
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Dissertations (1934 -) Dissertations, Theses, and Professional
Projects

Acceleration of Computational Geometry Algorithms for High Acceleration of Computational Geometry Algorithms for High

Performance Computing Based Geo-Spatial Big Data Analysis Performance Computing Based Geo-Spatial Big Data Analysis

Anmol Paudel
Marquette University

Follow this and additional works at: https://epublications.marquette.edu/dissertations_mu

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Paudel, Anmol, "Acceleration of Computational Geometry Algorithms for High Performance Computing
Based Geo-Spatial Big Data Analysis" (2022). Dissertations (1934 -). 1219.
https://epublications.marquette.edu/dissertations_mu/1219

https://epublications.marquette.edu/
https://epublications.marquette.edu/dissertations_mu
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/dissertations_mu?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F1219&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F1219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/dissertations_mu/1219?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F1219&utm_medium=PDF&utm_campaign=PDFCoverPages

ACCELERATION OF COMPUTATIONAL GEOMETRY ALGORITHMS
FOR HIGH PERFORMANCE COMPUTING BASED

GEO-SPATIAL BIG DATA ANALYSIS

by

Anmol Paudel, B.E., M.S.

A Dissertation submitted to the Faculty of the Graduate School,

Marquette University,

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

Milwaukee, Wisconsin

May 2022

ABSTRACT
ACCELERATION OF COMPUTATIONAL GEOMETRY ALGORITHMS

FOR HIGH PERFORMANCE COMPUTING BASED
GEO-SPATIAL BIG DATA ANALYSIS

Anmol Paudel, B.E., M.S.

Marquette University, 2022

Geo-Spatial computing and data analysis is the branch of computer science
that deals with real world location-based data. Computational geometry algorithms
are algorithms that process geometry/shapes and is one of the pillars of geo-spatial
computing. Real world map and location-based data can be huge in size and the
data structures used to process them extremely big leading to huge computational
costs. Furthermore, Geo-Spatial datasets are growing on all V’s (Volume, Variety,
Value, etc.) and are becoming larger and more complex to process in-turn
demanding more computational resources. High Performance Computing is a way
to breakdown the problem in ways that it can run in parallel on big computers with
massive processing power and hence reduce the computing time delivering the same
results but much faster.

This dissertation explores different techniques to accelerate the processing of
computational geometry algorithms and geo-spatial computing like using Many-core
Graphics Processing Units (GPU), Multi-core Central Processing Units (CPU),
Multi-node setup with Message Passing Interface (MPI), Cache optimizations,
Memory and Communication optimizations, load balancing, Algorithmic
Modifications, Directive based parallelization with OpenMP or OpenACC and
Vectorization with compiler intrinsic (AVX). This dissertation has applied at least
one of the mentioned techniques to the following problems. Novel method to
parallelize plane sweep based geometric intersection for GPU with directives is
presented. Parallelization of plane sweep based Voronoi construction, parallelization
of Segment tree construction, Segment tree queries and Segment tree-based
operations has been presented. Spatial autocorrelation, computation of getis-ord
hotspots are also presented. Acceleration performance and speedup results are
presented in each corresponding chapter.

i

ACKNOWLEDGMENTS

Anmol Paudel, B.E., M.S.

First and foremost, I would like to acknowledge and express my utmost
gratitude to my Ph.D. advisor Dr. Satish Puri for his continuous mentorship and
invaluable guidance throughout my graduate studies. I would then like to thank the
members of my committee, Dr. Sheikh Iqbal Ahamed and Dr. Praveen Madiraju for
their time, comments, feedback and encouragement. I would also like to extend my
gratitude to Dr. Stephen J. Merrill, Dr. Gary Krenz, Dr. Daniel Rowe and Dr.
Thomas J. Schwarz for their continuous support during my graduate studies.

My parents deserve all the credit for what I am able to accomplish today. I
would like to thank my Mom Sangita, Dad Bishnu and Brother Aniket for always
supporting, encouraging and loving me.

I would also like to acknowledge and express gratitude to my cousin
big-brother Lokesh and his wife Barsha and their kids for their love and support.

I would not have made it without my awesome group of friends here in
Milwaukee who became my second family. I would like thank all of them for their
friendship and support.

I would also like to thank all my mentors during my various research
internships and the collaborators I worked with.

Furthermore, I would like to thank all my teachers, mentors, friends,
relatives and extended family back home who always wished me best.

The research carried out in this dissertation is partly supported by the
National Science Foundation (NSF) CRII Grant No.1756000. Computing resources
were partly made available via the XSEDE system and the high-performance
computing facility ”Raj” funded by the NSF award CNS-1828649 and Marquette
University.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . i

LIST OF TABLES . vi

LIST OF FIGURES . viii

LIST OF ALGORITHMS . x

LIST OF CODE LISTINGS . xi

CHAPTER 1: INTRODUCTION AND BACKGROUND 1

1.1 Motivation . 2

1.2 Broader Impact . 3

1.3 Background (Acceleration Techniques) 4

1.3.1 Directive Based Parallelization 4

1.3.2 GPU Parallelization . 4

1.3.3 Memory Movement Optimization 5

1.3.4 Cache Based Optimizations 6

1.3.5 Communication Avoiding . 7

1.3.6 Intrinsics and Vectorization 8

1.4 Background (Computational Geometry) 8

CHAPTER 2: ACCELERATION OF PLANE SWEEP ALGORITHM FOR
GEOMETRIC INTERSECTION . 14

2.1 Introduction . 14

2.2 Background and Related Work . 16

2.2.1 Segment Intersection Problem 17

2.2.2 Naive Brute Force Approach 18

2.2.3 Plane Sweep Algorithm . 20

2.2.4 Existing work on parallelizing segment intersection algorithms 21

2.2.5 OpenMP and OpenACC . 23

2.3 Parallel Plane Sweep Algorithm . 24

iii

2.3.1 Algorithm Correctness . 27

2.4 Algorithmic Analysis . 28

2.5 Directive-based Implementation Details 28

2.6 Experimental Results . 33

2.6.1 Experimental Setup . 33

2.6.2 Performance of Brute Force Parallel Algorithm 35

2.6.3 Using Generated Dataset: . 35

2.6.4 Performance of Parallel Plane Sweep Algorithm 36

2.6.5 Speedup and Efficiency comparisons 37

2.7 Conclusion and Future Work . 39

CHAPTER 3: ACCELERATION OF PLANE SWEEP BASED VORONOI
COMPUTATION . 41

3.1 Introduction . 41

3.2 Related Work . 45

3.3 Plane Sweep . 49

3.4 Fortune’s Algorithm . 50

3.4.1 Unpacking Fortune’s Algorithm 56

3.5 Results . 61

3.6 Future Direction . 63

3.6.1 Backtracking . 63

3.6.2 Transformation . 64

3.6.3 Gridding . 65

3.6.4 Sorting . 66

3.6.5 Heuristics . 67

3.6.6 Machine Learning . 67

3.7 Conclusion . 67

CHAPTER 4: ACCELERATION OF SEGMENT TREE GEOMETRIC
DATA STRUCTURE . 69

4.1 Introduction . 69

iv

4.2 Contributions of this chapter: . 72

4.3 Background and Related Work . 73

4.4 Design and Implementation . 76

4.5 Building Segment Trees . 76

4.5.1 Segment Tree Construction on CPU 81

4.5.2 Time and Space Complexity 81

4.5.3 Cache Efficient Segment Tree 83

4.6 Communication Avoiding Distributed Segment Tree 85

4.6.1 Building on GPU . 86

4.6.2 Implementing Parallel Stabbing Query 88

4.7 Geometric Operations using Segment Tree 89

4.7.1 SweepLine with Segment Trees 89

4.7.2 MBR Intersections with Segment Trees 89

4.7.3 Point-in-MBR Test . 90

4.8 Experimental Results . 90

4.9 Conclusion and Future Work . 100

CHAPTER 5: ACCELERATION OF SPATIAL AUTOCORRELATION
COMPUTATION . 101

5.1 Introduction . 102

5.2 Motivation and Background . 103

5.2.1 Spatial autocorrelation . 104

5.2.2 Common Dataset Structures 107

5.2.3 Parallelization . 108

5.2.4 Related Work . 110

5.3 Parallel formulation of spatial autocorrelation 110

5.3.1 Algorithm . 112

5.3.2 Complexity . 113

5.3.3 Weight Matrix . 113

5.3.4 Spatial Sorting . 115

5.4 Acceleration Techniques . 117

v

5.4.1 Cache Access Optimization 117

5.4.2 Weight Matrix Storage Optimization 117

5.4.3 OpenMP Parallelization . 118

5.4.4 OpenACC Parallelization . 118

5.4.5 CUDA Parallelization . 118

5.4.6 MPI Graph Topology (Distributed Memory) 119

5.4.7 Communication Efficiency on Distributed Memory 121

5.4.8 Vectorization with compiler intrinsics 122

5.4.9 OpenMP & Vectorization . 123

5.4.10 MPI & Multiple GPU (CUDA) 125

5.4.11 Rapid Recalculation . 126

5.5 Experimental Results . 128

5.5.1 Real World COVID Data . 128

5.5.2 Simulated/Generated Datasets 129

5.5.3 Hardware Description . 130

5.5.4 Performance Engineering Results 131

5.6 Conclusion and Future Direction . 134

CHAPTER 6: CONCLUSION AND FUTURE DIRECTION 136

BIBLIOGRAPHY . 138

vi

LIST OF TABLES

2.1 Dataset and corresponding number of intersections 34

2.2 Description of real-world datasets. 35

2.3 Execution time by CGAL, naive Sequential vs OpenACC on sparse lines 36

2.4 Performance comparison of polygon intersection operation using

sequential and parallel methods on real-world datasets. 37

2.5 Parallel plane sweep on sparse lines with OpenMP 37

2.6 CGAL vs OpenACC Parallel Plane Sweep on sparse lines 37

2.7 Speedup with OpenACC when compared to CGAL for different datasets 37

3.1 Timings of running the code in sequential and with OpenMP 61

4.1 OpenMP Build Time (in seconds) . 92

4.2 OpenMP Build Speedup(x) compared to 1T 92

4.3 OpenMP Query Time (in seconds) 93

4.4 OpenMP Query Throughput (queries per second) 93

4.5 OpenMP Query Speedup(x) compared to 1T 94

4.6 OpenACC Build and Query Time (in seconds) and Speedup

compared to sequential run . 95

4.7 OpenACC Build and Query Speedup(x) compared to 1T sequential . 95

4.8 Speedup for 100K dataset on varying Query size 97

4.9 Comparison of Regular and Cache Optimized Time (in seconds) and

speedup(x) . 97

4.10 Finding MBR pairs from cities and park data with Segment Tree

[Only Query Time (in seconds)] . 98

4.11 Point in Polygon MBR for 100K dataset on varying Query size [Only

Query Time (in seconds)] . 99

5.1 Parallelization Method and Corresponding Best Speedup (25K dataset) 131

5.2 OpenMP Speedup and Efficiency . 134

vii

5.3 Average Execution Times for 300k polygons 134

5.4 Rtree based times for 300k polygons 134

5.5 500 days time series G∗
i calculation for Real US Counties daily

COVID data [1] [2] . 135

viii

LIST OF FIGURES

2.1 Polygon intersection using Filter and Refine approach 19

2.2 Vertical Plane Sweep . 26

2.3 Reduction-based Neighbor Finding 32

2.4 Randomly generated sparse lines . 35

2.5 Time comparison for CGAL, sequential brute-force, OpenACC

augmented brute-force and plane sweep on sparse lines 38

2.6 Speedups for the parallel plane sweep with varying OpenMP threads

on sparse lines . 39

2.7 Efficiency of the parallel plane sweep with varying OpenMP threads

on sparse lines . 39

3.1 Voronoi Diagram . 42

3.2 Plane Sweep Voronoi Calculation . 49

3.3 Fortune’s Algorithm Progression . 52

3.4 Circle Event during Fortune’s progression 53

3.5 Sequential vs OpenMP timings . 62

3.6 SpeedUp gained with OpenMP (4 threads) 62

4.1 Basic Structure of a Segment Tree . 72

4.2 Segment tree with four input line segments 73

4.3 Segment Tree stored in a binary heap-like fashion. 83

4.4 Illustration of cache-aware subtree-based segment tree construction . 83

4.5 OpenMP Build Speedup . 92

4.6 Comparison of Iterative OpenMP Vs Recursive task-based OpenMP . 94

4.7 OpenMP Query Speedup for Segment Tree 95

4.8 OpenACC Build Speedup . 96

4.9 OpenACC Query Speedup . 96

4.10 Speedup Comparison for 100k Dataset 97

ix

4.11 Cities Vs Park MBR pair query times 99

5.1 Polygon boundaries with their corresponding z scores and p values [3] 105

5.2 Point data overlaid on a Grid vs Polygonal Boundaries [3]. 106

5.3 Voronoi Boundaries for aggregated point incidence data 109

5.4 Slice of the Weight Matrix . 114

5.5 Map of US Counties and Boundaries 129

5.6 Comparison of Gi∗ computation Vs data sizes. 133

x

LIST OF ALGORITHMS

2.1 Naive Brute Force . 19

2.2 Plane Sweep . 21

2.3 Modified Plane Sweep Algorithm . 25

2.4 StartEvent Processing . 25

2.5 EndEvent Processing . 25

2.6 IntersectionEvent Processing . 26

2.7 Reduction-based Neighbor Finding 31

3.1 VoronoiDiagram(P) . 51

3.2 Fortune’s Algorithm (Horizontal Sweep) 54

3.3 ProcessEvent(event e) . 55

3.4 ProcessPoint(point p) . 55

3.5 CheckCircleEvent(arc i, var x) . 56

3.6 ProcessRemainingEvents() . 56

3.7 FinishEdges() . 56

3.8 ProcessPoint(point p) with directives 60

4.1 Segment Tree . 78

4.2 Elementary Intervals(Array<Egdes> edges) 78

4.3 Initialize SegTree(Array<Egdes> elementaryEdges) 79

4.4 Build SegTree(Array<Node> treeNode, Array<Egdes> edges) 79

4.5 Query SegTree(Point q) . 79

4.6 Build SegTree(...) in Parallel . 81

4.7 Recursive Build Skeleton with task directive 82

4.8 Regular Construction of Tree Skeleton (Not Cache-optimized) 82

4.9 Cache Efficient Construction of Tree Skeleton 84

5.1 Intrinsics based algorithm for calculating weights 124

xi

LIST OF CODE LISTINGS

2.1 Data Structure for Point . 29

2.2 Data Structure for Line . 29

2.3 Routine for Intersection Point . 30

3.1 Data Structure for Point . 53

3.2 Data Structure for Event . 54

3.3 Data Structure for Arc . 54

3.4 Data Structure for Segment . 55

4.1 Data Structure for SegTree . 76

4.2 Data Structure for Edge . 77

4.3 Data Structure for Node . 77

4.4 Traversal of the Segment Tree . 80

5.1 Adjacent distributed graph creation 119

5.2 MPI function to create adjacent distributed graph 120

1

CHAPTER 1: INTRODUCTION AND BACKGROUND

There are different ways to accelerate computation. First and foremost

would be to write better code, use better libraries or use better algorithms. [4] Next

would be the use of compiler level optimizations. Then the computations could be

executed on faster hardware but there are physical limits to how fast a single

processor core can be manufactured. With multicore processors, parallelization

techniques could be implemented to speedup computation. This can usually be

done with concurrency and threads. Again there are physical limits to the number

of cores that can put into a single processor. So, multiple processor and something

like the Message Passing Interface (MPI) to manage communication among different

processors could be the next step. Furthermore, accelerator hardware like

manycores GPU can be used to offload some of the computation. GPUs are

extremely useful and efficient in doing Single Instructions Multiple Data (SIMD)

computations but have some data transfer overheads. GPU coding also requires

rewriting the kernels in CUDA so they have coding effort overheads too. In the

CPUs, we can further use vectorization using intrinsics to vectorize the code so that

the operation run concurrently. Also, focus on the memory hierarchy and cache

organisation can lead to developing algorithms that are either cache aware or

oblivious and reduce the memory movement overheads. Also, in a distributed setup,

communication reducing or communication avoiding can reduce the communication

costs which are usually a big part of distributed computing. Proper load balancing

among the nodes can also lead to more efficient computation. Targeting memory IO

patterns based on the existing hardware or file systems and avoiding writes to disk

as much as possible because writes are far more costlier than reads, can also lead to

better total computation time on a distributed system.

2

1.1 Motivation

GeoSpatial computing is the computing related to location and geographic

data. It includes datasets huge size like of maps of a territory and all the features in

it (like roads, buildings, lakes, rivers) or high definition satellite imagery, etc. With

the explosion of personal and mobile devices with location sensor like smart phones,

smart cars, peripherals and gadgets and IOT devices like smart home appliances,

smart industrial equipments, remote sensing infrastructures etc., the data collected

with location information is enormous. Efficient parallel computational geometry

algorithms are needed to process such huge datasets swiftly. Computational

Geometry Algorithms are used in a variety of areas like GIS, image processing, data

analytics, etc. Specially in the field of GeoSpatial computing, dataset can be

extremely large and would require computationally efficient algorithms that are

parallelizable and memory efficient.

Plane Sweep is an algorithmic technique in computational geometry where a

sweep line scans through the search space to keep track of computations. We have

successfully parallelized plane sweep for geometric intersections using directives.

Voronoi diagrams are a partition technique in where the space is partitioned

into boundaries from a given set of points and a constraint that each point inside

the partition area must be closest to the given input point. We have used directives

to parallelize the Fortune’s algorithm which is a plane sweep based voronoi

computation algorithm.

Segment Trees are static data structure used to store line segments or

intervals. They can then be used to query points and windows and then the queries

can be used in other complex geometric operations. We have been able to parallelize

building and querying on Segment Trees on both CPUs and GPUs.

3

Spatial autocorrelation are a way to calculate the statistical relationship

between two points/boundaries/geometry in space based on some weight metric and

their relative position. One of the most common spatial autocorrelation

computation is the calculation of hotspots of spatial data.

1.2 Broader Impact

Accelerated algorithms in GeoSpatial computing can lead to faster data

processing. It will reduce the time for scientific discovery allowing scientist and

researchers to do more impactful work in the same duration of time. Moreover, in

time critical situation like planning a rescue mission in an evolving disaster zone,

being able to process as much of the data in as short amount of time as possible can

directly correlate success of the rescue mission and number of lives saved. In climate

related disaster zones, the conditions changes rapidly, so being able to incorporate

new data which are usually global and enormous in proportion and recompute the

latest scenario to reformulate plans is extremely essential.

Also for businesses that use location data to provide services like ride-sharing

or deliveries, being able to process all the continuous big data in a faster and more

efficient manner can lead to better and quicker customer satisfaction which could

translate to better business. Also, with the increasing trend of such companies

trying to reduce service time to as short as possible, faster and more efficient

algorithms could be a key to achieving that.

Furthermore, faster algorithms free up computing resources and personnel

time allowing exploration and experimentation into different frontiers that could

push the bounds of human discovery.

4

1.3 Background (Acceleration Techniques)

1.3.1 Directive Based Parallelization

Portions of serial code written in programming languages like C/C++ can be

made parallel by the use of compiler directives. Compiler directives are addendum

to the existing code that provides hints to the compiler on how to parallelize the

code. Directives can be extremely useful in parallelizing code if a sequential

codebase already exists. We can identify areas in the code that can be parallelized

using the existing directives and with some minor modification to the code, we can

get a parallel version. Even though a sequential codebase maynot exist, it is still

useful because many of the available algorithms are inherently sequential. Compiler

directives can also be used to write parallel code from the start. Directives based

parallelization also reduce the overhead of learning different parallelization

techniques because it can be the one shot solution to both writing parallel code or

modifying serial code to parallel. The two most common directive based

parallelization libraries are OpenMP and OpenACC. OpenMP is most commonly

used to parallelize code for multicore processing using threads and OpenACC is

most commonly used to parallelize code for manycore processing, especially

NVIDIA GPUs. OpenMP could be an alternative to using the programming

language’s threads library. OpenACC is an alternative to using CUDA.

1.3.2 GPU Parallelization

GPUs are collection of manycores processors. GPUs were original used to

offload and accelerate graphics processing off the CPU but due to their extremely

efficient ability to be able accelerate SIMD computation they have been used in

General Purpose GPU (GPGPU) programming and applied to scientific computing.

CUDA is a programming language used to write GPGPU code for NVIDIA based

5

GPUs. Beyond just offloading computation, GPUs have a lot of opportunity of

optimization using warp level parallelization, warp level load balancing or memory

access optimizations. An extreme scale of acceleration would GPU based

parallelization with large number of GPUs in distributed setup with numerous nodes

having multiple GPUs in each node. Some message passing like protocol is necessary

to manage the computation distribution and communication among the nodes.

1.3.3 Memory Movement Optimization

Computation is performed at the core of the processor. However, data can be

at one of the many levels of the memory hierarchy. Memory hierarchy refers to

different levels of memory further away from on the core, each level away may have

greater size but slower access to the processing core. Different levels of caches are

some of the closest and fastest accessible memory. This field of research started with

a class of algorithms known as “External Memory Algorithms”. Accessing each level

away in the memory hierarchy is costlier, so algorithms that can load memory

through the hierarchy in an efficient way would perform better. For parallel and

distributed computing, this becomes an even bigger challenge because there can be

shared memory cores and distinct processor nodes on a network. Given the

technology trends of faster processors not having caught up to memory devices or

memory transfer devices at the same rate, this movement of data among the

memory during computation becomes the bigger bottleneck.

Memory inefficiencies in cache, communication or network tend to be the

bigger bottleneck in extreme scale computing when compared to the costs of

computation. Even in the area of memory, writes (writing to memory) usually are a

factor of times costlier in time and energy than reads (reading from memory).

Moving data between levels of a memory hierarchy or between processors

over a network, is comparatively much more expensive than computation. A lot of

6

work has been done in minimize communication and attain lower bounds but most

of the work focuses on the total number of reads plus writes and does not

distinguish between the two. Writes, however, can be much more expensive than

reads in many storage devices such as nonvolatile memories. Technological trends

are increasing the gap in costs between computation and communication. Memory

devices like NVM are being used in many scientific applications and extreme scale

computer clusters. Phase Change Memory is a type of NVM where a write is 15

times slower than a read both in terms of latency and bandwidth and consumes 10

times as much energy. Another technology called CBRAM uses significantly more

energy for writes (1pJ) than reads (50fJ). Writes to NVM can also be less reliable

than reads, require multiple attempts for success, and can cause device wear out. [5]

1.3.4 Cache Based Optimizations

Cache-Oblivious Algorithms have a property that to get good performance,

tuning of variables dependent on hardware parameters, such as cache size and

cache-line length are not necessary. Nevertheless, these algorithms do optimal

amount of work and move data optimally among multiple levels of cache. It has

been shown that algorithms designed for 2 levels of cache generalizes to multiple

levels of cache and are portable. Optimal cache-oblivious algorithms are known for

the matrix multiplication. Further machine-specific tuning may be required to

obtain nearly optimal performance in an absolute sense. The goal of cache-oblivious

algorithms is to reduce the amount of such tuning that is required. Typically, a

cache-oblivious algorithm works by a recursive divide and conquer algorithm, where

the problem is divided into smaller and smaller subproblems. Eventually, one

reaches a subproblem size that fits into cache, regardless of the cache size. For

example, an optimal cache-oblivious matrix multiplication is obtained by recursively

dividing each matrix into four sub-matrices to be multiplied, multiplying the

7

submatrices in a depth-first fashion. In tuning for a specific machine, one may use a

hybrid algorithm which uses blocking tuned for the specific cache sizes at the

bottom level, but otherwise uses the cache-oblivious algorithm.

A cache-oblivious algorithm is designed to perform well, without

modification, on multiple machines with different cache sizes, or for a memory

hierarchy with different levels of cache having different sizes. For matrix

multiplication, cache-oblivious algorithms are competitive with cache-aware

algorithms. The benefit with CO algorithms is that explicit tuning for three levels

of memory hierarchy is not needed which is the case with cache-aware algorithms.

We will evaluate these differences.

Cache-aware algorithms use hardware parameters such as level of each cache,

size of each cache, cache-line length, cache latency and bandwidth and other

hardware level details as inputs to the program optimize performance on a specific

hardware. Given the parameters of the specific hardware, it maximizes the efficiency

by moving data in the most optimal way. These parameters for hardware can be

inferred by studying the architecture, by profiling, and by hardware counters.

1.3.5 Communication Avoiding

Communication avoiding (CA) algorithms are parallel algorithms that trade

fast memory space for reducing inter-processor communication. Communication is

the limiting factor in exploiting large scale parallelization. Consider the following

running-time model:

Time taken per FLOP is γ

Time taken to move a word from slow to fast memory is β.

So, total running time is equal to:

γ * (no. of FLOPs) + β * (no. of words moved).

In computations where the right side expression is significantly greater than

8

the left side expression as measured in time, communication cost would dominate

computation cost.

CA algorithms have been shown to be very effective in HPC applications

involving linear algebra, n-body simulation, etc. In CA literature [6, 7], it has been

shown that the parallel efficiency(speedup/processors) decreases dramatically as the

number of processors are scaled up with no replication. With replication of the data

among processors, communication time decreases, and better efficiency is realized in

practice. In matrix multiplication upto 12x speedup (on thousands of processors)

has been reported in literature. 2.5D algorithms interpolate between a 2D and 3D

processor topology. The novelty in 2.5D algorithm is that it can use the extra

memory available in a processor in a systematic manner to optimize communication

pattern.

1.3.6 Intrinsics and Vectorization

Each core in modern processor can do streaming processing of contiguous

memory. Advanced Vector Extensions (AVX) are extensions which allow the

compiler to use vector registers available in the processor hardware for faster vector

operations. Depending on the precision size of the data structure used, different

number of vector operations can be performed at once. An added benefit to using

vector extension is also that the memory access to contiguous memory is inherently

more cache efficient. Object code can be generated to inspect the vectorization

achieved with intrinsics. Vectorization can be compounded with thread level

parallelization to get the most out of every core in the processor.

1.4 Background (Computational Geometry)

Plane sweep is an efficient algorithmic approach used in finding geometric

intersections. Its time complexity is O((N +K) log N) where N is the number of

9

line segments and K is the number of intersections found. In the worst case, K is

O(N2), which makes it an O(N2 log N) algorithm. The Bentley-Ottmann algorithm

is a plane sweep algorithm, that given a collection of lines, can find out whether

there are intersecting lines or not [8].

Plane sweep algorithm and theoretical algorithms developed around 80’s and

90’s fall under the second category [9, 10, 11]. These theoretical PRAM algorithms

attain near-optimal poly-logarithmic time complexity [9, 10, 12]. These algorithms

focus on improving the asymptotic time bounds and are not practical for

implementation purposes. These parallel algorithms are harder to implement

because of their usage of complex tree-based data structures like parallel segment

tree and hierarchical plane-sweep tree (array of trees) [13].

Based on the data distribution, existing parallel implementations of

geometric intersection algorithm use uniform or adaptive grid to do domain

decomposition of the input space and data [13, 14, 15]. Ideal grid dimension for

optimal run-time is hard to determine as it depends not only on spatial data

distribution, but also on hardware characteristics of the target device. Moreover,

the approach of dividing the underlying space has the unfortunate consequence of

effectively increasing the size of the input dataset. For instance, if an input line

segment spans multiple grid cells, then the segment is simply replicated in each cell.

Hence, the problem size increases considerably for finer grid resolutions. In addition

to redundant computations for replicated data, in GPU with limited global memory,

memory allocation for intermediate data structure to store replicated data is not

space-efficient. Plane sweep does not suffer from this problem because it is an

event-based algorithm. Parallel algorithm developed by McKenney et al. and their

OpenMP implementation is targeted towards multi-core CPUs and it is not

fine-grained to exploit the SIMT parallelism in GPUs [16, 17, 18].

10

Significantly speeding up the sequential Voronoi computation has remained a

long standing challenge since Fortune came up with the planesweep approach that

reduced the complexity of Voronoi computation to O(nlogn). Delaunay

triangulation has a dual relationship with Voronoi diagrams. The Delaunay

triangulation for a set of discrete points is the connected graph of all the points in

such way that no points lie inside the triangles formed by joining the points. A

Voronoi diagram is basically the Delaunay triangulation of the vertices of the

resultant Voronoi graph.

