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ABSTRACT
TEMPORAL SENTIMENT MAPPING SYSTEM FOR TIME-SYNCHRONIZED

DATA

Jiachen Ma, M.S.

Marquette University, 2022

Temporal sentiment labels are used in various multimedia studies. They are
useful for numerous classification and detection tasks such as video tagging,
segmentation, and labeling. However, generating a large-scale sentiment dataset
through manual labeling is usually expensive and challenging. Some recent studies
explored the possibility of using online Time-Sync Comments (TSCs) as the primary
source of their sentiment maps. Although the approach has positive results, existing
TSCs datasets are limited in scale and content categories. Guidelines for generating
such data within a constrained budget are yet to be developed and discussed.

This dissertation tries to address the above issues by leveraging existing live
comments from a popular video distributed platform, YouTube, as a primary
time-synchronized data source and exploring efficient strategies for generating TSCs
with a constrained budget. An automatic data mining system was first developed and
deployed across multiple platforms. Then, long-period experiments were conducted to
test the efficiency of the framework. Additionally, two large-scale TSCs datasets were
created through the proposed data framework and analyzed for their characteristics.
Finally, the outcomes were tested against the original temporal Automatic Speech
Recognition (ASR) sentiment labeling to validate their accuracy. The experiment
shows the potential of automatically generating temporal sentiment datasets through
the proposed mapping system. This project also provides valuable tools for future
multimedia research.
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I Introduction

The sentiment is a combination of emotions and thoughts. It derives from the internal

experience of our feelings and emotions. Roberts, 1988 argued emotions are an

intentional state which depends on the subject believing some state of affairs of

obtaining. Complex emotions or feelings can be polarized into positive and negative

sentiments, which contribute to our affection or alienation towards a topic or entity.

Understanding such sentiment could be a powerful way of explaining what actions we

will take.

Therefore, sentiment analysis or opinion mining has become one of the most powerful

tools in today’s research. Studies from multiple disciplines have adopted sentiment

analysis from the past few decades, and more and more researchers have realized the

importance of sentiment. Particular research field such as psychology (Zucco et al.,

2017), linguistics (Brooke et al., 2009), public relations (Proksch et al., 2019),

communication or marketing (Rambocas and Pacheco, 2018) rely heavily on sentiment

analysis to get better understanding of human reactions on certain entity. Beyond that,

Sentiment analysis also benefits the business world. Marketing decisions such as a

promotion or advertising need to consider consumer’s emotional responses to

maximize the effect of branding and increase sales. Saura et al., 2019 concludes

several commercial success factors from sentiment analysis.

Sentiment data can be collected, extracted, and analyzed from multiple sources.

Formats such as text, image, audio, or video can be found online carrying rich

sentiment features. Such information structures are called ”multimodal” data in

today’s literature. Gathering such information is easy as most of today’s

communication happened on the internet. Several tools have been developed and

distributed freely for this purpose. Such programs are also called ”Web crawlers” or

”spider bots,” which systematically gather data of interest through the web with no

human interaction. With little effort, researchers can access a vast collection of

multimodal sentiment data in a short time.
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Traditionally, sentiment analyses are performed based on text. In the early 2000s, with

the rise of social media platforms such as Twitter, My Space, or Facebook, informative

textual material became available to the public for the first time. Researchers quickly

find out those online textual contains user sentiment. It could help companies agile

adjust their product and marketing strategies based not only on the emotional feedback

of users. Since then, textual analysis via Natural Language Processing (NLP) has

become popular in the sentiment analysis field. Social media platforms continue to

grow in the past decades and have become one of the most successful ways for people

to communicate with each other. A recent data survey (Ortiz-Ospina, 2019) suggests

that approximately one-third of people in the world are using social media platforms,

which contribute to almost two-thirds of all internet users. Figure I-1 shows leading

social media platforms such as Facebook and YouTube had more than 2 billion users

by the end of 2018 and continue multiplying.

Figure I-1: Monthly users of main social media platforms, 2002-2018.
Source by: https://ourworldindata.org/rise-of-social-media#licence

Although most sentiment data sources are still in textual format, many popular social

platforms, such as Youtube, Twitch, or Tiktok, could generate more data in the form of

videos daily. Studying the underlying sentiment with this new data type could be

exciting but challenging. The main difference between a video and a textual paragraph

is how information is stored within data. Textual material tends to have precise

https://ourworldindata.org/rise-of-social-media#licence
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semantic meanings since communication relies on the accuracy of the language.

On the other hand, video-type material is more complicated as audiences are fed with

two types of data sources, auditory and visual, simultaneously. Psychology theory

suggests that the information acquisition process could be more efficient from both

verbal and imagery channels than a single one (Sadoski and Paivio, 1994, Paivio,

2013). A natural extension of textual analysis would be converting video and audio

channels into sequences of descriptive words first and then performing the NLP to

extract sentiment. But the audio channel does not only contains vocal tracks.

Environmental noise or musical tone could also exist.

Furthermore, video channels usually include consecutive images that hardly be

translated directly into precise descriptive language with a state-of-the-art (SOTA)

computer vision model. A straightforward approach is highly challenging and requires

substantial computation resources to perform. Some exciting question occurs. Can we

work around this and learn some sentiment indirectly with little computational expense

for video-type material? Can we map similar media to sentiment sequences just by

textual information?

Luckily, a new type of social media provides a potential solution to the problems. With

live streams becoming popular, live comments are also available on some social media

platforms such as YouTube (Figure I-2) or Twitch (Figure I-3). Audiences can

exchange their thought and comments on screen as the live stream goes. In East Asia,

a similar social media platform provides live remarks in a slightly different form.

Instead of posting live comments in a chat room, audiences post their messages on top

of the video. This type of live comment is called ”Danmaku” in Japanese, which refers

to a pattern of dozens to hundreds of bullet comments flowing simultaneously over

time. Figure I-4 shows an example of ”Danmaku” floating on top of a video.
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Figure I-2: A live streaming screenshot was captured from the YouTube website. Live
comments are posted in the right section during streaming.

Source by: https://www.youtube.com/watch?v=IioH3S5jDSY

Figure I-3: A live streaming screenshot was captured from the Twitch website. Live
comments are posted in the right section during streaming.

Source by: https://www.twitch.tv/agraelus

Figure I-4: A danmaku video screenshot was captured from the Bilibili website. Live
comments (in Chinese) flow on top of the video during streaming.

Source by: https://www.bilibili.com/video/BV1MJ411L7vX

https://www.youtube.com/watch?v=IioH3S5jDSY
https://www.twitch.tv/agraelus
https://www.bilibili.com/video/BV1MJ411L7vX
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Several studies suggest that textual material attached to a video could be considered

human scoring for the content from a sentiment perspective. I tried to crawl 12000 live

comments from a single YouTube stream as a preliminary study of my research and

verify this type of data source is very sensitive to the video’s content. The positive

result encouraged me to build a generative framework for online temporal sentiment

data. I hypothesized that I could use the live comments attached to live streams to

create large-scale time-sync comments (TSCs) datasets efficiently. My later

experiments confirmed the idea, and I was able to generate two TSCs datasets through

my data pipeline. The study can then be described in three folds:

1. Since live comments are sensitive to the opinion holder’s sentiment, I can

leverage them to label affective reactions from human viewers in time series.

2. I can build a data mining framework to automatically track online streams and

extract their live comments on a large scale for sentiment conversion.

3. The relationship between sentiment annotations and actual sentiment can be

studied and leveraged to build a generative sentiment model that predicts the

audience’s sentiment reaction.

In summary, this work tries to leverage the implicit textural information as sentiment

labels of live comments to explore the best strategy for generating temporal sentiment

annotation datasets for multimedia research. By expanding the data collection

experiment, I was able to create large-scale TSCs datasets on a low budget and test the

performance of my data collection framework. The work also provides a set of

efficient toolkits for online data crawling, cleaning, and analysis. In addition, a mobile

data mining solution was proposed and implemented on top of my framework.

Researchers can now use customer degree devices to create more sentiment datasets. I

also verified the accuracy of the sentiment mapping between live comments and the

videos through a series of supervised learning experiments. Despite some minor

limitations and drawbacks, it can still significantly impact and create value in the
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sentiment analysis discipline. In other words, my work systematically studies and

explores the automated approach to generating sentiment annotations for temporal

data.

I.A Thesis Statement

This study aims to build a temporal sentiment mapping system for online

time-synchronized comments (TSCs) from existing live streams. Online stream’s live

comments can carry important information on the internal states of viewers. Such

sentiment feelings could be evaluated and labeled by performing a text-based

sentiment analysis on the TSCs gathered from viewers. By analyzing the original

video, temporal features such as sentiment values, comments density, and the number

of authors can be merged to form unique TSCs datasets for future studies.

The study also aims to provide useful data mining strategies for automatically creating

large-scale TSCs datasets with minimal human intervention. A data mining tool will

be first prototyped to test the mining strategies on a small sample. Then, the data

pipeline will generate large-scale TSCs datasets to evaluate the framework’s

efficiency. The project will also create a graphic user interface for daily users to better

interact with the data pipeline. Finally, the mining program will be held on

consumer-degree mobile devices to explore the possibility of generating TSCs datasets

with a constrained budget.

Lastly, the study examines the quality of the TSCs datasets by comparing the

sentiment difference between original videos to the TSCs labeling. Speech recognition

will be first applied to extract semantic information from live streams. Then sentiment

labels will be generated using a pre-trained sentiment analyzer. After merging the

actual sentiment with the TSCs’, the combined sentiment labels will be analyzed

through sequence-to-sequence neural networks to evaluate the performance of

different temporal features. The study will provide important insight into the sentiment

accuracy of the TSCs datasets.
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I.B Difficulties and Challenges

Sentiment mapping for videos is usually challenging and expensive due to the

limitation of the traditional hand-labeling strategy. Leveraging online temporal

synchronized data to generate automatic sentiment tags can significantly improve the

labeling accuracy and data scale. Recent studies showed that converting online

comments into video taggings can benefit research.

However, most existing TSCs datasets were collected from limited platforms such as

the Bilibili and the AcFun, which are mainly used by East Asian audiences. Data bias

may be introduced to the datasets since only including people from specific regions

could not represent the entire world population. Gathering comments directly from an

English native-speaking site is more suitable for creating a TSCs dataset.

Creating a large-scale dataset through a data mining framework can be challenging and

expensive. The data collection and cleaning process can be time-consuming. Many

data mining frameworks are designed to run on distributed networks, which could

introduce additional costs in hardware maintenance. Developing a low-budget-friendly

data mining tool is critical for the research community. Some frameworks also lack an

interactive interface for casual users. Learning curves or barriers may exist for

researchers.

This study explored and built an autonomous data mining pipeline using one of the

most popular online streaming resources, YouTube, to address the above problems.

The data collection tool has a graphic user interface to lower the barrier of usage and

can run on low-budget devices. The project also generated two large-scale datasets for

sentiment analysis and video tagging. Some experiments prove the data accuracy and

mining efficiency of the framework. I hope my project can help researchers by

lowering the cost and reducing the difficulties of preparing such datasets in this field.

I.C Contribution to Knowledge

First, the study proposes an efficient pipeline of annotating affective reactions from

live comments and creates a comprehensive dataset for multimodal studies of video
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streams. Similar annotations from previous datasets either use video comments from

discussion sections or surveys. The proposed method is more accurate than others as it

provides fine-grained human annotations in time series. It is also capable of offering

multiple resolutions of annotations with different hyper-parameters.

Second, this study tries to use an semi-supervised algorithm to detect video events that

trigger salient changes in viewers’ sentiment by using their comments. The procedure

will help researchers identify which part of the video should be analyzed for the

significant influence of its content on viewers.

Third, this study explores the relationship between multimodal features and viewers’

affective responses. Researchers can better understand what type of response should

be expected given a set of features of videos. The study will potentially help

researchers create a universal affect interpreter for arbitrary videos and push the

boundary of cognition, education, and healthcare.

The main contributions of my study are summarized below:

1. I built a scalable autonomous data collection framework for online TSCs

resources, which significantly increases the efficiency of data collection and

reduces manual intervention. Multiple strategies are explored and tested in this

study.

2. I built a cross-platform dataset generation tool for online TSCs with a graphical

user interface (GUI) that will be available to the research community under an

open-access license. Researchers constrained by budgets will benefit from this.

3. I conducted a comprehensive experiment to demonstrate the efficiency of the

proposed data pipeline and create two large-scale TSCs datasets covering more

diverse topics and video playback length compared to any publically available

resource.

4. I analyzed the sentiment accuracy of my datasets against the actual video
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sentiment. Results show how video tagging could benefit from my automatic

data labeling framework. The experiments provide insight into the efficiency of

the proposed temporal sentiment mapping system.

I.D Study Outcomes

This study is mainly focusing on three goals:

1. Creating an effective temporal sentiment mapping framework for online

temporal data.

2. Generating large-scale time-sync comments datasets for future sentiment studies

and video tagging.

3. Providing useful insights into the performance of the data collection system.

Therefore, the first outcome will be a data mining framework that could produce an

online time-sync comments (TSCs) dataset effectively. The framework should work

under a constrained budget and reduce the difficulties in detecting, producing, and

processing such information for researchers.

The second outcome will be large-scale TSCs datasets generated by the framework.

The datasets should cover a variety of video contents and topics to reduce bias.

Researchers can use the datasets in different multimedia tasks such as video

classification, segmentation, and topic modeling. The datasets should also exceed the

existing ones in both quantity and quality.

The third outcome will be a deep analysis of the collected datasets. The accuracy of

the sentiment labeling techniques should be examined and checked through state-of-art

methods. Different mapping strategies need to be compared and tested. This outcome

could provide valuable insights into the performance of the proposed online temporal

sentiment mapping system.
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II Literature Review

In this section, I will review the most recent literature regarding Time-Sync Comments

(TSCs) and their usage in various research. I also summarize applications in sentiment

analysis by leveraging TSCs as their primary input and discuss vital features of study

media in the form of video.

