0.142 -0.172 0.655 1.083 0.224 1.198 

SS 10 SW 7 0.242 0.288 0.158 0.193 0.076 0.179 0.087 -0.045 0.303 

NaPO4 1 SW 7 0.277 0.085 0.104 0.194 0.129 0.216 0.484 -0.077 0.381 

ZnPO4 1 SW 7 0.468 0.063 0.509 0.490 0.334 1.185 0.889 0.817 1.452 

 AVG 0.268 -0.005 0.141 0.177 0.065 0.417 0.493 0.134 0.626 

SD 0.195 0.247 0.328 0.298 0.225 0.445 0.456 0.371 0.588 

SS 100 SW 3 -1.063 -0.464 -0.650 -0.265 -0.795 -0.523 -0.969 -0.636 -0.612 

NaPO4 10 SW 3 -0.012 -0.218 0.062 0.087 -0.330 -0.008 0.079 -0.143 -0.136 

ZnPO4 10 SW 3 0.182 -0.195 0.138 0.023 -0.329 0.765 1.182 0.555 1.224 

SS 100 SW 7 -1.502 -0.767 -0.856 -0.648 -0.099 -0.675 -0.92 -0.206 -0.771 

NaPO4 10 SW 7 0.089 -0.420 -0.129 0.040 0.252 0.155 0.478 0.120 0.005 

ZnPO4 10 SW 7 0.506 -0.359 -0.170 -0.002 0.267 1.493 1.988 1.005 1.829 

  

AVG -0.300 -0.404 -0.268 -0.127 -0.172 0.201 0.306 -0.041 0.256 

SD 0.749 0.218 0.407 0.274 0.401 0.772 1.108 0.594 0.991 

 

Notes: SW = surface water, SS = sodium silicate, ZnPO4 = zinc orthophosphate, NaPO4 

= sodium orthophosphate, mg/L = milligrams per liter, AVG = average of absolute 

abundance measurements, SD = standard deviation of absolute abundance measurements. 

Yellow highlight indicates any change in relative abundance that was greater than the 

observed standard deviation. Bold values indicate each result that was statistically 

different compared to the untreated control (all p values < 0.05).  
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Appendix 5A. qPCR Methodology 

Table 5A. Primers, annealing temperatures, amplification efficiencies, and R2 values for 

qPCR analysis of target genes. 

 

 

 

Appendix 5B. Day 0 Water Quality 

 

Table 5B. Day 0 Water Quality Observations  

Experiment Set: Set 1 Set 2 Set 3 

Sample Location Beach Beach Beach 

Description Day 0 Day 0 Day 0 

pH  8.22 8.12 8.14 

Temp (°F) 42 68 66 

Silica (mg/L) 2 2 2 

H2S (mg/L) <0.1 <0.1 <0.1 

Chloride (mg/L) 30 20 20 

DO (mg/L) 15 8 14 

Ammonia (mg/L) 0.1 0.1 0.1 

Calcium Hardness (mg/L) 80 100 100 

Total Hardness (mg/L) 160 180 180 

Total Alkalinity (mg/L) 120 160 100 

Phenolphthalein Alkalinity (mg/L) 0 0 0 

Orthophosphate (mg/L) 0.20 0.10 0.11 

DOC (mg/L) 2.11 2.54 2.30 

Notes: DOC = dissolved organic carbon, DO = dissolved oxygen, mg/L = milligrams per 

liter  

Gene 

Annea

l 

Temp.  
(°C) 

Forward Primer & Reverse Primer 

 

Size (bp) 
Efficiency 
Average 

(%) 

R2 Reference 

16S 
rRNA 

60 
F- (5'-CCTACGGGAGGCAGCAG-3')                 
R- (5'-ATTACCGCGGCTGCTGG-3') 

 

202 

 

103% 0.99-1.0 
(Muyzer et al. 

1993) 

intI1 60 
F- (5'-CCTCCCGCACGATGATC-3')                  

R- (5'-TCCACGCATCGTCAGGC-3') 

 

280 

 
95% 0.98-1.0 

(Goldstein et 

al. 2001) 

qacEΔ1 
60 

F- (5’-CCCCTTCCGCCGTTGT-3’)  

R- (5’-CGACCAGACTGCATAAGCAACA-3’) 

 

101 
96% 0.96-1.0 

(Zhu et al. 