Biniaz and Dastghaibyfard compares different sweep line approaches like the

Fortune’s sweep-line algorithm, Zalik’s sweep-line algorithm, and a sweep-circle

algorithm proposed by Adam, Kauffmann, Schmitt and Spehner [19]. Wong and

Muller presents an even more efficient implementation of the Fortune’s algorithm

[20]. Effort has been spent on tuning the code and paying attention to hotspots that

slow down the implementation. Work done by Bollig explores Voronoi computations

in the GPU using a flooding algorithm along with Lloyd’s method [21]. Majdandzic

et al. claims to presents a parallel algorithm and its GPU-based implementation to

calculate a discrete approximation to the Voronoi diagram [22].

Yuan et al. explores the problem of using the GPU to compute the

generalized Voronoi diagram for higher order sites, such as line segments and curves

using the jump flooding algorithm and their improvements upon it [23]. The work

done by Rong et al. explores a GPU-assisted computation of centroidal Voronoi

tessellation using Lloyd’s algorithm [24]. Tsidaev explores the use of Green-Sibson

Voronoi tessellation method in the parallelization technique for Natural Neighbor

interpolation algorithm [25]. Nievergelt and Preparata presents two plane sweep

methods for merging geometric figures [26]. Theoretical parallel algorithms for

Voronoi diagram construction have been designed on mesh, hypercube, PRAM

11

models of computation [27].

Segment tree data structure was introduced by John Louis Bentley in

1977 [28]. One of the important operations on a segment tree is a stabbing query,

which takes a query point p as an input to report all the line segments overlapping

with an imaginary vertical ray passing through x coordinate of p. For n line

segments as input, the time complexity of building the tree is O(n log n) [28]. The

space complexity of building the tree is O(n log n). The time complexity of the

stabbing query is O(log n+ k) where k is the number of line segments in the output

of the query [28]. An important application of segment tree is in parallelizing plane

sweep algorithms for computing line segment intersections using PRAM

model [9, 10, 29]. External memory segment tree algorithms have been presented

in [30, 31]. Parallel and distributed algorithms for segment tree data structure are

presented in [32, 33, 34, 35, 36, 37]. Segment tree construction on a hypercube

architecture to solve next element search problem (also known as first hit) is

presented in [32]. A parallel algorithm using PRAM (Parallel Random Access

Machine) model of computation and implementation on connection machine was

presented in [34]. Bulk Synchronous Parallel (BSP) model has also been used to

develop and analyze segment tree algorithms [35]. Segment tree was used in parallel

PRAM algorithm for polygon clipping in [12]. The influence of caches on the

performance of heap data structure was presented earlier by LaMarca and

Ladner [38]. A variant of binary heap optimized for virtual memory environments

was presented as B-heap [39]. B-heap keeps subtrees in a single page of virtual

memory and performs well for large heaps.

In external memory algorithms, a segment tree variant has been designed to

minimize data movement by increasing the fanout of the node and recursively

splitting the node among its children [30, 40]. Compared to the earlier theoretical

12

work [10, 30, 40], we present practical algorithms that allow parallelism in

computational geometry applications as well as minimize data movement between

fast memory and slow memory.

A cache-oblivious method known as Van Emde Boas (vEB) layout has been

presented earlier to store static binary search trees recursively in a cache-efficient

manner to minimizes data movement in a query operation [41, 42, 43].

Conceptually, vEB layout transforms a static binary tree by recursively splitting the

tree at the middle level of edges so that the tree nodes get grouped together to

minimize data movement in search operations [42]. GPU has been used for

implementing data structures like Btree [44] and computational geometry data

structures like KD-tree [45], R-tree [46] and range tree [47].

The notion of spatial autocorrelation is related to first law of geography:

Everything is related to everything else, but nearby things are more related than

distant things [48]. The value of attributes at a given location tend to vary gradually

over space. Events in a given area are influenced by the events at neighboring areas.

In spatial statistics, this property is called spatial autocorrelation [49]. With the

volume of data increasing due to its spatio-temporal nature, parallelization of

existing algorithms have been done [50, 51, 52, 53]. Existing approaches use spatial

partitioning methods like quadtree for parallelization [50]. A Matlab-based shared

memory parallelization has been described in [53]. Hadoop MapReduce has been

used to parallelize Getis-Ord based Hotspots detection problem using

quadtree-based decomposition of spatial data [50]. Apache Spark framework has

also been used to parallelize spatial hotspot computation [51, 52]. Spark

MapReduce papers are short papers from GIS Cup competition organized with

SIGSPATIAL conference [51, 52]. Hadoop and Spark based projects make good use

of thread-level and coarse-grained parallelism but do not take full advantage of HPC

13

resources (e.g., SIMD, GPUs) thus leaving performance on the table [50, 51, 52].

14

CHAPTER 2: ACCELERATION OF PLANE SWEEP ALGORITHM

FOR GEOMETRIC INTERSECTION

Line segment intersection is one of the elementary operations in

computational geometry. Complex problems in Geographic Information Systems

(GIS) like finding map overlays or spatial joins using polygonal data require solving

segment intersections. Plane sweep paradigm is used for finding geometric

intersection in an efficient manner. However, it is difficult to parallelize due to its

in-order processing of spatial events. We present a new fine-grained parallel

algorithm for geometric intersection and its CPU and GPU implementation using

OpenMP and OpenACC. To the best of our knowledge, this is the first work

demonstrating an effective parallelization of plane sweep on GPUs.

We chose compiler directive based approach for implementation because of

its simplicity to parallelize sequential code. Using Nvidia Tesla P100 GPU, our

implementation achieves around 40X speedup for line segment intersection problem

on 40K and 80K data sets compared to sequential CGAL library.

2.1 Introduction

Scalable spatial computation on high performance computing (HPC)

environment has been a long-standing challenge in computational geometry. Spatial

analysis using two shapefiles (4 GB) takes around ten minutes to complete using

state-of-the art desktop ArcGIS software [93]. Harnessing the massive parallelism of

graphics accelerators helps to satisfy the time-critical nature of applications

involving spatial computation. Directives-based parallelization provides an

easy-to-use mechanism to develop parallel code that can potentially reduce

execution time. Many computational geometry algorithms exhibit irregular

computation and memory access patterns. As such, parallel algorithms need to be

15

carefully designed to effectively run on a GPU architecture.

Geometric intersection is a class of problems involving operations on shapes

represented as line segments, rectangles (MBR), and polygons. The operations can

be cross, overlap, contains, union, etc. Domains like Geographic Information

Systems (GIS), VLSI CAD/CAM, spatial databases, etc use geometric intersection

as an elementary operation in their data analysis toolbox. Public and private sector

agencies rely on spatial data analysis and spatial data mining to gain insights and

produce an actionable plan [94]. We are experimenting with the line segment

intersection problem because it is one of the most basic problems in spatial

computing and all other operations for bigger problems like polygon overlay or

polygon clipping depends on results from it. The line segment intersection problem

basically asks two questions - “are the line segments intersecting or not?” and if

they are intersecting “what are the points of intersection?” The first one is called

intersection detection problem and the second one is called intersection reporting

problem. In this chapter, we present an algorithmic solution for the latter.

Plane sweep is a fundamental technique to reduce O(n2) segment to segment

pair-wise computation into O(nlogn) work, impacting a class of geometric problems

akin to the effectiveness of FFT-based algorithms. Effective parallelization of the

plane-sweep algorithm will lead to a breakthrough by enabling acceleration of

computational geometry algorithms that rely on plane-sweep for efficient

implementation. Examples include trapezoidal decomposition, construction of the

Voronoi diagram, Delaunay triangulation, etc.

To the best of our knowledge, this is the first work on parallelizing plane

sweep algorithm for geometric intersection problem on a GPU. The efficiency of

plane sweep comes from its ability to restrict the search space to the immediate

neighborhood of the sweepline. We have abstracted the neighbor finding algorithm

16

using directive based reduction operations. In sequential implementations, neighbor

finding algorithm is implemented using a self-balancing binary search tree which is

not suitable for GPU architecture. Our multi-core and many-core implementation

uses directives-based programming approach to leverage the device-specific

hardware parallelism with the help of a compiler. As such the resulting code is easy

to maintain and modify. With appropriate pragmas defined by OpenMP and

OpenACC, the same source code will work for a CPU as well as a GPU.

In short, the chapter presents the following research contributions

1. Fine-grained Parallel Algorithm for Plane Sweep based intersection problem.

2. Directives-based implementation with reduction-based approach to find

neighbors in the sweeplines.

3. Performance results using OpenACC and OpenMP and comparison with

sequential CGAL library. We report upto 27x speedup with OpenMP and 49x

speedup with OpenACC for 80K line segments.

The rest of the chapter is structured as follows. Section 2.2 presents a general

technical background and related works to this chapter. Section 2.3 describes our

parallel algorithm. Section 2.5 provides details on OpenMP and OpenACC

implementations. Section 5 provides experimental results. Conclusion and future

work is presented in Section 2.7. Acknowledgements are in the last section.

2.2 Background and Related Work

There are different approaches for finding geometric intersections. In

addition to the simple brute force method, there is a filter and refine method that

uses a heuristic to avoid unnecessary intersection computations. For a larger

dataset, filter and refine strategy is preferred over brute force. Plane sweep method

works best if the dataset can fit in memory. However, the plane sweep algorithm is

17

not amenable to parallelization due to the in-order sequential processing of events

stored in a binary tree and a priority queue data structure. In the existing

literature, the focus of parallel algorithms in theoretical computational geometry

has been in improving the asymptotic time bounds. However, on the practical side,

there has been only a few attempts to parallelize plane sweep on multi-cores.

Moreover, those algorithms are not suitable to fine-grained SIMD parallelism in

GPUs. This has led to the parallelization of brute force algorithms with O(n2)

complexity and parallelization of techniques like grid partitioning on GPUs. The

brute force algorithm that involves processing all segments against each other is

obviously embarrassingly parallel and has been implemented on GPU, but its

quadratic time complexity cannot compete even with the sequential plane sweep for

large data sets. The uniform grid technique does not perform well for skewed data

sets where segments span an arbitrary number of grid cells. Limitations in the

existing work is our motivation behind this work.

In the remaining subsections, we have provided background information

about segment intersection problem, different strategies used to solve the problem,

existing work on the parallelization in this area and directive based programming.

2.2.1 Segment Intersection Problem

Finding line intersection in computers is not as simple as solving two

mathematical equations. First of all, it has to do with how the lines are stored in

the computer – not in the y = mx+ c format, but rather as two endpoints like

(x1,y1,x2,y2). One reason for not storing lines in a equation format is because most

of the lines in computer applications are finite in nature, and need to have a clear

start and end points. Complex geometries like triangle, quadrilateral or any

n-vertices polygon are further stored as a bunch of points. For example a

quadrilateral would be stored like (x1,y1,x2,y2,x3,y3,x4,y4) and each sequential pair

18

of points would form the vertices of that polygon. So, whenever we do geometric

operations using computers, we need to be aware of the datatypes used to store the

geometries, and use algorithms that can leverage them.

For non-finite lines, any two lines that are not parallel or collinear in 2D

space would eventually intersect. This is however not the case here since all the

lines we have are finite. So given two line segments we would first need to do a

series of calculation to ascertain whether they intersect or not. Since they are finite

lines, we can solve their mathematical equations to find the point of intersection

only if they intersect.

In this way we can solve the segment intersection for two lines but what if we

are given a collection of line segments and are asked to find out which of these

segments intersect among themselves and what are the intersection vertices. Since

most complex geometries are stored as a collection of vertices which results in a

collection of line segments, segment intersection detection and reporting the list of

vertices of intersection are some of the most commonly solved problems in many

geometric operations. Geometric operations like finding the map overlays and

geometric unions all rely at their core on the results from the segment intersection

problem. Faster and more efficient approaches in segment intersection will enable us

to solve a wide variety of geometric operations faster and in a more efficient manner.

2.2.2 Naive Brute Force Approach

Like with any computational problem, the easiest approach is foremost the

brute force approach. Algorithm 2.1 describes the brute force approach to find

segment intersection among multiple lines.

The brute force approach works very well compared to other algorithms for

the worst case scenario where all segments intersect among themselves. For N line

19

Algorithm 2.1 Naive Brute Force

1: Load all lines to L
2: for each line l1 in L do
3: for each line l2 in L do
4: Test for intersection between l1 and l2
5: if intersections exists then
6: calculate intersection point
7: store it in results
8: end if
9: end for
10: end for

segments, its time complexity is O(N2). This is the reason we have parallelized this

algorithm here. However, if the intersections are sparse, then there are heuristics

and sophisticated algorithms available. The first method is to use filter and refine

heuristic which we have employed for joining two polygon layers where the line

segments are taken from polygons in a layer. The second method is to apply Plane

Sweep algorithm.

Figure 2.1: Polygon intersection using Filter and Refine approach

Filter and Refine approach: Let us consider a geospatial operation where

we have to overlay a dataset consisting of N county boundaries (polygons) on top of

another dataset consisting of M lakes from USA in a Geographic Information

System (GIS) to produce a third dataset consisting of all the polygons from both

datasets. This operation requires O(NM) pairs of polygon intersections in the worst

20

case. However, not all county boundaries overlap with all lake boundaries. This

observation lends itself to filter and refine strategy where using spatial data

structure like Rectangle tree (R-tree) built using bounding box approximation

(MBR) of the actual boundaries, we prune the number of cross layer polygon

intersections [95]. We have employed this approach while handling real spatial data.

Figure 2.1 shows the workflow for joining two real-world datasets. The output

consists of counties with lakes. The compute-intensive part here is the refine phase.

Our directive based parallelization is used in the refine phase only.

2.2.3 Plane Sweep Algorithm

Plane sweep is an efficient algorithmic approach used in finding geometric

intersections. Its time complexity is O((N +K) log N) where N is the number of

line segments and K is the number of intersections found. In the worst case, K is

O(N2), which makes it an O(N2 log N) algorithm. Parallelization of plane sweep

algorithm will impact many computational geometry algorithms that rely on

plane-sweep for efficient implementation e.g. spatial join, polygon overlay, voronoi

diagram, etc. The Bentley-Ottmann algorithm is a plane sweep algorithm, that

given a collection of lines, can find out whether there are intersecting lines or

not [8]. Computational geometry libraries typically use plane sweep algorithm in

their implementations.

Algorithm 2.2 describes plane sweep using a vertical sweepline. The

procedures for HandleStartEvent, HandleEndEvent and HandleIntersectionEvent

used in Algorithm 2.2 are given in Algorithms 2.4, 2.5, 2.6 respectively. For

simplicity in presentation, following assumptions are made in Algorithm 2.2:

1. No segment is parallel to the vertical sweeplines.

2. No intersection occurs at endpoints.

21

Algorithm 2.2 Plane Sweep

1: Load all lines to L
2: Initialize a priority queue (PQ) for sweeplines which retrieves items based on the

y-position of the item
3: Insert all start and end points from L to PQ
4: Initialize a sweepline
5: While PQ is not empty:
6: If the nextItem is startevent:
7: The segment is added to the sweepline
8: HandleStartEvent(AddedSegment)
9: If the nextItem is endevent:
10: The segment is removed from the sweepline
11: HandleEndEvent(RemovedSegment)
12: If the nextItem is intersection-event:

[Note that there will be two contributing lines at intersection point.
13: Let these two lines be l1 and l2.]
14: HandleIntersectionEvent(l1,l2)
15: Record the intersecting pairs

3. No more than two segments intersect in the same point.

4. No overlapping segments.

The segments that do not adhere to our assumptions in our dataset are

called degenerate cases.

2.2.4 Existing work on parallelizing segment intersection algorithms

Methods for finding intersections can be categorized into two classes: (i)

algorithms which rely on a partitioning of the underlying space, and (ii) algorithms

exploiting a spatial order defined on the segments. Plane sweep algorithm and

theoretical algorithms developed around 80’s and 90’s fall under the second

category [9, 10, 11]. These theoretical PRAM algorithms attain near-optimal

poly-logarithmic time complexity [9, 10, 12]. These algorithms focus on improving

the asymptotic time bounds and are not practical for implementation purposes.

These parallel algorithms are harder to implement because of their usage of complex

tree-based data structures like parallel segment tree and hierarchical plane-sweep

22

tree (array of trees) [13]. Moreover, tree-based algorithms may not be suitable for

memory coalescing and vectorization on a GPU.

Multi-core and many-core implementation work in literature fall under the

first category where the input space is partitioned for spatial data locality. The

basic idea is to process different cells in parallel among threads. Based on the data

distribution, existing parallel implementations of geometric intersection algorithm

use uniform or adaptive grid to do domain decomposition of the input space and

data [13, 14, 15]. Ideal grid dimension for optimal run-time is hard to determine as

it depends not only on spatial data distribution, but also on hardware

characteristics of the target device. Moreover, the approach of dividing the

underlying space has the unfortunate consequence of effectively increasing the size

of the input dataset. For instance, if an input line segment spans multiple grid cells,

then the segment is simply replicated in each cell. Hence, the problem size increases

considerably for finer grid resolutions. In addition to redundant computations for

replicated data, in GPU with limited global memory, memory allocation for

intermediate data structure to store replicated data is not space-efficient. Plane

sweep does not suffer from this problem because it is an event-based algorithm.

The brute force algorithm that involves processing all line segments against

each other is obviously embarrassingly parallel and has been implemented on

GPU [96], but its quadratic time complexity cannot compete even with the

sequential plane sweep for large data sets. Our current work is motivated by the

limitations of the existing approaches which cannot guarantee efficient treatment of

all possible input configurations.

Parallel algorithm developed by McKenney et al. and their OpenMP

implementation is targeted towards multi-core CPUs and it is not fine-grained to

exploit the SIMT parallelism in GPUs [16, 17, 18]. Contrary to the above-mentioned

23

parallel algorithm, our algorithm is targeted to GPU and achieves higher speedup.

In the context of massively parallel GPU platform, we have sacrificed algorithmic

optimality by not using logarithmic data structures like priority queue,

self-balancing binary tree and segment tree. Our approach is geared towards

exploiting the concurrency available in the sequential plane sweep algorithm by

adding a preprocessing step that removes the dependency among successive events.

2.2.5 OpenMP and OpenACC

When using compiler directives, we need to take care of data dependencies

and race conditions among threads. OpenMP provides critical sections to avoid race

conditions. Programmers need to remove any inter-thread dependencies from the

program.

Parallelizing code for GPUs has significant differences because GPUs are

separate physical devices with their numerous cores and their own separate physical

memory. So, we need to first copy the spatial data from CPU to GPU to do any

data processing on a GPU. Here, the CPU is regarded as the host and the GPU is

regarded as the device. After processing on GPU is finished, we need to again copy

back all the results from the GPU to the CPU. In GPU processing, this transfer of

memory has overheads and these overheads can be large if we do multiple transfers

or if the amount of memory moved is large. Also, each single GPU has its own

physical memory limitations and if we have a very large dataset, then we might

have to copy it to multiple GPUs or do data processing in chunks. Furthermore, the

functions written for the host may not work in the GPUs and will require writing

new routines. Any library modules loaded on the host device is also not available on

a GPU device.

The way we achieve parallelization with OpenACC is by doing loop

parallelization. In this approach each iteration of the loop can run in parallel. This

24

can only be done if the loops have no inter-loop dependencies. Another approach we

use is called vectorization. In the implementation process, we have to remove any

inter-loop dependencies so that the loops can run in parallel without any

side-effects. Side-effects are encountered if the threads try to write-write or

write-read at the same memory location resulting in race conditions.

2.3 Parallel Plane Sweep Algorithm

We have taken the vertical sweep version of the Bentley-Ottmann algorithm

and modified it. Instead of handling event points strictly in the increasing y-order

as they are encountered in bottom-up vertical sweep, we process all the startpoints

first, then all the endpoints and at last we keep on processing until there aren’t any

unprocessed intersection points left. During processing of each intersection event,

multiple new intersection events can be found. So, the last phase of processing

intersection events is iterative. Hence, the sequence of event processing is different

than sequential algorithm.

Algorithm 2.3 describes our modified version of plane sweep using a vertical

sweepline. Figure 2.2 shows the startevent processing for a vertical bottom up

sweep. Algorithm 2.3 also has the same simplifying assumptions like Algorithm 2.2.

Step 2, step 3 and the for-loop in step 4 of Algorithm 2.3 can be parallelized using

directives.

Algorithm 2.3 describes a fine-grained approach where each event point can

be independently processed. Existing work for plane sweep focuses on

coarse-grained parallelization on multi-core CPUs only. Sequential

Bentley-Ottmann algorithm processes the event points as they are encountered

while doing a vertical/horizontal sweep. Our parallel plane sweep relaxes the strict

increasing order of event processing. Start and End point events can be processed in

any order. As shown in step 4 of Algorithm 2.3, intersection event point processing

25

Algorithm 2.3 Modified Plane Sweep Algorithm

1: Load all lines to L
2: For each line l1 in L:

Create a start-sweepline (SSL) at the lower point of l1
For each line l2 in L:

If l2 crosses SSL:
update left and right neighbors

HandleStartEvent(l1)
3: For each line l1 in L:

Create an end-sweepline (ESL) at the upper point of l1
For each line l2 in L:

If l2 crosses ESL:
update left and right neighbors

HandleEndEvent(l1)
4: While intersection events is not empty, for each intersection event:

Create an intersection-sweepline (ISL) at the intersection point
For each line l in L:

If l crosses ISL:
update left and right neighbors

// let l1 and l2 are the lines at intersection event
HandleIntersectionEvent(l1, l2)

5: During intersection events, we record the intersecting pairs

Algorithm 2.4 StartEvent Processing

1: procedure HandleStartEvent(l1)
Intersection is checked between

l1 and its left neighbor
l1 and its right neighbor

If any intersection is found
update intersection events

2: end procedure

Algorithm 2.5 EndEvent Processing

1: procedure HandleEndEvent(l1)
Intersection is checked between

the left and right neighbors of l1
If intersection is found

update intersection events
2: end procedure

26

Algorithm 2.6 IntersectionEvent Processing

1: procedure HandleIntersectionEvent(l1,l2)
Intersection is checked between

the left neighbor of the intersection point and l1
the right neighbor of the intersection point and l1
the left neighbor of the intersection point and l2
the right neighbor of the intersection point and l2

if any intersection is found
update intersection events

2: end procedure

Figure 2.2: Vertical Plane Sweep
Vertical Plane Sweep showing sweeplines (dotted lines) corresponding to starting
event points only. P1 to P4 are the intersection vertices found by processing start
event points only. L1, L2 and L3 are the active line segments on the third sweepline
from the bottom. Event processing of starting point of L3 requires finding its
immediate neighbor (L2) and checking doesIntersect(L2,L3) which results in finding
P2 as an intersection vertex.

happens after start and end point events are processed. An implementation of this

algorithm either needs more memory to store line segments intersecting the

sweepline or needs to compute them dynamically thereby performing more work.

However, this is a necessary overhead required to eliminate the sequential

dependency inherent in the original Bentley-Ottmann algorithm or its

implementation. As we point out in the results section, our OpenMP and OpenACC

implementations perform better than the existing work.

Degree of concurrency: The amount of concurrency available to the

algorithm is limited by Step 4 due to the fact that intersection events produce more

27

intersection events dynamically. Hence, it results in a dependency graph where

computation on each level generates a new level. The critical path length of the

graph denoted by l is 0 < l <
(
n
2

)
where n is the input size. In general, l is less than

the number of intersection points k. However, if l is comparable to k, then the Step

4 may not benefit from parallelization.

2.3.1 Algorithm Correctness

The novelty in this parallel algorithm is our observation that any order of

concurrent events processing will produce the same results as done sequentially,

provided that we schedule intersection event handling in the last phase. In a parallel

implementation, this can be achieved at the expense of extra memory requirement

to store the line segments per sweepline or extra computations to dynamically find

out those line segments. This observation lends itself to directive based parallel

programming because now we can add parallel for loop pragma in Steps 2, 3 and 4

so that we can leverage multi-core CPUs and many-core GPUs. The proof that any

sweepline event needs to only consider its immediate neighbors for intersection

detection is guaranteed to hold as shown by the original algorithm.

Bentley-Ottmann algorithm executes sequentially, processing each sweepline

in an increasing priority order with an invariant that all the intersection points

below the current sweepline has been found. However, since we process each

sweepline in parallel, this will no longer be the case. The invariant in our parallel

algorithm is that all line segments crossing a sweepline needs to be known a priori

before doing neighborhood computation. As we can see, this is an embarrassingly

parallel step.

Finally, we can show that Algorithm 2.3 terminates after finding all

intersections. Whenever start-events are encountered they can add atmost two

intersection events. End-events can add atmost one intersection event and

28

intersection events can add atmost 4 intersection events. Because of the order in

which the algorithm processes the sweeplines, all the intersection points below the

current sweepline will have been found and processed. The number of iterations for

Step 2 and Step 3 can be statically determined and it is linear in the number of

inputs. However, the number of iterations in Step 4 is dynamic and can be

quadratic. Intersection events produce new intersection events. However, even in

the worst case with
(
n
2

)
intersection points generated in Step 4, the algorithm is

bound to terminate.

2.4 Algorithmic Analysis

2.4.0.1 Time Complexity

For each of the N lines there will be two sweeplines, and each sweepline will

have to iterate over all N lines to check if they intersect or not. So this results in

2N2 comparison steps, and then each intersection event will also produce a

sweepline and if there are K intersection points this results in K*N steps so the total

is 2N2 +K ∗N steps. Assuming that K << N , the time-complexity of this

algorithm is O(N2).

2.4.0.2 Space Complexity

Since there will be 2N sweeplines for N lines and for each K intersection

events there will be K sweeplines. The extra memory requirement will be O(N +K)

and assuming K << N , the space-complexity of the algorithm is O(N).

2.5 Directive-based Implementation Details

Although steps 2, 3 and 4 of Algorithm 2.3 could run concurrently, we

implemented it in such a way that each of the sweeplines within each step is

processed in parallel. Also, in step 4 the intersection events are handled in batch for

29

the ease of implementation. Furthermore, we had to make changes to the sequential

code so that it could be parallelized with directives. In the sequential algorithm, the

segments overlapping with a sweepline are usually stored in a data structure like

BST. However, when each of the sweeplines are needed to be processed in parallel,

using a data structure like the BST is not feasible so we need to apply different

techniques to achieve this. In OpenMP, we can find neighbors by sorting lines in

each sweepline and processing them on individual threads. Implementing the same

sorting based approach is again not feasible in OpenACC because we cannot use the

sorting libraries that are supported in OpenMP. So, we used a reduction-based

approach supported by the reduction operators provided by OpenACC to achieve

this without having to sort the lines in each sweepline.

struct Point {

var x , y ;

Point (var x , var y) ;

}

Listing 2.1: Data Structure for Point

struct Line {

Point p1 , p2 ;

var m, c ;

Line (Point p1 , Point p2) {

m = ((p2 . y − p1 . y) / (p2 . x − p1 . x)) ;

c = (p1 . y) − m∗(p1 . x) ;

}

} ;

Listing 2.2: Data Structure for Line

30

#pragma acc rou t in e

Point i n t e r s e c t i o nPo i n t (Line l1 , Line l 2) {

var x = (l 2 . c − l 1 . c) /(l 1 .m − l 2 .m) ;

var y = l1 .m∗x + l1 . c ;

return Point (x , y) ;

}

Listing 2.3: Routine for Intersection Point

Listing 1 shows the spatial data structures used in our implementations. The

keyword var in the listing is meant to be a placeholder for any numeric datatype.

Finding neighboring line segments corresponding to each event efficiently is a

key step in parallelizing plane sweep algorithm. In general, each sweepline has a

small subset of the input line segments crossing it in an arbitrary order. The size of

this subset varies across sweeplines. Finding neighbors per event would amount to

sorting these subsets that are already present in global memory individually, which

is not as efficient as global sorting of the overall input. Hence, we have devised an

algorithm to solve this problem using directive based reduction operation. A

reduction is necessary to avoid race conditions.

Algorithm 2.7 explains how neighbors are found using OpenACC. Each

horizontal sweepline has a x-location around which the neighbors are to be found. If

it is a sweepline corresponding to a startpoint or endpoint then the x-coordinate of

that point will be the x-location. For a sweepline corresponding to an intersection

point, the x-coordinate of the intersection point will be the x-location. To find the

horizontal neighbors for the x-location, we need the x-coordinate of the intersection

point between each of the input lines and the horizontal sweepline. Then a maxloc

reduction is performed on all such intersection points that are to the left of the the

x-location and a minloc reduction is performed on all such intersection points that

31

are to the right of the x-location to find the indices of previous and next neighbors

respectively. A maxloc reduction finds the index of the maximum value and a

minloc reduction finds the the index of the minimum value. OpenACC doesn’t

directly support the maxloc and minloc operators so a workaround was

implemented. The workaround includes casting the data and index combined to a

larger numeric data structure for which max and min reductions are available and

extracting the index from reduction results.