II.A Time-Sync Comments

Time-Sync Comments, also known as TSCs, are live comments posted by multiple

viewers that synchronize with a video’s playback time. It was first used in automatic

video tagging studies in 2014 (B. Wu et al., 2014). Since then, it has drawn lots of

attention in multiple fields, such as video recommendation (Ping, 2018; Z. Wu et al.,

2019; Yang, Gao, et al., 2019), highlight shot extraction Xian et al., 2015, clip

segmentation (Z. Wang et al., 2020; Fraser et al., 2020), video semantic representation

(Famin et al., 2019), user experience improvement (Liao et al., 2018), etc. It has

become one of social media research’s most critical data sources.

The basic form of the popular live commenting interface consists of two parts. Fig

Figure II-5 represents the basic idea of posting a live comment on the video.

Numerous viewers can comment on the right section as the video plays on the left.

Each viewer can also review the previous comments and chat with others. Several

variants of live commenting interfaces exist based on different platforms. For instance,

Bilibili adopts a form of comments called ’danmaku,’ originating from the Japanese

popular video platform Niconico, allowing users to post their comments like a bullet

moving across the screen as videos play. Each comment is synchronized to the video

timeline and creates a ’mini forum’ around certain video parts. Audiences may

continuously discuss through the video playtime and can join the discussion. Some

platforms even allow reviewers to post their thoughts after reviewing previous posts.
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Figure II-5: The above figure shows a simple mock-up of the live commenting interface.
Audiences on the right side constantly comment on the video streams playing on the left-
hand side.

Compared with traditional manually labeled video tagging, there are several

advantages of TSCs tagging:

1. High availability: Online data is easily to access.

2. Robustness: It contains less bias compared with manual labeled ones.

3. Good accuracy: It could generate good representation of videos.

In the first place, live commenting is popular around the globe, and they are easy to

access from the internet. Live stream platforms, such as YouTube Live, Tiktok,

Twitch, Facebook Live, Niconico, and Bilibili, increased during the past decade.

According to one online research (Restream Team, 2021), Twitch averaged two billion

watched hours per month, remaining top in the gaming sector in 2021. Meta

(Facebook) also claims that compared with pre-made videos, people are willing to

spend three times watching Facebook Live videos (Meta, 2016). Hundreds of

thousands of live streams were posted online each year, and millions of people

commented on them as they watched. Using public-available live comments as a

source of video tags can increase the accessibility of data in research.

In the second place, online comments are posted by multiple audiences from different

groups (regions, ages, genders, etc.), which are relatively more objective than

traditional manual-labeled video tags. Usually, a single frame of TSCs is created by
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multiple viewers, potentially averaging out any personal preferences of viewers.

Compared with manual-labeled video tags created by a selected group of volunteers in

traditional ways, online TSCs are more robust to errors and bias, making them ideal

for research in the multimedia field.

Finally, they are highly correlated and synchronized to the video contents. Each

comment is attached with a specific playback timestamp. Once the comments are

posted online, audiences are allowed to review, edit and remove their previous

comments. In essence, most discussions are related to some objects or topics within

scenes. They can be summarized using natural language processing (NLP) algorithms

to create a short description of the topic. This idea leads to leveraging online TSCs as

crowd-sourcing video labels to generate high-resolution video tagging datasets on a

large scale without manually labeling the videos.

II.B Time-Sync Comments Datasets

Very few studies in the literature use live comments for annotating video events. The

research on using such information started in 2016, and some studies named it

Time-Sync Video Comments (TSCs) instead. A typical TSCs application could be

recommending, detecting, segmenting, and finding highlights of videos. However,

only a few datasets are available in the literature. Table 1 shows a list of currently

available datasets.

Name Year Video Length Comments Type Language Source

Livebot 2019 2361 114 h 895,929 General Chinese Bilibili
TSC D1 2019 287 3015 m 227,780 General Chinese Bili, AF
TSC D2 2019 180 4038 m 569,996 Anime Chinese Bili, AF
BJUTSD_V2 2020 3682 851 m 120,000 Adult Chinese Internet
VideoIC 2020 4951 557 h 5,330,393 General Chinese Bilibili

Table 1: A list of large-scale TSCs datasets. AF = AcFun, Bili = BiliBili.

Ma et al., 2019 firstly published a large-scale live comment dataset contains 2,361

videos and 895,929 comments. The dataset covers videos in 19 categories on the
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Bilibili website. The authors explored the automatic live commenting pipeline for

videos with recurrent neural networks (RNN) and transformer. The result shows

Fusion RNN could produce the most fluent results, and transformer could produce the

most relevant and correct results in comments generation.

Yang, Wang, et al., 2019 crawled two datasets from the Bilibili and AcFun websites for

video tagging purposes. The TSC D1 dataset contains 287 videos with 227,780

comments in music, sports, and movie categories. The TSC D2 dataset has 180

Japanese animation videos with 569,996 comments. The researchers tested different

topic modeling methods to identify the best embedding vector algorithms for short

comments and concluded that word2vec performs best. For clustering tags by their

temporal semantic similarities, the proposed SW-IDF clustering algorithm performs

better than TF-IDF, TX, BTM, and GSDPMM methods.

L. Wang et al., 2020 collected an adult classification dataset consisting of 1154 regular

live videos, 2528 adult streamer live videos, and 120,000 bullet screen comments.

They use a pre-trained CNN for visual features, a Bi-GRU network for temporal

context features, and a fine-tuned BERT model for live comments in the dataset. Their

experiment shows that using live comments solely for pornography detection is

competitive with using spatial and audio feature fusion (64.97% versus 66.6% in

accuracy).

W. Wang et al., 2020 published the VideoIC dataset, which contains a higher density of

live comments than the Livebot dataset. The dataset contains over 5 million comments

with 4951 videos from Bilibili. The study proposed a multimodal multitask learning

framework for comments generation by predicting semantic and temporal relationships

across different modalities. Their generated comment’s quality is significantly higher

than the result from Fusional RNN (LSTMs) and Unified Transformer (multiblock

transformers).

Duan et al., 2020 explores modeling the interaction between comments and video
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features using a multimodal matching transformer. Their work is based on a trimodal

attention mechanism algorithm and reported to be more accurate than the bimodal

baselines (S2S, Fusional RNN, and Unified Transformer).

As most of the datasets available in the literature are crawled from non-English

websites, it is necessary to build a new dataset in English. So, I proposed creating a

TSCs dataset using English as its primary language setting and exploring the

possibility of recognizing video events with the help of live comments.

II.C Sentiment Analysis

Sentiment analysis is defined as a computational study of understanding people’s

opinions, appraisals, and emotions toward entities, events, and their attributes (Liu,

2010). It is a quantitative measurement of one’s attitude towards a particular entity or

topic. Many studies and applications use sentiment analysis in the decision-making

process. Sentiment analysis is essential for some fields such as public policy-making

or marketing since people’s final decisions could vary on the result.

Liu, 2010 summarized the problem of sentiment analysis as a text classification

problem where textual opinionated documents or sentences are classified into different

categories. Due to the nature of the complexity of human sentiment, a number of

categorizations exist in literature (Plutchik, 1980, Ekman, 1992, Parrott, 2001).

Some researchers prefer to use a polarity classification of three types: positive, neutral,

and negative for their study (Bakshi et al., 2016). Others adopt more complex models.

Ekman, 1992 suggested that each type of sentiment could be categorized into six basic

emotions: joy, sadness, anger, fear, disgust, and surprise, which subset from eight

feelings proposed by Plutchik, 1980 (Figure II-6). Francisco and Gervás, 2006

summarized three categories of positive sentiments as pleasantness, activation, and

dominance. Pearl and Steyvers, 2010 used a custom set of emotions of politeness,

rudeness, embarrassment, formality, persuasion, deception, confidence, and disbelief

during their research. S. Mohammad and Turney, 2010 and S. M. Mohammad and

Turney, 2013 also developed a similar classification consists of anger, anticipation,
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Figure II-6: Plutchik’s emotion wheel.
Source by:

https://en.wikipedia.org/wiki/Emotion_classification#/media/File:Plutchik-wheel.svg

disgust, fear, joy, sadness, surprise, or trust inspired by several empirical research in

psychological, physiological domain.

II.D Textual-based Sentiment Mapping

Two principal components exist for textual material: facts and opinions. Facts are

objective expressions relate to specific entities and events, while opinions are

subjective expressions of an audience’s emotional reactions or beliefs towards the

content (Liu, 2010, Feldman, 2013). As we are primarily interested in analyzing

audiences’ internal sentiments, I want to exclude factual information. Then, I need to

study underlying emotions within the refined text to extract the viewer’s sentiment.

Finally, I also want to understand which entity or event triggers those sentiments.

Therefore, the three critical tasks of sentiments analysis can be summarized,

mentioned by Liu, 2012, as following:

https://en.wikipedia.org/wiki/Emotion_classification#/media/File:Plutchik-wheel.svg
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1. Subjectivity Classification: Textual material may or may not express true

sentiments from the author(s). The objective text should be filtered first to get

accurate opinions.

2. Sentiment Classification: After extracting opinionated text, we can use NLP

algorithms to calculate the opinion’s polarity. In most cases, a binary polarity

classification such as positive or negative is sufficient for the research.

Otherwise, a multi-class category might be used to extract more information

from text.

3. Entity/Topic Extraction: Once sentiments are extracted, it is crucial to identify

the topic on which the opinion is expressed. Sometimes, it is also necessary to

know which entity holds those sentiments as well.

According to Liu, 2012 and Kruse et al., 1999, textual data can be break down into

three levels: Document level; Sentence level; and Word level.

1. Document level: The whole document is treated as a basic unit for sentiment

analysis.

2. Sentence level: Only subjective sentences are used for the sentiment analysis.

Objective sentences are ignored for the document.

3. Word Level: Unusually adjectives are considered as a representation of

sentiments. But verbs, adverbs, and nouns could also express subjectivity.

Each level of analysis can be viewed as a different resolution measurement of genuine

sentiment. In most cases, a higher level of sentiment is constructed by averaging

sentiment from lower levels. For instance, a sentiment of sentences is built on top of

individual words’ sentiment.

II.E Sentiment Labeling via Live Comments

Live video comments are audiences’ textual-based feedback towards certain entities or

topics in video streams. They are composed of both subjective opinions and objective

facts. The affective information remain in the subjective component can be exploited

as annotations to the original video stream. A standard procedure is performing a
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coarse-grained sentiment recognition on the text sequence. The Sentiment Analysis

(SA) pipeline provides us a powerful way to achieve this. Figure II-7 shows a

polarized sentiment value is assigned to a live comment after passing its text sequence

through a SA pipeline. It can be viewed as mapping the live comment from a word

vector space into a polarized sentiment space.

Figure II-7: The sentiment conversion process.

Most SA frameworks run a pre-trained lexicon against input text sequences. The

method ignores the semantic meaning of live comments and only considers sentiment

information within subjective parts. This procedure results in assigning a single

numerical value for the input text. Considering each comment is associated with a

unique timestamp, the output of such sentiment score can form a temporal sequence.

Figure II-8 shows after acquiring a series of sentiments from comments, and a time

series annotation is constructed according to their timestamp.

Figure II-8: The workflow of creating a sentiment annotation time series
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Please note the occurrence for live comments is not uniformly distributed across time.

Converting the sentiment sequence to time series requires choosing a proper window

size w for averaging sentiment scores within the window length. Let

ti ∈ {t1, t2, ..., tn} represents timestamp where live comments occurs, and f(t)

represents empirical distribution of the occurrence of comments given time t. The

average of sentiment annotation can be calculated as (Equation 1):

A(tj, w) =

ti<tj+
w
2∑

ti>tj−w
2

f(ti)sa(c(ti))

w

(1)

where c(ti) represents free-form text of a comment, sa() represents the SA procedure,

c(ti) represents comments at time ti, and w represents a fixed-size window.

II.F Event Detection through Sentiment

The overall procedure of video event detection can be viewed as a semi-supervised

classification problem (Figure II-9). In reality, we do not have accurate labeling of

different ”events” in a video stream. However, audiences labeled their sentiment with

live comments softly during watching. So we can create a set of ”pseudo labels” of

sentiment events and perform a supervised study between the multimodal features and

the video events.

Figure II-9: An illustration of the semi-supervised video event classification procedure.
A supervised learning classifier uses the ”pseudo labels” generated by the previous un-
supervised learning step as targets to learn from multimodal features.
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The first step of producing ”pseudo labels” can be carried out with a unsupervised

change point detection (CPD) algorithm on time series data. There are plenty of such

algorithms to choose from. Aminikhanghahi and Cook, 2017 summarized

unsupervised CPD algorithms as shown in Table 2.

Type Methods

Likelihood Ratio Method CUSUM, Change Finder, KLIEP, uLSIF, RuLSIF, SPLL
Subspace Method SI, SST
Probabilistic Method Gaussian Process, Bayesian
Kernel Based Methods Kernel Based Methods
Graph Based Methods Graph Based Methods
Clustering SWAB, MDL, Shapelet, Model Fitting

Table 2: A list of commonly used unsupervised CPD algorithms (Aminikhanghahi and
Cook, 2017).

Van den Burg and Williams, 2020 evaluated the performance of several CPD

algorithms on a human-annotated dataset and claimed the Bayesian Online Change

Point Detection (BOCPD) perform best on both univariate and multivariate time series

when hyperparameter tuning is performed. The unsupervised learning phrase in this

study can adopt a similar algorithm for time-series segmentation and labeling.

The second step tries to build a connection between ”Pseudo labels” and multimodal

features. It uses a supervised learning algorithm to classify different video features.

Since the feature extraction step involves using an autoencoder to combine

multimodalities (Figure II-10), a reasonable choice is to use an Artificial Neural

Network (ANN) to reuse the representation layer. Figure II-11 shows the usage of the

autoencoder’s hidden layer from previous unsupervised learning as an input to an

ANN.

After training, the network could identify if a video event is triggered by looking at the

representation of visual, aural, and textural features. This model can be generalized on

out-of-sample datasets such as new online streams or real live video clips and predict if

any behaviors in such video content could cause salient changes in viewer’s sentiment.
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Figure II-10: A deep autoencoder framework creates a multimodal representation by
learning features from individual modality input (Ngiam et al., 2011).

Figure II-11: The supervised step uses hidden layer representation as input. It tries to
classify these representations into different pseudo labels.

