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ABSTRACT 
CONTINUOUS MYOELECTRIC PREDICTION OF FUTURE ANKLE KINEMATICS AND 

KINETICS FOR THE CONTROL OF ACTIVE POWERED PROSTHESES 
 
 

Erika Virginia Zabre González, B.S. 
 

Marquette University, 2022 
 
 

The purpose of this dissertation is to develop a continuous predictive model of 
gait that incorporates user intent, vis-à-vis surface electromyography (EMG) signals of 
the lower limb, to continuously predict future ankle kinematics and kinetics across 
multiple terrains and their transitions for the control of an active ankle-foot prosthesis. 
Continuously predicting variations in gait, particularly during transitions and noncyclic 
activities, is limited in lower limb prostheses. Despite performance improvements in 
active lower limb prostheses, there remains a need for robust and accurate control that 
incorporates direct user intent (e.g., myoelectric control) to limit physical and cognitive 
demands and provide more natural gait across terrains. Efforts to use EMG signals have 
mainly focused on discrete control approaches that are reactive to changes in terrain, can 
introduce undesirable delays, and limit the amputee’s control over the prosthesis. A 
nonlinear autoregressive neural network with exogenous (external) inputs (NARX) was 
used to continuously predict desired ankle angle and moment of the sound limb of 
transtibial amputees using EMG of the prosthetic side and sound-limb shank velocity as 
inputs. The approach of mapping prosthetic-side EMG with sound-limb ankle dynamics 
is a step forward to establish a more normal gait by overlaying the dynamics of the sound 
limb onto the prosthesis to create symmetric gait patterns. The autoregressive model 
accurately predicted (up to 142 ms ahead of time) ankle dynamics using natural patterns 
of either within-socket residual shank or thigh EMG of the prosthetic side across 
ambulation conditions (level walking, stair ascent, and stair descent) and staircase 
transitions. Importantly, the model leveraged EMG and shank velocity inputs to a similar 
degree for the prediction of gait, enabling accurate responses to noncyclic events. The 
NARX model also had the ability to characterize the normal range of ankle dynamics of 
able-bodied individuals using either shank or thigh muscle activity. The use of natural, 
yet altered in amputees, muscle activity with information about limb state, coupled with a 
closed-loop predictive design, could provide intuitive user-driven and robust prosthetic 
control capable of counteracting delays and proactively modifying gait in response to 
observed changes in terrain. The model provides opportunities for continuous 
myoelectric control using different muscle groups and takes an important step toward 
continuous real-time feedback control of active lower limb prostheses and robotic 
systems. 
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

1.1 INTRODUCTION 

Advances in robotic systems and human interface design have facilitated the 

development of rehabilitation devices, including state-of-the-art active ankle-foot 

prostheses (Sun et al., 2014; Au et al., 2009; Grimmer et al., 2016; Culver et al., 2018). 

For successful rehabilitation of lower limb amputees, prostheses seek to mimic the 

biomechanical patterns of gait that occur during daily living activities. In spite of these 

advancements, most lower limb amputees develop altered muscle activity and 

biomechanical patterns of gait to maintain stability and compensate for limitations in the 

prosthesis (Herr & Grabowski, 2012; S. Huang & Ferris, 2012; Seyedali et al., 2012). 

Despite performance improvements in active (i.e., able to generate power during 

propulsion) lower limb prostheses over passive designs, there remains a need for robust 

and accurate control techniques that incorporate user intent to limit physical and 

cognitive demands and provide a more natural gait across terrains (e.g., level ground, 

stairs, ramps) and environmental conditions. 

Continuously predicting variations in gait, particularly during transitions (e.g., 

between terrains) and noncyclic activities, is limited in commercially available lower 

limb prostheses. Electromyography (EMG) measurements of muscle activity and 

kinematic analyses of the lower limb suggest that timing in the local patterns of muscle 

activity is a key discriminant of gait while traversing different types of terrains (Lencioni 

et al., 2019; Wentink et al., 2013, 2014). The integration of EMG signals in a continuous 

predictive model of gait could provide intuitive and robust prosthetic control by 
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counteracting delays (e.g., sensing, signal processing, and actuation), and proactively 

(rather than reactively as in current prostheses) modifying gait in response to unexpected 

perturbations and upcoming changes in terrain. 

Continuous gait models have been proposed to eliminate the need for a discrete 

state-based control to differentiate joint motion and terrains, and in the case of 

myoelectric control, to reduce cognitive and physical demands on the user and eliminate 

the need for high quality, independent muscle signals (Farmer et al., 2014; J. Chen et al., 

2018; Gupta et al., 2020; Ardestani et al., 2014; Keleş & Yucesoy, 2020). Ankle 

kinematics and kinetics, common targets for impedance control of ankle-foot prostheses, 

have been continuously estimated using surface EMG signals, in an effort to incorporate 

direct user intention. However, simultaneous estimation of both ankle kinematics and 

kinetics across multiple types of terrain, including transitions between them, has not been 

demonstrated. Moreover, almost all models characterize ankle dynamics using a reactive 

(i.e., next time-step estimate) rather than a predictive (i.e., several steps into the future) 

approach. 