Figure 2.3 shows an example for finding two neighbors for an event with

x-location as 25. The numbers shown in boxes are the x-coordinates of the

intersection points of individual line segments with a sweepline (SL). We first find

the index of the neighbors and then use the index to find the actual neighbors.

Algorithm 2.7 Reduction-based Neighbor Finding

1: Let SL be the sweepline
2: Let x be the x-coordinate in SL around which neighbors are needed
3: L ← all lines
4: prev ← MIN , nxt ← MAX
5: for each line l in L do-parallel reduction(maxloc:prev, minloc:nxt)
6: if intersects(l,SL) then
7: h ← intersectionPt(l,SL)
8: if h < x then
9: prev = h
10: end if
11: if h > x then
12: nxt = h
13: end if
14: end if
15: end for

Polygon intersection using filter and refine approach: As discussed

earlier, joining two polygon layers to produce third layer as output requires a filter

phase where we find pairs of overlapping polygons from the two input layers. The

filter phase is data-intensive in nature and it is carried out in CPU. The next refine

phase carries out pair-wise polygon intersection. Typically, on a dataset of a few

32

Figure 2.3: Reduction-based Neighbor Finding
Here the dotted lines are the parallel threads and we find the left and right neighbor
to the given x-cord (25) on the sweepline and their corresponding indices. p and n
are thread local variables that are initialized as MIN and MAX respectively. As the
threads execute concurrently their value gets independently updated based on
Algorithm 2.7.

gigabytes, there can be thousands to millions of such polygon pairs where a polygon

intersection routine can be invoked to process an individual pair. First, we create a

spatial index (R-tree) using minimum bounding rectangles (MBRs) of polygons of

one layer and then perform R-tree queries using MBRs of another layer to find

overlapping cross-layer polygons. We first tried a fine-grained parallelization scheme

with a pair of overlapping polygons as an OpenMP task. But this approach did not

perform well due to significantly large number of tasks. A coarse-grained approach

where a task is a pair consisting of a polygon from one layer and a list of

overlapping polygons from another layer performed better. These tasks are

independent and processed in parallel by OpenMP due to typically large number of

tasks to keep the multi-cores busy.

We used sequential Geometry Opensource (GEOS) library for R-tree

construction, MBR querying and polygon intersection functions. Here, intersection

33

function uses sequential plane-sweep algorithm to find segment intersections. We

tried naive all-to-all segment intersection algorithm with OpenMP but it is slower

than plane sweep based implementation. Our OpenMP implementation is based on

thread-safe C API provided by GEOS. We have used the PreparedGeometry class

which is an optimized version of Geometry class designed for filter-and-refine use

cases.

Hybrid CPU-GPU parallelization: Only the refine phase is suitable for

GPU parallelization because it involves millions of segment intersections tests for

large datasets. Creating intersection graph to identify overlapping polygons is

carried out on CPU. The intersection graph is copied to the GPU using OpenACC

data directives. The segment intersection algorithm used in OpenACC is the brute

force algorithm. We cannot simply add pragmas to GEOS code. This is due to the

fact that OpenACC is not designed to run sophisticated plane sweep algorithm

efficiently. For efficiency, the code needs to be vectorized by the PGI compiler and

allow Single Instruction Multiple Thread (SIMT) parallelization. Directive-based

loop parallelism using OpenACC parallel for construct is used. The segment

intersection computation for the tasks generated by filter phase are carried out in

three nested loops. Outermost loop iterates over all the tasks. Two inner for loops

carry out naive all-to-all edge intersection tests for a polygon pair.

2.6 Experimental Results

2.6.1 Experimental Setup

Our code was run on the following 3 machines:

• Everest cluster at Marquette university: This machine was used to run the

OpenMP codes and contained the Intel Xeon E5 CPU v4 E5-2695 with 18

cores and 45MB cache and base frequency of 2.10GHz.

34

• Bridges cluster at the Pittsburgh Supercomputing Center: A single GPU node

of this cluster was used which contained the NVIDIA Tesla P100 containing

3584 cuda cores and GPU memory of 12GB.

• Our sequential GEOS and OpenMP code was run on 2.6 GHz Intel Xeon

E5-2660v3 processor with 20 cores in the NCSA ROGER Supercomputer. We

carried out the GPU experiments using OpenACC on Nvidia Tesla P100 GPU

which has 16 GB of main memory and 3, 584 CUDA cores operating at 1480

MHz frequency. This GPU provides 5.3 TFLOPS of double precision floating

point calculations. Version 3.4.2 of GEOS library was used 1.

Dataset Descriptions: We have used artificially generated and real spatial

datasets for performance evaluation.

Generated Dataset: Random lines were generated for performance

measurement and collecting timing information. Datasets vary in the number of

lines generated. Sparsity of data was controlled during data set generation to have

about only 10% of intersections. Table 2.1 shows the datasets we generated and

used and the number of intersections in each dataset. The datasets are sparsely

distributed and number of intersections are only about 10% of the number of lines

in the dataset. Figure 2.4 depicts a randomly generated set of sparse lines.

Table 2.1: Dataset and corresponding number of intersections

Lines Intersections
10k 1095
20k 2068
40k 4078
80k 8062

Real-world Spatial Datasets: As real-world spatial data, we selected

1https://trac.osgeo.org/geos/

https://trac.osgeo.org/geos/

35

Figure 2.4: Randomly generated sparse lines

polygonal data from Geographic Information System (GIS) domain 2, 3 [97]. The

details of the datasets are provided in Table 2.2.

Table 2.2: Description of real-world datasets.

Dataset Polygons Edges Size

1 Urban areas 11K 1, 153K 20MB

2 State provinces 4K 1, 332K 50MB

3 Sports areas 1, 783K 20, 692K 590MB

4 Postal code areas 170K 65, 269K 1.4GB

5 Water Bodies 463K 24, 201K 520MB

6 Block Boundaries 219K 60, 046K 1.3GB

2.6.2 Performance of Brute Force Parallel Algorithm

2.6.3 Using Generated Dataset:

Table 2.3 shows execution time comparison of CGAL, sequential brute-force

(BF-Seq) and OpenACC augmented brute-force (BF-ACC) implementations.

Key takeaway from the Table 2.3 is that CGAL performs significantly better

2http://www.naturalearthdata.com
3http://resources.arcgis.com

36

Table 2.3: Execution time by CGAL, naive Sequential vs OpenACC on sparse lines

Lines CGAL BF-Seq BF-ACC
10k 3.96s 8.19s 0.6s
20k 9.64s 35.52s 1.52s
40k 17.23s 143.94s 5.02s
80k 36.45s 204.94s 6.73s

than our naive code for sparse set of lines in sequential and the increase in

sequential time is not linear with the increase in data size. OpenACC however

drastically beats the sequential performance especially for larger data sizes.

2.6.3.1 Using Real Polygonal Dataset:

Here the line segments are taken from the polygons. The polygon

intersection tests are distributed among CPU threads in static, dynamic and guided

load-balancing modes supported by OpenMP. Table 2.4 shows the execution time for

polygon intersection operation using three real-world shapefiles listed in Table 2.2.

The performance of GEOS-OpenMP depends on number of threads, chunk size and

thread scheduling. We varied these parameters to get the best performance for

comparison with GEOS. For the largest data set, chunk size as 100 and dynamic

loop scheduling yielded the best speedup for 20 threads. We see better performance

using real datasets as well when compared to optimized opensource GIS library.

For polygonal data, OpenACC version is about two to five times faster than

OpenMP version even though it is running brute force algorithm for the refine

phase. The timing includes data transfer time. When compared to the sequential

library, it is four to eight times faster.

2.6.4 Performance of Parallel Plane Sweep Algorithm

Table 2.5 shows the scalability of parallel plane sweep algorithm using

OpenMP on Intel Xeon E5. Table 2.6 is comparison of CGAL and parallel plane

37

Table 2.4: Performance comparison of polygon intersection operation using sequential
and parallel methods on real-world datasets.

Dataset
Running Time (s)

Sequential Parallel
GEOS OpenMP OpenACC

Urban-States 5.77 2.63 1.21
USA-Blocks-Water 148.04 83.10 34.69
Sports-Postal-Areas 267.34 173.51 31.82

sweep (PS-ACC). Key takeaway from the Table 2.6 is that for the given size of

datasets the parallel plane sweep in OpenACC drastically beats the sequential

performance of CGAL or the other sequential method as shown in Table 2.3.

Table 2.5: Parallel plane sweep on sparse lines with OpenMP

Lines 1p 2p 4p 8p 16p 32p
10k 1.9s 1.22s 0.65s 0.37s 0.21s 0.13s
20k 5.76s 3.24s 1.78s 1.08s 0.66s 0.37s
40k 20.98s 11.01s 5.77s 3.3s 2.03s 1.14s
80k 82.96s 42.3s 21.44s 12.18s 6.91s 3.78s

Table 2.6: CGAL vs OpenACC Parallel Plane Sweep on sparse lines

Lines CGAL PS-ACC
10k 3.96s 0.33s
20k 9.64s 0.34s
40k 17.23s 0.41s
80k 36.45s 0.74s

2.6.5 Speedup and Efficiency comparisons

Table 2.7: Speedup with OpenACC when compared to CGAL for different datasets

10K 20K 40K 80K
BF-ACC 6.6 6.34 3.43 5.42
PS-ACC 12 28.35 42.02 49.26

Table 2.7 shows the speedup gained when comparing CGAL with the

OpenACC implementation of the brute force (BF- ACC) and plane sweep

approaches (PS-ACC) on NVIDIA Tesla P100. Figure 2.5 shows the time taken for

38

computing intersection on sparse lines in comparison to OpenACC based

implementations with CGAL and sequential brute force. The results with directives

are promising because even the brute force approach gives around a 5x speedup for

80K lines. Moreover, our parallel implementation of plane sweep gives a 49x

speedup.

Figure 2.6 shows the speedup with varying number of threads and it validates

the parallelization of the parallel plane sweep approach. The speedup is consistent

with the increase in the number of threads. Figure 2.7 shows the efficiency

(speedup/threads) for the previous speedup graph. As we can see in the figure, the

efficiency is higher for larger datasets. There is diminishing return as the number of

threads increase due to the decrease in the amount of work available per thread.

Figure 2.5: Time comparison for CGAL, sequential brute-force, OpenACC augmented
brute-force and plane sweep on sparse lines

Also, doing a phase-wise comparison of the OpenACC plane sweep code

showed that most of the time was consumed in the start event processing (around

90% for datasets smaller than 80K and about 70% for the 80K dataset). Most of the

remaining time was consumed by end event processing with negligible time spent on

intersection events. The variation in time is due to the fact that the number of

intersections found by different events is not the same. Moreover, start event

processing has to do twice the amount of work in comparison to end event

39

Figure 2.6: Speedups for the parallel plane sweep with varying OpenMP threads on
sparse lines

Figure 2.7: Efficiency of the parallel plane sweep with varying OpenMP threads on
sparse lines

processing as mentioned in Algorithms 2.4 and 2.5. There are fewer intersection

point events in comparison to the endpoint events.

2.7 Conclusion and Future Work

In this work, we presented a fine-grained parallel algorithm targeted to GPU

architecture for a non-trivial computational geometry code. We also presented an

efficient implementation using OpenACC directives that leverages GPU parallelism.

This has resulted in an order of magnitude speedup compared to the sequential

implementations. We have also shown our compiler directives based parallelization

method using real polygonal data. We are planning to integrate the present work

with our MPI-GIS software so that we can handle larger datasets and utilize

40

multiple GPUs [98].

Compiler directives prove to be a promising avenue to explore in the future

for parallelizing other spatial computations as well. Although in this chapter we

have not handled the degenerate cases for plane sweep algorithm, they can be dealt

with the same way we would deal with degenerate cases in the sequential plane

sweep approach. Degenerate cases arise due to the assumptions that we had made

in the plansweep algorithm. However, it remains one of our future work to explore

parallel and directive based methods to handle such cases.

41

CHAPTER 3: ACCELERATION OF PLANE SWEEP BASED VORONOI

COMPUTATION

Voronoi diagram computation is a common and fundamental problem in

computational geometry and spatial computing. Numerous algorithms and their

corresponding implementations already exist along with multiple approaches to

parallelize Voronoi computation. This chapter attempts the parallelization of

Voronoi diagram construction by augmenting an existing sequential implementation

of Fortune’s planesweep algorithm with compiler directives. In doing so, it explores

the possibilities and challenges of implementing directives-based parallelization of

existing computational geometry implementations.

To the best of our knowledge, this is the first work that explores the

possibility of exploiting concurrency available at each event of the planesweep

algorithm. We have found and experimentally demonstrated that the maintenance

of data structures associated with planesweep has enough computational steps to

leverage shared memory parallelism on a multi-core CPU. On the Intel Xeon E5

CPU, our shared-memory parallelization with OpenMP achieves around 2x speedup

compared to the sequential implementation using datasets containing 2k-128k sites.

Finally, observations and potential ideas for exploiting more parallelism with

directives are proposed.

3.1 Introduction

Partitioning an area into different regions is an important and well-studied

problem. An area in a cartesian plane can be partitioned differently depending on

whether it is for sales, marketing, voting, schooling, policing, etc. The method used

for creating these partitions varies according to the application. For example, if an

area had multiple emergency response centers, and we wanted to partition the area

42

into different regions based on distance from the centers in such a way that any

point in the partitioned region would be closest to a center, then the resulting

subdivisions for such a partitioning would be a Voronoi diagram. The input points

are also known as sites in a Voronoi diagram and the edges between such

partitioned regions are called Voronoi edges or segments.

Voronoi diagrams are extensively used in computational geometry to

partition a plane into multiple regions where each region corresponds to and contain

a site, and that site will be the closest site to all points in that region. Figure 3.1

shows a Voronoi diagram with a unique region for each site. Here is a mathematical

definition of a Voronoi region:

Definition 1. The Voronoi region Rk, associated with the site Pk is the set of all

points in target region X whose distance to Pk is not greater than their distance to

the other sites Pj where j is any index different from k. In other words, if

d(x,A) = infimum{d(x, a) | a ∈ A} denotes the distance between the point x and

the subset A, then Rk = {x ∈ X | d(x, Pk) ≤ d(x, Pj) for all j ̸= k}

Figure 3.1: Voronoi Diagram
[The dots in the figure are the sites and the lines are the edges of the a partitioned
region given that particular set of sites. It can be observed that for any arbitrary
point in the whole space, the closest site is the one inside the same region as it is.
Also, the number of regions are exactly equal to the number of sites and have a
one-to-one correspondence.]

The strategy to partition a target area depends on the particular purpose of

43

partitioning; such as companies partition areas into regions for sales or for

warehousing inventory. The rationale for partitioning dictates the strategy used and

the regions and boundaries that we get can vary significantly for the same area

partitioned with different strategy. An example of a strategy could be when we are

given numerous sites inside an area and we might want to partition the area with

regions which are of roughly same area but each region corresponds to just one site.

There are different algorithms to construct Voronoi diagram with n sites as

input. A brute-force algorithm constructs one region at a time. Since each region is

the intersection of n-1 half planes, it takes O(nlogn) time per region, thereby

resulting in an O(n2logn) time algorithm. An optimal algorithm has O(nlogn) lower

bound [104]. The planesweep algorithm that we consider here for parallelization is

an optimal algorithm.

We are exploiting parallelism in the planesweep algorithm on a per event

basis, however, the order of event processing is still sequential. This is because there

is interdependence between the static and dynamic events generated by concurrent

event processing. We have discovered that there is enough computation in an event

itself to warrant performance improvement in a shared memory environment. These

computations include intersection of neighboring arcs (w.r.t. an event) that is

required to generate new events. This is the first work to identify and report the

performance enhancement possible while maintaining the spatial data structures

(beachline) on a per-event basis concurrently.

OpenMP and OpenACC are application programming interfaces which

enables us to parallelize existing C, C++ or Fortan code by just adding compiler

directives (#pragma) to it. The compiler tries to take the directives as hints for

potential ways to inject parallelism in the sequential code. Directives based

parallelization can be targeted at multicore CPUs, GPUs or a combination of both.

44

The latest versions of both OpenMP and OpenACC has features and directives that

enable both types of parallelization. Directives based programming is promising

because it is possible to parallelize a sequential code with minimal refactoring effort

compared to directly using threads. However, it may be necessary to re-organize the

code to ensure performance improvement in a concurrent code. Adding directives

should not affect the correctness of the results produced, although the order in

which results are produced might vary due to concurrency.

Criteria for a successful parallelization with directives are as follows:

1. Embedding directives in the code results in speedup on parallel hardware.

2. The added overheads due to parallelization is comparatively low.

3. No substantial changes in the original algorithm and its implementation.

This chapter is a part of our series of work focused on parallelizing existing

spatial and computational geometry code using directives. Our prior work was

successful in the parallelization of the planesweep version of the segment

intersection [105] and polygon intersection [12]. Planesweep algorithms work by

processing events in a loop. Unlike Voronoi diagram construction, segment

intersection and polygon intersection algorithms require few computational steps to

maintain the associated data structures. Among a class of problems that can be

solved by planesweep paradigm, we found that sequential Voronoi diagram

construction algorithm is unique in the sense that it can be improved by

parallelizing the computations involved in each event (point). In this respect, our

work is complimentary to the existing research that focuses on data parallel

approaches for the construction algorithm.

In particular, this chapter presents the following contributions:

1. Identification of the inherent difficulty in the parallelization of Voronoi diagrams,

45

especially Fortune’s algorithm.

2. Exploration of potential places to inject parallelism via directives in an

implementation of Fortune’s algorithm. The computations involved in generating

new events dynamically has been effectively parallelized leading to around

two-fold speedup for a variety of datasets.

3. OpenMP based parallelization of C++ version of the implementation. The

skeleton for the sequential C++ code used was inspired by the work of Matt

Brubeck [106].

This chapter explores the concurrency available in processing each event in

Voronoi diagram construction and uses directives to make an existing

implementation of Voronoi computation faster with minimal efforts using compiler

directives. This chapter also explores the performance in different scenarios and

tries to provide a framework for future work in similar problems. In the rest of the

sections below, we discuss the related work and our new algorithm with OpenMP

directives. Finally, we provide quantitative results to validate our algorithmic

improvement and conclude with a discussion on our future work.

3.2 Related Work

To the best of our knowledge, this chapter is the first in exploring a

completely directives enabled parallelization for Voronoi computation. However,

significantly speeding up the sequential Voronoi computation has remained a long

standing challenge since Fortune came up with the planesweep approach that

reduced the complexity of Voronoi computation to O(nlogn). Delaunay

triangulation has a dual relationship with Voronoi diagrams. The Delaunay

triangulation for a set of discrete points is the connected graph of all the points in

such way that no points lie inside the triangles formed by joining the points. A

46

Voronoi diagram is basically the Delaunay triangulation of the vertices of the

resultant Voronoi graph.

Biniaz and Dastghaibyfard compares different sweep line approaches like the

Fortune’s sweep-line algorithm, Zalik’s sweep-line algorithm, and a sweep-circle

algorithm proposed by Adam, Kauffmann, Schmitt and Spehner [19]. It tests the

implementations of these algorithms on a number of uniformly and none-uniformly

distributed sites. Their paper successfully shows that a well written implementation

of the sweep-circle method can provide significant reduction in runtime. They have

shown significant time reduction with the Zalik’s sweep-line algorithm and the

sweep-circle method even beats that although not by much. They have used

heuristics like number of tests per site to reduce computation time and

experimented with different choices of data structures like hashed table or linked list

and not been able to show that any one is better than the other.

Wong and Muller presents an even more efficient implementation of the

Fortune’s algorithm [20]. Effort has been spent on tuning the code and paying

attention to hotspots that slow down the implementation. Since no particular

routine that dominates the running time was identified, pre-allocating or reusing

data structures and maintaining free lists are used to improve storage management.

The performance of Fortune’s scheme is sensitive to the bucket size. Their paper

argues that the efficiency of these data structures is comparable to Fortune’s

scheme. Abstract data types that are independent of the algorithm is used and the

added benefit of allowing performance improvements to the algorithm by simply

changing the underlying data structure is stated.

Work done by Bollig explores Voronoi computations in the GPU using a

flooding algorithm along with Lloyd’s method [21]. A custom tile-based algorithm

to evaluate regional mass centroids was further explored. But with increasing

47

number of seeds, the approaches tried in this work starts to loose efficiency. While it

does introduce a new implementation by combining some existing concepts, it

doesn’t conclude with a scalable technique for the GPU.

Majdandzic et al. claims to presents a parallel algorithm and its GPU-based

implementation to calculate a discrete approximation to the Voronoi diagram [22].

This work however focuses on computing Voronoi in the raster where it matches

each point on the surface to a particular color-coded seed. When compared to the

sequential run of this approach, the GPU-based implementation does give us good

speedup but the sequential version of this code is not the best possible sequential

method to do this kind of computation. So, for a raster system, this work does look

promising but results from this type of implementation can not be further utilized

in doing more complex non-raster, computational geometry analyses.

Yuan et al. explores the problem of using the GPU to compute the

generalized Voronoi diagram for higher order sites, such as line segments and curves

using the jump flooding algorithm and their improvements upon it [23]. This work

also explores the raster methods for computing Voronoi diagram. However, rather

than just parallelizing the brute force method usually used by raster approaches,

they use the idea of separation of site identifier and textures. This way the work

focuses on increasing accuracy and reducing memory consumption. However the

efficiency of the flooding stage is affected by the extra texture fetching operations

needed for accessing the information of a site from its identifier. Their paper claims

that its experimental results show their method is much more accurate than that of

the original jump flooding algorithm on a GPU and reduces the memory

requirement by around 83%.

The work done by Rong et al. explores a GPU-assisted computation of

centroidal Voronoi tessellation using Lloyd’s algorithm [24]. Centroidal Voronoi

48

tessellation are special types of Voronoi diagram where each Voronoi cell is also its

mean. Their paper proposes a new technique for computing Voronoi diagrams on

surfaces and a novel way of using vertex programs to perform the regional reduction

over Voronoi cells. The idea is then extended to computing centroidal Voronoi

tessellation on surfaces with GPUs. The work is only GPU-assisted because the

computation of centroidal Voronoi tessellar energy values and gradients, which is

the most time-consuming part, is performed on the GPU and then these values are

read back to the CPU for computing the new sites which down the overall

computation. Pending complete migration to the GPU, the maximum possible

speedup still suffers. Furthermore, the work is still a discrete approximation and

still has some inaccuracies.

Tsidaev explores the use of Green-Sibson Voronoi tessellation method in the

parallelization technique for Natural Neighbor interpolation algorithm [25]. The

idea behind Natural Neighbor interpolation algorithm idea is to calculate Voronoi

diagram for all initial points, and then to add each interpolated point into the

tessellation with sequential diagram recalculation i.e. natural neighbor algorithm is

basically the algorithm to insert an additional point into existing Voronoi diagram.

The test example shown in their paper claims that even complex algorithms that

cannot be vectorized well can still be efficiently parallelized and furthermore GPU

computations could be used as a much cheaper alternative.

Nievergelt and Preparata presents two plane sweep methods for merging

geometric figures [26]. This type of work can be used in combining two Voronoi

diagrams, especially if the target region was divided to calculate Voronoi diagrams

separately and needs merging later. The two algorithms are for cases when the

merging figures are convex or non-convex respectively. Voronoi cells are convex in

nature but the boundary of collection of Voronoi cells can also be non-convex.

49

Theoretical parallel algorithms for Voronoi diagram construction have been

designed on mesh, hypercube, PRAM models of computation [27]. Parallelizing

Voronoi diagram may need experimentation with other approaches from

computational geometry that have not been tried yet and if there are parallel

versions of these approaches, then we will be able to easily use them in our

parallelization.

3.3 Plane Sweep

Figure 3.2: Plane Sweep Voronoi Calculation
[The figure show an in-progress computation of the Voronoi diagram. The dots in
the figure are the sites. The arcs are collectively the currently active beachline line
at the sweepline position. The sweepline is the vertical line across the figure in the
middle.]

Plane sweep is a common approach in computational geometry where the

target geometric space is swept by an imaginary line and as the sweepline progresses

computational geometric solutions at and below the sweepline are calculated. Plane

sweep is extremely efficient in solving varieties of problems in computational

geometry especially by reducing the complexity of the problem down to O(nlogn)

scale. Plane sweep is used in basic operations like calculating intersections of lines

50

and polygons to complex operations like computing Voronoi diagrams. There are

different sweep approaches for solving Voronoi diagrams [19] but the most widely

used and simple to implement is Fortune’s Algorithm [107]. Fortune’s algorithm

however is more complicated than the usual plane sweep approaches because the

solutions below the sweepline can still be influenced by points above the sweepline.

Fortune’s algorithm tackles this problem by the ingenious use of beachline. This

property that solution could be affected by future events however adds more

complexity to the algorithm which makes parallelization of this algorithm even more

difficult.

Definition 2. For a horizontal left-right sweep, the beachline B at a particular

sweepline position is the trace of the maximum bounds (maxx) of all the active arcs

at that sweepline position.

3.4 Fortune’s Algorithm

Fortune’s algorithm is a planesweep algorithm for computing Voronoi

Diagram in O(nlogn) time with O(n) space [107]. Fortune presented a

transformation that could be used to compute Voronoi diagrams with a sweepline

technique. According to Fortune, ”Rather than compute the Voronoi diagram, we

compute a geometric transformation of it. The transformed Voronoi diagram has

the property that the lowest point of the transformed Voronoi region of a site

appears at the site itself. Thus the sweepline algorithm need consider the Voronoi

region of a site only when the site has been intersected by the sweepline” [107].

Algorithm 3.1 shows the overall structure of the algorithm proposed by Fortune as

explained by Berg et al. in their book [28].

In Algorithm 3.1, in HandleSiteEvent at line 6 new arcs get created and in

line 8, HandleCircleEvents arcs gets removed from the beachline. For each event,

the algorithm loooks at three concecutive arcs for convergence, new events may get

51

Algorithm 3.1 VoronoiDiagram(P)

1: P ← {p1, p2, ..., pn} sites as points
2: Initialize the event queue E with all site events, initialize an beachline B and an

empty edge list O.
3: while E is not empty do
4: Remove the event with largest x-coordinate from E
5: if the event is a site event, occurring at site pi then
6: HandleSiteEvent(pi)
7: else
8: HandleCircleEvent(r)

where r is the arc from the beachline that will
disappear

9: end if
10: end while
11: The arcs still present in B correspond to the half-infinite edges of the Voronoi

diagram. Compute a bounding box that contains all vertices of the Voronoi
diagram in its interior, and attach the half-infinite edges to the bounding box by
updating the edge list appropriately.

created by the events processing method. Output of Algorithm 3.1 will be O, the

list of all the edges of the computed Voronoi diagram. We have identified the

computations involved for parallelizaion in HandleCircleEvents as described in

subsection 3.4.1.

Figure 3.3, adopted from [108], shows the construction of Voronoi diagram as

the sweepline progresses. This figure shows a top-down vertical sweep rather than

the horizontal left-right sweep mentioned primarily in this chapter and the sweep

direction is inter-changeable. In the figure, the grey points are the unprocessed site

points, red points are the processed site points, green points are circle events and

blue ponints are the Voronoi vertices. The purple horizontal line is the sweepline,

the light grey curves are the arc for each processed site points and the green trace of

light grey curves shows the beachline at the active sweepline position. At each of

the sweepline position, the beachline is updated and Voronoi vertices are identified

via circle events check. Then before moving on to the next sweepline position,

Voronoi edges upto that point are constructed. Figure 3.3(e) is an example where a

52

Figure 3.3: Fortune’s Algorithm Progression
This figure is best viewed in color as each color corresponds to a different phase in

the progression.

53

circle event check results in a Voronoi vertex. Figure 3.4, also from [108], further

illustrates this. At the sweepline, correspoding to the lowest red site, we need to

find the corresponding arc vertically above it. The computations involved in doing

so requires searching the active arcs in the beachline. This search process per event

is one of the target of parallelization that we have described in subsection 3.4.1.

Figure 3.4: Circle Event during Fortune’s progression
Expansion of Figure 3.3(e) for better viewing

Algorithm 3.2 is a simplified algorithmic description of the implementation of

Fortune’s Algorithm. The algorithm and data structures mentioned follows their

C-type implementation style loosely. The focus of the description here is to show

the flow of the algorithm so that the possibilities and limitations to a directive

based approach can be explored. This algorithmic description here is necessary to

understand the flow of execution and interdependencies among the variables that

are key to any directive-based parallelization.