II.G Modality Features in Videos

Video streams consist of three significant types of information: visual, aural, and

textual, delivered to audiences through video and audio channels. Each type of data is

called a modality. Audiences’ perceptually salient events can be triggered by changes
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in either single or multiple forms of modalities (Evangelopoulos et al., 2013). Visual

events include movement, change in objects’ shape and appearance, or property of the

ambient environment. Aural events can be recognized as changes in texture or tempo

of sound. The context of a dialogue or narration can be viewed as a textual event that

carries linguistic meanings. Previous studies showed that using multimodal features

can create a better representation of a video event compared with using unimodal

features (Poria et al., 2017).

Figure II-12 shows a video stream can carry three modals of information which

contribute to the perceptually salient events of audience. Using the multiple modalities

will provide higher accuracy and more robustness in video event recognition.

Therefore, the proposed representation of video streams will involve using both visual,

aural and textual information.

Figure II-12: Visual, aural, and textual modalities exist in video streams. They can be
used to detect video events.

According to Ngiam et al., 2011, deep multimodal learning can be divided into three

steps - feature learning, supervised training, and testing. There are several ways of

creating multimodal features in the feature learning phase. Ngiam et al., 2011 shows

concatenating different modalities as input performs poorly on producing
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cross-modality representation since the nonlinear correlation exists between

modalities. They proposed a deep autoencoder framework that first learns individual

modality features and then learns shared modality features based on the output of each

hidden layer.

Figure II-13 shows the workflow of combining the live commenting features in deep

multimodal learning. Live comments will convert into sentiment sequences and align

with video modality features. Machine learning algorithms can later be applied to use

sentiment labels to detect video events.

Figure II-13: General workflow of using sentiment labels in deep multimodal learning.

II.H Data Acquisition

The data acquisition involves gathering unstructured external data online and

converting them into a local data structure. Live comments from different websites

require different ways to get. Developing a data acquisition pipeline from the ground

is time-consuming and is not the primary goal of my research and against the

colloquial metaphor of ”don’t reinvent the wheel.” Leveraging existing packages and

Application Programming Interface (API) can eventually reduce the time and effort of

developing such pipelines.

Pytchat (Taizan-hokuto, 2021) is a python package released in 2021 which could

extract comments details from YouTube Chat. Comments attributes such as author

name, elapsed time, time stamp, and message are extracted and stored in JavaScript
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Object Notation (JSON) format (Table 3).

Name Timestamp Elapsed Message Type

John 1616334400069 23:14 I like this music! textMessage
Mary 1616334401217 23:20 Good night everyone textMessage
Jane 1616334404186 30:41 That is really saaaaddd textMessage

Table 3: A simple example of the output attributes from Pytchat.

Attribute ”Name” reveals the authorship of logged comments. Attribute ”Timestamp”

refers to the Unix Timestamp of a message in time, while ”Elapsed” refers to the

relative timestamp of a message in the video. Attribute ”Message” contains all textual

information within a post, and ”type” represents whether a comment is textual or not.

Videos streamed online follow different ingestion protocols. Table 4 summarizes

several common protocols’ name and their streaming prefix. Selecting tools with

correct protocols can make data acquisition easier. YouTube Live Streaming supports

the ingestion protocols for third-party clients listed in Table 5 (“YouTube Live

Streaming Ingestion Protocol Comparison”, 2020). Downloaders with compatible

ingestion protocols are needed. Streamlink (Streamlink, 2021), a command-line utility

that supports multiple streaming protocols (Table 6) could satisfy this purpose.

Name Prefix

Adobe HTTP Dynamic Streaming hds://
Akamai HD Adaptive Streaming akamaihd://
Apple HTTP Live Streaming hls://
MPEG-DASH dash://

Real Time Messaging Protocol rtmp://, rtmpe://, rtmps://,
rtmpt://, rtmpte://

Progressive HTTP, HTTPS, etc httpstream://

Table 4: Streaming ingestion protocols and prefix.
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Ingestion Protocol Encrypted Video Codecs Latency

RTMP No H.264 Normal, low or
ultra-low

RTMPS Yes H.264 Normal, low or
ultra-low

HLS Yes H.264,
H.265 (HEVC) Normal and low

DASH Yes H.264, VP9 Normal and low

Table 5: Streaming ingestion protocols for third-party clients.

Platform Unix-like Windows

Protocol hds:// akamaihd:// hls:// dash:// httpstream://
rtmp:// rtmpe:// rtmps:// rtmpt:// rtmpte://

Quality audio 160p 360p 720p 1080p

Table 6: Available platforms and protocols supported by Streamlink CLI.

I wrote a piece of python script to test the approach quickly. I used the program to

query available comments by giving a video id. The script also searches available

video streams with public comments throughout the day and simultaneously starts the

recording process. I noticed some chats could not playback once the stream finished,

and such comments captured on the fly do not contain elapsed time tagging.

Therefore, pre-selecting a bunch of channels that allow chat replay can accelerate the

data collection.



25

III Data Collection Framework

This study requires a deep analysis of videos associated with annotations of sentiment.

To achieve this goal, I decide to use a series of online videos with Time-Sync Video

Comments (TSCs) as my primary data source. However, to my knowledge, no

public-available datasets are collected from native English-speaking websites. The

closest one released on Kaggle is VTuber 500M “Kaggle”, 2021 which collected

Virtual YouTubers’ live streams through crowd-sourcing per month from Jan 2021.

Therefore, data collection needs to be performed before data analysis. In this section, I

will discuss the strategies used in my study.

This section will first propose and design a framework that could easily collect TSCs

data directly from English native speak websites with minimum human interventions.

The proposed data mining process contains two-phase: live stream detection and video

data collection. Then the section will discuss the difficulties and challenges the data

pipeline met and introduce the framework’s theoretical idea and implementation

details.

III.A Data Collection Challenge

Hundreds of millions of online videos are available, but not all contain Time-Sync

Video Comments (TSCs). And for those videos containing TSCs, there are no easy

ways of collecting them on a large scale. In addition, the number of TSCs and video

length become vital for the study because low TSCs density can result in a lack of

annotations from test-to-sentiment conversion. Due to the limited official support of

live chat comments API, the only way to collect live chats is through a web page. I

will discuss each of the challenges in detail later. I proposed and built an automatic

pipeline for large-scale data crawling to meet these criteria.

III.A.1 Data Source Selection

The first step of creating a large-scale TSCs dataset is identifying the data source,

including the video and associated TSCs. According to previous research (Ma et al.,

2019; Liao et al., 2018; W. Wang et al., 2020), crowd-sourced data labeling by popular
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online video’s live comments proved to be efficient for creating such datasets.

However, previous studies have two major drawbacks in the data source selection.

First, online videos selected by the previous studies have limited content and form.

The TSCs were mainly collected from non-English sites such as Bilibili and AcFun,

which were primarily posted by East Asia audiences. Having a regional audience

group means some postings, such as slang or abbreviation, may differ from other parts

of the world. Moreover, the platforms are heavily influenced by Japanese anime

culture, which suggests the associated TSCs may also lack variety from both cultural

and national perspectives.

Second, the social platforms chosen by previous studies are not the most popular ones

worldwide. According to one recent online research (Thomala, 2021), the monthly

active users (MAU) of Bilibili was around 267 million in China, while YouTube was

counting 845 million monthly active users (MAU) simply from iOS devices and 2.3

billion users in total in the third quarter of 2021 worldwide. Getting TSCs from

YouTube is a better choice since the real MAU on YouTube is 8.6 times more than

Bilibili, which provides more variety TSCs and coverage of different population

groups.

III.A.2 Live Stream Identification

The second step of gathering a TSC dataset from an online platform is to identify

many videos with a good number of TSC attached. Previous research using online

media such as BiliBili and AcFun can directly extract a list of video URLs through

official APIs. However, official Youtube APIs do not provide such accurate search

results. For instance, the returning results for a keyword could only contain a random

portion of all available live streams. This problem forces the crawling into a multifold

progressive rather than a one-shot process, which increases the difficulties of TSC data

mining and cleaning.

Another issue related to the Youtube APIs is they could not provide updated video

information. Newly uploaded live streams may still be processed within the Youtube
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system, and there is no guarantee when these videos will be available to query through

the API. To make things worse, sometimes, the APIs may return videos that are

already removed or deleted. To download TSCs correctly, I have to check the

availability of each video which decreases the overall efficiency of data mining.

III.A.3 Official APIs Quota Limit

Although YouTube Data API are free of charge, Google implements a hard daily quota

cap for a single account. According to their website (“YouTube Data API Overview”,

2020), a single account could only have a limited number of queries per day. By

default, google allocates 10,000 units for each user and applies different quota units for

different types of queries. For example, a search request costs 100 units, while a video

upload request costs 1,600 units.

Table 7 shows the different units for the same method in types of quota defined by

YouTube Data API. The same ’list’ method triggered a huge unit expense in searching

videos and captions, which placed an additional roadblock to obtaining many newly

uploaded YouTube streams through the API. For instance, we are limited from

searching more than 100 times per day from a single account. Although using multiple

accounts could potentially solve this problem, it introduces more problems and

complicity from the implementation point of view. An alternate and simply solution is

needed.

quota method cost
activities list 1
captions list 50
channels list 1
channelSections list 1
playlistItems list 1
search list 100
video list 1

Table 7: This table compares different quota units of the same method between various
categories (“YouTube Data API Overview”, 2020).
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III.B Proposed Framework

The proposed data pipeline can be described by two components: Live Video

Detection and Data Collection. Figure III-14 shows a high-level overview of the data

mine process. The left part figure in blue shade represents the internal workflow of the

video prober, while the right part in yellow tint represents the data collection process.

Individual components run separately; for example, the video prober runs per day

while the data collector occasionally runs instead. Two parts work together and form a

complete data collection framework. A detailed description is given in the following

subsections.

Figure III-14: This graph shows a high-level overview of the proposed data pipeline’s
workflow. The video prober on the left uses a set of keywords to search for related
videos per day. The parser on the right side occasionally checks for all searched video
IDs and collects their meta-information and TSCs.

III.B.1 Live Video Detection

In order to locate videos with TSCs, I need a prober that could tell whether a video

contains valid TSCs; in other words, I need to locate videos having live chats.

Identifying the live streams’ IDs on YouTube is the first phase of my data collection. I

used a public-available data API to query YouTube Live for videos finished streaming.

The main reason for only using completed streams is the timestamp of associated live
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comments is unavailable for live streams. There are some disadvantages of this route.

First, the query result does not include the most recent videos uploaded to YouTube.

Second, each query will return duplicate results for the identical video IDs. Third, the

data API could not provide a complete list of historical video IDs. However, this is the

only budget way I could figure out to locate TSCs videos on YouTube, so I decided to

stick with it in this study.

I scheduled my video prober running daily to get the most recent uploading streams on

YouTube. Each day, the prober queries a list of keywords to YouTube through the API

and stores each video ID locally. After each query, I registered a background process

to clean the results and remove the duplicated IDs. The newly detected video IDs are

then merged with my previous results and synced to my local database. This step will

guarantee us a list of unique streaming IDs published on YouTube associated with

different keywords. The process constantly produces new results per day and refreshes

my database.

III.B.2 Data Collection

The second phase of the proposed data pipeline is data collection. Once I got a list of

video IDs, I started to verify their live chat availability since some videos disabled the

chats’ playback or were removed by the authors. Meanwhile, I created a custom script

to parse the meta-information out for each video, including their likes, dislikes,

languages, ratings, etc. The script runs relatively slow compared with the previous

video prober, so I registered it to run occasionally. The right side in the orange shade

box of Fig Figure III-14 shows the internal workflow of the data collection phase.

There are two ways of getting meta-information: through API or parsing directly from

the webpage. I tried both of them and decided to keep with the API route since

querying HTML is time-consuming and inefficient for large-scale data mining.

However, due to the limited quota per user account with the official APIs, alternative

APIs have to be called, and an extra fee may exist depending on providers.

Once a list of videos with valid TSCs sources is verified, I can download the



30

associated TSCs through a custom downloader program. The downloader can either be

integrated with the main program or run as a standalone application. The downloaded

TSCs can later attach with associated meta-information collected by my web crawler

to provide a complete description of live stream commenting.

III.B.3 Summary of the Framework

Figure III-15 illustrates the internal sequence of the complete data pipeline. The main

thread of the proposed data pipeline first passes a set of keywords to a video prober on

a daily basis. Then the prober returns a list of live stream ids to the main thread by

querying API and stores it into a database. Next, the main thread sends a list of video

IDs to a web crawler to collect their meta information and verify if any TSCs source

available from the steams. Finally, all TSCs are downloaded based on the previous

result and stored locally.

The whole data pipeline should work automatically with minimum human

intervention. Once the framework runs, it will grab the latest TSCs data published

online per day and update the local storage version of the data. In the ideal case, I can

run this framework on multiple machines with multiple API accounts to scale the

volume of the data collected. The efficiency of this framework will depend on the

network, the number of machines, and the number of results from API calls. The

stability of this framework will depend on the internet connection, the server-side

response, and the local platform.
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Figure III-15: A sequence diagram of the proposed data pipeline.
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III.C Framework Development

The framework was first implemented on my laptop and later tested on my secondary

desktop. Because two machines are on different operating systems, it is natural for me

to try to use a scripting language to write the code to run the framework without

compiling it on multiple machines. Therefore, I select the most popular script for the

present: Python, to reach the goal. The system environment configurations are

summarized below.

1. System Type: x64-based PC.

2. Package Management: conda 4.12.0

3. Language: Python 3.8.11

Initially, I wrote separate script pieces to test out individual functions and started

collecting data on a small scale. Then I made several improvements to stabilize the

code and mining process. I soon realized that the data collection could take days, and a

synchronization mechanism needed to be implemented. As the framework gradually

grew, the testing posed on large-scale data collection suggests having a main graphic

interface could reduce testing time and save debugging efforts. Therefore, I built a

graphic user interface (GUI) through Python’s standard TK interface to quickly adjust

and test different settings. Choosing the TK environment is simple: it is installed by

default within the python environment. If I could implement my framework with the

TK library, I could have an interface on almost any platform with Python installed.

Then I designed the graphic interface into three sections: Selections, Options, and

Outputs. Figure III-16 shows an example of the pipeline’s graphic layout. The

advantages of having such a visual layout include:

1. Allowing users to interact with the data pipeline easily.

2. Running on portable devices and different operating systems.

3. Debugging and acknowledging the working state of the framework.
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Figure III-16: A screenshot of the graphic layout of the proposed data pipeline.