The purpose of this dissertation is to develop a continuous predictive model of 

gait that incorporates user intent, vis-à-vis surface EMG of the lower limb, to 

continuously predict future ankle kinematics and kinetics across multiple terrains and the 

transitions between them for the control of an active ankle-foot prosthesis. The proposed 

model was characterized to examine its ability to predict the normal range of ankle 

dynamics associated with healthy ambulation, to determine the feasibility of using natural 

patterns of residual EMG within the prosthetic socket from transtibial amputees, and to 
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identify alternative proximal sources of EMG signals further from the ankle joint and 

shank. 

This chapter establishes a foundation on the topics related to this work by 

providing an overview of the changes in gait and muscle activity following lower limb 

amputation, the current state of lower limb prostheses and myoelectric control, and a 

review of continuous gait models for the estimation of ankle dynamics. 

1.2 AMPUTEE POPULATION 

1.2.1 Prevalence and Leading Causes of Limb Amputation 

The estimated number of people with limb amputation worldwide varies from 

source to source since detailed records are not kept in many countries. The prevalence of 

limb amputation has been reported to vary by age, geographical region, and leading cause 

(e.g., dysvascular disease, trauma, cancer, war). Trauma (e.g., road accidents, falls) is the 

leading cause of amputations in low income countries [e.g., Iran, Tanzania, South Asia 

countries; (Rouhani & Mohajerzadeh, 2013; Shaw et al., 2018)] whereas dysvascular 

disease (including peripheral arterial disease and diabetes) is the primary cause of 

amputations in high income countries [e.g., United States, England, Canada; (Ahmad et 

al., 2014; Imam et al., 2017)]. In 2017, the World Health Organization estimated that 

0.5% of the world population required a prosthesis or an orthosis with the global 

incidence of limb loss estimated between 7.6 and 13 million people (World Health 

Organization, 2017). However, the 2017 Global Burden of Disease study estimated that 

globally, approximately 58 million people were living with a limb amputation due to 

trauma alone (McDonald et al., 2021). Regardless of region and cause, the most frequent 
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level of amputation is transtibial (below-the-knee, 47%), followed by transfemoral 

amputations (above-the-knee, 31%) (World Health Organization et al., 2004). 

In the United States, nearly 1.2 million hospital discharges involved some type of 

limb loss or limb congenital deficiency between 1988 and 1996 (Dillingham et al., 2002). 

In 1996 alone, 115,000 to 159,000 people underwent a lower limb amputation with the 

vast majority (95%) related to dysvascular disease (including peripheral arterial disease 

and diabetes) (Dillingham et al., 2002; Owings & Kozak, 1998). With the absence of 

recent national statistics, Ziegler- Graham et al. estimated the prevalence of limb loss to 

be 1.6 million in 2005 and projected the future amputee population to increase to 3.6 

million by 2050 (Ziegler-Graham et al., 2008). In the 2005 estimate, dysvascular disease 

(including peripheral arterial disease and diabetes) accounted for 54% of total body 

amputations while trauma and cancer accounted for 45% and 1%, respectively. For the 

same year, it was estimated that a total of 1 million people had some sort of lower limb 

amputation, with over half being major amputations (transtibial and transfemoral). Over 

the coming decades, the number of people requiring a lower limb prosthesis is expected 

to increase due to the progressive aging and growing of the world’s population, the rising 

number of dysvascular and diabetic cases, and the increasing number of road accidents 

and cancer cases. 

1.2.2 Gait and Muscle Activity of Lower Limb Amputees 

A hallmark of human locomotion is that it continuously adapts to changes in the 

environment to maintain balance, reacts to unpredictable perturbations in gait and 

balance, and predictively adjusts walking patterns to changes in the terrain (Choi & 
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Bastian, 2007; Pearson, 2000), which are major challenges to lower limb amputees. 

Amputees often develop altered muscle activity and biomechanical patterns of gait to 

maintain stability and compensate for limitations in the prosthesis (Herr & Grabowski, 

2012; S. Huang & Ferris, 2012; Seyedali et al., 2012; Silver-Thorn et al., 2012). Gait 

asymmetries between the sound and prosthetic limb are primarily attributed to limitations 

in the prostheses and are a major concern in achieving normal, symmetric gait (Bateni & 

Olney, 2002; Pröbsting et al., 2020; Schmalz et al., 2007; Sinitski et al., 2012). The 

practical need to adapt to such asymmetries often leads to differences in kinematics and 

kinetics of the sound limb when compared to able-bodied controls (Grabowski & 

D’Andrea, 2013; Rábago & Wilken, 2016). In transtibial amputees, peak plantarflexion 

moment from commercially available ankle-foot prostheses differs from that of able-

bodied individuals by as much as 28% during level walking (Ferris et al., 2012; Pröbsting 

et al., 2020; Rábago & Wilken, 2016; Sinitski et al., 2012), 41% during stair descent 