Following are the data structures used in Fortune’s algorithm. Here var is a

placeholder for any numeric data type like int, float, double, etc.

struct point {

var x , y ;

}

Listing 3.1: Data Structure for Point

54

Algorithm 3.2 Fortune’s Algorithm (Horizontal Sweep)

1: P ← load all points
2: Initialize a bounding box with offset
3: Initialize beachline B

// B is of type arc
4: Initialize output O

// O is a collection of segments
5: Initialize events priority queue

// event with minimum x-coordinate is at the top
6: Sort P in ascending order by x-coordinate
7: for each p in P do
8: while (events.top.x ¡= p.x) do
9: ProcessEvent(events.deque())
10: end while
11: ProcessPoint(p)
12: end for
13: ProcessRemainingEvents()
14: FinishEdges()

struct event {

var x ;

po int p ;

arc ∗a ;

}

[Here x i s the maximum x−l o c a t i o n a c i r c l e event can a f f e c t

and i t i n t r oduce s a event p ro c e s s i ng the re .

So , x = p . x + radiusOfTheCirc l e]

Listing 3.2: Data Structure for Event

struct arc {

point p ;

arc ∗prev , ∗next ;

event ∗e ;

seg ∗ s0 , ∗ s1 ;

55

}

Listing 3.3: Data Structure for Arc

struct seg {

point s ta r t , end ;

bool done ;

}

Listing 3.4: Data Structure for Segment

Algorithm 3.3 ProcessEvent(event e)

1: Input event e
2: if (e.valid) then
3: Begin a new Segment s at e.x
4: Remove e.a from beachline B
5: Complete segments e.a.s0 and e.a.s1
6: // Check circle events

CheckCircleEvent(e.a.prev, e.x)
CheckCircleEvent(e.a.next, e.x)

7: end if

Algorithm 3.4 ProcessPoint(point p)

1: Input point p
2: for arc i in beachline B do
3: if intersects(p,i) then
4: Add new arc at p.x to beachline B
5: Connect new arc to prev and next segments of i
6: // Check circle events

CheckCircleEvent(i, p.x)
CheckCircleEvent(i.prev, p.x)
CheckCircleEvent(i.next, p.x)

7: return
8: end if
9: end for
10: arc i ← last arc in B
11: Insert segment between p and i

56

Algorithm 3.5 CheckCircleEvent(arc i, var x)

1: Input arc i and var x
2: Check new circle event for i at x
3: if Circle Event Found then
4: Initialize a new event
5: end if

Algorithm 3.6 ProcessRemainingEvents()

1: while (events not empty) do
2: ProcessEvent(events.top)
3: end while

3.4.1 Unpacking Fortune’s Algorithm

We start by trying to find opportunities in the algorithm where compiler

directives can be inserted for parallelization. The most obvious choice would be to

parallelize the loops. Loop parallelization using directives is the easiest way to

parallelize and usually has very less overheads. Furthermore, internal loops inside

nested loops can also be parallelized giving us further speedup.

In Algorithm 3.2, the for-loop in line 7 can not be parallelized because there

is a event processing inside there, and event processing changes the list of active

events and also removes an arc from the beachline. Also, event processing checks if

there are circle events or not, and if there are circle events then again new events

are added. So we would like to see if at least the while-loop in line 8 can be

parallelized. This is again not possible because of the same reasons as above.

Algorithm 3.4 and Algorithm 3.3 can not be rum concurrently.

In Fortune’s algorithm, the site events and the circle events have

Algorithm 3.7 FinishEdges()

1: for (each arc i in beachline B) do
2: Complete any incomplete segments
3: end for

57

interdependence, as such these two class of events can not be separately parallelized.

In the Algorithm 3.2, we can not do a loop fission by removing the processing of

points outside the for-loop to run it later separately after all the events are

processed. If this separation were possible then we could try the parallelization of

the separated loop. However, since all the events processing before the points

processing are dependent on the list of active events and the beachline and points

processing updates them, points processing has to be done at that point. Since

points processing is dependent on the list of active events and the beachline; neither

moving it to a separate loop or processing it in parallel is viable. Due to the sorted

nature of points, each x-coordinate of a point corresponds to the location of a

sweepline. Since processing points in parallel turns out to be not viable, this would

mean that processing the sweeplines in parallel is not viable. In some cases, the

order of processing of certain parts of the code can be altered but it most certainly

is not the case here. However, we may still be able to parallelize processing within a

sweepline.

Next we look at Algorithm 3.3. Since entirety of its execution is based on a

conditional, we need to determine the possibility of parallelizing this portion if it

gets executed. Here, line 4 is dependent on line 3 because we need the segment s to

remove e.a from beachline B. However, excluding this, the two operations in line 5

and the two operations in line 6 can be parallelized to run concurrently. Completing

the two segments in line 5 does not affect any other operations that could happen

here concurrently. However the two circle events check in line 6 can lead to new

events being added, but since these events are just added and not used elsewhere,

we can put adding events part of the code inside critical sections and still parallelize

line 6. So, in overall we can have five sections that run in parallel here - one section

would comprise of lines 3 and 4, another two sections would comprise of completing

each segment in line 5 and the other two sections would comprise of the two circle

58

events checks in line 6.

Next we look at Algorithm 3.4. This portion is even more complicated to

parallelize because it has loops, conditionals inside loop and early exits inside those

conditionals. An event is rendered invalid if the arc associated with that event is no

longer in the beachline.

The outermost loop is searching for an arc corresponding to the new event.

This is done by performing an exhaustive search looking for a single instance for

which the search criterion is fulfilled. Then a series of operations is performed on the

resultant instance if it was found. If a resultant instance was found then not only

the loop is returned but the whole procedure is exited. We can start by separating

the search and the execution of the result of the search. So, we parallelize the loop

in step 2 to find an arc i which satisfies the if-condition and remove the execution

part below. One problem here is that if such an arc is found by sequential iteration

early on, parallelizing it might just give us unessential overhead. To remedy this, we

will convert this search loop into a chunked iterative exhaustive search loop by

providing hints to the compiler that there might be a loop cancellation before each

chunked iteration. This transformation makes it suitable for utilizing OpenMP

parallel loop cancellation feature as shown line 5 and line 6 of Algorithm 3.8.

Concurrent Processing of Circle Events:

Another problem with Algorithm 3.4 is that, a sequential search would have

terminated after finding the first instance for which the search criteria would have

been satisfied but during a concurrent chunked iteration, there might be multiple

instances for which the search criteria has been satisfied. For correctness with

regards to the sequential code, we can use a minimum reduction to make certain

that the first instance is reported. At this point we will either have an arc i that

satisfies the conditional or not and the loop will be exited but the procedure will not

59

have been terminated. We can put this conditional of whether an arc i has been

found in an if-statement with its else-part as lines 10-11. If an arc i has been found

then we can execute the lines 4-6 with i and if not then we execute lines 10-11. This

removes any early procedure terminating conditions from Algorithm 3.4. Then lines

4-6 that has been moved out of the loop and put inside this new conditional

statement can now be explored for further parallelism. Lines 4-5 need to be

executed sequentially because line 5 is dependent on the arc created in line 4.

However, as shown in Algorithm 3.8, the three parts of line 6 can be parallelized to

run concurrently even along with lines 4-5. Again, here the circle events check can

lead to new events being added, but since these events are just added and not used

elsewhere, we can put adding events part of the code inside critical sections and still

parallelize. However, we will not be able to parallelize lines 10-11 of Algorithm 3.4

because its execution needs to be sequential. So, in this portion we are able to

parallelize the search phase and lines 4-6 after they have been moved outside. As

shown by Algorithm 3.8, Lines 4-6 from Algorithm 3.4 will have four sections - first

section would comprise of lines 4-5 and the other three sections would comprise each

of the three parts of line 6.

Next we look at Algorithm 3.5 which performs circle event check, the

checking of the circular event done at line 2 is a fairly sequentially ordered portion.

The purpose of the second argument of Algorithm 3.5 is to detect false alarms.

Here, due to the changes done in the other calling algorithms, we need to make sure

that the new events creation and appending are done inside critical sections.

Algorithm 3.6 has a loop but this also loop needs to be processed in sequential

because each call for event processing changes the events list. Finally, Algorithm 3.7

has a loop that can be easily parallelized because the segments processed in the loop

here has no side effect elsewhere.

60

Algorithm 3.8 ProcessPoint(point p) with directives

1: Input point p, initialize bool doesIntersect = False

#pragma omp parallel for num threads(threadCount)
2: for arc i in beachline B do

j ← index of arc i in beachline B
3: if intersects(p,i) then
4: ind = j
5: doesIntersect = True

#pragma omp cancel for
6: end if

#pragma omp cancellation point for
7: end for

8: if (doesIntersect == True) then
9: arc i ← B[ind]

#pragma omp parallel sections
{

#pragma omp section
{

10: Add new arc at p.x to beachline B
11: Connect new arc to prev and next segments of i

}
#pragma omp section

12: CheckCircleEvent(i, p.x)
#pragma omp section

13: CheckCircleEvent(i.prev, p.x)
#pragma omp section

14: CheckCircleEvent(i.next, p.x)
}

15: else
16: arc i ← last arc in B
17: Insert segment between p and i
18: end if

61

3.5 Results

Random points were generated using a uniform random probability

distribution. The generated points were controlled via rejection to avoid degenerate

cases. Degenerate cases include two points that are at the same x-coordinate for a

horizontal plane sweep and collection of points that are extremely clustered and not

well distributed in the target region.

An OpenMP implementation of code was created using the analysis in

section 3.4.1 and executed on data with varying number of sites. The machine used

to run the OpenMP codes has the Intel Xeon E5 CPU v4 E5-2695 with 18 cores and

45MB cache and base frequency of 2.10GHz. Given there are four parallel sections

in each parallelized part of our code, it would only be fitting to use four threads. To

avoid threads re-creation overheads, it would be advisable to create threads

beforehand and reuse them.

Table 3.1: Timings of running the code in sequential and with OpenMP

Sites Sequential OpenMP SpeedUp
2k 0.456s 0.165s 2.761
4k 0.758s 0.419s 1.809
8k 2.06s 0.995s 2.070
16k 6.496s 2.748s 2.364
32k 13.748s 5.162s 2.663
64k 38.847s 18.029s 2.155
128k 84.396s 39.305s 2.147

Figure3.5 shows the execution time for different number of site events. Even

with the overhead of parallelization, the OpenMP version beats its sequential

counterpart. Our solution can be combined with data parallel versions of the

algorithm. We can see from Table 3.1 and Figure 3.6, we get almost above 2x

speedup. The distribution of points affects the runtime of our algorithm and we

have observed that having some types of distribution of points improves the

62

Figure 3.5: Sequential vs OpenMP timings

Figure 3.6: SpeedUp gained with OpenMP (4 threads)

performance of our algorithm. As we can see in figure 3.6, the speedup is varying for

different number of sites. This is because the time it takes to search for an arc

corresponding to the event being processed is variable. In Algorithm 3.8, there are

two code blocks which have been parallelized using OpenMP. There is a sequential

63

dependency between block 1 (lines 2-7) and block 2 (lines 8-18). Eventhough the

for-loop is highly parallelizable, the second block with OpenMP sections can only

use few threads. In the worst case scenario, the execution time for block 1 depends

on the number of active arcs there are in the beachline but on average case, the

intersection test can terminate much earlier. We have found that beyond four

threads there is a degradation in efficiency.

3.6 Future Direction

The performance improvement gained by simply parallelizing Fortune’s

algorithm with compiler directives seem to be very modest. So, without tweaking or

refactoring the algorithm to some extent we might not be able to gain any more

speedup. For doing so in ways that can be easily achieved with directives based

programming, following are some of the methods that we have observed to have

some potential or need experimentation to gauge them.

3.6.1 Backtracking

The sweepline progresses in an unidirectional manner and at each

sweep-position, the sweepline computes a corresponding beachline. The beachline is

a collection of active arcs when the sweepline is at a particular position and can

change at each sweep-position as points or events gets processed. Then at each

sweepline, using the sweep-position and the beachline, circle events are checked

which results in Voronoi vertices. This computation of finding all the Voronoi

vertices can be done independently for each Voronoi site if the graph building phase

is to be separated from the Voronoi vertices finding phase. A final sweep to connect

all the vertices will then be required to complete the diagram. For this, in each

sweep position instead of moving in the direction of the original sweep, we will move

in the reverse direction, creating a beachline at the sweepline position but in the

64

same orientation as the beachline would have been if we were moving forward. We

would continue traversing backwards until the traversing backwards does not change

the beachline any further because no more points that could contribute to the

beachline at that sweep-position exists. In this way, we can have the beachline for

each sweepline, and each of these sweepline and beachline pair can be processed in

parallel to find circle events that will give us the Voronoi vertices. Because of

nearby sweeplines having almost the same arcs in their beachline, this process of

backtracking from each sweep-position would increase the redundancy of the work

done while finding the beachline at each sweepline. However, since we can

parallelize processing of each sweepline and each sweepline and beachline pair can

be found in parallel, we will be able to parallelize the entire process to gain much

better parallelism. Backtracking will overall have three phases of which the first two

are parallelizable - one to find the corresponding beachline of each sweepline, next

to process each sweepline and last to build the final Voronoi diagram by sweeping

through connecting all the Voronoi vertices.

3.6.2 Transformation

Computation of Voronoi diagram is dependent on the order of distance

between points in the target region from the sites. Voronoi edges are created in such

a way that they can group all points in the target region so that they can have a

common closest site. Any transformation to the target area would also change the

Voronoi diagram if the transformation changes the distribution of distance between

the points in the target to become further or closer in the transformed region. So,

any transformation that we do to the target region for simplifying or speeding-up

Voronoi computation, in terms of mutability should have these two general features:

1. The transformation should not change the order of distance distribution

between points and sites.

65

2. The transformation should be back-transformable in such a way that the

Voronoi diagram can be retained.

Sometimes the best possible transformation that we might obtain may not be

suitable for any distribution of points in the target region. In such cases, we might

have transformations that are not universal but only applicable to certain

distribution of points and sites. As long as the transformation criteria are satisfied

for the given points distribution, we should be fine. For example, it has been

observed that having an oblique distribution of points reduces the time spent on

computation with our algorithm, so, any transformation that transforms our target

region to be oblique and satisfies the criteria could be used for pre-processing and a

corresponding back-transformation could be used after the Voronoi diagram was

computed in the transformed space to get a Voronoi diagram in the original space.

3.6.3 Gridding

The simplest way to process the target region in parallel would be by

splitting it and processing each split in parallel. Making grids would be the easiest

way to split the target region. Grids can have different designs but the most

common one would be uniform repeating equal rectangular boxes that span the

whole area. Also, based on our previous observation that oblique target spaces gives

us better performance, the gridding can be done in a manner so that we get oblique

divisions of the target space. For approaches like gridding, one of the major costs is

the combine step of joining the Voronoi diagrams from each grid together. Having

fewer grids would be computationally more efficient because it would mean lesser

join costs. With our parallelization approach instead of making more grids to

process in parallel, we can make bigger grids that gets processed in parallel. Hence

by making bigger grid sizes and thus reducing the number of grids, we can reduce

the cost of joining Voronoi diagrams by having less number of grids to join.

66

Voronoi diagrams have a very geometrically local solution i.e. adding or

removing an arbitrary site from the target space only distorts the Voronoi diagram

around that site. If instead of a contiguous geometric grid, the points are selected at

random, then joining the result from would be an extremely complex process.

Thankfully the distortion is not propagated beyond the immediate neighbors of the

added/removed site. This means that dividing the points by making good geometric

grids is an extremely viable approach. However, joining the grids to obtain a final

solution will still have overheads. Also, in some cases deliberately increasing the

work, but having the ability to do the overall work in parallel might not be such a

bad idea. In such cases, we can have different patterns for gridding which has

overlaps with its neighbors. This overlap will give us continuity in edges between

the grid edges by redundantly computing Voronoi edges for the overlap. But if this

overlap is big enough to reduce the need for a merge operation by replacing it with

just a filter operation then it might be worth it. In this way we might even get good

speedup.

3.6.4 Sorting

If each of the sites for which the Voronoi partition would occur were somehow

closely indexed in a contiguous list, then we could easily just take a site and sites

from its neighboring indices to calculate Voronoi cell of each site. In such cases, we

could just traverse the list to calculate Voronoi cells for each site. The entire process

could be parallelized by taking a site and its sites at its neighboring indices and

concurrently calculating Voronoi cells for each of them. Since, the edges will be

redundant among neighboring Voronoi cells, instead of running a complicated

merge, we can just discard one of the repeating edge. This would be possible if we

are able to sort the points in such a way that all points in the sorted list have points

that are around it in the target region at nearby indexed positions in the list.

67

3.6.5 Heuristics

Heuristics in computing are an approach to problem solving using

shortcuts-like methods to reduce computation time or nudge us in the direction of a

solution. Heuristics still have a possibility of leading in an entirely wrong direction

or not reaching an actual or optimal solution. But in most cases, if the heuristics

are not completely stochastic, we should be able to gain some benefits. An example

could be the use of heuristics in approximating boundaries for the Voronoi diagram

and re-sweeping the target space iteratively to reach a solution. This would be a

viable approach if we have good enough heuristics where approximating and

re-sweeping is less computationally expensive than running the entire algorithm.

Here parallelization can be explored in the approximation or re-sweeping phase.

Similarly another example of a heuristic can be approximating the beachline in each

scan-position. Heuristics could also help in determining what types of

transformation to use, what pattern of gridding to consider or what number of

neighboring points to take from a sorted list.

3.6.6 Machine Learning

Machine learning and neural networks have proven to be an efficient method

to solve a large variety of problems and are also easily parallelizable. So, it might be

possible to train a machine learning algorithm or a neural network to compute

Voronoi diagrams. This idea needs further exploration and there is a possibility that

the solutions will only be an approximate one, which is suitable for applications

where precision might not be the primary concern.

3.7 Conclusion

Our experiments and exploration in directives-based parallelization of

Fotune’s algorithm has yielded a shared memory implementation that gives around

68

2x speedup compared to the sequential version. Considering the amount of work

required for injecting directives, this amount of parallelization is modest. A four

threaded parallelization is however extremely useful for applications that run on

personal devices that are mostly quad cores or on cloud instances where the most

common instance of compute nodes usually has four cores. The exploration into

each step of the implementation and parallelization attempts using directives should

open up some of the challenges in parallelizing computational geometry paradigms

like the planesweep and expose the most challenging areas for directive-based

parallelization.

69

CHAPTER 4: ACCELERATION OF SEGMENT TREE GEOMETRIC

DATA STRUCTURE

Segment tree is a static binary tree data structure used for storing and

querying line intervals (segments). This data structure is widely used in

computational geometry and Geographic Information Systems (GIS). In this

chapter, we have successfully parallelized segment tree construction and query

operations using a completely compiler directive-based approach with minimal

changes to the sequential code. Furthermore, we have used the segment tree data

structure in two computational geometry operations - 1) reporting rectangle

intersections (overlaps) and 2) point-in-MBR tests. MBR stands for Minimum

Bounding Rectangle.

Using OpenMP, we have explored loop-based and task-based parallelization

for segment tree construction algorithm. Our loop-based formulation and its parallel

implementation outperforms the task-based implementation. Using OpenMP on the

Intel Xeon E5 CPU, which is a 18 core (36 threads) CPU, we have achieved upto

29x speedup for tree construction and 23x for batch querying using 32 threads. To

minimize data movement between cache and main memory for segment tree

construction, we present a cache-efficient segment tree construction method which

yielded upto 1.2 to 1.4x speedup compared to standard tree construction. Using

OpenACC on Nvidia TITAN V, we have achieved speedup upto 100x for the tree

construction phase and speedup upto 62x for the batch query phase.

4.1 Introduction

Segment tree is a tree data structure which is used for efficient storage and

retrieval of interval or line segment information [28]. The stored segments or

intervals can be queried for a given point. It is usually a structure that is not

70

modified once created, hence a static data structure.

Segment tree is basically a binary search tree, where each of the leaf nodes

represents an elementary interval obtained from the list of segments/edges. The

abscissas of the points on all the edges are taken and sorted to create elementary

intervals for a given list of edges. Each parent node is a union of its children nodes.

In this way the root node spans the entire finite coordinate space for the given list

of edges. Each node stores a list of zero or more input edges, which is called a cover

list. This list is used to construct the output of the point query.

Since Segment tree is a static structure, all the segments or intervals are

required a priori to start initializing and building the tree structure. Once, the

Segment tree is built, we can use it to run multiple queries in a batch or have

streaming queries. The static nature of the tree allows high degree of concurrency in

query operations without having to worry about the read/write lock scenarios.

Unable to update the segment tree once it is build is a limitation, but it also

provides us with the opportunity to query the tree concurrently without having to

worry about the read/write lock scenario. Furthermore, we can have different types

of read based operations like queries running either in parallel or in a streaming

fashion always giving the same results irrespective of the timing of the operation.

Segment tree and its variants have been studied in literature

theoretically [9, 27, 28, 29] and experimentally [32, 33, 34, 35, 36, 37] in

computational geometry. In theoretical parallel algorithms literature, this data

structure allows development of optimal parallel plane sweep algorithms which is a

fundamental computational geometry paradigm [9, 10, 109].

We present a novel cache-efficient method of segment tree construction that

exploits temporal locality to reuse the data already loaded into the cache. This

method is different from Van Emde Boas layout optimization which is applicable in

71

cache-oblivious query operations for our problem, but not in cache-efficient data

structure construction [41, 42, 43]. Modification in tree storage layout exploits

spatial locality inherent in tree-search algorithms but requires change in

parent-child access method in search algorithms. Our method keeps the data

organization same as standard segment tree construction algorithm. Therefore, it

does not need any change in standard query algorithms. Optimizing data structure

construction is beneficial where the construction time is non-negligible compared to

query execution time.

This chapter presents the first GPU-based parallelization of Segment tree.

Each node of a Segment tree contains variable number of elements. This irregularity

is data dependent and challenging to optimize on SIMD/SIMT architectures.

Although there has been successful parallelization of some tree-based data

structures on GPU, Segment tree construction presents unique challenges and

design opportunities that are not encountered in other data structures like B-tree,

Range tree and R-tree (Rectangle tree) [44, 46, 47].

In this chapter, we present two computational geometry applications that

utilize our parallel segment tree to gain speedup. First application is in rectangle

intersection problem where two collections of rectangles are the inputs and the

output consists of all the overlapping pairs of rectangles. This application is used in

the filter phase of polygon overlay and spatial join in Geographic Information

System (GIS) and spatial database respectively. Second application is a parallel

version of Point-in-Rectangle algorithm. This algorithm tests whether a point of a

rectangle from one collection is contained in a rectangle from another collection.

This is a variant of the standard point-in-polygon test where polygon is

approximated by a rectangle (minimum bounding rectangle).

72

Figure 4.1: Basic Structure of a Segment Tree

4.2 Contributions of this chapter:

1. Parallelization of Segment Tree building and querying on multi-core devices

using OpenMP directives

2. Parallelization of Segment Tree building and querying on GPUs using

OpenACC directives

3. Cache optimization of Segment Tree build phase

4. Speeding up applications that use Segment Tree: 1) minimum bounding

rectangle intersection and 2) point-in-MBR tests. MBR stands for Minimum

Bounding Rectangle.

Section 4.3 describes background, motivation and related works about

Segment tree and its parallelization. Section 4.4 describes the design and

implementation of constructing segment trees on multicore CPUs and GPUs along

with their algorithmic complexities and cache efficiencies. It also presents the

implementation of queries. Section 4.7 presents different geometric operations using

73

Figure 4.2: Segment tree with four input line segments
Line segments s1, s2, s3 and s4 and their corresponding four elementary intervals

are shown in the leaf level as horizontal dotted lines. The interval associated with a
non-leaf nodes is the union of the intervals of its two children. The line segments in

the cover-list of each node is also shown.

Segment tree. Section 4.8 presents the experimental section with performance

results.

4.3 Background and Related Work

Segment tree data structure was introduced by John Louis Bentley in

1977 [28]. One of the important operations on a segment tree is a stabbing query,

which takes a query point p as an input to report all the line segments overlapping

with an imaginary vertical ray passing through x coordinate of p. An example of a

segment tree with four input segments is shown in Figure 4.2.

Cover-list: After building the skeleton of the tree, each node v has an

interval associated with it, namely, Interval(v). For instance, in Figure 4.2,

elementary intervals at leaf level and intervals made by union of elementary

intervals are shown. Next step is to populate cover-list at each node with a subset of

input segments that satisfy a condition. The condition is that an input segment

74

belongs to the cover-list of node v, if it contains Interval(v) and does not contain

Interval(parent(v)). An example of contains relationship is as follows: a segment

with start point (0,0) and end point (5,0) contains an interval with start point (1,0)

and end point (4,0). Moreover, by definition, a segment with the same start and end

points as the interval also contains it. Each node stores the segments that span

through its interval, but do not span through the interval of its parent [28]. For

instance, s1 is not kept at the root node because it does not span through the root’s

interval. Similarly, s1 is not kept at the leaf level even though it contains the two

elementary intervals at the leaf level because it contains the interval of leaf node’s

parent. This condition makes sure that if a segment is stored in node’s cover list, it

does not get stored in its left and right subtrees. Therefore, subsequent query going

from root to a leaf, does not find duplicate results. An input segment can be present

in at most two nodes per level of the tree.

For n line segments as input, the time complexity of building the tree is

O(n log n) [28]. The space complexity of building the tree is O(n log n). The time

complexity of the stabbing query is O(log n+ k) where k is the number of line

segments in the output of the query [28]. An important application of segment tree

is in parallelizing plane sweep algorithms for computing line segment intersections

using PRAM model [9, 10, 29]. External memory segment tree algorithms have been

presented in [30, 31].

Parallel and distributed algorithms for segment tree data structure are

presented in [32, 33, 34, 35, 36, 37]. Segment tree construction on a hypercube

architecture to solve next element search problem (also known as first hit) is

presented in [32]. A parallel algorithm using PRAM (Parallel Random Access

Machine) model of computation and implementation on connection machine was

presented in [34]. Bulk Synchronous Parallel (BSP) model has also been used to

75

develop and analyze segment tree algorithms [35]. Segment tree was used in parallel

PRAM algorithm for polygon clipping in [12].

The influence of caches on the performance of heap data structure was

presented earlier by LaMarca and Ladner [38]. A variant of binary heap optimized

for virtual memory environments was presented as B-heap [39]. B-heap keeps

subtrees in a single page of virtual memory and performs well for large heaps.

In external memory algorithms, a segment tree variant has been designed to

minimize data movement by increasing the fanout of the node and recursively

splitting the node among its children [30, 40]. Compared to the earlier theoretical

work [10, 30, 40], we present practical algorithms that allow parallelism in

computational geometry applications as well as minimize data movement between

fast memory and slow memory.

A cache-oblivious method known as Van Emde Boas (vEB) layout has been

presented earlier to store static binary search trees recursively in a cache-efficient

manner to minimizes data movement in a query operation [41, 42, 43].

Conceptually, vEB layout transforms a static binary tree by recursively splitting the

tree at the middle level of edges so that the tree nodes get grouped together to

minimize data movement in search operations [42]. These methods are not geared

towards cache efficiency in the data structure construction phase. In contrast, our

cache-efficient method is targeted towards building the data structure only.

OpenMP Tasking was introduced in 2008 as a major addition to OpenMP

3.0. This feature allowed convenience in implementing irregular and recursive

algorithms using compiler pragmas supported by OpenMP specification. A general

way of using tasking is by creating chunks of work that can be executed

concurrently. Then these chunks (tasks) are stored in a queueing system. The

assignment of threads to the tasks is dynamic and handled by the runtime system.

76

Computational geometry algorithms are often expressed as recursive programs [28].

This is the case with Segment tree algorithms as well. Before the introduction of

tasking feature in OpenMP, manual transformation from recursive functions to

iterative functions was usually done.

GPU has been used for implementing data structures like Btree [44] and

computational geometry data structures like KD-tree [45], R-tree [46] and range

tree [47]. Here we focus on OpenACC which is a compiler pragma-based approach

to do GPU parallelization.

4.4 Design and Implementation

4.5 Building Segment Trees

The input of a segment tree is a set of segments (edges). Since the segment

tree is a static structure, we need to first build it to start querying it. Building a

segment tree entails:

1. Loading all the edges into memory.

2. Getting all the elementary intervals from the edges

3. Then combining the elementary edges to create a tree structure. Each parent

node will be do the union of the intervals associated with its children nodes.