III.C.1 Selections Interface

The Selections section includes three user-defined fields: API key, search words, and

output directory. Figure III-17 illustrates an example inputs of these fields. The data

pipeline uses a third-party Youtube v3 API from RapidAPI.com (RapidAPI, 2020) to

communicate with the Youtube database in the background. Thus, users need to

provide a valid Rapid API key to use this pipeline—the drop-down list on the

right-hand side lists all valid API keys saved in local files.

The search field enables users to input the desired keyword for searching manually.

However, it also allows users to import a list of keywords from a local file. The file

selection window can be triggered by the button on the right side.

By default, the Output folder field is set under the same directory of the running

application. But users can change the output location to any desired folder by using the

right-hand-side button as well. The output directory will be the folder that contains all
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searching results and downloaded TSCs.

Figure III-17: This screenshot shows the user interface of the Selections section. A
custom keyword entry ”games” is input into the search field.

III.C.2 Options Interface

The current version of the pipeline-interface contains four running options. These

checkboxes modify the workflow of the software. Figure III-18 shows an example set

of options searching all videos associated with a single keyword ”games” before

downloading related TSCs for each video. Users can run a collection of searching

keywords imported from the Selections entries by checking the ”Scan batch

keywords” options.

Figure III-18: This screenshot shows the user interface of the Options section. The
example shows a running sequence of searching a single keyword, merging previous
results, and downloading all TSCs.

III.C.3 Outputs Interface

The Outputs section provides an easy way to let users monitor the internal running

status and analysis the background process. Essentially, it redirects all background

console outputs to the front, including custom outputs, warnings, or unexpected errors.

Figure III-19 shows an example of searching all related videos on YouTube through
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API for a search term ”games.”

Figure III-19: This screenshot shows the user interface of the Outputs section. The
example shows the internal progress of searching all related videos for a given searching
term ”games” on YouTube.

III.C.4 Mobile Application

As the data pipeline’s interface was coded with default python libraries, it is possible

to run it on mobile devices. Figure III-20 shows a screenshot of using an android tablet

to start up the application. No extra configuration is needed for devices with the

correct python environment installed to run the data mining framework.

I also tried to package the application to be executable through the PyInstaller library

(“PyInstaller 5.1”, 2020). Once converted, all necessary python environment

configurations were included within the application. The data pipeline can run on

Windows machines as a standalone application without python installed. However, to

create a standalone application on other operating systems, the dependencies bundling

step need to perform on the targeting systems. For instance, if I want the executable to

work on Mac OS, the converting need to be done on a Mac machine.

III.D Data Collection Experiment

My tool is designed explicitly for YouTube streaming videos, so I tested it out in 2021.

Each data mining experiment takes roughly one month. Before the experiments,

several small-scale sample runs were carried out to check the stability and efficiency

of the tool. Then I decided to test it with different types of keywords on a large scale.
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Figure III-20: Running the data pipeline on a mobile device.

Using the proposed pipeline, I collected two datasets with two different sets of

keywords: LST-YF20 and LST-YT1000. LST-YF20 contains the top 20 fruits sold in

America from the Packer.com (The Packer.com, 2019). I picked this list of keywords

simply because my initial testing keyword happens to be ”apple.” Then I extended my

searching terms broadly based on Mondovo’s top 1000 monthly average searched

words on Google (Mondovo, 2020).

III.D.1 LST-YF20 Dataset

The live streams of LST-YF20 were first collected from my YouTube video prober

described above. I registered the video prober as a daily cran task from July 10th,

2021, to August 1st, 2021. Two keywords: ”apple” and ”pear,” exclusively ran from

July 3rd, 2021 to August 1st, 2021. I did this because we want to check the stability of

the daily scheduling system first and add other keywords later once it is verified.

Figure III-21 shows the growing number of observations I collected for each fruit

during this period. I got 18,852 live streams at this point and let the prober continue

running on a separate machine afterward.
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Figure III-21: The plot shows the growing number of observations detected from the
video prober on 20 fruits keywords. I collected this data during a 23 days experiment,
starting on July 3rd, 2021.

After I got a decent amount of live streams, I started to verify each of them by

gathering essential metadata such as title, description, author name, length of the video,

number of views, number of likes and dislikes, etc., through a web parser. I verified

17,857 observations through the parser, which roughly takes around 94.7 percent of

total videos. Then I downloaded associated TSCs as much as possible and got 10,509

TSCs which roughly takes approximately 58.8 percent of all videos. I noticed there

might be some issues with the TSCs downloader package I used from pytchat (Hokuto,

2020), so I replaced it with a custom downloader later in the LST-YT1000 dataset.

Initially, I tried to verify if the videos had valid live chat sources before downloading

their TSCs in LST-YF20. Then I figured out comparing with the time spent on getting

and checking valid chat sources, the time complexity of downloading all TSCs became

more significant. So I decided to simplify my workflow and let the TSCs downloader

run first regardless of any valid TSCs source present for each video. It reduces a

considerable amount of time for the data pipeline. I adopted this strategy in creating

the LST-YT1000 dataset.

In November 2021, YouTube officially announced it would stop showing dislike count

on all the videos across its site (Online, 2021). Due to the significant time spent

gathering such information and the fact that they will soon be inaccessible, I stopped
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getting such meta-information completely in collecting the data of LST-YT1000. The

LST-YF20 seems to be the latest TSCs dataset with the exact number of dislike

available around currently.

III.D.2 LST-YT1000 Dataset

There are several significant differences between the LST-YT1000 and the LST-YF20

dataset collecting:

1. The LST-YT1000 was ultimately collected through the graphic user interface we

developed, while the LST-YF20 was partially collected through a terminal.

2. I occasionally ran the GUI pipeline during the collection phase instead of

crawling the live streams daily through a scheduler. I did this to mimic normal

user behavior using the pipeline on mobile devices.

3. I built a new TSC downloader from scratch to avoid unexpected errors as much

as possible compared to the previous experiment, which significantly increased

the success rate of downloading.

4. I captured specific events besides comments during the streams, such as

donations, subscriptions, and channel notifications.

The LST-YT1000 was collected between Nov 7th, 2021 to Dec 3rd, 2021, with eight

runs on the proposed data pipeline. Over 500 Gigabytes of TSCs were downloaded

from 525,312 live streams detected by my live stream prober. I did not keep records

for the specific time of my pipeline running, but we noticed that the average

downloading time is roughly around 50,000 videos per day. The total downloading

time is slightly over a week, by my estimation. I tried to speed up the downloading

part with parallel programming, but it turns out that simply increasing the threads

could result in a soft block from YouTube, which seems unavoidable in my case. I then

decided to use ten parallel threads to download the TSCs. Figure III-22 shows a

random screen of downloading progress during the TSCs collection.
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Figure III-22: This screenshot was captured during the TSCs downloading step. Com-
menting actions other than TSCs are also collected.

III.E Framework Evaluation

By the time of the LST-YT1000 being collected, the scheduled live streams prober on

20 fruits kept running at the same time. Figure III-23 shows the distribution of video

counts for each keyword we collected on the first day. Three keywords: ”respberry,”

”nectarine,” and ”cantaloupe” only return 4, 29, and 70 results. However, the main

cluster on the right-hand side contains the rest of the 17 keywords.

Figure III-23: This histogram shows the distribution of 20 categories of videos we col-
lected on the first day of the experiment. The left cluster contains three keywords: ”re-
spberry”, ”nectarine,” and ”cantaloupe.” The right cluster contains rest of the keywords.
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The difference between keywords could probably result from the different popularity

of the fruits. For example, 564 videos associated with the keyword ”apple” contribute

to the most significant portion of the result, while only 29 videos related to ”nectarine”

can be detected. We noticed a misspelling in the keyword ”respberry,” which yields to

only four videos returned due to the extremely low popularity of the keyword.

However, the rest of the ”normal” keywords could provide approximately 300 to 500

searching results. We also noticed some other issues in this long-run experiment. The

prober was forced to stop randomly due to some irregular responses from the API.

However, these rare corner cases are not a big problem because a second run the next

day could recover the missing videos from the last unexpected stop. We kept logging

those live streams’ ids until this paper was composed. Figure III-24 shows the daily

growing trend of the observations within 171 days.

Figure III-24: This plot shows the growing number of observations of 20 fruit keywords
during 171 days. The experiment started on July 10th, 2021.

There are some gaps between the data due to the device shut down. But the growing

trend is pretty evident from the plot. I do not think this is a big issue since the

increasing trend continues to be linear just by eyeballing the plot. The primary factor

influencing the growing speed is the popularity of the keywords among users. To

verify this, I fit a linear regression model for each keyword. The model can be

represented as below (Equation 2):
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count = β0 + β1 ∗ days+ ϵ (2)

Table 8 represents all the coefficients and their confidence interval of the linear models

derived from 20 keywords. Interestingly, videos related to ”banana” are the

fastest-growing ones compared with other keywords.

Model β̂0 β̂1 Int* 2.5% Int* 97.5%
banana 917.19175 37.53795 36.90982 38.16607
apple 1427.07940 31.69988 31.08575 32.31401
orange 907.93584 26.54499 25.94461 27.14537
cherry 912.68646 24.45266 23.93543 24.9699
lemon 858.91651 19.46489 18.87549 20.0543
mango 883.11446 16.06217 15.52717 16.59717
lime 868.37688 14.96493 14.42307 15.50679
peach 591.49914 12.83702 12.46931 13.20473
strawberry 766.52166 11.96838 11.55233 12.38443
blackberry 700.305731 9.648449 9.295125 10.00177
pineapple 597.989318 8.709983 8.400616 9.019351
grape 492.179332 8.419943 8.201687 8.638198
blueberry 653.027572 7.458862 7.177792 7.739932
watermelon 632.469249 6.754389 6.465912 7.042865
pear 518.425738 5.663722 5.368122 5.959322
avocado 566.051250 5.451181 5.172003 5.730358
plum 627.700164 5.088705 4.841367 5.336044
cantaloupe 67.323801 0.180934 0.154478 0.207390
nectarine 29.280587 0.092247 0.076647 0.107847
respberry 4.000e+00 2.026e-17 -1.028e-18 4.155e-17

Table 8: Linear models fit with 20 different fruit keywords. Int* represents Confidence
Interval of β̂1.

The table shows the growing speed of getting videos associated with different

keywords ranging from 0 to 38. However, if I discard the misspelling keyword

”respberry” and the two unpopular keywords ”cantaloupe” and ”nectarine,” at least

five videos can be collected each day by my video detector. On average, I got

approximately 14 videos daily for each of the keywords by using the top 20 fruits. If I

increase my keywords base to 1000 words and assume 90 percent of them are popular
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among the users, then by estimation, I could collect at least 135,000 live stream videos

in 30 days. The video collector collected 525,312 videos in only eight runs within 20

days in the LST-YT1000 collecting experiment. The average number of videos I got

for each keyword per day is roughly 26, five times higher than the minimum

estimation and 1.86 times higher than the average estimation. The above results prove

the high efficiency of my data mining pipeline.

III.F Data Profiling

After the experiment, I got two types of TSCs datasets: LST-YF20 and LST-YT1000.

These two datasets were collected from two different sets of keywords. In this section,

I will first describe the nature of the two datasets. Later, I will compare the datasets

with the existing ones in the literature. This section will generate insight into the

datasets’ distribution, categories, and characteristics.

III.F.1 LST-YT1000 Dataset

The LST-YT1000 dataset contains TSCs associated with 348,470 live streams

published on YouTube, derived from 525,312 live stream events published between

Sep 6th, 2011 and Dec 4th, 2021. Twenty-three percent of the total live streams are

unavailable due to the removal of original posts or closure of live comments replay.

Overall, our pipeline captured around 492 million live comments from 330,427 live

streams on YouTube and detected 18,043 live streams without comments.

Figure III-25 shows the distribution of total TSCs count for each video in logarithm.

The average number of TSCs per video is approximately 1,490 comments.
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Figure III-25: This histogram shows the distribution of TSCs counts in the logarithm of
the LST-YT1000. Total 492,331,808 comments are included.

Figure III-26 represents the distribution of number of authors for each video with valid

TSCs. This plot includes all LST-YT1000 videos, with at least one author posting

comments during the video replay. Each video contains an average of 290 authors and

1,450 comments (five posts per author). We estimate more than 80 million authors

contribute to our dataset by commenting on the live streams, which include audiences

and channel holders.

Figure III-26: This histogram shows the distribution of authors count in logarithm of
LST-YT1000. Authors from 330,427 videos are included.
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The total length of all videos in LST-YT1000 is unknown due to the lack of meta info

collection. We estimate the entire video duration is around 105,626,097 hours by

adding up the last recorded comment’s timestamp for each video. However, after a

close examination, we figured some moderator’s comments could contain an

inaccurate timestamp. We set up a 100,000 seconds threshold and calculated the entire

video length as 664,252 hours for 329,229 videos left in the dataset. Figure III-29

contains the distribution of the logarithm of each video’s duration in seconds. Most

live stream videos posted on YouTube have playback time lasting 20 minutes to 2

hours. The average length of streams is 7,263 seconds. We also calculated the average

intensity of TSCs for LST-YT1000 videos and plotted the result in Figure III-27.

Figure III-27: This histogram shows the TSCs intensity distribution in the logarithm of
the LST-YT1000 dataset.

III.F.2 LST-YF20 Dataset

The LST-YF20 dataset was collected from 17,857 videos returned by the top 20

popular fruits search terms published on the YouTube platform between Mar 10th,

2018, to Aug 2nd, 2021. Meta information such as duration of videos, number of likes,

number of dislikes, average rating, categories, number of subscribers, and languages

are also collected. Overall, 12,437 clips contained live chat comments among the
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above videos, and 10,448 clips’ TSCs were downloadable through our pipeline.

The LST-YF20 provides 6,755,675 TSCs for 10,448 live videos, aggregating 18,088

hours of online streaming. Figure III-28 shows the actual duration of all TSCs videos,

and Figure III-29 converts the original duration into logarithm. The mode of stream

duration of the LST-YF20 is very close to the LST-YT1000, which appears to be

around 90 minutes. Compared with the LST-YT1000 average video length, the

LST-YF20 videos has a smaller duration of 5,896 seconds.