2013) 
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Appendix 5C. Days 3 and 7 Water Quality 

Table 5C. Days 3 and 7 Water Quality Observations 

Sample Name Day pH 
Total/Free 
Chlorine 

(mg/L as Cl) 

PO4 
(mg/L) 

Silica 
(mg/L) 

DOC (mg/L) 

Control (Set 1) 3 8.23 - 8.30 ND / ND NA NA 1.83 

Ammonia 3 8.20 - 8.31 ND / ND NA NA 1.78 

Chloramine 3 8.20 - 8.36 0.9 / 0.3 NA NA 1.93 

Free Chlorine 3 8.27 - 8.35 0.2 / 0.1 NA NA 2.10 

Control (Set 1) 7 8.19 - 8.28 ND / ND NA NA 1.70 

Ammonia 7 8.14 - 8.25 ND / ND NA NA 1.75 

Chloramine 7 8.28 - 8.33 0.8 / 0.3 NA NA 1.91 

Free Chlorine 7 8.22 - 8.26 0.2 / ND NA NA 2.09 

Control (Set 2) 3 8.15 - 8.16 ND / ND 0.03 2 2.33 

SS + Free Cl 3 7.92 - 7.96 0.3 / ND 0.03 12 3.03 

NaPO4 + Free Cl 3 8.04 - 8.06 0.25 / ND 1.05 2 3.33 

ZnPO4 + Free Cl 3 7.95 - 7.98 0.25 / ND 0.95 2 3.33 

Control (Set 2) 7 8.10 - 8.15 ND / ND 0.04 2 2.30 

SS + Free Cl 7 7.94 - 7.98 0.1 / ND 0.04 12 2.68 

NaPO4 + Free Cl 7 8.15 - 8.18 0.15 / ND 1.05 2 2.54 

ZnPO4 + Free Cl 7 8.15 - 8.21 0.1 / ND 0.90 2 2.51 

Control - Set 3 3 7.80-7.93 NA 0.08 2 2.02 

SS + NOM 3 8.16-8.26 NA 0.16 12 5.99 

NaPO4 + NOM 3 7.65-7.97 NA 1.01 2 5.84 

ZnPO4 + NOM 3 7.79-8.03 NA 1.01 2 6.07 

Control (Set 3) 7 7.69-7.82 NA 0.2 2 1.96 

SS + NOM 7 8.5-8.62 NA 0.2 12 5.78 

NaPO4 + NOM 7 8.06-8.2 NA 1.1 2 6.17 

ZnPO4 + NOM 7 7.98-8.15 NA 1.0 2 5.96 

Notes: SS = sodium silicate, NaPO4 = sodium orthophosphate, ZnPO4 = zinc 

orthophosphate, Cl = chlorine, NOM = natural organic matter, mg/L = milligrams per 

liter, ND = not detected, NA = not applicable.  
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Appendix 5D. Relative abundance Day 3 as determined by heterotrophic plate 

counts of antibiotic resistant bacteria 
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Figure 5D. Relative abundance of heterotrophic plate counts observed on Day 3 for 

microcosm experiments. The average relative abundance of antibiotic resistant bacteria 

(ARB) based on direct plating of from microcosms containing different types and 

concentrations of corrosion inhibitors. The relative abundance of ARB is shown on the y-

axis. The type of antibiotic is denoted on the x-axis. Corrosion inhibitor and disinfectant 

type is indicated by color. Different experimental conditions are plotted on different 

graphs including Set 1 – Disinfectants, (A - top), Set 2 – Corrosion Inhibitors + free 

chlorine (1.6 mg/L) (B - middle), and Set 3 – Corrosion Inhibitors + natural organic 

matter (NOM) (C - bottom). 
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Appendix 5E. Relative abundance of ARB on Day 7 as determined by HPC 
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Figure 5E. Relative abundance of heterotrophic plate counts observed on Day 7 for 

microcosm experiments. The average relative abundance of antibiotic resistant bacteria 

(ARB) based on direct plating of from microcosms containing different types and 

concentrations of corrosion inhibitors. The relative abundance of ARB is shown on the y-

axis. The type of antibiotic is denoted on the x-axis. Corrosion inhibitor and disinfectant 

type is indicated by color. Different experimental conditions are plotted on different 

graphs including Set 1 – Disinfectants, (A - top), Set 2 – Corrosion Inhibitors + free 

chlorine (1.6 mg/L) (B - middle), and Set 3 – Corrosion Inhibitors + natural organic 

matter (NOM) (C - bottom). 

 

Appendix 5F. Metagenomic sample information 

Table 5F. Sample information and results for samples submitted for shotgun 

metagenomic sequencing (n=45).  