4. Adding each edge to the cover list of the nodes.

struct SegTree {

int t r e eS i z e , t reeHeight , numEdges ;

Array<Edge> elementaryEdges ;

Array<Node> treeNode ;

}

Listing 4.1: Data Structure for SegTree

77

struct Edge {

Real s t a r t ;

Real end ;

int id ;

}

Listing 4.2: Data Structure for Edge

struct Node {

Edge i n t e r v a l ;

int coverCount ;

Array<int> cove rL i s t ;

int count ;

}

Listing 4.3: Data Structure for Node

The data structure listings show the basic C/C++ like structure for Segment

tree (SegTree), Edge and tree node. Variable treeSize refers to the total number of

nodes in the Segment tree. Variable treeHeight refers to the height of the tree i.e.

the number of steps between the head to a leaf node. Variable numEdges stores the

number of input edges. The variables start and end in the Edge data structure

represent the start and end points. The variable id is given to each edge so that it

can have a unique identifier which can be used in referencing query results. Real is a

typedef used to denote real decimal numbers like floating point of the precision

required by the user or use case.

Algorithm 4.1 shows the overall steps required to build the Segment tree.

Algorithms 4.3 and 4.4 further explain each step required to complete the steps in

Algorithm 4.1. Algorithm 4.1 takes all the input segment data and builds a tree

78

Algorithm 4.1 Segment Tree

1: E ← {e1, e2, ..., en} edges as line segments
2: Make a sorted vector of elementary intervals from E
3: Initialize a SegTree structure with the elementary intervals
4: Build the skeleton for segTree
5: for edge e in E do
6: insert e into the segTree
7: end for

ready for query.

Algorithm 4.2 Elementary Intervals(Array<Egdes> edges)

1: Initialize an empty set of points: SP
2: for edge e in edges do
3: for point p in e do
4: if p not in SP then
5: add p to SP
6: end if
7: end for
8: end for
9: Sort all unique points p in SP

Algorithm 4.2 takes all the segment edges from the input data set and

creates a set of elementary edges from it.

First we generate all the elementary intervals from segment or interval

dataset. This requires finding unique points and sorting those points. Elementary

intervals fill up the bottom most leaf layer in the tree. From there we start building

up the tree. Algorithm 4.3 takes the elementary intervals as input and assigns the

parent of children nodes to be the union of the children nodes. It does this from the

leaf level up to the root of the tree. In this way, the root node will span the

complete range of its input intervals. By the end of algorithm 4.3, the segment tree

will have all the nodes initialised with their proper span and connected properly

with their children nodes. Algorithm 4.4 takes the initialised segment tree and

updates the cover list of all the nodes by inserting the set of input segments from

the root node. This is the final step of the build process. After this, the segment

79

tree will not need to be updated anymore and we can perform query on it later.

Algorithm 4.3 Initialize SegTree(Array<Egdes> elementaryEdges)

1: Initialize treeNode with 2*(size of elementaryEdges)
2: Assign the elementary edges to all the leave nodes
3: Recursively assign the parent nodes to be the union of the children intervals

Algorithm 4.4 Build SegTree(Array<Node> treeNode, Array<Egdes> edges)

1: for edge e in edges do
2: traverse node n in array treeNode
3: if n contains e then
4: add e to cover list of n
5: end if
6: end traversal
7: end for

Algorithm 4.5 shows the steps involved in a single sequential query on a

Segment tree. The inputs are Segment tree edges and a query point. The output

depends on the type of query.

Algorithm 4.5 Query SegTree(Point q)

1: for edge e in edges do
2: traverse node n in treeNode
3: if q is found then
4: traverse backward to return result
5: end if
6: end traversal
7: end for

Edge list contains the actual intervals in our input. When all the endpoints

of the interval are sorted, elementary intervals are each of the consecutive intervals

that are in the sorted group of endpoints. Cover list for each node is the list of all

intervals that fall completely within that node’s interval. Since we are building a

tree using 1D array, we can traverse the tree in a binary heap-like fashion. If index

of node is i, then its children are at index (2× i) and (2× i + 1). Similarly, parent

of child at index i is located at index i/2. Root node is at index 1.

80

Algorithm 4.7 shows a version of the segment tree build phase with the

commonly available recursive code with STL data structures used. We have

parallelized this version with OpenMP task for recursive functions. Parallelization

of recursive code requires a main caller which creates the parallel region. Then

inside, the single directive calls the recursion function that does the main work. The

recursion function is encapsulated in the task directive which runs everything inside

in a parallel thread. Whenever a shared object has to accessed we can use openMP

locks. The locks have to be pre-initialised and have to correspond to each node.

Whenever we are accessing a particular node inside a parallel construct we can use

set the lock corresponding to that node to be locked and unlock in exit. This locking

mechanism is also useful while adding to coverlist of each node. Since locks have a

one to one relation with each node, there is no chance of synchronisation errors.

For i n i t i a l i z a t i o n

nodeIdx = 1

root = SegTree . treeNode [1]

for l e f t t r a v e r s a l

l e f t I d x = 2∗nodeIdx

le f tNode = SegTree . treeNode [l e f t I d x]

for r i g h t t r a v e r s a l

r i gh t Idx = 2∗nodeIdx + 1

rightNode = SegTree . treeNode [r i gh t Idx]

for back t r a v e r s a l

parentIdx = current Idx /2

81

parentNode = SegTree . treeNode [parentIdx]

Listing 4.4: Traversal of the Segment Tree

4.5.1 Segment Tree Construction on CPU

Each of the nodes of the segment tree has a cover list. When building

sequentially, each of the node’s cover list gets updated. However, when building in

parallel, we need to lock the node that is getting updated to avoid multiple threads

accessing the same node. This is shown in Algorithm 4.6.

Algorithm 4.6 Build SegTree(...) in Parallel

1: #pragma parallel for loop
2: for edge e in edges do
3: traverse node n in treeNode
4: if n contains e then
5: #pragma set lock
6: add e to coverlist of n
7: #pragma unset lock
8: end if
9: end traversal
10: end for

4.5.2 Time and Space Complexity

Time complexity of building the Segment Tree includes finding and sorting

all the elementary intervals in O(n log n). n is the number of line segments. The

number of elementary intervals is at most twice the number of edges. Cover lists are

generated by inserting all edges into the tree. The overall time complexity is

O(n log n).

A stabbing query requires a depth-first traversal of the tree. Hence, time

complexity of a single query is O(h). Segment tree is a balanced binary search tree.

So, query requires O(log n) comparisons. By design, an edge or a segment can be at

most in two nodes at a given level. This leads to O(n log n) space complexity.

82

Algorithm 4.7 Recursive Build Skeleton with task directive

1: function recBuildSkeleton(Node node, int start, int end)
2: if (start == end) then
3: #pragma omp set lock
4: node.interval = elementaryVec[start]
5: #pragma omp unset lock
6: return
7: else
8: int mid = (start + end) / 2
9: Node left = leftChild(node)
10: Node right = rightChild(node)
11: #pragma omp task firstprivate(left, start, mid)
12: { recBuildSkeleton(left, start, mid) }
13: #pragma omp task firstprivate(right, mid, end)
14: { recBuildSkeleton(right, mid+1, end) }
15: #pragma omp taskwait
16: node.interval = left.interval ∪ right.interval
17: end if
18: end function

19: #pragma omp parallel
20: {
21: #pragma omp single nowait
22: { recBuildSkeleton(root, 0, lastElementIndex) }
23: }

Algorithm 4.8 Regular Construction of Tree Skeleton (Not Cache-optimized)

1: for (i = H; i > 0; i = i− 1) do
2: for (j = 2i; j < 2i+1; j = j + 2) do
3: parent = getParentNode(j/2)
4: child = getChildNode (j)
5: sibling = getSiblingNode (j+1)
6: parent.interval = child.interval ∪ sibling.interval
7: end for
8: end for

83

Figure 4.3: Segment Tree stored in a binary heap-like fashion.
Nodes stored level by level. Five consecutive nodes are grouped together in the

figure to show six partitions.

Figure 4.4: Illustration of cache-aware subtree-based segment tree construction
The nodes in a subtree are grouped together in a parallelogram to show that nodes
in a subtree are processed first before processing the nodes in the next subtree. The

nodes in a subtree and the overall tree are accessed in a bottom-up fashion.

4.5.3 Cache Efficient Segment Tree

For analyzing the cache efficiency of the data structure, we use similar

terminology and assumption as used in external memory and cache-oblivious

algorithms literature. Lets assume a total cache memory of M , with cache block of

size B each. Then the cache can store upto M/B blocks [43]. Each read operation

from the main memory will trigger a transfer of B words to the cache. Assuming

each node in the tree is of size U , U/B nodes will be read into each block of cache.

Lets assume a balanced binary tree of height H with 2H leaves in the tree.

84

Algorithm 4.9 Cache Efficient Construction of Tree Skeleton

1: for (i = H − 1; i > 0; i = i− 1) do
2: for (b = 0; b < (2i/B); b = b+ 1) do
3: for (j = (2i + b ∗B); j < (2i + b ∗B +B); j = j + 1) do
4: parent = getParentNode(j)
5: child = getChildNode (2*j)
6: sibling = getSiblingNode (2*j+1)
7: parent.interval = child.interval ∪
8: sibling.interval
9: end for
10: end for
11: end for

During the build phase, when the nodes from any level are read, U/B nodes

are loaded into cache. For simplicity, we assume that U is greater than B. And if

the parents of those nodes are loaded, another U/B nodes are loaded. But this

chunk of parents also contain parent nodes of the other contiguous U/B children

nodes. In the standard algorithm, all children nodes at the leaf level are accessed

first by their parent nodes to compute the union of the child node intervals during

the construction of the skeleton of the Segment tree. This access pattern is shown in

Algorithm 4.8. Since the parent nodes will be accessed again in the higher levels of

the tree, this may not be cache-efficient because the parent nodes may get evicted

from cache because of least recently used (LRU) policy.

In order to leverage temporal locality, we present a novel subtree-based

access pattern in Algorithm 4.9 where we access the nodes of the tree in a different

manner than the standard way [28]. Our new algorithm exploits temporal locality

by reusing the nodes already loaded in the cache. Our results show that our

optimization leads to less cache misses than the standard algorithm.

In order to leverage temporal locality, we have used blocking/tiling approach

in segment tree construction. Cache-optimized tree construction steps are shown in

Algorithm 4.9. When compared to Algorithm 4.8, Line number 2 of Algorithm 4.9

85

shows the additional for loop that has been added to traverse the array in terms of

blocks of size B. Different levels of the tree has different number of tree nodes. The

number of blocks in a given level decreases as the tree is traversed in a bottom-up

approach. So, the number of blocks for a given level is calculated in Line number 2.

The innermost loop is adjusted to process elements within a given block. Our

experimental results show that the new access pattern leads to less cache misses

than the standard algorithm.

For multiple concurrent queries, we execute queries in multiple sequential

batches. If the queries are sorted and split into batches, each batch will have a

temporal locality while accessing the nodes of the tree, and each query within a

batch will be able to reuse the cache entries loaded by the previous query, thereby

reducing the number of main memory accesses.

4.6 Communication Avoiding Distributed Segment Tree

Distributed Segment Trees usually are of two types: a naive one, where the

tree nodes are just distributed among the processor and a bit enhanced one

implemented with Distributed Hash Tables. Our analysis here, we are looking into

naive segment trees. Assuming a tree of Height H with N number of nodes and P

number of processors. If the tree nodes are simply distributed among the processors,

Communication costs would be O(H) because each traversal could lead to a different

node in a different processor and atmost we would have to traverse H steps.

We can reduce communication in Distributed Segment Trees if traversals to

the tree doesn’t jump to another processor. This can be created by simply

portioning whole tree into distinct segment trees in a way that each processor in the

distributed system has a tree node which is a subtree of the complete tree but also

is a whole segment tree for a given interval. If the height of each sub tree were to be

H2, then number of jumps between processor during traversal would decrease by a

86

factor of H2 and hence reducing communication costs. Each subtree would have

(2H/P) number of nodes and height of H2 = H − logP .

In a simply distributed tree, communication costs would be O(H) but now

with the subtree approach the communication costs would reduce to O(H/H2).

4.6.1 Building on GPU

Segment tree memory space requirement can be determined using its space

complexity of O(n log n). However, the distribution of input line segments in the

nodes is data dependent and irregular. In particular, the size of cover list for each

node of a Segment tree is variable. This variability makes the efficient

implementation challenging on a GPU. Therefore, some pre-processing is required to

count the size of each cover list to organize the input edges in a hierarchical tree

layout in the construction phase. This can be implemented by doing memory

allocation in CPU and by using atomics on GPU while inserting an interval in a

cover list to allow concurrent insertions on a shared cover list by multiple threads.

In our design, we create a 2D array layout of n×m dimensions, where n is

the number of nodes in the segment tree and m is the upper bound of any node’s

cover list size. This way, we use extra memory space, but we avoid the overhead of

maintaining carefully indexed cover list array. Variable sized cover list array

organization would result in irregular memory access pattern which is not ideal for

executing parallel SIMD instructions. Moreover, we avoid the necessity of locks

because of our data structure design.

In the 2D array layout, each m dimension array belongs to one of the n node.

We have individual variables that keeps track of how many elements (edge ids) have

been written to each m dimension array i.e. the current count. Whenever a parallel

thread has to write into a location in any m dimensional array, we use atomic

87

update to increment the current count by one. This incremented value is kept in a

thread local variable. So even if another thread updates the same count value, the

thread local variable will have the value which just increased and will point to an

index that is empty and where we can add the edge id.

Estimating cover list size: In Geographic Information System, the

distribution of line segments in a real-world map has been studied earlier. For plane

sweep algorithms, there exists research on estimating the number of line segments

passing through an imaginary vertical line crossing through a given point. For

instance, for Ne input line segments, there are at most sqrt(Ne) lines passing

through an arbitrary vertical line [110].

For randomly distributed intervals of size Ne, the average cover list size of a

segment tree node is around log2Ne. We have fixed cover list size (m) to

(2× log2Ne). This ensures lock avoidance in tree construction because we do not

need to lock any part of the tree while populating the cover lists in parallel. For a

100K edge dataset, we have used m to be 2 ∗ log2(100k) which is approximately 32.

For Parks and Cities datasets, we built the two trees using 200K intervals present in

Parks. The tree had a maximum cover list size of 2 ∗ log2(200k) which is

approximately 35.

In OpenACC, we need to know the amount of data we are passing from CPU

host to GPU device. Once we have this information, we can allocate memory in the

host and pass it to the device and do post-processing in CPU after kernel function

has finished execution. So, we pre-allocate extra memory and do filtering later as a

post-processing step. We have used two times more memory space than a regular

design to simplify array indexing and to avoid locks. As we show in the result

section, this design has worked well.

88

4.6.2 Implementing Parallel Stabbing Query

Single stabbing Query: After building the Segment tree, we can run a

type of query called stab query; which is basically a query to find all the edges that

exist in a particular x position.

This type of query can be basically of three types:

1. One is a boolean type of query where we try to find out if any edge exists or

not at a stab location

2. Second is query where we get the number of edges that exist at a stab location

3. Third is a query where we get the list of all edges that exist at a stab location

Each type of stab query can have different applications.

Multiple stabbing Query: We can run a collection of multiple stabbing

queries in a batch. Segment Tree is a static data structure which means that it does

not change after it is built. Therefore, queries on a segment tree do not update the

tree and hence there will be no conflict in running multiple queries concurrently. In

this chapter, each individual query has not been parallelized. Single query

parallelization did not result in performance gain. Our datastructure supports

concurrent multiple queries.

The main challenge in implementing query operation on GPU is the

output-sensitive nature of query. In other words, the query efficiency depends not

only on the size of the input but also on the size of the results returned for that

query.

Multi-threaded CPU query: Since the tree is a static structure, we store

pointers to the intervals to return the result of stabbing query on a CPU. For

parallelization, each query runs on its own thread. Therefore, the queries are

89

independent and do not require locks.

Query operation on GPU: Again, as with building the segment tree,

querying also will give us variable results. For this, each query result is stored in an

array of ids. We can also do this in two steps, first run a query to find the number of

intervals in a stab and then allocate memory to accommodate all the ids accordingly

in the host and send it to the device. Or, we could do it in one step by creating a

2D layout with a heuristic on the upper bound for queries. However, since traversal

is inexpensive, we choose to run it in two steps where we first get an array with

indices corresponding to the number of edges in the stab. Next, we allocate memory

accordingly in the host. Also, we calculate a cumulative sum array in the host and

we pass this also to device for straightforward indexing. In the device, we fill this

new array with ids from each stab query and bring it back to the host. Using the

cumulative sum array, we find the edges belonging to each stab query.

4.7 Geometric Operations using Segment Tree

4.7.1 SweepLine with Segment Trees

The sweepline approach for finding line intersections sweeps through all the

endpoints and if found new intersection points. Once the segment tree is built, we

can use the stab queries in parallel to behave like sweep.

4.7.2 MBR Intersections with Segment Trees

In problems such as polygon-polygon intersection, we want to find line

segments from the two polygons that intersect with each other. Line segment

intersections within one polygon (self-intersections) are not reported. This is

implemented by labeling line segments of one polygon with one abstract color (say

red) and labeling line segments of another polygon with another abstract color (say

blue).

90

The combination of horizontal and vertical intervals from a polygon makes

the Minimum Bounding Rectangle (MBR) of the polygon. We used segment tree to

find polygon pairs with intersecting MBRs for city and park boundaries datasets.

Two segment trees, one for vertical intervals and one for horizontal intervals were

used. An id parameter was used to keep track of polygons and the red-blue property

to keep track of whether it belongs to park dataset or city dataset.

4.7.3 Point-in-MBR Test

In GIS, polygonal geometries are often approximated as a minimum

bounding rectangle (MBR) in the filter-and-refine based algorithms. An MBR takes

less storage space and using MBR as a proxy for a polygon speeds up spatial join

and polygon overlay workloads. Point-in-MBR test is a simple variant of

point-in-polygon test. Point-in-MBR test can be used a filter for the actual

point-in-polygon test.

Point-in-MBR check determines if a query point lies within an arbitrary

polygon’s MBR or not. We used two segment trees, one for vertical intervals and

another for horizontal intervals, corresponding to the horizontal and vertical

intervals of the MBRs. A single query has an input point (x,y) to be queried against

one or more polygons. All the polygons are referred to by their ids. Each MBR will

be represented with the same id in both horizontal and vertical segment tree. Then

the point is queried as a stabbing query that we discussed earlier. The result of x

and y queries produces two list of ids from each segment tree. Then we compare the

two lists for matching ids. These matching ids represent the MBRs that contain

queried point.

4.8 Experimental Results

We have tested our algorithm with 2 types of data

91

1. Simulated Data: We generated uniform random intervals for a given search

space.

2. Real Data: Cities and Park Boundaries from the SpatialHadoop dataset were

used to get real data distribution. We randomly selected 200K edges from the

Parks dataset and 500K edges from Cities dataset. [111] Then, keeping the

distribution intact they were scaled and transformed to our selected search

space for consistency across experiments.

Queries: For all cases, queries were randomly generated using a uniform

random distribution in the designated search space.

Experiments were performed on the Intel Xeon E5 CPU, which is a 18 core

36 thread CPU with a processor base frequency of 2.10 GHz and on Nvidia TITAN

V, which has 5120 cuda cores at base frequency of 1.20 GHz. On the Intel Xeon E5

v4, there is L1 instruction cache of 32KB per core and similarly L1 data cache of

32KB per core. There is mid-level cache (MLC) or L2 of 256 KB per core. The last

level cache L3 is a shared inclusive cache of 2.5 MB per core. In the following tables,

1T, 2T, 4T and so on refer to the number of OpenMP threads used. 1T is basically

equivalent to running the program sequentially. The Edges column refer to the size

of the static segment tree, as to how many intervals or segments was the tree build

up with. The column Queries refer to the number of queries used in the experiment.

Also, K stands to thousands and M stands for Millions. To print in table some of

the values have been rounded.

As shown in Figure 4.5, we can see that the speedup is consistently

proportional to the number of threads. The speedup can be observed to be better

when there are more edges (line segments). Input per thread increases as the size of

the input dataset increases. Therefore, the work per thread also increases as the size

of the dataset increases. It takes around 2 seconds for building a segment tree with

92

Table 4.1: OpenMP Build Time (in seconds)

Edges 1T 2T 4T 8T 16T 32T
10k 1.97 1.51 0.70 0.41 0.22 0.13
20k 7.02 4.79 2.36 1.17 0.69 0.40
40k 24.67 14.90 8.08 3.75 2.11 1.16
60k 60.20 26.45 15.02 7.49 4.22 2.22
80k 90.45 45.40 22.51 12.49 6.69 3.51
100k 141.56 67.92 32.14 17.32 9.62 4.93

Table 4.2: OpenMP Build Speedup(x) compared to 1T

Edges 2T 4T 8T 16T 32T
10k 1.305 2.814 4.805 8.955 15.154
20k 1.466 2.975 6.000 10.174 17.55
40k 1.656 3.053 6.579 11.692 21.267
60k 2.276 4.008 8.037 14.265 27.117
80k 1.992 4.018 7.242 13.52 25.769
100k 2.084 4.404 8.173 14.715 28.714

Figure 4.5: OpenMP Build Speedup

10K edges using 1 thread and 5 seconds to build a segment tree with 100K edges

using 32 threads. Synchronization overheads due to locks on segment tree also vary

as the data is scaled. Even though the edges are inserted to the segment tree

concurrently during the build phase, the vast number of edges makes locks occur at

different sections and thus potentially reduce the number of lock conflicts and hence

yield a proportional speedup compared to the number of threads. This lock conflict

happens at a higher rate for higher numbers of edges and we can clearly see this

behavior from the graph where the higher number of edges have a higher speedup.

93

Figure 4.6 shows the timings for our OpenMP loop-based implementation

compared to the commonly used STL based recursive code. In the figure, the

dashed curves represent the recursive version for different datasets with varying

number of OpenMP threads and the solid curves represent our loop-based iterative

implementation. We can observe that the iterative loop-based OpenMP

implementation consistently performs better than its corresponding recursive

implementation. The difference is not that significant for smaller datasets but the

gap grows as the datasets grow larger and more threads are used. The execution

time of the recursive task-based version starts plateauing after 8 threads for larger

datasets. On the other hand, the iterative version performs better than the

recursive version and continues to give significant speedups upto 32 threads.

Table 4.3: OpenMP Query Time (in seconds)

Edges Queries 1T 2T 4T 8T 16T 32T
10K 100M 9.64 5.50 3.40 2.25 1.51 0.91
20K 200M 19.37 10.97 6.67 4.64 2.99 1.66
40K 400M 34.78 18.67 9.43 5.15 2.92 1.53
60K 600M 49.03 25.99 13.92 7.61 4.31 2.29
80K 800M 48.95 24.92 12.65 7.14 4.06 2.12
100K 1000M 61.28 31.39 16.65 9.53 5.05 2.62

Table 4.4: OpenMP Query Throughput (queries per second)

Edges Queries 1T 2T 4T 8T 16T 32T
10K 100M 10M 18M 29M 44M 66M 110M
20K 200M 10M 18M 30M 43M 67M 120M
40K 400M 11M 21M 42M 78M 137M 261M
60K 600M 12M 23M 43M 79M 139M 262M
80K 800M 16M 32M 63M 112M 197M 377M
100K 1000M 16M 32M 60M 105M 198M 381M

Since segment trees are static structures, once the structure is built, multiple

querying is entirely an embarrassingly parallel operation. We can observe from

Figure 4.7 how the speed up is linearly proportional to the number of threads. For 1

thread to run 100M queries on a segment tree with 10k edges it took about 9.64

94

Figure 4.6: Comparison of Iterative OpenMP Vs Recursive task-based OpenMP
Iterative OpenMP Code (Solid Curves) with Recursive task-based OpenMP Code
(Dashed Curves) for Segment tree construction. Execution time is reported for

different sizes of data and number of threads. Best viewed in color.

Table 4.5: OpenMP Query Speedup(x) compared to 1T

Edges Queries 2T 4T 8T 16T 32T
10k 100M 1.753 2.835 4.284 6.384 10.593
20k 200M 1.766 2.904 4.175 6.478 11.669
40k 400M 1.863 3.688 6.753 11.911 22.732
60k 600M 1.886 3.522 6.443 11.376 21.410
80k 800M 1.964 3.870 6.856 12.057 23.090
100k 1000M 1.952 3.680 6.430 12.135 23.389

95

Figure 4.7: OpenMP Query Speedup for Segment Tree

seconds while for 32 threads to run 1000M queries on a segment tree with 100k

edges it only took 2.62 seconds. One interesting thing we can observe is that the

speedup for the 10k and 20k queries is lower than for the others. This behavior can

be attributed to smaller number of queries having a higher chance of colliding in the

same section of the tree and slowing down the query process. However, as the

number of edges and queries grow, the chances of collision also decreases and we can

see almost uniform speedup with the increase in number of threads.

Table 4.6: OpenACC Build and Query Time (in seconds) and Speedup compared to
sequential run

Edges Queries Build Time Queries Time
10K 100M 0.06 (33x) 0.16 (60x)
20K 200M 0.13 (54x) 0.31 (62x)
40K 400M 0.25 (99x) 0.62 (56x)
60K 600M 0.72 (84x) 0.90 (54x)
80K 800M 1.29 (70x) 1.18 (41x)
100K 1000M 1.78 (80x) 1.54 (40x)

Table 4.7: OpenACC Build and Query Speedup(x) compared to 1T sequential

Edges Queries Build Speedup Queries Speedup
10K 100M 32.824 60.25
20K 200M 54.019 62.484
40K 400M 98.688 56.097
60K 600M 83.608 54.478
80K 800M 70.116 41.483
100K 1000M 79.526 39.792

96

Even when run on accelerators, segment trees hold up the performance and

speedup. We can observe from Table 4.6 that there is a consistent speedup in the

build for different edge sizes. However, it can also be observed that the speedup is

not constant or linear. This can be attributed to how the segment tree gets mapped

in the gpu memory and when edges are inserted in parallel how different parts of

the segment tree are accessed. In general the less the collisions during insertion, the

more will be the speedup. We are not limiting the GPU resources in our experiment

and are allowing the program to take the as much resources as required. Under

optimal conditions we can see that we can achieve almost upto 100 times speedup

for building the segment tree.

Figure 4.8: OpenACC Build Speedup

Figure 4.9: OpenACC Query Speedup

Similarly, when we query the segment tree on GPU, we can observe a

consistent speedup in the speedup portion of Table 4.6. However, the speedup seems

to declining with larger tree size and query size. Since the complete GPU is being

97

used in all the test cases, as the workload increases, it is natural to see an increase

in time and a decrease in speedup. However, the overall speedup is still significantly

higher.

Figure 4.10: Speedup Comparison for 100k Dataset

Table 4.8: Speedup for 100K dataset on varying Query size

Queries 2T 4T 8T 16T 32T GPU
100M 1.952 3.361 5.884 9.888 14.606 36.049
200M 1.911 3.525 6.413 10.418 19.668 36.04
400M 1.918 3.721 6.548 11.237 21.899 33.557
600M 1.985 3.742 6.807 12.075 21.685 38.418
800M 1.954 3.812 6.848 12.098 23.124 39.353
1000M 1.952 3.68 5.073 6.432 12.145 34.428

Table 4.9: Comparison of Regular and Cache Optimized Time (in seconds) and
speedup(x)

Edges Regular Cache Optimized Speedup
10K 1.97 1.47 1.340
20K 7.02 5.49 1.280
40K 24.67 17.48 1.411
60K 60.2 48.59 1.239
80K 90.45 68.07 1.329
100K 141.56 117.10 1.209

From Figure 4.10, we can observe the speedup performance for the 100K

edges segment tree when massive queries are performed. We can observe that the

speedup is highest in the case of GPUs and it acts like the upper bound for all these

query sizes. Also, it can be observed that the speedup holds for most cases and

98

consistently drops for the 1000M queries case. This shows that having a big tree

size is good to avoid collision upto a certain query size but if we keep increasing the

query size then at some point we will start to see the drop in speedup.

Table 4.9 shows speedup when compared with the cache optimized segment

tree. We can observe that the speedup is around 1.3 times with the cache optimized

segment tree. Furthermore, we used perf tool to analyze the cache miss rate with

the optimized algorithm and found it to be lowered by around 25%. For multiple

querying we observed that if the queries were in an unsorted order, it would not be

much beneficial from cache point of view. However, sorting the queries would give a

lower cache miss rate but increase the collision chances and would hamper per-query

rate. The way to avoid this would be to run contiguous blocks of query for each

thread, and having no two threads query up from the same leaf level.