Figure III-28: This distribution of each video’s approximate duration of LST-YF20.
Total length of videos is 18,088 hours.

The distribution of authors and TSCs counts are shown in Figure III-30 and

Figure III-31. On average, each video contains around 646 TSCs written by 117

authors. So, each author contributes to 5.5 TSCs, which is slightly higher than the

LST-YT1000 dataset. However, the average video duration of the LST-YF20 is around

103 minutes, which is significantly less than the LST-YT1000.

As I created the LST-YF20 dataset, I also collected meta information of each video. I

noticed there are 15 categories defined for the live streams. Figure III-32 shows how
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Figure III-29: This histogram shows the probability distribution of videos’ duration in
the logarithm of the LST-YF20 versus the LST-YT1000 dataset.

Figure III-30: The histogram shows the distribution of each video’s TSCs count in the
logarithm of LST-YF20. Total of 6,755,675 comments are included in the plot.
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Figure III-31: This histogram shows the distribution of each video’s authors count in
the logarithm of LST-YF20. 10,448 videos with valid authors are included in the plot.

videos spread across categories in descending order. This plot provides a good insight

into what type of videos I’ve collected from YouTube. The top two categories are

”Entertainment” and ”Gaming,” which contributed to 29.8 percent and 28.1 percent of

my dataset.

I calculate the average density of TSCs for each category in LST-YF20 and present the

result in Figure III-33. The plot was generated by averaging the number of TSCs

appear in each video divided by the unique authors. The top category is ”Film &

Animation,” which contains 9.8 TSCs per second on average video. However, the

”News & Politics” video category has the least TSCs density of 3.58 per second.
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Figure III-32: This plot shows the number of 15 different categories of streams in the
LST-YF20.

Figure III-33: This plot shows the TSCs intensity of different video categories of the
LST-YF20.
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Then I present the distribution of unique authors for each category in Figure III-34. To

my surprise, among the top three categories, ”News & Politics” videos achieve 162

unique authors while ”Science & Technology” achieves 227 individual authors per

video. Meanwhile, the ”Film & Animation” category only has 41 unique authors in

contrast.

Figure III-34: This plot shows the number of unique authors within 15 different cate-
gories of the LST-YF20.

III.F.3 Comparison with Existing Datasets

Compared with pervious TSCs datasets in this research field, my datasets are

significantly larger from comments and video duration perspectives. It also contains

more variations of videos which include both virtual and real YouTubers. Table 9

compares the most recent available large TSCs dataset in the research field to my

TSCs dataset.
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Name Video Length TSCs Type Source
BL-906 (Liao et al., 2018) 17,870 47.8kh 33m Anime Bili
Livebot (Ma et al., 2019) 2361 114h 896k General Bili
TSC D1 (Yang, Wang, et al., 2019) 287 50.25h 228k General Bili,AF
TSC D2 (Yang, Wang, et al., 2019) 180 67.3h 570k Anime Bili,AF
BJUTSD-V2 (L. Wang et al., 2020) 3682 14.2h 120k Adult IntNet
VideoIC (W. Wang et al., 2020) 4951 9.3h 5.3m General Bili
VTuber 500M (Uechi, 2021) - - 500m Virtual YT
LST-YF20 10,509 18kh 6.8m Fruit YT
LST-YT1000 330,427 66.4kh 105m General YT

Table 9: My dataset compared with other large TSCs datasets in the field.
*m is a abbreviation for million. *k is a abbreviation for thousand. *Bili represents
Bilibili, a popular video platform from China. *AF represents AcFun, a popular video
platform from China. *YT represents YouTube. A popular video platform develped by
Google. *IntNet represents for Internet. *h means hours.

My current approach provides two unique datasets compared with existing ones. The

main advantage of my datasets can be summarized as:

1. My datasets contain general video content directly from an English-speaking

multimedia platform.

2. I provide the top 1000 popular search terms from Google associated with each

video.

3. I collected accurate dislike counts and other meta information within LST-YF20.

These make the datasets unique of their kind.

4. My datasets are significantly larger than other datasets in the research field with

similar content.
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IV Sentiment Modeling

I collected two large-scale TSCs datasets through my custom-designed data pipeline

between 2021 and 2022. Both datasets contain high-quality TSCs information

associated with hundreds of thousands of online streaming on the YouTube platform.

To demonstrate the possibility of using such TSCs data to detect and predict the

viewers’ response. I will describe the sentiment modeling experiments I conducted in

this section.

There are a few obstacles I need to mention before the modeling. First, as all TSCs data

are collected directly online, they are unstructured and unsuitable for the modeling.

Therefore, a deep data cleaning should be done before using the TSCs dataset. Second,

I’m missing important information from the origin video sources. The videos and their

auxiliary data are necessary for the experiment. Third, a proper model needs to be

selected to fit the purpose of the investigation. Researchers use various machine

learning algorithms in this field, and setting an appropriate framework is essential.

These obstacles add a significant amount of time to solve beyond the data collection

and therefore limit the scale of my modeling experiment. However, I tried my best and

was able to verify my hypothesis through the experiment. This section will state the

problem I’m trying to address and introduce the data process and experimenting details

I’ve developed.

IV.A Problem Statement

Online streams consist of two types of information: First, the information distributed

by the uploader; Second, the response from viewers. After viewing the video contents,

the TSCs data logs each frame’s comments posted by multiple audiences. The datasets

I created provide a deep insight into the natural response of humans. By examining the

TSCs data, I could explore the links between the original video information with the

human response and potentially predict the viewer’s behaviors or verse visa. The

problem can then be viewed as a regression fitting problem: I am fitting a natural

response sentiment score of humans with the sentiment values derived from the video.
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This experiment is built on three simple assumptions:

1. The TSCs can represent the human nature sentiment response.

2. The actual sentiments can be extracted from the live streamings.

3. There are correlations between the original video sentiment with the viewer’s

sentiment response.

Because one of the goals of this study is to understand how accurate and efficient the

proposed sentiment labeling framework is, knowing the actual sentiment values of the

original videos is crucial for making comparisons. Previous studies only focused on

using an overall sentiment evaluation, such as reviews or like/dislike, instead of a

fine-grained sentiment annotation. I need to develop a data pipeline to gather

necessary auxiliary data before converting them into fine-grained sentiment values.

The workflow comprises three vital steps: auxiliary data identification, auxiliary data

collection, and sentiment conversion (Figure IV-35).

Figure IV-35: The graph shows the workflow of creating a fine-grained sentiment la-
beling from auxiliary information.

IV.B Auxiliary Data

To verify the accuracy of TSCs’ converted sentiment data, I need to compare them

with the original sentiment values carried by the videos. Since no actual sentiment

values were measured or logged by the online multimedia platforms, some auxiliary

data are needed to estimate the original sentiments. There are three ways of evaluating

the actual sentiment values: using visual channels, using audio channels, and mixing

visual signals with audio tracks.

The accuracy of the three methods depends on the contents of each video. For
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instance, musical recordings such as concerts or albums could carry sentiment stimulus

through the audio signal, while movies or animations could arouse more sentiment to

audiences through graphics changes. In theory, mixing with both visual and audio

signals could provide the highest accuracy for sentiment values since they carry the

complete information of the original videos. However, taking graphic information into

account could be computationally expensive and time-consuming. I decided only to

use the audio data in this research.

The semantic information carried by the audio channel plays an essential role in

audiences’ sentiment response. However, direct analysis of the acoustic track could

only provide basic, non-semantic features such as pitch, rhythm, power, of word

pronunciation. These low-level acoustic features can indeed influence the audiences’

perceptual impressions to some degree occasionally. They sometimes may become

significant and influential in live music shows or concerts. Still, most online videos

consist of dense dialogues and speeches. For example, a piece of light background

music in a weather forecast TV show is helpful to relax the viewer’s mind but could

not distract their attention if tomorrow’s snowstorm is coming.

Therefore analyzing the semantic meaning of the acoustic tracks is essential. Modern

Automatic Speech Recognition (ASR) techniques can recognize speeches directly

from the audio inputs and convert them into a human-readable text form transcript.

Applying Natural Language Processing (NLP) on the text-based transcript afterward

makes it possible to examine the hidden semantic features from audio channels. Fig

Figure IV-36 shows the general process of how to encode an input audio signal into a

semantic representation.

IV.C Speech Recognition

An ASR model usually consists of three major components: an Acoustic Model (AM),

a Pronunciation Model (PM), and a Language Model (LM) (Pundak and Sainath,

2016). The acoustic model works directly with raw audio waveforms at the subword

level, mapping small audio pieces into specific phonetic units. The phonetic units,
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Figure IV-36: The graph shows the overall process of converting semantic features from
audio inputs. The audio signal was first transformed into a text-based transcript by
the ASR engine and then examined by NLP algorithms to obtain a precise semantic
representation.

which are indivisible units of speech sound such as the \k \ of ’cool’ or the \b\ of ’bat’

in English. The pronunciation model then predicts the boundary of a word by

identifying the correct start and stop phonemes based on prior acoustic knowledge of

words. Finally, the language model then provides translation between the acoustic and

linguistic representation based on the construction of the phonetic sequence of the

word. Figure IV-37 shows the complete process of converting an audio input into a

sequence of words.

Figure IV-37: The graph shows there are three internal models for an ASR system. The
AM model recognizes phoneme units. The PM model identifies the correct boundaries
of a word. The LMmodel converts the sequence of phonemes into a semantic represen-
tation.

Training an ASR model can be difficult, and it is still an active research field for many

years. Many factors may vary the performance of a given ASR model, which is speech

recognition accuracy. Briefly speaking, the quality of the audio signal (for example,

background noise level), the variation of pronunciation (for example, different accent
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and dialect), and the capacity of the ASR model (for example, limited vocabulary) are

the three major factors that significantly contribute to the final recognition result

(Svendsen, 2004). To overcome this, ASR models are usually trained on different

datasets (Pundak and Sainath, 2016).

IV.D Offline ASR Experiment

There are many pre-trained offline ASR engines already available to the public. The

most popular open-source ASR engines are provided by Kaldi (“Kaldi”, 2011),

Wav2letter (“facebook research wav2letter”, 2021), NeMo (“NVIDIA/NeMo”, 2021)

and DeepSpeech (“mozilla/DeepSpeech”, 2021).

Vosk is an open-source offline multi-language toolkit, which runs ASR engines on

acoustic data (“VOSK Offline Speech Recognition API”, 2020). It is lightweight and

could support 17 languages and dialects. Alphacephei provides a list of compatible

ASR engines for English recognition (Table 10). It is also possible to train a custom

ASR model through the Kaldi ASR toolkit (Povey et al., 2011).

ASR Engine Size WER Speed Model

vosk-model-en-us-
aspire-0.2 1.4G 13.64 12.89 Fisher, LM model

vosk-model-small-
en-us-0.15 40M 9.85 10.38 Wideband GMM model

vosk-model-en-us-
daanzu-20200905 1.0G 7.08 8.25 Wideband GMM model

vosk-model-en-us-
daanzu-20200905-lgraph 129M 8.2 9.28 Wideband GMM model

vosk-model-en-us-
librispeech-0.2 845M TBD TBD Kaldi, Librispeech

vosk-model-small-
en-us-zamia-0.5 49M 11.55 12.64 Zamia f_250, Kaldi

Table 10: Compatible models officially provided for the Vosk toolkit. Models are tested
on TED-LIUM dataset (Korvas et al., 2014). WER (Word Error Rate).

The quality of recognition depends on audio quality and depends on the ASR engine’s

accuracy and training data set. Table 11 shows a comparison of Vosk models test on

four different datasets. From the table, daanzu’s Kaldi model holds overall good
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performance on all datasets.

ASR Engine Librispeech Tedlium Commands Fisher eval2000

en-us-
aspire 13.49 12.53 55.62 17.39

en-us-daanzu 8.36 8.68 9.30 31.37
en-us-small 15.34 12.09 45.52 N/A
en-us-librispeech 4.37 N/A N/A N/A
deepspeech 6.12 18.03 N/A N/A

Table 11: Vosk models’ (Korvas et al., 2014) WER (Word Error Rate) on four datasets:
Librispeech, Tedlium, Google Commands and Fisher eval2000.

The output of Vosk API is stored in JSON format. Table 12 represents an example of

words recognized by the ASR engine. The starting/ending time and confidence for

each term are also listed.

Word Start End Confidence

it’s 589.47 589.60 0.369431
seems 589.60 589.86 0.327919
see 590.46 590.73 0.321319
well 590.91 591.18 1.000000

Table 12: An example output of a list of words from Vosk API.

However, this approach faced two significant obstacles. First, downloading hundreds

of thousands of videos adds pressure to the local storage and networking. Considering

the size of my data, crawling all audio channels out of the YouTube platform could

disturb the network traffic and might not meet their End User Licence Agreement

(EULA). Second, processing all audio data offline can be time-consuming and

expensive. Performing speech recognition is computationally intensive and requires

powerful machines to speed up. This method could not meet the condition of my

low-budget experiment environment.
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IV.E Online ASR Data Collection

Online ASR methods are the way to solve the difficulty offline ASR methods have.

There are several advantages of using the online ASR method. First, the speech

recognition is done on the server side, so local hardware requirements are relatively

low compared to offline ASR methods. Second, online ASR engines are more accurate

compared with the offline version. Most ASR service providers are eager to rapidly

upgrade and maintain their engines to be competitive in the market, which means

customers always get the latest version of ASR products. Third, some ASR models are

implemented close to the data source. Less data flow moves during the speech

recognition task, saving time and reducing expense.

After searching, I figured YouTube provides an automatic captions function for some

videos. As Google is one of the major players in the speech translating field, I think

maybe using the captions automatically generated by Google is a good option for

representing the result of online ASR methods. Leveraging auto-generated subtitles

can relax local computation resources, reduce complexity, and speed up data

processing. YouTube does provide an option for downloading subtitles through Data

API (“Captions YouTube Data API”, 2021). However, due to the budget limitation, I

need to find an alternative approach.

The first step is to check the data structure of automatic captions. Tampermonkey, a

popular userscript manager for the browser, makes it possible to manually download a

small batch of auto-generated subtitles (“Tampermonkey for Chrome”, 2021).