Sample Description 

Number of 
Paired-End 
Reads 

GC % of 
Trimmed 
reads 

GC % of 
assembled 
contigs # Contigs N50 

A1 D0 - set 1 16,297,536 50.5% 44.9% 4,196 4,840 

A2 D0 16,468,630 50.7% 45.1% 4,185 5,117 

A3 D0 16,590,212 51.2% 42.9% 2,376 4,060 

A1 D7 16,569,164 56.1% 58.0% 5,471 5,507 

A2 D7 15,794,908 56.2% 57.6% 6,636 3,764 

A3 D7 17,915,522 56.4% 57.7% 6,974 4,901 

NH4 D7 13,826,700 56.2% 57.0% 5,263 3,951 

NH4 D7 9,413,722 57.7% 58.4% 2,242 3,652 

NH4 D7 13,250,862 56.8% 57.0% 5,594 4,073 

NH2CL D7 15,463,218 53.7% 52.0% 6,409 5,677 

NH2CL D7 16,378,490 49.5% 43.9% 5,389 4,981 

NH2CL D7 8,188,532 49.7% 42.1% 3,037 4,397 

CL D7 11,526,512 58.8% 58.6% 4,133 17,082 

CL D7 14,993,792 56.7% 57.5% 6,791 13,171 

CL D7 17,398,916 57.6% 56.4% 6,890 14,453 

A1 D0 Set 2 14,076,858 51.1% 46.3% 6,797 5,407 

A2 D0 7,709,842 51.5% 45.5% 3,341 4,644 

A3 D0 12,667,586 52.3% 47.6% 4,666 6,409 

A1 D7 15,758,950 56.1% 53.3% 6,660 6,423 

A2 D7 16,437,170 57.4% 54.8% 7,038 8,177 

A3 D7 13,000,284 57.9% 54.5% 5,936 7,096 

SS D7 + CL 14,775,600 59.7% 60.3% 3,984 32,488 
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Sample Description 

Number of 
Paired-End 
Reads 

GC % of 
Trimmed 
reads 

GC % of 
assembled 
contigs # Contigs N50 

SS D7 + CL 13,098,276 60.4% 62.1% 4,652 12,487 

SS D7 + CL 12,227,176 60.1% 58.5% 1,894 85,091 

NaPO4 D7 + CL 14,641,140 63.0% 63.6% 4,585 16,508 

NaPO4 D7 + CL 12,877,932 62.1% 62.2% 5,098 16,250 

NaPO4 D7 + CL 14,819,628 63.2% 63.5% 4,381 34,159 

ZnPO4 D7 + CL 13,052,686 57.5% 64.0% 4,982 14,443 

ZnPO4 D7 + CL 14,344,580 62.7% 62.7% 6,419 16,584 

ZnPO4 D7 + CL 14,378,552 57.4% 62.1% 4,555 27,499 

A1 D0 Set 3 11,468,748 53.9% 44.8% 1,431 4,908 

A2 D0 16,185,190 51.4% 43.9% 1,678 4,856 

A3 D0 12,264,656 53.7% 45.1% 1,471 4,194 

A1 D7 12,065,530 56.7% 54.9% 1,627 3,112 

A2 D7 14,475,294 56.4% 50.2% 1,853 3,295 

A3 D7 12,175,818 57.1% 54.3% 1,256 2,711 

SS D7 + NOM 13,519,950 57.5% 45.1% 1,009 4,014 

SS D7 + NOM 12,658,720 57.7% 51.6% 1,437 3,118 

SS D7 + NOM 14,482,078 57.4% 49.7% 1,228 3,377 

NaPO4 D7 + NOM 14,984,032 57.5% 48.7% 1,264 3,535 

NaPO4 D7 + NOM 11,434,986 57.5% 54.0% 988 3,098 

NaPO4 D7 + NOM 12,538,658 58.2% 45.8% 724 4,420 

ZnPO4 D7 + NOM 10,426,364 54.9% 53.9% 1,754 3,639 

ZnPO4 D7 + NOM 10,017,648 55.2% 55.6% 2,212 3,924 

ZnPO4 D7 + NOM 11,037,074 54.1% 53.8% 2,902 3,895 

Notes: NH4 = ammonia, NH2Cl = chloramine, Cl = chlorine, SS = sodium silicate, 

NaPO4 = sodium orthophosphate, ZnPO4 = zinc orthophosphate, NOM = natural organic 

matter.  
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Appendix 5G. ARG relative abundance by resistance mechanism 
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Figure 5G. Relative abundance of ARGs classified by resistance mechanism as 

determined by CARD. ARG abundance was normalized to total metagenomic reads for 

each sample. ARGs are grouped by the mechanism which they confer resistance. The y-

axis represents the mean relative abundance of ARGs classified for each sample type for 

triplicate samples. The x-axis represents the different experimental conditions. The 

sample collection day is denoted by D0 (day 0) and D7 (day 7). 

 


	Impact of Corrosion Inhibitors and Metals on Antibiotic Resistance in Drinking Water Distribution Systems
	Recommended Citation

	tmp.1650392372.pdf.4dpBx