Our segment tree implementations were also compared with the

implementations from the Computational Geometry Algorithms Library (CGAL)

[99]. While CGAL performance was better for sequentially building segment trees,

especially large trees with higher number of intervals, our GPU implementation and

multi-threaded implementations were consistently better by factors of 20x and 8x

respectively. However, the performance of our implementations were far better,

more than 2500x on average better, for running massive queries on large trees. This

behaviour can mostly be attributed to CGAL using STL libraries and dynamic

on-the-go memory allocation for queries compared to ours bare-bones approach.

Table 4.10: Finding MBR pairs from cities and park data with Segment Tree [Only
Query Time (in seconds)]

Parks(200K)
Cities(500K)

Query Time

R-tree(GEOS) Sequential 11.73
1T Sequential 20.57
16T OpenMP 3.89
GPU OpenACC 0.48

99

From Table 4.10, we can observe the time taken to find MBR pairs where

Parks was the base layer and Cities was the query layer. We have used the GEOS

library as a baseline for this comparison. As we can observe, our sequential

implementation doesn’t perform better than heavily optimized GEOS library.

However when we use multiple threads, the performance heavily increases and

furthermore the use of a GPU completely outperforms any other test case. With

GPUs, we get a speedup of almost 20 times when compared to the base case.

Figure 4.11: Cities Vs Park MBR pair query times

Table 4.11 show the timing for performing point in polygonMBR queries

with segment trees. We can observe that with increasing number of threads for each

number of queries the timing improves. GPU timings are however the best ones in

this case too.

Table 4.11: Point in Polygon MBR for 100K dataset on varying Query size [Only
Query Time (in seconds)]

Queries 1T 2T 4T 8T 16T 32T GPU
100M 12.29 6.31 3.57 1.97 1.21 0.78 0.35
200M 24.46 12.84 6.92 3.80 2.32 1.23 0.65
400M 49.01 25.47 13.15 7.49 4.28 2.29 1.47
600M 74.55 37.52 19.96 10.99 6.14 3.47 1.95
800M 98.41 50.28 25.83 14.34 8.12 4.26 2.51
1000M 122.56 62.78 33.29 24.18 19.10 10.11 3.61

100

4.9 Conclusion and Future Work

We presented compiler pragma-based parallelization of segment tree

construction, query and its computational geometry applications. We demonstrated

performance improvements due to parallelization in the experimental results section.

Performance improvement in terms of speedup is upto 29x speedup for tree

construction and upto 23x speedup for batch querying using 32 threads using

OpenMP compared to single-threaded version. Using OpenACC, speedup upto 100x

during the tree construction phase and speedup upto 62x during the batch query

phase have been achieved. Evidently, the speedup for querying is proportional to

the parallelization due to the number of threads. We have also demonstrated

speedup gains when Segment trees are used in reporting overlapping MBR pairs and

Point-in-MBR tests. Also, the cache optimized version of the code is 1.3x faster on

average and the cache miss rate is reduced by almost 25%.

We plan to use the proposed parallel segment tree data structure in a third

computational geometry application that takes two polygons as input and uses a

Segment tree to find out the overlapping area (intersection) between the input

polygons. In this application, Segment tree is used to find line segment intersections

and point-in-MBR tests in parallel which is required in spatial join and map overlay

algorithms.

Segment Tree data structures can be extended to become lock free data

structure to eliminate the need of locking during the build phase. Furthermore,

Future work also include vectorization of tree operations on CPUs and warp-level

parallelism on GPUs using CUDA. It can also be enhanced and applied to do more

complex geometric operation. The Communication Avoiding distributed segment

tree can be experimented with its Distributed Hash Tree (DHT) counterparts too.

101

CHAPTER 5: ACCELERATION OF SPATIAL AUTOCORRELATION

COMPUTATION

Geographic information systems deal with spatial data and its analysis.

Spatial data contains many attributes with location information. Spatial

autocorrelation is a fundamental concept in spatial analysis. It suggests that similar

objects tend to cluster in geographic space. Hotspots, an example of

autocorrelation, are statistically significant clusters of spatial data. Other

autocorrelation measures like Moran’s I are used to quantify spatial dependence.

Large scale spatial autocorrelation methods are compute-intensive. Fast

methods for hotspots detection and analysis are crucial in recent times of

COVID-19 pandemic. Therefore, we have developed parallelization methods on

heterogeneous CPU and GPU environments. To the best of our knowledge, this is

the first GPU and SIMD-based design and implementation of autocorrelation

kernels. Earlier methods in literature introduced cluster-based and

MapReduce-based parallelization. We have used Intrinsics to exploit SIMD

parallelism on x86 CPU architecture. We have used MPI Graph Topology to

minimize inter-process communication.

Our benchmarks for CPU/GPU optimizations gain upto 750X relative

speedup with a 8 GPU setup when compared to baseline sequential implementation.

Compared to the best implementation using OpenMP + R-tree data structure on a

single compute node, our accelerated hotspots benchmark gains a 25X speedup. For

real world US counties and COVID data evolution calculated over 500 days, we gain

upto 110X speedup reducing time from 33 minutes to 0.3 minutes.

102

5.1 Introduction

In spatial statistics and spatial data mining, there are many methods to

discover and explore interesting patterns in spatial data. Spatial autocorrelation is

one such class of methods that are used in spatial data analysis. Spatial datasets

often are not independent and identically distributed (i.i.d) [49]. Spatial datasets

exhibit statistically significant clustering in attribute values under study.

Hotspots analysis is a technique in geospatial analysis used to visualize

geographic data in order to show areas where a higher density or cluster of activity

occurs. For example, in a city, we can collect crime data from different locations and

with hotspot analysis we can see if there are clusters in the city with significantly

higher/lower incidence of crime than so by random chance. Two concepts -

similarity of values and proximity of locations, or lack of those, are crucial to

calculating hotspots and hence requires spatial statistics. Hotspot detection is useful

in many fields like public health, crime analysis, schooling, sales, agriculture etc.

We focus on Getis-Ord (Gi*) statistic which is computed for each feature in

a dataset. The resultant z-scores and p-values show where features with either high

(or low values) cluster spatially. In short, each feature is evaluated within the

context of neighboring features. To be a statistically significant hotspot, a feature

will have a high value and be surrounded by other features with high values as well.

Hotspots are sometimes confused with a similar spatial visualization

technique known as heatmaps. Hotspots differ from heatmaps where point data is

analyzed in order to create an interpolated surface showing the density of

occurrence where each cell is assigned a density value and the entire layer is

visualized using a gradient.

We present performance engineering for Hotspots kernel using SIMD on

103

CPUs and SIMT (Single Instruction Multiple Thread) on GPUs for exploiting

fine-grained vector/data parallelism. For relative speedup calculations, we have used

sequential implementation with spatial sorting as a baseline. For absolute speedup

calculation, we have used R-tree data structure based implementation. Based on

this R-tree baseline, we have demonstrated absolute speedup upto 16X using SIMD

+ multi-threading on a single compute node. For scalability, our system leverages

multiple GPUs using MPI. Our benchmarks for CPU/GPU optimizations gain upto

750X relative speedup with a 8 GPU setup when compared to baseline sequential

implementation.

Earlier methods for hotspots problem have used pointer-based tree data

structures like quadtree for storing location data and for range query. For effective

SIMD/SIMT parallelization, instead of tree data structure, we have designed a

novel spatial locality-preserving 2D array-based data structure for weight matrix.

On a distributed memory environment, this weight matrix further aids in creating

task interaction graph which can be utilized to minimize communication using MPI

graph topology functions.

The rest of the chapter is organized as follows. Section 5.2 presents the

motivation and background. Section 5.3 presents the parallel formulation for the

problem. Section 5.4 presents the acceleration techniques on CPUs and GPUs.

Section 5.5 presents the experimental results. Finally, we conclude in Section ??.

5.2 Motivation and Background

Finding patterns helps us identify causes and predict future trends. For

instance, finding hotspots of Covid-19 occurrences enable us to study disease spread

and efficient resource allocation to combat the problem at hand. We have identified

important autocorrelation kernels in spatial domains for parallelization. In the

existing work, the focus has been on coarse-grained approaches with less attention

104

to data movement aspects and communication complexity [122].

Spatial hot spots detection is crucial in tracking the Covid-19 pandemic and

guiding policy by focusing resources to combat its growth. Since it is a world-scale

phenomena, real time tracking requires large scale parallelization to implement fast

prevention rather than slow intervention.

5.2.1 Spatial autocorrelation

The notion of spatial autocorrelation is related to first law of geography:

Everything is related to everything else, but nearby things are more related than

distant things [48]. The value of attributes at a given location tend to vary

gradually over space. For instance, weather of two adjacent areas tend to be similar.

In many cases, events in a given area are influenced by the events at neighboring

areas. In spatial statistics, this property is called spatial autocorrelation [49]. A

famous example of application of this concept was finding the link between Cholera

outbreak and contaminated water in London in 1855 by looking at the clustering of

disease occurrences (hotspots) around a water pump. An example of hotspots map

is shown in Figure 5.1.

Spatial interdependence of attributes exhibited in data with respect to

location and distance is captured by statistical measures like Moran’s I. There are

many local and global auto-correlation kernels. We focus on a representative and

popular kernel - Hotspots. For a set of disease occurrences, finding hotspots aim at

detecting disease outbreaks well before it results in a large number of cases.

Hotspots are statistically significant clusters of observations based on similarities of

values and locations. Hotspot detection is used in many fields like public health,

crime analysis, etc.

105

Figure 5.1: Polygon boundaries with their corresponding z scores and p values [3]

106

Figure 5.2: Point data overlaid on a Grid vs Polygonal Boundaries [3].

107

5.2.2 Common Dataset Structures

Data for geo-spatial autocorelation analysis can usually come in 3 forms:

1. Aggregated Boundary data: This is the most typical type of available dataset

for which usually a boundary is given and a value corresponding to the

boundary is available. The boundary can be a known regular shape like

square, rectangular, hexagonal or an irregular polygonal boundary. An

example of this would be county level covid cases data. For each county, there

is a defined polygonal boundary which is not a regular shape and for each

county there would be a corresponding attribute value like active covid cases.

2. Unit point incidence data: This is the type of data where we have geolocation

instances of incidents. Here we would have multiple points where each point

corresponds to a single incident. Common example of this type of dataset is

the crime dataset where each point relates to a reported criminal activity. A

covid related example would be having a dataset of all the people who tested

positive in a given area. In this dataset, each person would represent an

individual incident and the geolocation of their home address would be an

incident point.

3. Aggregated point incidence data: This is the type of data where we have

instances from an area aggregated at a point. In the crime dataset, the

geolocation of the police station could be the incident point and number of

complaints are aggregated to get one single attribute value per incident point.

A covid related example would be having a list of rapid testing centers, where

the geolocation of the testing center is the incident point and the number of

all tested positive cases are the aggregate attribute value.

In geospatial analysis, to calculate and show hotspots, boundaries are

108

required. In the second case, the data can be overlaid on a regular grid of squares,

rectangles, or hexagonal shapes. Another approach is to overlay the data on top of a

polygonal layer, for instance, boundaries of zipcodes. All the values inside the

boundary can be aggregated and used as the corresponding attribute value for the

polygonal boundary. Figure 5.2 shows an example of data being overlaid on a

regular grid and a polygonal map. Depending on the choice of data overlay, the

computational cost will vary. A regular shape boundary, moreover a square grid,

would have the least amount of computation and complexity.

In the third case, approaches from the second case can combine data from

multiple points to make it fall inside a boundary. However, the disadvantage of

doing this is there might be an imbalance in the distribution of data among

boundaries. For example, in the covid cases data from the free rapid testing centers,

it would be a reasonable assumption that people went to the testing center closest

to them. Similarly, for the crime dataset, it would be a reasonable assumption that

complaints were reported to the closest police station. If such proximity

assumptions are reasonable, then a better way to divide boundaries for each

aggregate incident points would be a voronoi distribution. The voronoi distribution

guarantees that there is an unique boundary and area for each point and for any

location inside the boundary, the given incident point is the closest incident point.

5.2.3 Parallelization

Vector/SIMD Intrinsics: Vector/SIMD extensions of Instruction Set

Architecture are provided by modern CPUs for single instruction steam, multiple

data stream (SIMD) processing. For x86 CPUs, special wide registers and vector

instructions are provided for parallel processing at the instruction set level. For

instance, x86 processors provide AVX (advanced vector extensions) instructions.

ARM processors provide neon extensions. In this chapter, for effective SIMD

109

Figure 5.3: Voronoi Boundaries for aggregated point incidence data

parallelization, we have used AVX instructions through C functions (called intrinsic

functions). Intrinsics are replaced directly to vector instructions without the

overhead of function calls. In this chapter, we achieved better performance when

compared to compiler generated vectorization of our computational kernels.

MPI Graph Topology: Given a process interaction graph, MPI provides

support to map the processes on a compute cluster. The application level topology

can be mapped to the the physical topology of a network using cartesian and graph

topology functions in MPI. Since a good mapping of processes to network topology

reduces the data communication volume across the network, we have used graph

topology functions in our implementation.

110

5.2.4 Related Work

With the volume of data increasing due to its spatio-temporal nature,

parallelization of existing algorithms have been done [50, 51, 52, 53]. Existing

approaches use spatial partitioning methods like quadtree for parallelization [50].

A Matlab-based shared memory parallelization has been described in [53].

Hadoop MapReduce has been used to parallelize Getis-Ord based Hotspots

detection problem using quadtree-based decomposition of spatial data [50]. Apache

Spark framework has also been used to parallelize spatial hotspot

computation [51, 52]. Spark MapReduce papers are short papers from GIS Cup

competition organized with SIGSPATIAL conference [51, 52]. Hadoop and Spark

based projects make good use of thread-level and coarse-grained parallelism but do

not take full advantage of HPC resources (e.g., SIMD, GPUs) thus leaving

performance on the table [50, 51, 52].

Compared to related literature, our chapter further explores additional

hardware and software parallelization opportunities. GPU SIMT parallelization and

CPU SIMD parallelization along with communication optimizations are the

novelties compared to related literature.

5.3 Parallel formulation of spatial autocorrelation

We can use Getis-Ord algorithm to calculate the G∗
i statistic for each feature

in a dataset [123]. In geospatial analysis, it gives a Z-score statistic G∗
i where xj is

the value for polygon j. wi,j is a weight parameter between polygons i and j which

is inversely proportional to the active distance between them. N is equal to the

total number of polygons in our dataset. Positive and negative G∗
i values denote hot

and cold spots respectively and the absolute value of G∗
i is proportional to the

intensity of clustering for the ith polygon.

111

The equations to the Getis-Ord algorithm are as follows:

X =

∑n
j=1 xj

n
(5.1)

X2 =

∑n
j=1 x

2
j

n
(5.2)

SX =

√
(X2)− (X)2 (5.3)

WXi
=

n∑
j=1

wi,jxj (5.4)

Wi =
n∑

j=1

wi,j (5.5)

W 2
i =

n∑
j=1

w2
i,j (5.6)

Si =

√√√√[
n ∗W 2

i −
(
Wi

)2]
n− 1

(5.7)

G∗
i =

WXi
−X ∗Wi

SX ∗ Si

(5.8)

For Moran’s I:

W =
n∑

i=1

n∑
j=1

wi,j (5.9)

112

I =
n

W

∑n
i=1

∑n
j=1wi,j(xi −X)(xj −X)∑n

i=1(xi −X)2
(5.10)

Values of I usually range from −1 to +1. Values significantly below

(1−N)−1 indicate negative spatial autocorrelation and values significantly above

(1−N)−1 indicate positive spatial autocorrelation. For statistical hypothesis

testing, Moran’s I values can be then transformed to z-scores.

Geary’s C:

C =
n− 1

2W

∑n
i=1

∑n
j=1wi,j(xi − xj)

2∑n
i=1(xi −X)2

(5.11)

N is the number of spatial units indexed by i and j. x is the variable of

interest; x̄ is the mean of x; wi,j is a matrix of spatial weights with zeroes on the

diagonal (i.e., wii = 0 and W is the sum of all wi,j.

The value of Geary’s C lies between 0 and some unspecified value greater

than 1, usually lower than 2. Values significantly lower than 1 demonstrate

increasing positive spatial autocorrelation. Values significantly higher than 1

illustrate increasing negative spatial autocorrelation. Geary’s C is inversely related

to Moran’s I. Moran’s I is a measure of global spatial autocorrelation, while Geary’s

C is more sensitive to local spatial autocorrelation.

5.3.1 Algorithm

The Algorithm for Getis-Ord is as follows:

1. Load all the Points and their x attribute values.

2. Calculate the mean of all the x values, denoted by X.

3. Calculate the mean of all the x2 values, denoted by X2.

113

4. Calculate S, the standard deviation of all the x values.

5. Calculate the values for wi,j, the weight metric between polygon i and polygon

j.

6. Calculate w2
i,j from wi,j.

7. For each i, calculate Wi from wi,j.

8. For each i, calculate W 2
i from w2

i,j.

9. For each i, calculate Si from Wi and W 2
i .

10. For each i, calculate WXi
from wi,j and x values.

11. For each i, calculate G∗
i .

5.3.2 Complexity

The time complexity of this algorithm is O(N2) and the space complexity of

this algorithm is O(N). This analysis of time complexity is contingent on the

assumption that inverse distance squared (impedance) is used for wi,j and any

similar O(c) method of calculating wi,j would keep the analysis the same. Similarly,

for the space complexity no pre-calculations of wi,j are assumed. Pre-calculations of

wi,js would make the space complexity to become O(N2) too.

5.3.3 Weight Matrix

The most common technique of calculating wi,j is the metric called the

inverse distance. Distance could be different types but most typically the euclidean

distance. Inverse distance is a metric would be a high value for things that are

closer and low value for things that are spatially further apart. It should be noted

that wi,j = k ∀(i = j), where k is a value of no consequence and is just used as a

placeholder because in this case both i, j would be the same point so no distance

114

and undefined inverse distance. On, the other end, objects further than a certain

threshold can be deemed to have a inverse distance value of zero i.e. wi,j = 0 if

invDist(i, j) < ϵ. Also, wi,j = wj,i because both are distance-based quantities which

does not vary on direction. Hence, if w was to be modeled as a matrix, it would be

a n× n symmetric matrix with diagonals all k. Basically, it is an adjacency matrix

where wi,j corresponds to the weight, as it relates to the spatial relation between

two areas i and j.

Figure 5.4: Slice of the Weight Matrix
Each row and column index corresponds to a polygon id. For any two polygons i and
j, element at index (i, j) is the inverse of the euclidean distance between centroids of
i and j.

It might prove efficient for accesses in certain cases if the whole matrix is

available even though the second half across the diagonal is just duplication by

symmetry.

115

5.3.4 Spatial Sorting

Spatial sorting is used to arrange 2-dimensional points in 1-dimensional order

based on spatial proximity (locality). Space filling curves are used for spatial

sorting, such as Z-order [124] and H-order (also known as Hilbert curve). For

illustration, let us assume that we have a list of tuples, where the first entry is the

x-coordinate and the second entry is the y-coordinate of a point. After sorting the

list spatially, points that are closer to each other in the xy plane would appear closer

in the list. Proximity of the points - difference in their index values in the sorted list

would be an indication of proximity of the points in euclidean space and vice versa.

Having the polygons from our data sorted has special implications for our

application and acceleration objectives, especially the affect it has on the weight

matrix. Looking at Figure 5.4, we can observe that if the polygons are spatially

sorted, then in each row i, the columns that have non-zero entries are only the

columns numbered close to the value of i. This is because, as polygons get further

apart, their inverse distance decreases and beyond a threshold, they simply become

zero. So, for each row i, the columns j for whose values are further apart, their

values are simply zero because it represents the underlying property that polygon i

and j are just spatially further away from each other.

Expanding upon this property, we will find that for each row i there are only

columns in the range (i− li, i+ ri) for which the weight values are non-zero. Let li

be the number of entries to the left of i that are non-zero and ri be the number of

entries to the right of i that are non-zero. Given a large map with lots of polygons,

the range (li + ri) can become significantly small, making our matrix a sparse

matrix with only elements around the main diagonal being non-zero and elements

further away from the diagonal being mostly zeros. For example, with 100k

polygons the max range (li + ri) was less than 200.

116

Furthermore, for the rapid recalculation part, in events where we only have

new data for a few polygons and we want to update the scores, the only polygons

that require recalculation would be the polygons which have new data and the

polygons with which it has a non-zero weight relationship.

Comparison with R-tree: An alternative to using the weight matrix

would be the use of a R-tree like approach. Here, our cutoff threshold ϵ from the

weight matrix would translate to a certain distance and we would then query the

tree to get all polygons within that distance range from the query polygon. We

could then calculate weights wi,j for each query polygon i and queried polygons

denoted by j. If we use this approach, rather than the sorting and pre-calculating

weights, then it would add overheads needed to build a tree. This is in contrast to

the tradeoff of sorting all the polygons. Since the locations of the polygons are

static, the tree would only be needed to be built once just like the sorting. The

advantage of using weight matrix is that the weights will be available in memory

easily accessible for SIMD operations. Also, in the cases of the square tiles, sorting

is extremely efficient and building a tree would just be an overhead. In an R-tree

approach, each polygon will be able to query its list of neighbours and then

calculate the corresponding weights with each neighbour. Since the polygons will be

unsorted, each weight calculation will access arbitrary areas of the memory and no

cache-based gain will be achieved. Also, using a vectorized approach will not be

possible without further sorting and ordering because the results of the query may

not be in a contiguous memory. The distinct advantage of using R-trees can be that

their build cost is not high, their query can be easily parallelizable and storing the

weight matrix might not be necessary.

117

5.4 Acceleration Techniques

5.4.1 Cache Access Optimization

We have three arrays of size N – two are arrays that have the x-location and

y-location for each point, and another is an array of attribute values of each point.

Let’s denote the first two arrays by p and the next array by x. We need to fill a 2D

array of size n× n with wi,js. Let’s call this array w. Assuming there is a cache

block size of B, whenever calculating any wi,j, we get two B blocks of p and one B

block of w loaded into the cache, so in this case, instead of linearly calculating the

values of w, we calculate all the combination of wi,j that we can from these two

blocks of p in an order where we can write into the loaded B block of w. Once we

have a filled wi,j matrix array, whenever looping through it, we need to make sure

that we access it in the proper order. Looping through
∑n

j=1 wi,j for a fixed i might

be expensive in column-major architectures than looping through
∑n

j=1wj,i but

since wi,j = wj,i doing both will give the same result.

5.4.2 Weight Matrix Storage Optimization

Since the weight matrix is symmetric, we can store only the upper triangular

matrix. Furthermore, since the non-zero values are only near the diagonal we would

only need to store at most maxr = ∀i max ri values for each polygon. So, in the

worst case, the weight matrix would need n ∗maxr space compared to its n2 size.

But this approach makes SIMD operations inefficient because we would need to

index up or down to find the neighbours to the left of polygon i. Due to

symmetry,n2 and maxl = ∀i max li would be equal. So, we could store a

n ∗ (2 ∗maxr) array, which is still better than the n2 array. Here the N rows will be

the polygons and (2 ∗maxr) columns would be weight with the non-zero

neighbours. This way, although the storage is doubled from the most compressed

118

form, being able to access a contiguous memory of weights will significantly improve

the cache access and make SIMD operations easily accessible. Furthermore, if the

weight matrix is now stored in a file, then, that too can be easily read with

contiguous memory access and the amount needed to be read by each process

decreases significantly, almost by a factor of n/maxr.

5.4.3 OpenMP Parallelization

OpenMP parallelization is based on the equations of the Getis-Ord algorithm

as shown earlier. The steps from Getis-Ord algorithm 5.3.1, Step 2, 3 and 5 were

parallelized using parallel loops with reduction. All the steps, including calculating

each of the G∗
i , are parallelized. If recalculation of results is not required, then steps

5 through 10 can be parallelized to run by each thread for each polygon i along with

a second level of parallelism inside the loop for calculating all the sums and G∗
i

values. Once the base C/C++ code is written, OpenMP parallelization is extremely

straightforward and can be easily achieved using compiler directives.

5.4.4 OpenACC Parallelization

OpenACC compiler pragmas support both CPU and GPU parallelization.

We have used OpenACC for GPU parallelization. Compared to OpenMP, additional

steps include data copy to GPU (in and out). We have used reduction pragma in

OpenACC for additions. For example, in Algorithm 5.3.1, Step 1, once the x values

are copied to the GPU, for Steps 2 and 3, we can do reductions to get the

summation results. Only the output G∗
i values are copied back to the host CPU.

Our OpenACC implementation leverages our existing C/C++ code.

5.4.5 CUDA Parallelization

We have also used CUDA for GPU parallelization of our kernels. Compared

to OpenACC, CUDA gives more control in using the GPU. For algorithm 5.3.1, we

119

added CUDA kernels for each steps. For large datasets that do not fit in the GPU

memory, especially the weight matrix whose size grows quadratically in the number

of inputs, we do calculations in batches by moving data in and out of the GPU.

Data movement between GPU and Host can be an expensive step compared to

computation especially when done multiple times.

5.4.6 MPI Graph Topology (Distributed Memory)

Using MPI, process ids are used to split the data among multiple compute

nodes for a distributed memory parallelization. We use allreduce collective function

to merge the partial results from Steps 2 and 3 of algorithm 5.3.1. We need to

broadcast the reduced values to all the ranks as well. Also, for Step 5, each polygon

needs to calculate the wi,j values and the MPI ranks need communication to share

the location information. We assign a MPI rank to each polygon. This process

mapping scheme helps in creating better MPI process topology, which we discuss

next.

Given the nature of weights which decays with increasing distance, polygons

that are further from each other have a weight of zero. This means that only

polygons that are close to each other need to communicate with each other. The

Weight matrix can then be utilized to create an adjacency matrix (for graph) where

entries in this new matrix are 1, if the weights are greater than zero, and zero

otherwise. We translate this polygon adjacency matrix to MPI processes adjacency

matrix for each process as required by Graph Topology function in MPI. MPI has

methods that can take this adjacency matrix and arrange processes in such a way

that minimizes the amount of communication among processes. We have used the

following function for graph topology in MPI.

MPI Di s t g raph create ad jacent (MPICOMMWORLD, degree ,

neighbours , MPI UNWEIGHTED, degree , neighbours ,

120

MPI UNWEIGHTED, MPI INFO NULL, 1 , &new dist comm) ;

Listing 5.1: Adjacent distributed graph creation

The designated MPI method to use the adjecency matrix would be

int MPI Dis t g raph create ad jacent

(

MPI Comm comm old ,

int indegree ,

const int s ou r c e s [] ,

const int sourcewe ight s [] ,

int outdegree ,

const int d e s t i n a t i o n s [] ,

const int des twe ight s [] ,

MPI Info in fo , int reorder ,

MPI Comm ∗ comm dist graph

)

Listing 5.2: MPI function to create adjacent distributed graph

Since the weight matrix is symmetric, the indegrees are equal to the

outdegrees and the sources are same as the destinations. We have used

MPI UNWEIGHTED because the volume of communication is the same when

communication takes place. It is important to set reorder equal to 1, if we want

MPI to figure out the best configuration to reduce the amount of cross-node

communication. Setting reorder to be true, means that in the new MPI Comm, the

ranks of MPI processes will be different from the global ranks in

MPI COMM WORLD. Hence, to avoid double loading of the input data (before

and after process reordering), we divide the overall data loadin into two stages. In

121

the first stage we load partial data that is necessary and then load all the other

remaining data only after this reorder has taken place. This is efficient and it also

ensures that MPI processes will not have data corresponding to their old ranks.

We should also note that there will be designated ranks in which all reduce

computations will done for the mean X and standard deviation S values and a

subsequent broadcast to relay the calculated values to all ranks. Hence, when

constructing the adjacency matrix, it would be a good idea to include this

information too. However, since these steps are most likely to be a all-to-one and

one-to-all types of communication, using the world communicator would suffice too.

But passing this information in the adjacency matrix could nonetheless be useful for

MPI to arrange the designated rank in the best possible network location.

5.4.7 Communication Efficiency on Distributed Memory

If we have P processes, each process will have N/P polygons and each of

them will have to calculate N/P G∗
i values. However, X and S are the same for N

polygons. So, each N/P process have to calculate those values only once. X and S

are simply mean and standard deviation, and we can use any of the existing

communication efficient algorithms to calculate those. The main communication

bottleneck here is that for each polygon i to calculate G∗
i , it needs wi,j and xj for all

N js which means P all-to-all communication steps which is O(P 2)

communications. Each broadcast would have to send the appropriate xj values

along with parameters to calculate wi,j values. Using graph topology built on top of

a weight matrix that preserves neighborhood information for each MPI process, the

communication can be potentially optimized to O(P) communication steps.