Tampermonkey is a browser extension allowing users to import third-party scripts to

modify web page behavior through JavaScript. It works as an ad-hoc program

alternating the activities the browser performs on a specific web page.

Tim Smart developed a custom script that allows Tampermonkey users to manually

download the YouTube subtitles in 2009 (“Download YouTube Captions for

Greasemonkey”, 2014, “Tim-smart Userscripts”, 2021). Figure IV-38 shows a green

drop-down menu appears below a YouTube video which allows users to download the
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auto-generated subtitle created by YouTube (Figure IV-39). The information contained

within the auto-generated subtitle is summarized in Table 13, where vocal speech is

converted into text and annotated with a timestamp. Both the starting and ending of a

transcript line are timestamped.

Figure IV-38: A YouTube subtitle download options show up on the web page via Tim
Smart’s script.

Source by: https://www.youtube.com/watch?v=EjjWi5PizXw

Figure IV-39: Auto-generated English subtitle are available for download through Tim
Smart’s script.

Source by: https://www.youtube.com/watch?v=EjjWi5PizXw

After verifying that the automatic captions meet the project requirements, I wrote a

Python script that wraps the YouTubeTranscriptApi library to extract the online

auto-generated captions automatically. The script loops over the existing videos’ id I

collected from the previous crawled TSC dataset and downloads associated transcripts.

https://www.youtube.com/watch?v=EjjWi5PizXw
https://www.youtube.com/watch?v=EjjWi5PizXw
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ID Start End Text

1 00:00:00,000 00:00:03,840 hey there this is Josh welcome back to
2 00:00:01,709 00:00:05,490 let’s game it out this is shopkeep 2 or
3 00:00:03,840 00:00:07,470 as I like to call it shop Ikki P 2
4 00:00:05,490 00:00:09,030 really hoping this game lets us torment

Table 13: Auto-generated subtitle by Tim Smart’s script through Tampermonkey.

I also record the corresponding timestamps, duration, and messages for the

auto-generated captions and store them locally on my hard disk.

I got 104,326 auto-generated captions out of 348,469 videos from the LST-YT1000

dataset and 4,646 auto-generated captions out of 10,509 videos from the LST-YF20

dataset. Videos without ASR captions results or in non-English format are discarded.

Overall, the coverage of captions in LST-YT1000 is 29.9 percent, and caption

coverage for LST-YF20 is 44.2 percent. Although the average coverage is less than 50

percent, the total number of speech-recognized live streams is enough for this project.

Then I analyzed the file size of the converted ASR text. The distribution of all

transcript’s file size of both LST-YT1000 and LST-YF20 are shown in Figure IV-40

and Figure IV-41. The distribution is left-skewed for both datasets, showing that most

transcripts are less than 100 kilobytes.

IV.F Data Processing

Before data analysis, I need to perform a series of data operations to structuralize the

dataset. The raw TSCs data crawled from the web is in free form and contains a lot of

noise. For example, some entries are missing or contain special characters, which

could break the following data analysis. The dataset has to be cleaned before being

modeled. In this section, I will perform a series of data processing techniques,

including reducing the complete dataset for a smaller one, fixing the gaps between

labels, resolving the overlapping issue, cleaning the data for unwanted characters, and

interpolating the data into a proper time sequence.
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Figure IV-40: The histogram of the LST-YT1000 transcript’s file size.

Figure IV-41: The histogram of LST-YF20 transcript’s file size.

IV.F.1 Data Subsetting

As a result, I got two large datasets from my previous data collection experiment. The

LST-YF20 dataset contains 17,857 video ids, and 10,448 videos have live chat

information. The LST-YT1000 dataset consists of 330,427 videos with TSCs



61

downloaded. These videos cover a variety of contents and therefore have a different

number of TSCs and duration. By dividing the number of comments by the length of

each stream, I can calculate the intensity of comments (number of comments per

second) for all videos (Equation 3). Meanwhile, by splitting each TSCs observation

into a sequence of words, I can also calculate the intensity of words for each video

(Equation 4).

TSC_Intensity =
Number_of_Comments

V ideo_Duration
(3)

Word_Intensity =
Number_of_Words

V ideo_Duration
(4)

However, splitting all TSCs is not practical since the LST-YT1000 dataset contains

over one hundred million comments. The estimation of word intensity can be derived

from the approximate number of terms within a TSC (Equation 5).

Est_Word_Intensity =
Number_of_Comments

V ideo_Duration
× Est_Words_per_TSC (5)

Table 14 includes the summary statistics of all ASR transcripts for both LST-YF20 and

LST-YT1000 datasets.

LST-YF20 LST-YT1000
ASR Count 4,646 104,325
ASR Coverage (%) 44.2 29.9
Avg Video Duration (sec) 4,535.46 5,219.06
Avg Words Count (words) 7,816.37 9,606.72
Words Intensity (words/sec) 1.80 2.06

Table 14: This table shows the auto-generated captions’ summary statistics for both
LST-YF20 and LST-YT1000.
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I also calculated each video’s average transcript length, density, and video duration

with the equation mentioned above. The detailed distribution of video length, number

of words, and words’ intensity within each video are plotted in Figure IV-42,

Figure IV-43, Figure IV-44, Figure IV-45, Figure IV-46 and Figure IV-47.

Figure IV-42: The histogram of the LST-YF20 transcript’s video duration.
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Figure IV-43: The histogram of the LST-YT1000 transcript’s video duration.

Figure IV-44: The histogram of the LST-YF20 transcript’s words count.
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Figure IV-45: The histogram of the LST-YT1000 transcript’s words count.

Figure IV-46: The histogram of transcript’s words per second of the LST-YF20.
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Figure IV-47: The histogram of transcript’s words per second of the LST-YT1000.

The words’ density distribution plots show the peak of words’ density for both datasets

is around 2.8 words per second. The result suggests the majority of videos have

acceptable ASR results. I noticed some videos are clustered on the very left of the

histogram, meaning they either fail on the speech recognition phrase or contain little

audial semantic information. Moreover, due to the large data size, I decided to filter

out low-quality data and sample a small portion of it from the LST-YT1000 dataset for

further analysis.

The first sampling step is to combine TSCs data and ASR data. The combination step

was done by aligning the identical video ids in a data frame. It allows me to apply

more restrictive rules to filter my dataset. I applied the following rules to all videos in

the LST-YT1000 dataset:

1. The TSCs intensity should be valid.

2. The TSCs intensity must be greater than one comment per second.
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3. The ASR intensity must be between 2.8 to 4 words per second.

4. The duration of the live streams has to be 1 to 2 hours.

5. The videos must contain over 5000 TSCs but less than 15000 TSCs.

The above filtering steps are applied in Python to restrict the data size and control the

videos’ quality. After each step, portions of data were cropped and distilled. Table 15

shows the number of videos left after each operation. Finally, after filtering, I got 167

videos for future data analytics.

Operation Number of videos
Total 104,325
Remove NAs 99,647
Filter TSCs intensity 3,457
Filter ASR intensity 829
Filter duration 249
Filter TSCs counts 167

Table 15: This table shows the number of videos left after each filtering operation for
all LST-YT1000 live streams.

IV.F.2 Online ASR Data Pre-processing

The raw ASR-generated text is recognized loosely around specific timestamps. Three

attributes define each piece of the transcript: text, start timestamp, and duration. There

are several issues with this type of data structure. Some data cleaning should be done

before using the data in sentiment analysis.

First, limited by the accuracy of the ASR engine, transcript pieces may overlap with

each other. The starting timestamp is relatively accurate for each part of the sentence,

but after calculating the duration of the ending timestamp, some transcript pieces are

conflicted in the time domain. For example, in Figure IV-48, fragments of sentences

were recognized individually by the ASR engine, and the second fragment of

”fantastic show for your guys ...” was identified before the first fragment of ”ladies

and gentlemen ...” ends.

Second, many mini gaps occur between sentences. The recognizable speeches do not
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Figure IV-48: Transcripts generated by Automatic Speech Recognition (ASR) models
may overlap with each other (pink area) or contain gaps (blue area).

continuously happen over each timestamp. Other acoustic activities such as playing

music or background noise may exist between the talks or even overtake the speaker’s

voice. For example, the blue segmentation range from 2.9 sec and 3.18 sec is a gap

between two sentences.

Third, the majority of the timestamp converted by the online ASR engine are not

integers. A proper time series of sentiment requires each timestamp to be a piece of

text with semantic meanings. A segmentation or grouping algorithm must be applied

to the continuous text into individual semantic labels.

I applied a timestamp alignment algorithm to the raw ASR textual data to address the

temporal out-of-sync issue. The algorithm can be split into three parts. First, the

overlapping ASR texts are trimmed and connected with the following ones.

Figure IV-49 shows the process of creating a completed sentence by concatenating two

overlapped text pieces. Second, the starting timestamp of each sentence was rounded

into the closet integer seconds. This step provided all ASR text data with a standard

time alignment per second. Figure IV-50 shows after the rounding step. The text

pieces successfully point to starting timestamps of integer. Then, multiple ASR text

with identical starting timestamps was merged into a single piece of text.
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Figure IV-49: The overlapping issue was solved by trimming the duration of the first
overlapped transcript.

Figure IV-50: Transcripts generated by Automatic Speech Recognition (ASR) models
are rounded to the closest integers on the time axis.

The three main parts of the algorithm are represented below (Algorithm 1, 2, and 3).

The first algorithm solves the overlapping problem of the raw ASR text. The second

piece of code aligns the raw timestamps into a proper time axis. The third one merges

ASR text with identical timestamps. Some intermediate steps for connecting the three

pieces of code are ignored due to the length of the paragraph.

IV.F.3 ASR and TSCs Data Alignment

The ASR and TSCs data should be synchronized to the same time axis before

sentiment analysis. I wrote a script to loop over each video’s data files to combine the
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Algorithm 1 Solve for the ASR text overlaps
Require: i ≥ 1

N ← total number of text
t()← return a timestamp
d()← return a duration
while i ≤ N do

d← d(i)
t0 ← t(i)
tstart ← t0
tend ← t0 + d
T ← tend
if i ≥ 2 then

if tstart ≤ T then
d(i− 1)← tstart − t(i− 1)

end if
end if

end while

Algorithm 2 Round the ASR text timestamps
Require: i ≥ 1

N ← total number of text
t()← return a timestamp
d()← return a duration
while i ≤ N do

d← d(i)
t0 ← t(i)
tstart ← round(t0)
tend ← tstart + d
t(i)← tstart

end while
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Algorithm 3 Concatenate multiple texts with identical timestamps
Require: i ≥ 1, and text sorted by timestamps

N ← total number of text
t()← return a timestamp
ASR()← return a ASR text
while i ≤ N do

asr ← ASR(i)
ti ← t(i)
tstart ← ti
j ← i+ 1
while j ≤ N do

tj ← t(j)
if tj == tstart then

ASR(i)← ASR(i) + ASR(j)
ASR(j)← Null

else
i = j
break

end if
end while

end while

two pieces of information. Figure IV-51 shows the temporal alignment of the ASR and

TSCs data. Generally speaking, the script assigned each ASR and TSCs text with a

specific timestamp to better standardize the data structure. Some timestamps may

attach with long ASR or TSCs text, while others do not. The data structure will be

later used in generating the sentiment values from textural analysis methods.

Figure IV-51: Transcripts generated by Automatic Speech Recognition (ASR) models
are synced with TSCs data on the same time axis.
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IV.F.4 Data Cleaning

Both ASR and TSCs data are text-based information gathered by the proposed data

frame. Since multiple people contribute to this data, some free-form text exists. Before

diving into sentiment analysis, the data needs to be ’cleaned’ and structured. There are

several steps for the data cleaning, and they are summarized as below:

1. Contractions expansion.

2. Symbols removal.

3. Tokenization.

4. Token stemming or lemmatization.

5. Stopwords removal.

The first step is fixing the contractions within the text. According to Saha ( “Handle

contractions in text preprocessing - NLP”, 2022), ”Contractions are words or

combinations of words that are shortened by dropping letters and replacing them by an

apostrophe.” Abbreviations or short-forms are commonly used on online text, and they

need to be expended to retrieve their root forms to simply the Natural Language

Processing (NLP) task. I used a Python library called ’pycontractions’ to expend the

ASR and TSCs contractions (Beaver, 2019). The model relies on a grammar checker

to calculate the Word Mover’s Distance (WMD) between the converted sentences with

their raw form to expend to the correct contractions. For instance, the sentence ”I’d

like to do something.” can be translated into ”I would like to do something.”

The second step is removing every symbol from the text. Since most NLP algorithms

only focus on the words or sentences, symbols are not necessary to be included. I used

a regular expression in Python to exclude all characters from letters. This process will

turn a piece of text: ’Hello, Bob. How are you doing today?’ into something

like:’Hello Bob How are you doing today.’ The step will change the raw text into a

pure-letter form.

The third step is to tokenize the sentences. This step splits the sentences into small
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pieces, also called ’tokens,’ to find the words and punctuation within them. I used the

Natural Language Toolkit (NLTK)’s default tokenizer (Bird et al., 2009) in this step.

Figure IV-52 shows the tokenizer splits the sentence: ”I just really enjoy talking to

you.” into multiple words.

Figure IV-52: The tokenizer split a complete sentences into individual words.

The fourth step of the process is stemming or lemmatization. This part reduces tokens

into their root or base form, allowing the sentiment model used later to recognize each

word correctly. This step uses the WordNetLemmatizer from the NLTK library. The

lemmatizer first converts each token into one of four syntactic categories: noun, verb,

adjective, and adverb, and later translates the verb based on its syntactic. Figure IV-53

shows an example of tagging and stemming one token, ’talking,’ in the middle of a

sentence.

Figure IV-53: The lemmatizer covert the token ’talking’ into ’talk’.



73

The final step is to remove stopwords from the token set. I used a pre-defined corpus

from the NLTK library to filter out insignificant words. Figure IV-54 shows the

process of removing stopwords from a token set.

Figure IV-54: The process of removing stopwords from token set.

IV.F.5 Sentiment Conversion

Most comments from a live stream are short (a few words or sentences), a reasonable

assumption is each comment only refers to one entity and contains only one opinion.