However, if during the read phase or reorder phase, the polygons were

distributed in such a way that each processes only had contiguous and connected

polygons from a region and the neighboring rank processes had polygons from its

122

neighboring region based on the network topology, we could derive a way to

estimate the weight parameter wi,j based on the processes ranks. Further, if we

selected the weight parameter such that wi,j is a function of i and j, and for polygon

i and j that are far apart wi,j → 0 each G∗
i would have the xj needed within the

processor and its neighbors because the xjs that are far apart would just get

multiplied by zero. The wi,j values could just be calculated using the function for

far apart polygons or an actual distance metric for the ones within the process or

neighbors. This would mean that there would be communication only between

neighboring processes and instead of having O(P 2) communication steps, we would

only have O(P) communication steps in between neighboring processes.

5.4.8 Vectorization with compiler intrinsics

For single precision floating point data type (32 bits), 8-way parallelism can

be potentially exploited by using 256 bit vector register supported by Advanced

Vector Extensions (AVX) [125]. AVX-512 intrinsics can support 16-way parallelism

because of wider SIMD registers. Intrinsic functions work like inline functions.

There is no overhead of function calls because compilers replace these functions with

corresponding vector assembly instructions. Our implementation of equations 5.8,

5.1 and 5.3 is geared towards exploiting vectorization via intrinsics. Arithmetic

(summations, multiplications, etc), data movement (load/store), and comparison

operations are fully vectorized. The denominator and numerator terms for equation

5.8 are also vectorized efficiently.

Assume that a vector floating type can hold v number of floats. In the

machines we used this number was v = 8. To facilitate vectorization with compiler

intrinsics, whenever allocating memory, it is better to allocate a aligned memory. If

we look at equations 5.8, 5.1 and 5.3 we can see that there are many summations.

These summations can be done vectorically and finally the v floats can be summed

123

sequentially to get the final result. All calculation for squaring like x2 and w2

squares can be done vectorically by loading them into vector types, and multiplying

them with themselves and then storing them. So, X in equation 5.1 can be

calculated vectorically, reducing the number of operations needed to calculate X by

v. The x2s needed for S in equation 5.3, can also be calculated vectorically and then

be summed vectorically. Same applies for the denominator and numerator terms for

equation 5.8. Finally, all each of the G∗
i values can be calculated vectorically. [125]

In Algorithm 5.1, we show an example of using advanced vector intrinsics to

calculate the weight matrix using the inverse euclidean distance and setting all

weight values below threshold epsilon (epi) to be zero. Broadcast function is used to

set all the elements of a SIMD register with the same value that was passed to it as

an argument. Please refer to [125] for details on the functions used here.

It can be seen that the code is optimized enough to start vector operations

always at aligned memory for each i loop using the second j loop and control

variable k. Also, the code only does one calculation for wi,j and wj,i values because

they are the same due to symmetry. There is a post-processing step done after this

to fill the wj,i values. This will ensure that whenever we need w[i] for any polygon i,

we will have the full contiguous memory of size N with values for all wi,j.

5.4.9 OpenMP & Vectorization

The next step in speeding up computations would be to combine the

techniques to get get even faster code. So, we took the vectorized C/C++ code and

used OpenMP threads to parallelize it for shared memory. As long as threads get

concurrent access, we will be able to exploit the cache and register operation

benefits. On top of our vectorized code, we added thread-level data parallelism

using OpenMP to leverage multiple vector units available on modern multi-core

CPUs. For this combined parallelization, cache and register memory availability

124

Algorithm 5.1 Intrinsics based algorithm for calculating weights

Input: N , cutoff value epi
Output: populated weights w

1: declare m256 epis, x1, x2, xx, y1, y2, yy, z
2: declare int i, j, k and assign k ← 8
3: epis ← mm256 broadcast ss(epi)
4: for (i = 0; i < N ; i++) do
5: for (j = i+ 1; j < k; j ++) do
6: w[i*N + j] ← invEucDist(x, y, i, j, epi)
7: end for
8: for (j = k; j < N ; j = j + 8) do
9: x1 ← mm256 broadcast ss(x + i)
10: x2 ← mm256 load ps(x + j)
11: xx ← mm256 sub ps(x2, x1)
12: xx ← mm256 mul ps(xx, xx)
13: y1 ← mm256 broadcast ss(y + i)
14: y2 ← mm256 load ps(y + j)
15: yy ← mm256 sub ps(y2, y1)
16: yy ← mm256 mul ps(yy, yy)
17: z ← mm256 add ps(xx, yy)
18: z ← mm256 rsqrt ps(z)

// SIMD compare if z > epis
19: bmask ← mm256 cmp ps(z, epis, CMP GT OQ)
20: z ← mm256 and ps(z, bmask) // (z & bmask)
21: mm256 store ps(w + i*N + j, z)
22: end for
23: k ← (((i+ 1)/8) + 1) ∗ 8
24: end for

125

with multiple parallel threads are the main issues. With reference to code,

algorithm 5.1, the approach that gave us the most benefit was to run the i loop in

OpenMP parallel regions while maintaining contiguous data access for each thread.

If t is the number of OpenMP parallel threads, this can be achieved with using a

guided OpenMP schedule with chunk size ck such that 1 < ck < (N/t). Having a

lower value of ck will split the iterations into threads in such a way that the first

among the earlier threads will have the largest chunk size and less memory access

overhead, but later threads will have smaller chunks size and higher cache overhead.

Also, with multi-threading, it is necessary to keep in mind that depending on the

processor, each core will have only a limited number of SIMD registers (usually 32)

and limited L1 cache size, so choosing a thread count t that does not overwork each

core is necessary to see any benefits from the combined acceleration approach.

5.4.10 MPI & Multiple GPU (CUDA)

If multiple nodes with GPU are available, then MPI can be used to offload

much of the processing to the GPUs by combining the MPI and CUDA codes. Once

each MPI process has the data it is going to be processing, it can easily copy it to

GPU device and get results. This will work even if there are multiple MPI processes

running in the node. Even if each node has multiple GPUs, MPI processes can use

their rank to select one of the available GPUs and offload their computation. If

there are multiple nodes each with multiple GPUs, this same approach will work

with the combined MPI. The best way to use MPI with CUDA is to have a separate

cuda file with extern C functions that are capable of executing the cuda kernels.

Pointer to the data structures from the host’s main memory can be passed into this

function with useful information like the rank of the MPI process that’s calling it.

Using cudaGetDeviceCount, cudaSetDevice and the MPI rank, the function can call

the kernel and copy back the memory after computation to host using the host

126

pointers. If multiple GPUs are going to be used in a node, it is also a good idea to

minimize all cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost to because

that is the step that consumes the most time. So, a preprocessing step to allocate

memory on the GPUs and passing back the device pointers to host to use in further

calculations is recommended.

5.4.11 Rapid Recalculation

Even in scenarios where the data emerges or changes at certain time

intervals, the location based data and spatial relationships remains constant. For

example, in the COVID data cases, the number of daily cases would be different but

the distance between two counties would remain the same. So, whenever we would

need to re-calculate the results, we would need to only recalculate some of the

equation, i.e. the equations that are dependent on x. The equations independent of

x could be pre-calculated and stored for easy access and retrieval. The equations

independent of x in equation 5.8 for G∗
i are equation 5.5 for Wi and equation 5.7 for

Si and their dependent equations. Hence, for each polygon, Wi and Si remain

unchanged for newer values of x and do not need to be recalculated from the

beginning.

Next, lets consider a boundary case where we have a new value for only one

polygon and there is change in only one value of x. In such a case, the global values

of X and Sx would change and would need to be updated across all polygons.

However, we would only need to recalculate WXi
for cases wi,j ̸= 0, j = k where xk is

the existing polygon value and ∆xk is the change in value for xk.

So the equations become

Xnew = X +
∆xk

n
(5.12)

127

X2
new = X2 +

2 ∗ xk ∗∆xk +∆x2
k

n
(5.13)

SX
2
new = X2

new − (Xnew)
2

= X2 +
2∗xk∗∆xk+∆x2

k

n
− (X + ∆xk

n
)2

= X2 +
2∗xk∗∆xk+∆x2

k

n
− (X)2 − (2∗X∗∆xk

n
)− (∆xk

n
)2

= S2
X + 2∗xk∗∆xk−2∗X∗∆xk

n

SX
2
new = S2

X +
(2 ∗∆xk) ∗ (xk −X)

n
(5.14)

WXinew = WXi
+ wi,k∆xk (5.15)

Next, lets consider the general case where there are multiple new x values for

multiple polygons. In this case, we would only need to recalculate WXi
for cases

wi,j ̸= 0 ∀ j = k where xks are the updated polygon values. In this case, the

equations become:

Xnew = X +
1

n

∑
k

∆xk (5.16)

X2
new = X2 +

1

n

∑
k

(2 ∗ xk ∗∆xk +∆x2
k) (5.17)

SX
2
new = S2

X +
2

n
∗
∑
k

(∆xk ∗ (xk −X)) (5.18)

128

WXinew = WXi
+
∑
k

wi,k∆xk (5.19)

Hence, if there are only few polygons with updated values, and if we have

pre-calculated values from previous iterations, then we can calculate the difference

and use the difference to reduce a lot of recalculations. For example, if there were

only 100s of counties that had updated data from the previous day, then we could

rerun calculations for just those 100 and update the G∗
i values. Also, note that ∆xk

values can be negative too, in case of decrease in x values.

5.5 Experimental Results

For the experiments, both real world data and simulated/generated data

were used to test the implementations.

5.5.1 Real World COVID Data

One of the primary motivation for this work was to track COVID hotspots,

especially as they were emerging and altering. One of the main sources of COVID

related data was the United States Center for Disease Control. Different geographic

level (like cities, districts, county, states) based data on daily reported values are

available. This data had necessary COVID related statistics like active cases, new

cases, closed cases, deaths, recovered etc. However, for geospatial analysis, we

require geographic data too. For the experimental timing results provided in this

chapter, we focused on the county level analysis. Geographic data required are

county locations and boundaries. This information was available from the Census

Bureau’s MAF/TIGER geographic database U.S. County Boundaries TIGER

dataset [1]. For autocorrelation calculations, we require only certain properties from

the geographic data. For each county, we required its boundary information to

calculate its centroid. This centroid information was further used to calculate the

129

inverse distance for the weight values among county polygons. Next, we needed to

match the county polygons with its corresponding COVID data. Counties have

unique identifiers called GEOID, so each of these county polygons had a unique five

digit identifier known as the FIPS code. Also, the county level COVID data along

with each county information had a corresponding FIPS code. This common unique

id made it easier to join the COVID data with the geographic data. The counties

geographic data had 3,233 polygons along with other data entities of which the extra

unnecessary information were discarded and this was processed to get a dataset

with the following entities: County, State, FIPS, and Centroid. Then for each date,

the entities for the available COVID data were: Date, County, State, FIPS, new

cases, active cases, recovered cases, total cases, new deaths, and total deaths.

Figure 5.5: Map of US Counties and Boundaries

5.5.2 Simulated/Generated Datasets

Simulated data were generated mostly for the unit point incidence data and

the aggregated point incidence data. The data was generated randomly. For the

unit point incidence data, the sample space was divided into a uniform square grid,

130

and each square cell was considered as the polygon for that region. Next, the

centroid for each of the square tile was calculated. Then, using different random

distributions, x-values (attributes) were assigned to each square tile. The x-values

were used to simulate the count of events inside the square tile. Finally the data

entities for each square tile were: id, centroid, x1, x2, x3, ..., xn. Using the centroid

values to calculate the inverse distances among the square tiles, the weight matrix

was populated.

For the aggregated point incidence data, first location for the aggregation

points were generated from a uniform random distribution across the sample space.

Then a fast Voronoi boundary calculation was used to generate the boundaries for

each unit point. These boundaries represented the polygon for that region and the

aggregation points were used as centroids for that region. Next, similar to data

generation with the square grids, different random distributions were used to

simulate x-values which were assigned to each polygon. Finally the data entities for

each aggregation points polygon was: id, centroid, x1, x2, x3, ..., xn. Using the

centroid values to calculate the inverse distances among the polygon boundaries, the

weight matrix was populated.

5.5.3 Hardware Description

Experiments were performed on two machines with the following hardware

configurations. Machine 1 (M1) has two Intel Xeon E5 v4 CPUs (2.10 GHz), where

each CPU has 18 cores (36 thread). M1 has 500 GBs of RAM. M1 also has an

Nvidia TITAN V GPU with 5120 CUDA cores. On the Intel Xeon E5, there is L1

cache of 32KB per core. L2 and L3 cache sizes are 256 KB and 2.5 MB. L2 cache is

per core. L3 cache is per NUMA node. The gcc verision is 4.8.5, nvcc is V11.2.67

and pgcc is 21.2.0.

Machine 2 (M2) is a medium sized compute cluster with multiple nodes used

131

for running experiments with a scheduler. Compute nodes in M2 contains AMD

Rome which is a 64 core (128 thread) CPU with a base frequency of 2 GHz,

NVIDIA Tesla V100 GPUs which has 5120 CUDA cores at base frequency of 1.20

GHz and 512 GBs RAM. Compute nodes and storage are connected via a 100 GB/s

Infiniband network. On the AMD Rome, there is L1 instruction cache of 32KB per

core and similarly L1 data cache of 32KB per core. There is mid-level cache (MLC)

or L2 of 512 KB per core. AMD Rome has 16 x 16 MB L3 cache which is the last

level cache and is a shared cache of 16 MB per 4 core. The gcc version is 9.2.0, mpi

is mvapich2, nvcc is V11.2.152 and pgcc is 21.11.0.

5.5.4 Performance Engineering Results

Table 5.1 show the aggregation of speedup gained from different methods

from multiple experiments at different data sizes. Every acceleration method

improves the computation speedup and combining different approaches has even

greater yield. For OpenMP and MPI, the shown speedup holds as long as the

threadCount or numProcess is less than the number of cores.

Table 5.1: Parallelization Method and Corresponding Best Speedup (25K dataset)

Parallelization Speedup
GPU CUDA (single node) 100×

GPU OpenACC (single node) 100×
OpenMP (16 thread) 15.4×

AVX2 intrinsics 6×
AVX2 + OpenMP 90×

MPI (16p) 15×
MPI (16p) + AVX2 90×

MPI (8 gpu nodes) + CUDA 750×
MPI (4 gpu nodes) + CUDA 380×

The AVX2 codes were implemented in both Intel and AMD CPUs and the

gain in performance was similar across both. Because 8 single precision floating

point variables can be loaded in 256 bits of a SIMD register, there is potentially

132

8-way SIMD parallelism that can be exploited when compared to scalar code. We

observe upto 6x speedup using SIMD-optimized code. We used linux perf tool to

measure the impact of improved vectorization through intrinsic functions on x86

processors. An analysis through the perf tool showed that with intrinsics the

number of CPU cycles were reduced by a factor of almost 40x while the instructions

per cycle (IPC) doubled. Higher IPC value represents better CPU utilization. Also,

the number of branches decreased by almost 50x while branch misses reduced by

1.5x. This is attributed to the advantages of loop unrolling on line number 8 of

Algorithm 1 (loop variable j is incremented by 8). Reduction in branch misses leads

to higher instruction level parallelism through instruction pipelining because of

reduction in control hazards. Furthermore, cache loads decreased by 16x and cache

misses decreased by more than 2x.

From a vectorization perspective, the difference in performance is attributed

to the choice of SIMD registers and vector instructions selected by the compiler

with/without intrinsics. We used GCC compiler with -O3 flag to enable compiler

auto-vectorization. In compiler generated code, XMM registers with 128 bits width

were used for critical parts of the kernel. In the version with intrinsics, compiler

generated code had YMM registers with 256 bits width. Wider registers have the

benefit of packing more data elements in a single register. We looked at the assembly

code generated with/without intrinsics using double precision floating point data.

For data movement, vmovsd was generated in the sub-optimal code instead of

vmovapd. s stands for scalar in vmovsd. p stands for packed in vmovapd. Similarly,

vmulsd was generated by compiler in the suboptimal code instead of vmulpd.

Figure 5.6 shows the time (in log2 scale) for different sizes of data. Average

from multiple runs of the experiments are shown. The best implementation remains

the MPI+CUDA approach.

133

Figure 5.6: Comparison of Gi∗ computation Vs data sizes.
OpenMP version is running on 16 threads.

Execution times from an experiment with 300,000 polygons are shown in

Table 5.3. Using a non-optimized sequential C code, it takes about 36 minutes to

run from start to finish. The computationally intensive parts can be divided into

three parts. First part is the spatial sorting. Second part is calculating and

populating the weight matrix. Final part is calculating all G∗
i values. The above

mentioned speedups in Table 5.1 are mostly gained in the second and third parts.

OpenACC and CUDA brings down 780 seconds to calculate the weight matrix down

to about 9 seconds. AVX2 intrinsics brings it down to almost 110 seconds. Adding

OpenMP parallelization to AVX2, with a thread count of 16 threads brings the time

down to almost 7 seconds and its performance is very similar to that of MPI. The

MPI+CUDA results is using 4 GPUs concurrently which is the fastest.

MPI+CUDA took 2 seconds. Table 5.2 shows the average speedup and efficiency of

using multiple OpenMP threads.

Table 5.4 shows R-tree based execution time for 300K polygons. This

sequential version performs better than the version with spatial sorting because of

R-tree data structure. This version does not use spatial sorting, as shown in

Table 5.4. OpenMP parallelization speeds up query operations and calculation of

134

Table 5.2: OpenMP Speedup and Efficiency

Threads Avg Speedup Speedup/thread
2 1.9 0.950
4 3.7 0.925
8 7.7 0.963
16 15.4 0.963
32 30.1 0.941

Table 5.3: Average Execution Times for 300k polygons

Method Sorting Wmatrix G∗
i Total (minutes)

Sequential 900s 780s 480s 36
CUDA 10s 9s 6s 0.42
AVX2 500s 110s 69s 11.4

OpenMP (16 t) 150s 51s 30s 4
MPI+CUDA 10s 2s 2s 0.24

OpenMP+AVX2 150s 7s 5s 2.7

Table 5.4: Rtree based times for 300k polygons

Building Querying G∗
i Total (minutes)

Sequential (No Sort) 20s 60s 520s 10
OpenMP (16 t) 20s 4s 37s 1

OpenMP+AVX2 20s 4s 10s 0.6

G∗
i values compared to the sequential baseline. SIMD parallelization using AVX2 is

applied to G∗
i calculations only. The best performance on a single compute node is

by using 16 threads accelerated by AVX2 SIMD extensions.

Table 5.5 shows the use of acceleration and rapid recalculation techniques

applied to calculate daily G∗
i values for the US Counties using real world COVID

data for 500 days to see the evolution of the spread of infection over the time period.

5.6 Conclusion and Future Direction

We have demonstrated successful acceleration of spatial autocorrelation

kernel. This acceleration can be used for industrial and scientific application

requiring faster solutions and the techniques mentioned in the chapter can be

transferred to apply to wide variety of similar statistical kernels. Future directions

135

Table 5.5: 500 days time series G∗
i calculation for Real US Counties daily COVID

data [1] [2]

Method Time (minutes)
Sequential 33

CUDA 0.5
AVX2 6

OpenMP (16t) 3
MPI+CUDA 0.3

OpenMP+AVX2 1

of this work can be extending the rapid recalculation work for streaming and online

real-time solutions and expanding the scope of the work for cloud infrastructures

where different acceleration techniques are combined to automatically achieve the

best acceleration depending on hardware configuration and availability.

136

CHAPTER 6: CONCLUSION AND FUTURE DIRECTION

As shown in each chapter, this dissertation shows successful acceleration of

each of the corresponding computational geometry problem in each chapter using

at-least one of the aforementioned acceleration techniques. This dissertation work

presented a fine-grained parallel algorithm targeted to GPU architecture for a

non-trivial computational geometry code. It also presented an efficient

implementation using OpenACC directives that leverages GPU parallelism. This

has resulted in an order of magnitude speedup compared to the sequential

implementations. The experiments and exploration in directives-based

parallelization of Fotune’s algorithm has yielded a shared memory implementation

that gives around 2x speedup compared to the sequential version. Directives based

parallelization of segment tree construction, query have been achieved along with

performance improvements due to parallelization in terms of speedup is upto 29x

speedup for tree construction and upto 23x speedup for batch querying using 32

threads using OpenMP compared to single-threaded version. Using OpenACC,

speedup upto 100x during the tree construction phase and speedup upto 62x during

the batch query phase have been achieved. The cache optimized version of the

segment tree is 1.3x faster on average and the cache miss rate is reduced by almost

25%. This dissertation has also demonstrated successful acceleration of spatial

autocorrelation kernel. CPU/GPU optimizations gain upto 750X relative speedup

with a 8 GPU setup when compared to baseline sequential implementation.

Compared to the best implementation using OpenMP + R-tree data structure on a

single compute node, our accelerated hotspots benchmark gains a 25X speedup. For

real world US counties and COVID data evolution calculated over 500 days, we gain

upto 110X speedup reducing time from 33 minutes to 0.3 minutes.

137

Similar to how general purpose GPU computing accelerated the

computational possibility of all the computational geometry problems mentioned in

the previous chapters, a new class of hardware has been recently introduced - Data

Processing Units (DPUs). DPUs could be used as a stand-alone embedded

processor or incorporated with a network interface controller (SmartNIC). For high

volume data processing, DPUs could be the intermediary that could save a lot of

memory and communication related overheads, especially by freeing the CPU from

it. Furthermore in case of spatial data, DPUs could be used to filter, grid or

partition data, leaving only the computation to the processors. DPUs could be the

next step in accelerating extreme scale computing but due to its novelty a lot of

research in this area is warranted.

So, from a broader perspective, the future of this research work would also

include working on exploring the capabilities of DPU and how that can be applied

to acceleration of computational geometry algorithms for high performance

computing based geo-spatial big data analysis.

138

BIBLIOGRAPHY

[1] https://www.census.gov/geographies/mapping-files/time-series/geo/
tiger-line-file.html.

[2] https://covid.cdc.gov/covid-data-tracker/index.html.

[3] https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/
h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm.

[4] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W.
Lampson, D. Sanchez, and T. B. Schardl, “There’s plenty of room at the
top: What will drive computer performance after moore’s law?” Science,
vol. 368, no. 6495, p. eaam9744, 2020.

[5] E. Carson, J. Demmel, L. Grigori, N. Knight, P. Koanantakool, O. Schwartz,
and H. V. Simhadri, “Write-avoiding algorithms.” IEEE, May 2016, pp.
648–658. [Online]. Available:
https://ieeexplore.ieee.org/document/7516061

[6] J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and
O. Spillinger, “Communication-optimal parallel recursive rectangular
matrix multiplication.” IEEE, May 2013, pp. 261–272. [Online].
Available: https://ieeexplore.ieee.org/document/6569817

[7] G. Ballard, A. Buluc, J. Demmel, L. Grigori, B. Lipshitz, O. Schwartz, and
S. Toledo, “Communication optimal parallel multiplication of sparse
random matrices,” ser. SPAA ’13. ACM, Jul 23, 2013, pp. 222–231.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2486196

[8] J. L. Bentley and T. A. Ottmann, “Algorithms for reporting and counting
geometric intersections,” IEEE Transactions on computers, no. 9, pp.
643–647, 1979.

[9] M. T. Goodrich, “Intersecting line segments in parallel with an
output-sensitive number of processors,” SIAM Journal on Computing,
vol. 20, no. 4, pp. 737–755, 1991.

[10] M. J. Atallah and M. T. Goodrich, “Efficient plane sweeping in parallel,” in
Proceedings of the second annual symposium on Computational geometry.
ACM, 1986, pp. 216–225.

[11] M. T. Goodrich, M. R. Ghouse, and J. Bright, “Sweep methods for parallel
computational geometry,” Algorithmica, vol. 15, no. 2, pp. 126–153, 1996.

[12] S. Puri and S. K. Prasad, “Output-sensitive parallel algorithm for polygon
clipping,” in 43rd International Conference on Parallel Processing, ICPP
2014, Minneapolis, MN, USA, September 9-12, 2014, 2014, pp. 241–250.
[Online]. Available: https://doi.org/10.1109/ICPP.2014.33

https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://covid.cdc.gov/covid-data-tracker/index.html
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm
https://ieeexplore.ieee.org/document/7516061
https://ieeexplore.ieee.org/document/6569817
http://dl.acm.org/citation.cfm?id=2486196
https://doi.org/10.1109/ICPP.2014.33

139

[13] S. Audet, C. Albertsson, M. Murase, and A. Asahara, “Robust and efficient
polygon overlay on parallel stream processors,” in Proceedings of the 21st
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 2013, pp. 304–313.

[14] W. R. Franklin, C. Narayanaswami, M. Kankanhalli, D. Sun, M.-C. Zhou, and
P. Y. Wu, “Uniform grids: A technique for intersection detection on serial
and parallel machines,” in Proceedings of Auto Carto, vol. 9. Citeseer,
1989, pp. 100–109.

[15] D. Aghajarian and S. K. Prasad, “A spatial join algorithm based on a
non-uniform grid technique over gpgpu,” in Proceedings of the 25th ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 2017, p. 56.

[16] M. McKenney and T. McGuire, “A parallel plane sweep algorithm for
multi-core systems,” in Proceedings of the 17th ACM SIGSPATIAL
international conference on advances in geographic information systems.
ACM, 2009, pp. 392–395.

[17] A. B. Khlopotine, V. Jandhyala, and D. Kirkpatrick, “A variant of parallel
plane sweep algorithm for multicore systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 6,
pp. 966–970, 2013.

[18] M. McKenney and et al., “Multi-core parallelism for plane sweep algorithms
as a foundation for gis operations,” in Geoinformatica. Springer, 2017, p.
151–174.

[19] A. Biniaz and G. Dastghaibyfard, “A faster circle-sweep delaunay
triangulation algorithm,” Advances in Engineering Software, vol. 43, no. 1,
pp. 1–13, 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0965997811002420

[20] K. Wong and H. A. Muller, “An efficient implementation of fortune’s
plane-sweep algorithm for voronoi diagrams,” 1991.

[21] E. F. Bollig, “Centroidal voronoi tessellation of manifolds using the gpu,”
Ph.D. dissertation, 1982. [Online]. Available:
http://diginole.lib.fsu.edu/etd/3606

[22] I. Majdandzic, C. Trefftz, and G. Wolffe, “Computation of voronoi diagrams
using a graphics processing unit.” IEEE, 2008, pp. 437–441. [Online].
Available: https://ieeexplore.ieee.org/document/4554342

[23] Z. Yuan, G. Rong, X. Guo, and W. Wang, “Generalized voronoi diagram
computation on gpu.” IEEE, 2011, pp. 75–82. [Online]. Available:
https://ieeexplore.ieee.org/document/5988951

https://www.sciencedirect.com/science/article/pii/S0965997811002420
http://diginole.lib.fsu.edu/etd/3606
https://ieeexplore.ieee.org/document/4554342
https://ieeexplore.ieee.org/document/5988951

140

[24] G. Rong, Y. Liu, W. Wang, X. Yin, X. D. Gu, and X. Guo, “Gpu-assisted
computation of centroidal voronoi tessellation,” IEEE Transactions on
Visualization and Computer Graphics, vol. 17, no. 3, pp. 345–356, 2011.
[Online]. Available: https://ieeexplore.ieee.org/document/5438988

[25] A. Tsidaev, “Parallel algorithm for natural neighbor interpolation,” 2016.

[26] J. Nievergelt and F. Preparata, “Plane-sweep algorithms for intersecting
geometric figures,” pp. 739–747, Oct 1, 1982. [Online]. Available:
http://dl.acm.org/citation.cfm?id=358681

[27] S. G. Akl and K. A. Lyons, Parallel computational geometry. Prentice-Hall,
Inc., 1993.

[28] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars, Computational
geometry: algorithms and applications. Springer-Verlag TELOS, 2008.

[29] A. Aggarwal, B. Chazelle, L. Guibas, C. Ó’Dúnlaing, and C. Yap, “Parallel
computational geometry,” Algorithmica, vol. 3, no. 1-4, pp. 293–327, 1988.

[30] G. Blankenagel and R. H. Güting, “External segment trees,” Algorithmica,
vol. 12, no. 6, pp. 498–532, 1994.

[31] L. Arge, “External-memory algorithms with applications in gis,” in Advanced
School on the Algorithmic Foundations of Geographic Information
Systems. Springer, 1996, pp. 213–254.

[32] F. Dehne and A. Rau-Chaplin, “Implementing data structures on a hypercube
multiprocessor, and applications in parallel computational geometry,” in
International Workshop on Graph-Theoretic Concepts in Computer
Science. Springer, 1989, pp. 316–329.