Figure IV-55 shows the distribution of the number of words within a random 901

comments. Table 16 shows the average number of words within four different

YouTube streams is both less than ten, which suggests most online comments only

consist of one sentence or less.

Figure IV-55: Number of words’ distribution for a random 901 comments.
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Min 1st Qu Median Mean 3rd Qu Max Mode Total

1 4 7 9.55 12 43 5 901
0 2 4 4.834 6 36 3 3595
1 3 5 6.622 9 29 3 460
1 2 4 5.412 7 45 1 8245

Table 16: A summary shows the statistic of words in the comments of four different
YouTube streams. Thirteen thousand two hundred and one comments are analyzed, and
most comments are less than ten words.

The first step is to identify the subjectivity of each comment. Both supervised and

unsupervised approaches can be used in this classification. Wiebe et al., 1999

proposed using a Naive Bayes approach on tags assigned by human judges and

achieving a good result. However, getting human annotation for large-scale sentences

is difficult. We often want to use external knowledge to determine whether sentience

contains subjective components.

Some linguistic features, such as N-grams or part of speech (POS), can be used to

identify the subjectivity of a sentence (Chenlo and Losada, 2014). Previous studies

showed the uni-gram presence of subsets of adjectives and verbs could provide

important subjective information. Therefore, I can leverage a list of predefined

sentiment words and combine them with target sentences to derive overall sentiment

scores. Previous studies used the lexical approach, but recent studies have changed to

more complex methods involving neural networks.

Table 17 shows different schemes of sentiment models exist in literature. Most of

these lexicons use a polarized measurement of positive and negative sentiments.

To check the sensitivity of live-comments-based sentiment, I captured a video clip

from YouTube Live with 45 minutes and 18 seconds and performed extract sentiment

from the TSCs. One hundred fifty-two unique users contribute to 460 comments on

420 unique timestamps, covering around 14 percent of the total video length.

Figure IV-56 and Figure IV-57 show the sentiment plot of average polarized sentiment

values with a window size of 60 seconds and 180 seconds. I notice the existence of
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Name Year Measurement Method
OpinionFinder 2005 Positivity/Negativity Lexical
SentiWordNet 2006 Positivity/Negativity/Objectivity Lexical

NRC 2010 Positivity/Negativity/Objectivity
Specific emotions Lexical

SentiStrength 2010 Positivity/Negativity/Netural Lexical
AFINN 2011 Positivity/Negativity Lexical
VADER 2014 Positivity/Negativity/Netural Lexical
TensiStrength 2017 Relaxation/Stress Lexical
Flair 2020 Positivity/Negativity Embedding-based

Table 17: A list of popular sentiment lexicons exist in Sentiment Analysis literature.

multiple video events by identifying ”peaks” and ”valleys” from plots. The result

shows that even 14 percent coverage of affect annotation can be good enough to

represent some video events. While the most popular videos have over 40 percent

timestamp coverage, it is suitable to use the converted values as actual sentiment labels

for the original video.

Figure IV-56: The plot of average polarized sentiment on a 60 seconds window size.

After comparing and experimenting with different sentiment models, I decide to use

the sentiment analyzer, VADER (Hutto and Gilbert, 2014), as my sentiment annotator.

The VADER is a rule-based soft sentiment classifier for social media-style text. It

operates on a sentence level and can predict three positive, negative, and neutral
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Figure IV-57: The plot of average polarized sentiment on a 180 seconds window size.

sentiment probabilities.

IV.F.6 Data Imputation

First, I converted each set of tokens into a single sentiment value on each timestamp. I

figured some gaps existed in the sentiment sequence. These gaps are due to the missing

values in the raw TSCs and ASR data. The gap could be filled with values inferred

from local results. I used a linear interpolation algorithm to complete the sequences.

Then I applied an average rolling method to accumulate the sentimental values to their

average (Algorithm 4). A fixed-length moving window was selected to generate

sentiment sequences on different resolutions. I converted my data based on three types

of window sizes: 100 seconds, 300 seconds, and 600 seconds. The reason for doing

this is that the raw data is noisy. The sentiment sequence will be smoothed and filtered

by applying a moving window. The moving average imputing algorithm is shown

below. After the above steps, I have a one-to-one matching for each timestamp for the

ASR and TSCs sentiment labels.

After smoothing and linear interpolation, the sentiment sequence with different

window sizes can be viewed in Figure IV-58. Three sentiment sequences are plotted in

red, blue, and green. The red line is created by a 100 seconds window, which has more

spikes and is noisy. In contrast, the green line is created by a 600 seconds window,
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Algorithm 4 Data imputing algorithm
Require: i ≥ 0

T ← largest timestamp
δt← window size
t()← return a timestamp
s()← return a sentiment value
while δt/2 ≤ i ≤ T − δt/2 do

tmin ← t(i)− δt/2
tmax ← t(i) + δt/2
stmp ← 0
while t(i)− δt/2 ≤ j ≤ t(i) + δt/2 do

stmp ← stmp + s(j)
end while
savg ← stmp/δt
s(i)← savg

end while

which is more smooth. Different window sizes emphasize sentiment features on

different resolutions.

Figure IV-58: Sentiment sequence comparison under window sizes of 100, 300, and 600
seconds.
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IV.F.7 Semantic Similarity

I hypothesize that the semantic similarity between the TSCs and ASR data could

influence the sentiment mapping. To prove that, I need a way to evaluate the semantic

distance between two text groups. I solved this problem in three folds. First, I

converted my text into a group of vectors in semantic space with an embedding

algorithm. Then I evaluated the distance between vector clusters’ mass. Finally, I

repeated the previous step for each timestamp with a similarity value based on its

TSCs and ASR data.

I used embedding algorithms (Word2Vec) to convert tokens into vectors. The

Word2Vec algorithms (Mikolov et al., 2013) are a set of neural network architectures

which could group tokens from contexts into numerical representations based on their

meaning and past appearances. Tokens with similar meanings, such as synonyms, will

be placed close to each other in the embedding space. I trained a Word2Vec model on

the 167 videos using Python’s gensim library. The model contains 20770 tokens

vocabulary and projects them into a 100-dimensional embedding space. A plot of its

first and second PCA components is shown in Figure IV-59.

Figure IV-59: The 1st and 2nd PCA component embedding space the Word2Vec model
trained on the 167 videos. Words with similar meanings are placed closely together.

Through a fixed-size time window w, I can appoint each timestamp at time t with a
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group of text Tt−w/2, Tt−w/2+1, ..., Tt+w/2 and convert them into embedding vectors

v⃗t−w/2, v⃗t−w/2+1, ..., v⃗t+w/2 with the Word2Vec model I trained. Two groups of vectors

were extracted from the TSCs and ASR data. Because similar semantic representations

are naturally clustered in this embedding space, I can use cluster distance D to

measure the semantic similarity between the TSCs cluster V = v⃗t−w/2, ..., v⃗t+w/2 and

ASR cluster U = u⃗t−w/2, ..., u⃗t+w/2 at a specific timestamp.

Ward’s method (Ward Jr, 1963) measures the distance between clusters by evaluating

the additional variance cost of merging them. It is a special form of the

Lance-Williams dissimilarities (Equation 6) which specify the dissimilarity d between

a point k to a cluster i ∪ j, where αi =
|i|+|k|

|i|+|j|+|k| , β = − |k|
|i|+|j|+|k| , and γ = 0.

d(i ∪ j, k) = αid(i, k) + αjd(j, k) + βd(i, j) + γ|d(i, k)− d(j, k)| (6)

The Ward’s distance can be calculated by subtracting the sum of squares of individual

groups from the merged one. Equation 7 shows the distance represents a weighted

least squares between the center of two clusters:

DU,V =
∑

i∈U∪V

∥w⃗i − m⃗U∪V ∥2 −
∑
i∈U

∥u⃗i − m⃗U∥2 −
∑
i∈V

∥v⃗i − m⃗V ∥2

=
nUnV

nU + nV

∥m⃗U − m⃗V ∥2
(7)

where m⃗ is the center of a cluster, and n is the number of samples within it.

After applying Ward’s method to every timestamp, I formed a distance sequence that

measures the semantic similarity between the TSCs and ASR text. Figure IV-60 shows

an example of the semantic similarity plot on one video. Part of the video is

out-of-sync between the ASR and TSCs sequence (peaks in red box).
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Figure IV-60: The cluster distance between TSCs and ASR tokens for video ’mxCfMs-
BqgJE.’ Data was generated with a 300 seconds window size.

IV.G Model Structure

I used a particular neural network architecture, called long short-term memory

(LSTM), to learn the relationship between the TSCs and ASR sentiment labels. The

LSTM is a special type of Recurrent Neural Network (RNN) that memorizes past

information through hidden layers (Hochreiter and Schmidhuber, 1997). Figure IV-61

shows the unrolled structure of the RNN network. This type of network is particularly

suitable for solving the sequence-to-sequence problem.

The LSTM network implements memory cells in the RNN hidden layers to cop long

and short memory. It uses three types of gates: input, output, and forget gate, to adjust

the influence from past information (Hochreiter and Schmidhuber, 1997). I

concatenate a shallow LSTM with full connection layers to map the TSCs sentiment

sequence to the ASR sentiment sequence. Figure IV-62 shows how a LSTM layer

connected with a full connection layer. The model is shallow since the I only used a

single layer of hidden neurons.
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Figure IV-61: Structure of Recurrent Neural Network (RNN)

Figure IV-62: LSTM model with full connection layers.

IV.H Model Evaluation and Comparison

I set the Adaptive Moment Estimation (Adam) as my optimizer and 0.01 as my initial

learning rate. I choose the Mean Square Error (MSE) (Equation 8) as my loss function

in the neural network. I trained my model on 167 videos with different window sizes

and sequence input length combinations. Eighty percent of the data was used as the

training set, and the rest was used as the validation set. For each iteration, I picked 60,

120, and 180 seconds sentiment values from the 100, 300 and 600 window-smoothed

TSCs/ASR data to feed into the LSTM model. The data size for each video is between

3600 to 7200. Every model is trained with ten epochs.
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MSE =
1

N

n∑
i=1

(yi − ŷi)
2 (8)

Then I add the semantic similarity feature to the LSTM inputs. Table 18 shows the

MSE comparison between the two settings under different parameter combinations. I

also calculated the improvement of the accuracy in percentage after adopting the

similarity sequence.

MSE Loss WS = 100s WS = 300s WS = 600s
Input = 60s 0.005576832 0.002621518 0.001477843
Input = 60s (with similarity) 0.005425467 0.002560942 0.001446142
Accuracy Improvement 2.91% 4.30% 3.64%
Input = 120s 0.002809225 0.001355333 0.0007483041
Input = 120s (with similarity) 0.002694337 0.001315808 0.0007271637
Accuracy Improvement 4.06% 4.41% 5.63%
Input = 180s 0.001865821 0.000921985 0.0005185198
Input = 180s (with similarity) 0.001741244 0.000868069 0.0004861399
Accuracy Improvement 6.69% 5.52% 4.52%

Table 18: This table compares MSE loss for different parameter combinations of the
shallow LSTM model. WS stands for the window size, and Input stands for the inputs
sequence length. Accuracy Improvement is the reduced percentage of MSE loss after
applying the similarity feature to the model.

Figure IV-63 shows the histogram of MSE distribution from the LSTM model trained

on 167 videos’ dataset. The input sequence is 60 seconds and generated through a 100

seconds window. The mean losses are 0.005576832 and 0.005425467 (not include and

include similarity feature). Around 78.4 percent of results have less MSE after adding

the similarity feature.

Figure IV-64 shows the histogram of MSE distribution from the LSTM model trained

on 167 videos’ dataset. The input sequence is 120 seconds and generated through a

100 seconds window. The mean losses are 0.002809225 and 0.002694337 (not include

and include similarity feature). Around 80.8 percent of results have less MSE after

adding the similarity feature.
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Figure IV-65 shows the histogram of MSE distribution from the LSTM model trained

on 167 videos’ dataset. The input sequence is 180 seconds and generated through a

100 seconds window. The mean losses are 0.001865821 and 0.001741244 (not include

and include similarity feature). Around 85.6 percent of results have less MSE after

adding the similarity feature.

Figure IV-66 shows the histogram of MSE distribution from the LSTM model trained

on 167 videos’ dataset. The input sequence is 60 seconds and generated through a 300

seconds window. The mean losses are 0.002621518 and 0.002560942 (not include and

include similarity feature). Around 74.3 percent of results have less MSE after adding

the similarity feature.

Figure IV-67 shows the histogram of MSE distribution from the LSTM model trained

on 167 videos’ dataset. The input sequence is 120 seconds and generated through a

300 seconds window. The mean losses are 0.001355333 and 0.001315808 (not include

and include similarity feature). Around 70.7 percent of results have less MSE after

adding the similarity feature.

Figure IV-68 shows the histogram of MSE distribution from the LSTM model trained

on 167 videos’ dataset. The input sequence is 180 seconds and generated through a

300 seconds window. The mean losses are 0.000921985 and 0.0008680694 (not

include and include similarity feature). Around 79 percent of results have less MSE

after adding the similarity feature.

Figure IV-69 shows the histogram of MSE distribution from the LSTM model trained

on 167 videos’ dataset. The input sequence is 60 seconds and generated through a 600

seconds window. The mean losses are 0.001477843 and 0.001446142 (not include and

include similarity feature). Around 64.7 percent of results have less MSE after adding

the similarity feature.

Figure IV-70 shows the histogram of MSE distribution from the LSTM model trained

on 167 videos’ dataset. The input sequence is 120 seconds and generated through a
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600 seconds window. The mean losses are 0.0007483041 and 0.0007271637 (not

include and include similarity feature). Around 76 percent of results have less MSE

after adding the similarity feature.

Figure IV-71 shows the histogram of MSE distribution from the LSTM model trained

on 167 videos’ dataset. The input sequence is 180 seconds and generated through a

600 seconds window. The mean losses are 0.0005185198 and 0.0004861399 (not

include and include similarity feature). Around 66.5 percent of results have less MSE

after adding the similarity feature.

Figure IV-63: MSE loss of the LSTM model trained on 60 seconds inputs generated
from a 100 seconds smoothing window.
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Figure IV-64: MSE loss of the LSTM model trained on 120 seconds inputs generated
from a 100 seconds smoothing window.

Figure IV-65: MSE loss of the LSTM model trained on 180 seconds inputs generated
from a 100 seconds smoothing window.
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Figure IV-66: MSE loss of the LSTM model trained on 60 seconds inputs generated
from a 300 seconds smoothing window.

Figure IV-67: MSE loss of the LSTM model trained on 120 seconds inputs generated
from a 300 seconds smoothing window.
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Figure IV-68: MSE loss of the LSTM model trained on 180 seconds inputs generated
from a 300 seconds smoothing window.

Figure IV-69: MSE loss of the LSTM model trained on 60 seconds inputs generated
from a 600 seconds smoothing window.
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Figure IV-70: MSE loss of the LSTM model trained on 120 seconds inputs generated
from a 600 seconds smoothing window.

Figure IV-71: MSE loss of the LSTM model trained on 180 seconds inputs generated
from a 600 seconds smoothing window.
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The models’ comparison experiment shows that the larger the window size is, the

closer TSCs to ASR sentiment values are. A longer sequence used in the LSTM could

achieve a better temporal sentiment representation. The experiment also suggests

combining a long input sequence and a short smoothing window size is more likely to

improve the final accuracy using the similarity feature (higher accuracy improvement).

The experiment also shows the effectiveness of using the TSCs sentiment to predict

the ASR sentiment for online videos. The small MSE results prove the sentiment

mapping approach in this study works well.
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V Summary

This study proposed a general approach to converting online comments into sentiment

labels. I demonstrate efficient strategies to collect existing comments from multiple

users directly from YouTube. I also developed a comprehensive data pipeline to crawl

online TSCs data automatically through months of experiments. The outcomes involve

two large-scale TSCs datasets extracted from two different sets of keywords. Then I

combined the sentiment analysis with the NLP techniques to successfully map the

temporal data into sentiment sequence. My sentiment modeling experiment shows the

close connection between the TSCs’ converted sentiment scores and the live streams’

original sentiment.

The above experiments suggest my data collection frameworks work well, and the

sentiment mapping approach is suitable for most online streams. Although I only

conducted my study on one video distributed platform, the broad coverage of my video

contents and topics should represent a large portion of the live stream population. I

believe the work could be extended to other sites as well. The goal of exploring the

low-cost, efficient, and accurate sentiment mapping strategy for online time-sync data

is achieved.

V.A Discussion

This section will summarize the limitations, conclusions, and potential future works of

the study. I will discuss each aspect in detail and provide a deep insight into further

improvement of the project in future.

V.A.1 Data Collection

The top four categories contributed to my LST-YF20 dataset is ”Entertainment,”

”Gaming,” ”People & Blog,” and ”Howto & style.” In 2016, Google reported that the

top four content categories watched by YouTube users are comedy, music,

entertainment/pop culture, and ”how-to” (ThinkwithGoogle, 2016), which is different

from the result in my dataset. The reason behind this shift probably results from the

blooming of live streaming on influential video-sharing and social media platforms.
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When more individuals were involved in the streaming, personal activities got more

exposure to the public world. This phenomenon provides researchers an opportunity to

understand the dynamic interactions between authors and streaming content on

different types of videos.

From the research perspective, most studies prefer videos that contain dense TSCs

over sparse ones. It is simply because the more TSCs appear in a fixed period, the

more accurate information they can carry to reflect the implicit features of the video

contents. I noticed that using different search terms in my pipeline may vary the

returning result significantly. For example, the search term ”apple” initially returns 2.4

times more videos than other search terms in the LST-YF20 experiment but is later

surpassed by ”pear” within 30 days. Selecting the correct search term may eventually

accelerate the data collection process. However, one drawback of this strategy is, the

variations of the TSCs are limited and may cause data bias in future studies.

We should notice, different online media platforms may contain different types of

video in general. The user base of such websites may differ from others, which may

cause a problem in data bias. Some previous works (Liao et al., 2018, Ma et al., 2019,

Yang, Wang, et al., 2019, W. Wang et al., 2020) only collect data from non-English

speaking platforms such as BiliBili and AcFun, which geographically focus on the

East Asia audience groups. Extending the language settings to other regions of the

world may significantly reduce getting bias results. It is also worth noticing that

BiliBili and AcFun are heavily influenced by anime culture among teenagers in China.

Researchers using these TSCs data should be aware of such influence and adjust their

research accordingly.

My data pipeline proves it is possible to create a decent amount of TSCs data directly

from online social media platforms on low-budget devices. Compared with similar

project (Uechi, 2021), we do not require a professional online cluster with thousands

of crowd-sourcing clients working globally. With only eight runs in 20 days, I

gathered 105 million TSCs, equal to one-fifth of the total number of TSCs crawled by
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the previous crowd-sourcing methods in a longer run. Meanwhile, the agility of my

search term configuration enables me to get even larger TSCs datasets with only a few

keywords expansion.

Thus, I conclude that my data mining strategies can produce promising TSCs datasets

needed in research from quality and quantity perspectives. My experiment paves the

way to further optimizing data mining TSCs data and contributes to future TSCs

research.

V.A.2 Data Acquisition

Crawling live comments on a large scale is highly limited for several reasons.

YouTube does not provide an easy way to retrieve and restore chat messages once

video streamings are finished. Compared with Bilibili, YouTube does not have a

specialized API for pulling historical live comments for videos. Some live channels on

YouTube allow viewers to replay the chat, but many broadcasters disallow this option,

limiting the choice of crawling live comments from such channels. The current

strategy of recording those comments is crawling live comments during streaming and

manually aligning them with the video timeline afterward, significantly limiting the

comments sample size. On the other hand, crawling comments from other channels

will also double the mining time, eventually slowing down the speed and magnitude of

crawling.

Due to the limitation of storage capacity, large-scale video data mining is challenging.

Since most videos are recorded at 30 frames per second, storage requirements raise

rapidly as more videos put pressure on the local disk. Therefore, only a small portion

of videos can be stored and analyzed locally.

V.A.3 Speech Recognition

Although extracting audio features directly from live streams sounds like a

straightforward approach. Video streams are recorded from multiple devices in

practice and implemented with appealing musical effects. Post-edited clips may

introduce unnecessary noise into the audio channel, lower the quality of the audio
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signal, and interrupt the feature extraction procedure. Using the vanilla audio features

without careful selection may encounter problems.

The quality of speech feature recognition depends on speech clarity and ASR model

accuracy. Both offline ASR-generated text and automatic captions might misrepresent

the spoken content due to mispronunciations, accents, dialects, or background noise.

Having a noisy environment or background music in streams may reduce the final

speech recognition quality. The accuracy of the ASR engines will also influence the

final result of speech recognition. If an ASR model could only recognize a limited

number of words, using it for a general speech recognation task will only provide a

limited result. We can avoid this problem by first replacing the original feature

recognition model with a better one, then manually selecting specific videos with little

environmental sound and good clarity of the speaker’s voice.

V.A.4 Sentiment Annotation

First, live comments contain not only textual information but also emojis. The

traditional linguistic approach for sentiment analysis often overlooks such information

during processing. However, emojis are popular in live comments and convey a solid

subjective feeling of the author. Neglecting emojis can result in missing crucial

emotional information and reduce the accuracy of overall sentiment measurement.

Another disadvantage of using a general sentiment lexicon for live comments is

overlooking internet slang. Since live commenting is more or less like a form of

real-time online communication, internet slang and abbreviation frequently appear in

comments and quickly evolve each year. For example, slang such as ”LOL” and

”LMAO” is often observed on YouTube Chats. A generous-purpose lexicon does not

capable of interpreting such slang and its variants into sentiments.

Moreover, not every video contains sufficient live comments for analysis. Only videos

from the popular channel have enough viewers to comment. For example, only

gaming videos are popular on Twitch and have enough live comments. Collecting live

comments from a single platform may introduce video and audience sampling bias.
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This partial data may limit further generalization of the sentiment model.

Live comments are not evenly distributed - some videos may have missing

annotations. Data imputing must be done to fix gaps between annotations. If dramatic

sentiment change exists between the annotation intervals, then imputing will introduce

bias into the dataset. Otherwise, a semi-supervised labeling algorithm for training data

with small-size labeling must be performed to predict and fill the label gaps.

Live comments are not memory-less. The internal feeling of viewers may last for a

long time, sometimes after the video event is finished. Therefore taking future

sentiment changes into current sentiment evaluation is crucial for producing an

accurate result. But how to choose a correct window size for future sentiment is still

unknown.

V.A.5 Sentiment Modeling

The sentiment modeling results show a close connection between the converted TSCs

with the ASR sentiment values. A larger smoothing window size could significantly

improve the accuracy of predicting ASR sentiment through TSCs sentiment. A larger

window could also capture long-term temporal patterns in the TSCs and achieve

higher prediction accuracy. Human feeling could not change rapidly in a short time,

which may explain why using a larger window could improve the accuracy of

sentiment mapping. Additionally, applying the more extended sequence as inputs for

the shallow LSTM network could improve the mapping quality. I believe the LSTM

could identify some long-term temporal features by feeding with long data series.

After applying the semantic similarity features to the LSTM model, the prediction

accuracy improves on all parameter settings. And the smaller the window size is, the

more significant accuracy improvement is. The phenomena could be explained by the

out-of-sync issue of the TSCs and ASR sentiment sequence. When audiences’

attention is drawn to a particular topic, they no longer comment on the video contents.

In this case, data smoothed with a small window size could be very sensitive to the

video topic. Some video events may be so emotional that the sentiment effect lasts
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longer among the comments.

V.A.6 Semantic Distance

I used Ward’s distance to measure the semantic distance between the ASR and TSCs

text clusters for each timestamp. Ward’s distance equation is a unique case of the

Lance-Williams dissimilarity measurement. Other forms of dissimilarity between text

clusters, such as Gower’s method (WPGMC) or Centroid method (UPGMC), can be

applied instead. The optimal measure is yet to be identified and may result in higher

accuracy in representing semantic distance. Additional analysis should be done to

compare these measurements in future studies.

The semantic distance was calculated on each timestamp’s ASR and TSCs text

sequence. The number of texts is determined by the intensity of online comments and

video dialogue. This approach usually does not work well due to the inconsistency of

the flow of words. Expending text coverage to nearby timestamps could resolve the

problem. However, this process will introduce unexpected semantic correlations

between the two text clusters and influence the subsequent studies. Finding an optimal

cluster size by analyzing the intensity of neighboring text is essential.

V.B Conclusion

This project proposed a data pipeline collecting TSCs data directly from online social

media platforms, specifically YouTube. I experimented with automatic data collection

and produced two large-scale TSCs datasets, namely LST-YF20 and LST-YT1000.

My result proved the efficiency of the proposed data pipe and the quality of collected

TSCs data. To illustrate the difference between the previous works to my approach, I

compared the most recent TSCs datasets in the literature. I am aware that several

limitations exist for the data pipeline. For example, a predefined search term list is

required before data collection, and the data collection speed depends on the popularity

of search terms. However, I believe, with small adjustments, the data pipeline can

significantly contribute to the field by constantly providing the most recent TSCs to

researchers. I also demonstrated a way of using mobile devices at a low cost to get an

extensive collection of TSCs data. It potentially could contribute to creating a data
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mining network shared by researchers around the globe. In the future, I plan to share

this tool with the research community under an open-access license to benefit

researchers with constrained budgets and resources. Moreover, I explored the

influence of adopting different smoothing windows and networks on the ASR

sentiment prediction. I conclude my dataset could potentially be helpful for researchers

working in the sentiment analysis field. I hope my work will also contribute to the

advent of autonomous temporal data collection for multimedia studies.

V.C Future Work

The study demonstrates a way of converting online time-sync data into an accurate

sentiment map and creating two large-scale TSCs datasets. The work can be extended

to further analysis of the internal emotional connection between the video contents and

the audience. The dataset generated by the data pipeline can also be used in other

multimedia tasks, such as video event detection, video topic modeling, and audience

reaction prediction. Beyond that, I’m interested in creating more TSCs datasets using

the tools I’ve developed in this study. Because the data pipeline can work on multiple

mobile devices, creating distributed data mining networks seems interesting. More

researchers will benefit from the project. I’m also interested in considering visual

features in future studies. Recently research in transfer learning has provided a way of

extracting semantic information from the visual signals. I believe if combining this

information with the comments topic, I could eventually achieve a more accurate

sentiment mapping. There is a lot of potential for future extension of this study, and I

am eager to continue working on it.
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VI Study Timetable

This section presents the progress of the study. I started the literature review during the

winter of 2020. After reading several papers, I realized that current multimedia

research relies heavily on manually labeled video datasets. Creating a large-scale

TSCs dataset is very expensive and challenging. Integrating online comments with

automated scraping could generate high-quality TSCs datasets with little effort. I first

prototyped a few programs to experiment with the different stages of data mining and

later formalized the idea of creating an automatic data mining system for online

streaming platforms in spring 2021. The project grew fast after I added more codes to

it. Then I spent months testing the code and stabilized the code base in the summer of

2021. It was challenging since I rapidly experimented with different data mining

strategies and techniques. In summer 2021, I started a large-scale data collection with

my data pipeline. Several months were spent on the data collection, and I developed a

graphic interface for more accessible interactions with the data pipeline. By the end of

2021, I got two large datasets: LST-YF20 and LST-YT1000. The data cleaning took

me months to finish in 2022. Later, auxiliary data were added and aligned with my

TSCs datasets. In March 2022, I started testing various network architectures. Then I

selected one architecture with balanced performance and computational time based on

my data size. The final result was analyzed and documented in the summer of 2022.

Table 19 shows the detailed timetable for this study.

Stage Task Timeline
Literature review Problem statement Winter 2020 - Spring 2021
Prototyping Test mining strategies Spring 2021 - Summer 2021
Proposal Write proposal Spring 2021 - Spring 2021
Framework development Merge components Summer 2021 - Spring 2022
Data pipeline test Small-scale test Summer 2021 - Summer 2021
Data collection Large-scale mining Summer 2021 - Winter 2021
Data processing Data cleaning Winter 2021 - Spring 2022
Machine learning Validate accuracy Spring 2022 - Summer 2022
Report Finish the study Summer 2022

Table 19: The timetable of this study.
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