[33] A. Chan, F. Dehne, and A. Rau-Chaplin, “Coarse-grained parallel geometric
search,” Journal of Parallel and Distributed Computing, vol. 57, no. 2, pp.
224 – 235, 1999. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731598915271

[34] P. Su and R. L. S. Drysdale, “Building segment trees in parallel,” Dartmouth
College, Computer Science, Tech. Rep., 1992. [Online]. Available:
http://www.cs.dartmouth.edu/reports/TR92-184.pdf

[35] A. V. Gerbessiotis, “An architecture independent study of parallel segment
trees,” Journal of Discrete Algorithms, vol. 4, no. 1, pp. 1–24, 2006.

[36] C. Zheng, G. Shen, S. Li, and S. Shenker, “Distributed segment tree: Support
of range query and cover query over dht.” in IPTPS, 2006.

[37] S. Guobin, Z. Changxi, P. Wei, and L. Shipeng, “Distributed segment tree: A
unified architecture to support range query and cover query,” Tech. Rep.,
Mar 2007.

https://ieeexplore.ieee.org/document/5438988
http://dl.acm.org/citation.cfm?id=358681
http://www.sciencedirect.com/science/article/pii/S0743731598915271
http://www.cs.dartmouth.edu/reports/TR92-184.pdf

141

[38] A. LaMarca and R. Ladner, “The influence of caches on the performance of
heaps,” Journal of Experimental Algorithmics (JEA), vol. 1, pp. 4–es,
1996.

[39] P.-H. Kamp, “You’re doing it wrong,” Communications of the ACM, vol. 53,
no. 7, pp. 55–59, 2010.

[40] L. Arge, D. E. Vengroff, and J. S. Vitter, “External-memory algorithms for
processing line segments in geographic information systems,” Algorithmica,
vol. 47, no. 1, pp. 1–25, 2007.

[41] K. Berney, H. Casanova, A. Higuchi, B. Karsin, and N. Sitchinava, “Beyond
binary search: parallel in-place construction of implicit search tree
layouts,” in 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2018, pp. 1070–1079.

[42] L. Arge, M. de Berg, and H. Haverkort, “Cache-oblivious r-trees,” in
Proceedings of the twenty-first annual symposium on Computational
geometry, 2005, pp. 170–179.

[43] E. D. Demaine, “Cache-oblivious algorithms and data structures,” Lecture
Notes from the EEF Summer School on Massive Data Sets, vol. 8, no. 4,
pp. 1–249, 2002.

[44] M. A. Awad, S. Ashkiani, R. Johnson, M. Farach-Colton, and J. D. Owens,
“Engineering a high-performance gpu b-tree,” in Proceedings of the 24th
symposium on principles and practice of parallel programming, 2019, pp.
145–157.

[45] T. Foley and J. Sugerman, “Kd-tree acceleration structures for a gpu
raytracer,” in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, 2005, pp. 15–22.

[46] S. K. Prasad, M. McDermott, X. He, and S. Puri, “Gpu-based parallel r-tree
construction and querying.” IEEE, 05/2015, pp. 618–627. [Online].
Available: https://ieeexplore.ieee.org/document/7284367

[47] M. K. Maramreddy and K. Kothapalli, “Gpu accelerated range trees with
applications,” in European Conference on Parallel Processing. Springer,
2014, pp. 740–751.

[48] W. R. Tobler, “A computer movie simulating urban growth in the detroit
region,” Economic geography, vol. 46, no. sup1, pp. 234–240, 1970.

[49] S. Shekhar, P. Zhang, and Y. Huang, “Spatial data mining,” in Data mining
and knowledge discovery handbook. Springer, 2009, pp. 837–854.

[50] Y. Liu, K. Wu, S. Wang, Y. Zhao, and Q. Huang, “A mapreduce approach to
gi(d) spatial statistic,” in Proceedings of the ACM SIGSPATIAL
International Workshop on High Performance and Distributed Geographic
Information Systems, 2010, pp. 11–18.

https://ieeexplore.ieee.org/document/7284367

142

[51] P. Mehta, C. Windolf, and A. Voisard, “Spatio-temporal hotspot computation
on apache spark (gis cup),” in 24th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, 2016.

[52] S. Peng, H. Wei, H. Li, and H. Samet, “Simplification and refinement for
speedy spatio-temporal hot spot detection using spark (gis cup),” in 24th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, 2016.

[53] M. Li, “MS Thesis: A Parallel Algorithm and Implementation to Compute
Spatial Autocorrelation (Hotspot) Using MATLAB,” MS Thesis, 2020.

[54] Y. Liu and S. Puri, “Efficient filters for geometric intersection computations
using gpu,” in Proceedings of the 28th International Conference on
Advances in Geographic Information Systems, 2020, pp. 487–496.

[55] Y. Liu, J. Yang, and S. Puri, “Hierarchical filter and refinement system over
large polygonal datasets on cpu-gpu,” in 2019 IEEE 26th International
Conference on High Performance Computing, Data, and Analytics (HiPC).
IEEE, 2019, pp. 141–151.

[56] J. Yang and S. Puri, “Efficient parallel and adaptive partitioning for
load-balancing in spatial join,” in 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2020, pp. 810–820.

[57] H.-J. Lee, J. Robertson, and J. Fortes, “Generalized cannon’s algorithm for
parallel matrix multiplication,” ser. ICS ’97. ACM, Jul 11, 1997, pp.
44–51. [Online]. Available: http://dl.acm.org/citation.cfm?id=263591

[58] E. Solomonik, D. Matthews, J. R. Hammond, and J. Demmel, “Cyclops tensor
framework: Reducing communication and eliminating load imbalance in
massively parallel contractions.” IEEE, May 2013, pp. 813–824. [Online].
Available: https://ieeexplore.ieee.org/document/6569864

[59] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar, “A
three-dimensional approach to parallel matrix multiplication,” IBM
Journal of Research and Development, vol. 39, no. 5, pp. 575–582, Sep
1995.

[60] J. Choi, D. W. Walker, and J. J. Dongarra, “Pumma: Parallel universal
matrix multiplication algorithms on distributed memory concurrent
computers,” Concurrency: Practice and Experience, vol. 6, no. 7, pp.
543–570, Oct 1994. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4330060702

[61] W. F. McColl, W. F. McColl, A. Tiskin, and A. Tiskin, “Memory-efficient
matrix multiplication in the bsp model,” Algorithmica, vol. 24, no. 3, pp.
287–297, Jul 1999.

http://dl.acm.org/citation.cfm?id=263591
https://ieeexplore.ieee.org/document/6569864
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4330060702

143

[62] C. P. Kruskal, L. Rudolph, and M. Snir, “Techniques for parallel manipulation
of sparse matrices,” Theoretical Computer Science, vol. 64, no. 2, pp.
135–157, 1989. [Online]. Available:
http://dx.doi.org/10.1016/0304-3975(89)90058-3

[63] A. Buluc and J. R. Gilbert, “Challenges and advances in parallel sparse
matrix-matrix multiplication.” IEEE, Sep 2008, pp. 503–510. [Online].
Available: https://ieeexplore.ieee.org/document/4625887

[64] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, “Minimizing
communication in numerical linear algebra,” SIAM Journal on Matrix
Analysis and Applications, vol. 32, no. 3, pp. 866–901, Jul 2011. [Online].
Available: https://search.proquest.com/docview/1372742712

[65] E. Solomonik, A. Bhatele, and J. Demmel, “Improving communication
performance in dense linear algebra via topology aware collectives,” ser.
SC ’11. ACM, Nov 12, 2011, pp. 1–11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2063487

[66] B. Lipshitz, G. Ballard, J. Demmel, and O. Schwartz,
“Communication-avoiding parallel strassen,” ser. SC ’12. IEEE Computer
Society Press, Nov 10, 2012, pp. 1–11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2389133

[67] E. Solomonik and J. Demmel, Communication-Optimal Parallel 2.5D Matrix
Multiplication and LU Factorization Algorithms, ser. Euro-Par 2011
Parallel Processing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
vol. 6853, pp. 90–109.

[68] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz,
“Communication-optimal parallel algorithm for strassen’s matrix
multiplication,” ser. SPAA ’12. ACM, Jun 25, 2012, pp. 193–204.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2312044

[69] D. Irony, S. Toledo, and A. Tiskin, “Communication lower bounds for
distributed-memory matrix multiplication,” Journal of Parallel and
Distributed Computing, vol. 64, no. 9, pp. 1017–1026, Sep 2004. [Online].
Available: http://dx.doi.org/10.1016/j.jpdc.2004.03.021

[70] R. A. Van De Geijn and J. Watts, “Summa: scalable universal matrix
multiplication algorithm,” Concurrency: Practice and Experience, vol. 9,
no. 4, pp. 255–274, Apr 1997. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1096-9128(199704)
9:4⟨255::AID-CPE250⟩3.0.CO;2-2

[71] J. Yang, A. Paudel, and S. Puri, “Spatial data decomposition and load
balancing on hpc platforms,” ser. PEARC ’19. ACM, Jul 28, 2019, pp.
1–4. [Online]. Available: http://dl.acm.org/citation.cfm?id=3333266

http://dx.doi.org/10.1016/0304-3975(89)90058-3
https://ieeexplore.ieee.org/document/4625887
https://search.proquest.com/docview/1372742712
http://dl.acm.org/citation.cfm?id=2063487
http://dl.acm.org/citation.cfm?id=2389133
http://dl.acm.org/citation.cfm?id=2312044
http://dx.doi.org/10.1016/j.jpdc.2004.03.021
https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
http://dl.acm.org/citation.cfm?id=3333266

144

[72] S. Puri, A. Paudel, and S. Prasad, “Mpi-vector-io,” ser. ICPP 2018. ACM,
Aug 13, 2018, pp. 1–11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3225105

[73] J.-W. Hong and H. T. Kung, “I/o complexity: The red-blue pebble game,”
Tech. Rep., Mar 1981. [Online]. Available:
http://www.dtic.mil/docs/citations/ADA104739

[74] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-oblivious
algorithms,” ACM Transactions on Algorithms (TALG), vol. 8, no. 1, pp.
1–22, Jan 1, 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2071383

[75] G. Blelloch, Y. Gu, J. Shun, and Y. Sun, “Parallel write-efficient algorithms
and data structures for computational geometry,” ser. SPAA ’18. ACM,
Jul 11, 2018, pp. 235–246. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3210380

[76] Y. Sun and G. Blelloch, “Implementing parallel and concurrent tree
structures,” ser. PPoPP ’19. ACM, Feb 16, 2019, pp. 447–450. [Online].
Available: http://dl.acm.org/citation.cfm?id=3302576

[77] G. Kwasniewski, M. Kabić, M. Besta, J. VandeVondele, R. Solcà, and
T. Hoefler, “Red-blue pebbling revisited: near optimal parallel
matrix-matrix multiplication,” Aug 26, 2019. [Online]. Available:
https://arxiv.org/abs/1908.09606

[78] G. Blelloch, P. Gibbons, and H. Simhadri, “Low depth cache-oblivious
algorithms,” ser. SPAA ’10. ACM, Jun 13, 2010, pp. 189–199. [Online].
Available: http://dl.acm.org/citation.cfm?id=1810519

[79] M. Frigo and V. Strumpen, “The cache complexity of
multithreaded cache oblivious algorithms,” Theory of Computing Systems,
vol. 45, no. 2, pp. 203–233, Aug 1, 2009. [Online]. Available:
https://search.proquest.com/docview/237221492

[80] Y.-J. Chiang, “Experiments on the practical i/o efficiency of geometric
algorithms: Distribution sweep versus plane sweep,” Computational
Geometry: Theory and Applications, vol. 9, no. 4, pp. 211–236, 1998.
[Online]. Available: http://dx.doi.org/10.1016/S0925-7721(97)00020-5

[81] N. Sitchinava, “Computational geometry in the parallel external memory
model,” SIGSPATIAL Special, vol. 4, no. 2, pp. 18–23, Jul 1, 2012.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2367578

[82] D. Ajwani and N. Sitchinava, “Empirical evaluation of the parallel
distribution sweeping framework on multicore architectures,” Jun 19, 2013.
[Online]. Available: https://arxiv.org/abs/1306.4521

http://dl.acm.org/citation.cfm?id=3225105
http://www.dtic.mil/docs/citations/ADA104739
http://dl.acm.org/citation.cfm?id=2071383
http://dl.acm.org/citation.cfm?id=3210380
http://dl.acm.org/citation.cfm?id=3302576
https://arxiv.org/abs/1908.09606
http://dl.acm.org/citation.cfm?id=1810519
https://search.proquest.com/docview/237221492
http://dx.doi.org/10.1016/S0925-7721(97)00020-5
http://dl.acm.org/citation.cfm?id=2367578
https://arxiv.org/abs/1306.4521

145

[83] L. Arge, M. Goodrich, M. Nelson, and N. Sitchinava, “Fundamental parallel
algorithms for private-cache chip multiprocessors,” ser. SPAA ’08. ACM,
Jun 14, 2008, pp. 197–206. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1378573

[84] R. Sharathkumar, M. T. C. Vinaykumar, P. Maheshwari, and P. Gupta,
“Efficient external memory segment intersection for processing very large
vlsi layouts.” IEEE, 2005, pp. 740–743 Vol. 1. [Online]. Available:
https://ieeexplore.ieee.org/document/1594207

[85] D. Ajwani, N. Sitchinava, and N. Zeh, “I/o-optimal distribution sweeping on
private-cache chip multiprocessors.” IEEE, May 2011, pp. 1114–1123.
[Online]. Available: https://ieeexplore.ieee.org/document/6012918

[86] P. Agarwal, L. Arge, T. Mølhave, and B. Sadri, “I/o-efficient efficient
algorithms for computing contours on a terrain,” ser. SCG ’08. ACM,
Jun 9, 2008, pp. 129–138. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1377698

[87] F. Dehne, S. Mardegan, A. Pietracaprina, and G. Prencipe, “Distribution
sweeping on clustered machines with hierarchical memories.” IEEE, 2002,
p. 6 pp. [Online]. Available: https://ieeexplore.ieee.org/document/1015508

[88] T. M. Chan and E. Y. Chen, “Optimal in-place and cache-oblivious algorithms
for 3-d convex hulls and 2-d segment intersection,” Computational
Geometry: Theory and Applications, vol. 43, no. 8, pp. 636–646, 2010.
[Online]. Available: http://dx.doi.org/10.1016/j.comgeo.2010.04.005

[89] L. Arge, T. Mølhave, and N. Zeh, Cache-Oblivious Red-Blue Line Segment
Intersection, ser. Algorithms - ESA 2008. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, vol. 5193, pp. 88–99.

[90] L. A. Arge, “External-memory algorithms with applications in gis,” Jan 1,
1997.

[91] P. Agarwal, L. Arge, A. Danner, and B. Holland-Minkley, “Cache-oblivious
data structures for orthogonal range searching,” ser. SCG ’03. ACM, Jun
8, 2003, pp. 237–245. [Online]. Available:
http://dl.acm.org/citation.cfm?id=777828

[92] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter,
“External-memory computational geometry.” IEEE, 1993, pp. 714–723.
[Online]. Available: https://ieeexplore.ieee.org/document/366816

[93] S. Puri and S. K. Prasad, “A parallel algorithm for clipping polygons with
improved bounds and a distributed overlay processing system using mpi,”
in 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid)(CCGRID), vol. 00, May 2015, pp. 576–585.
[Online]. Available: doi.ieeecomputersociety.org/10.1109/CCGrid.2015.43

http://dl.acm.org/citation.cfm?id=1378573
https://ieeexplore.ieee.org/document/1594207
https://ieeexplore.ieee.org/document/6012918
http://dl.acm.org/citation.cfm?id=1377698
https://ieeexplore.ieee.org/document/1015508
http://dx.doi.org/10.1016/j.comgeo.2010.04.005
http://dl.acm.org/citation.cfm?id=777828
https://ieeexplore.ieee.org/document/366816
doi.ieeecomputersociety.org/10.1109/CCGrid.2015.43

146

[94] S. Prasad, D. Aghajarian, M. McDermott, D. Shah, M. Mokbel, S. Puri,
S. Rey, S. Shekhar, Y. Xe, R. Vatsavai, F. Wang, Y. Liang, H. Vo, and
S. Wang, “Parallel Processing Over Spatial-Temporal Datasets From Geo,
Bio, Climate And Social Science Communities: A Research Roadmap,” 6th
IEEE International Congress on Big Data, Hawaii, 2017.

[95] D. Agarwal, S. Puri, X. He, and S. K. Prasad, “A system for GIS polygonal
overlay computation on linux cluster - an experience and performance
report,” in 26th IEEE International Parallel and Distributed Processing
Symposium Workshops & PhD Forum, IPDPS 2012, Shanghai, China, May
21-25, 2012, 2012, pp. 1433–1439. [Online]. Available:
https://doi.org/10.1109/IPDPSW.2012.180

[96] M. McKenney, G. De Luna, S. Hill, and L. Lowell, “Geospatial overlay
computation on the gpu,” in Proceedings of the 19th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems.
ACM, 2011, pp. 473–476.

[97] OSM. (2017) OpenStreet Map Data. [Online]. Available:
http://spatialhadoop.cs.umn.edu/datasets.html

[98] S. Puri, A. Paudel, and S. K. Prasad, “MPI-Vector-IO: Parallel I/O and
Partitioning for Geospatial Vector Data,” in Proceedings of the 47th
International Conference on Parallel Processing, ser. ICPP 2018. New
York, NY, USA: ACM, 2018, pp. 13:1–13:11. [Online]. Available:
http://doi.acm.org/10.1145/3225058.3225105

[99] CGAL. The Computational Geometry Algorithms Library. [Online].
Available: https://www.cgal.org

[100] S. You, J. Zhang, and L. Gruenwald, “High-performance polyline intersection
based spatial join on gpu-accelerated clusters,” in Proceedings of the 5th
ACM SIGSPATIAL International Workshop on Analytics for Big
Geospatial Data. ACM, 2016, pp. 42–49.

[101] S. P. Satish Puri, Danial Aghajarian. Mpi-gis : High performance computing
and i/o for spatial overlay and join” (research poster). [Online]. Available:
http://sc16.supercomputing.org/sc-archive/tech poster/tech poster pages/
post241.html

[102] S. Puri, D. Agarwal, and S. K. Prasad, “Polygonal Overlay Computation on
Cloud, Hadoop, and MPI,” Encyclopedia of GIS., pp. 1598–1606, 2017.

[103] D. Aghajarian, S. Puri, and S. K. Prasad, “GCMF: an efficient end-to-end
spatial join system over large polygonal datasets on GPGPU platform,”
Proceedings of the 24th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, 2016, 2016.

[104] F. P. Preparata and M. I. Shamos, Computational geometry: an introduction.
Springer Science & Business Media, 2012.

https://doi.org/10.1109/IPDPSW.2012.180
http://spatialhadoop.cs.umn.edu/datasets.html
http://doi.acm.org/10.1145/3225058.3225105
https://www.cgal.org
http://sc16.supercomputing.org/sc-archive/tech_poster/tech_poster_pages/post241.html
http://sc16.supercomputing.org/sc-archive/tech_poster/tech_poster_pages/post241.html

147

[105] A. Paudel and S. Puri, “Openacc based gpu parallelization of plane sweep
algorithm for geometric intersection,” in International Workshop on
Accelerator Programming Using Directives. Springer, 2018, pp. 114–135.

[106] (2002). [Online]. Available: https://www.cs.hmc.edu/∼mbrubeck/voronoi.html

[107] S. Fortune, “A sweepline algorithm for voronoi diagrams,” pp. 153–174, Nov
1987.

[108] (2006). [Online]. Available:
http://www.ams.org/publicoutreach/feature-column/fcarc-voronoi

[109] C. Rüb, “Line-segment intersection reporting in parallel,” Algorithmica, vol. 8,
no. 1-6, pp. 119–144, 1992.

[110] L. Becker, A. Giesen, K. H. Hinrichs, and J. Vahrenhold, “Algorithms for
performing polygonal map overlay and spatial join on massive data sets,”
in International Symposium on Spatial Databases. Springer, 1999, pp.
270–285.

[111] A. Eldawy and M. F. Mokbel, “SpatialHadoop: A MapReduce Framework for
Spatial Data,” in 31st IEEE International Conference on Data
Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015, 2015, pp.
1352–1363. [Online]. Available:
http://dx.doi.org/10.1109/ICDE.2015.7113382

[112] S. Chandrasekaran and G. Juckeland, OpenACC for programmers. Boston ;
Columbus ; Indianapolis [und 21 weitere]: Addison-Wesley, 2018.

[113] R. van der Pas, E. Stotzer, and C. Terboven, Using OpenMP – The Next Step.
Cambridge: MIT Press, 2017. [Online]. Available:
https://ieeexplore.ieee.org/servlet/opac?bknumber=8169743

[114] F. P. Preparata and M. I. Shamos, Computational geometry, 3rd ed. New
York u.a: Springer, 1990.

[115] S. G. Akl and K. A. Lyons, Parallel computational geometry. Englewood
Cliffs, NJ: Prentice Hall, 1993.

[116] M. T. Goodrich, “Intersecting line segments in parallel with an
output-sensitive number of processors,” SIAM Journal on Computing,
vol. 20, no. 4, pp. 737–755, 1991.

[117] B. R. Vatti, “A generic solution to polygon clipping,” Communications of the
ACM, vol. 35, no. 7, pp. 56–63, 1992.

[118] S. G. Akl, Parallel computation: models and methods. Prentice Hall Upper
Saddle River, 1997, vol. 4.

[119] B. Chazelle, “Reporting and counting segment intersections,” Journal of
Computer and System Sciences, vol. 32, no. 2, pp. 156–182, 1986.

https://www.cs.hmc.edu/~mbrubeck/voronoi.html
http://www.ams.org/publicoutreach/feature-column/fcarc-voronoi
http://dx.doi.org/10.1109/ICDE.2015.7113382
https://ieeexplore.ieee.org/servlet/opac?bknumber=8169743

148

[120] M. A. Bender, E. D. Demaine, and M. Farach-Colton, “Cache-oblivious
b-trees,” SIAM Journal on Computing, vol. 35, no. 2, pp. 341–358, 2005.

[121] A. Paudel, J. Yang, and S. Puri, “Parallelization of plane sweep based voronoi
construction with compiler directives,” in 2019 IEEE 43rd Annual
Computer Software and Applications Conference (COMPSAC), vol. 1.
IEEE, 2019.

[122] S. D. Stoller, M. Carbin, S. Adve, K. Agrawal, G. Blelloch, D. Stanzione,
K. Yelick, and M. Zaharia, “Future directions for parallel and distributed
computing: Spx 2019 workshop report,” NSF Workshop Reports, Oct 2019.
[Online]. Available: http://par.nsf.gov/biblio/10127824

[123] J. K. Ord and A. Getis, “Local spatial autocorrelation statistics:
distributional issues and an application,” Geographical analysis, vol. 27,
no. 4, pp. 286–306, 1995.

[124] https://developer.nvidia.com/blog/thinking-parallel-part-iii-tree-construc
tion-gpu.

[125] https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html.

[126] M. P. Armstrong and R. Marciano, “Massively parallel processing of spatial
statistics,” International Journal of Geographical Information Systems,
vol. 9, no. 2, pp. 169–189, 1995.

[127] M. P. Armstrong, C. E. Pavlik, and R. Marciano, “Parallel processing of
spatial statistics,” Computers & Geosciences, vol. 20, no. 2, pp. 91–104,
1994.

[128] http://resources.esri.com/help/9.3/ArcGISEngine/java/Gp ToolRef/
Spatial Statistics tools/
how hot spot analysis colon getis ord gi star spatial statistics works.htm.

[129] S.-l. Zhang and K. Zhang, “Comparison between general moran’s index and
getis-ord general g of spatial autocorrelation,” Acta Scientiarum
Naturalium Universitatis Sunyatseni, vol. 4, p. 022, 2007.

[130] W. Gropp, T. Hoefler, R. Thakur, and E. Lusk, Using advanced MPI: Modern
features of the message-passing interface. MIT Press, 2014.

[131] CGAL. Spatial Sorting in CGAL. [Online]. Available:
https://doc.cgal.org/latest/Spatial sorting/index.html

[132] P. Mohan, R. E. Wilson, S. Shekhar, B. George, N. Levine, and M. Celik,
“Should sdbms support a join index? a case study from crimestat,” in
Proceedings of the 16th ACM SIGSPATIAL international conference on
Advances in geographic information systems, 2008, pp. 1–10.

http://par.nsf.gov/biblio/10127824
https://developer.nvidia.com/blog/thinking-parallel-part-iii-tree-construc
tion-gpu
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
http://resources.esri.com/help/9.3/ArcGISEngine/java/Gp_ToolRef/Spatial_Statistics_tools/how_hot_spot_analysis_colon_getis_ord_gi_star_spatial_statistics_works.htm
http://resources.esri.com/help/9.3/ArcGISEngine/java/Gp_ToolRef/Spatial_Statistics_tools/how_hot_spot_analysis_colon_getis_ord_gi_star_spatial_statistics_works.htm
http://resources.esri.com/help/9.3/ArcGISEngine/java/Gp_ToolRef/Spatial_Statistics_tools/how_hot_spot_analysis_colon_getis_ord_gi_star_spatial_statistics_works.htm
https://doc.cgal.org/latest/Spatial_sorting/index.html

	Acceleration of Computational Geometry Algorithms for High Performance Computing Based Geo-Spatial Big Data Analysis
	Recommended Citation

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF CODE LISTINGS
	CHAPTER 1: INTRODUCTION AND BACKGROUND
	Motivation
	Broader Impact
	Background (Acceleration Techniques)
	Directive Based Parallelization
	GPU Parallelization
	Memory Movement Optimization
	Cache Based Optimizations
	Communication Avoiding
	Intrinsics and Vectorization

	Background (Computational Geometry)

	CHAPTER 2: ACCELERATION OF PLANE SWEEP ALGORITHM FOR GEOMETRIC INTERSECTION
	Introduction
	Background and Related Work
	Segment Intersection Problem
	Naive Brute Force Approach
	Plane Sweep Algorithm
	Existing work on parallelizing segment intersection algorithms
	OpenMP and OpenACC

	Parallel Plane Sweep Algorithm
	Algorithm Correctness

	Algorithmic Analysis
	Directive-based Implementation Details
	Experimental Results
	Experimental Setup
	Performance of Brute Force Parallel Algorithm
	Using Generated Dataset:
	Performance of Parallel Plane Sweep Algorithm
	Speedup and Efficiency comparisons

	Conclusion and Future Work

	CHAPTER 3: ACCELERATION OF PLANE SWEEP BASED VORONOI COMPUTATION
	Introduction
	Related Work
	Plane Sweep
	Fortune's Algorithm
	Unpacking Fortune's Algorithm

	Results
	Future Direction
	Backtracking
	Transformation
	Gridding
	Sorting
	Heuristics
	Machine Learning

	Conclusion

	CHAPTER 4: ACCELERATION OF SEGMENT TREE GEOMETRIC DATA STRUCTURE
	Introduction
	Contributions of this chapter:
	Background and Related Work
	Design and Implementation
	Building Segment Trees
	Segment Tree Construction on CPU
	Time and Space Complexity
	Cache Efficient Segment Tree

	Communication Avoiding Distributed Segment Tree
	Building on GPU
	Implementing Parallel Stabbing Query

	Geometric Operations using Segment Tree
	SweepLine with Segment Trees
	MBR Intersections with Segment Trees
	Point-in-MBR Test

	Experimental Results
	Conclusion and Future Work

	CHAPTER 5: ACCELERATION OF SPATIAL AUTOCORRELATION COMPUTATION
	Introduction
	Motivation and Background
	Spatial autocorrelation
	Common Dataset Structures
	Parallelization
	Related Work

	Parallel formulation of spatial autocorrelation
	Algorithm
	Complexity
	Weight Matrix
	Spatial Sorting

	Acceleration Techniques
	Cache Access Optimization
	Weight Matrix Storage Optimization
	OpenMP Parallelization
	OpenACC Parallelization
	CUDA Parallelization
	MPI Graph Topology (Distributed Memory)
	Communication Efficiency on Distributed Memory
	Vectorization with compiler intrinsics
	OpenMP & Vectorization
	MPI & Multiple GPU (CUDA)
	Rapid Recalculation

	Experimental Results
	Real World COVID Data
	Simulated/Generated Datasets
	Hardware Description
	Performance Engineering Results

	Conclusion and Future Direction

	CHAPTER 6: CONCLUSION AND FUTURE DIRECTION
	BIBLIOGRAPHY