(Aldridge et al., 2012; Schmalz et al., 2007; Sinitski et al., 2012; Vack et al., 1999), and 

50% during stair descent (Schmalz et al., 2007; Sinitski et al., 2012). Moreover, timing 

differences relative to the desired profile were present in the peak moments of those 

commercial prostheses. While the influence of push-off has not been linked to fall risk 

(Müller et al., 2019), limb asymmetry and offsets in the timing of push-off have been 

associated with increased metabolic rates, excessive limb loading, osteoarthritis, back 

pain, and can affect gait stability and stride variability among lower limb amputees (Hill 

& Herr, 2013; Kulkarni et al., 2005; Miller et al., 2001; Montgomery & Grabowski, 

2018; Morgenroth et al., 2011). 
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Human locomotion is achieved by anticipatory changes in EMG activation (and 

corresponding muscle contraction) and the subsequent joint and segment movements by 

means of coordinated synergies of the upper limbs, trunk, and lower limbs (Dietz et al., 

1987; Hirschfeld & Forssberg, 1991). As a result of these synergies, EMG activity from 

the residual shank muscles and intact (residual for transfemoral amputees) thigh muscles 

of the prosthetic side of amputees possess information about ankle motion during gait. In 

the case of transtibial amputees, muscle activity of the residual shank muscles is directly 

and strongly coupled to ankle dynamics due to its proximity to the ankle joint. However, 

the biomechanical coupling can be disrupted by surgical techniques and the cause of 

amputation (Brown et al., 2014; Clites et al., 2018). In contrast, thigh muscles are 

indirectly coupled to ankle biomechanics due to the increased number of degrees of 

freedom associated with the knee joint. 

Several studies have shown that good quality and consistent EMG signals can be 

recorded within-socket from residual muscles of transtibial and transfemoral amputees 

(Hefferman et al., 2015; S. Huang & Ferris, 2012; Kannape & Herr, 2014; Silver-Thorn 

et al., 2012). Although amputees are able to activate their residual muscles, EMG patterns 

are different from those of healthy individuals and highly variable across amputees due to 

atrophy and changes in muscular attachment points after amputation (S. Huang & Ferris, 

2012; Seyedali et al., 2012). Within-socket EMG signal variability can be sensitive to 

physiological and skin-electrode interface changes (e.g., motion artifacts, electrode 

location variation, fatigue, sweat accumulation, socket alignment, limb volume, pressure 

distribution) because residual muscles are subject to weight bearing conditions and daily 

donning/doffing of the prosthesis introduces disturbances (Wagner et al., 2020; 
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Hefferman et al., 2015; Nakamura & Hahn, 2017). Although the use of embedded 

electrodes in the socket or liner minimizes design complexity and facilitates donning and 

doffing of the prosthesis, it can compromise socket suspension and user comfort. In the 

case of transtibial amputees, besides poor intersegmental synergies, intact thigh muscle 

activity of the prosthetic side has been shown to be less variable than residual muscles 

and more similar to normal muscle activation patterns (S. Huang & Ferris, 2012; Seyedali 

et al., 2012) providing more reliable signals. Furthermore, the acquisition of EMG signals 

outside the socket may enhance long-term comfort, and reduce motion artifacts that occur 

within-socket during repeated loading and unloading of the prosthesis during gait. 

1.3 LOWER LIMB PROSTHESES 

Accommodation, balance, and joint motion are major requirements for lower limb 

prostheses to mimic biomechanical movement patterns and restore normal gait. During 

daily activities, lower limb prostheses need to accommodate different types of surfaces 

(e.g., concrete, gravel) and terrains (e.g., stairs, ramps) and the noncyclic movements that 

occur during the transition between terrains. Terrain accommodation and shock 

absorption during heel strike will then reduce the risk of stumbling and weight-bearing 

forces. To mimic normal biomechanical patterns, lower limb prostheses need to achieve 

the physiological range of joint motion and provide propulsion to limit the metabolic 

energy expenditure needed to maintain gait. 
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1.3.1 Passive and Semi-Active Lower Limb Prostheses 

Current lower limb prostheses can be classified into passive, semi-active, and 

active designs. Commercial passive and semi-active lower limb prostheses are widely 

available. Passive prostheses use materials and elements with fixed spring and damping 

properties, and can range from simple designs such as the SACH (solid-ankle cushion-

heel) foot to complex designs such as ESR (energy-storing-and-returning) feet. Passive 

prostheses are designed to either be compliant to increase shock absorption at heel strike 

and accommodate various terrains, or to be stiff and act as a leaf spring to provide some 

propulsion, but usually not both. Semi-active lower limb prostheses (previously 

categorized as powered) improve gait by adjusting their mechanical properties with 

minimal actuation. Some examples of semi-active ankle-foot prostheses include the 

Proprio Foot® (Ossur, Reykjavík, Iceland) and the Meridium (Ottobock, Duderstadt, 

Germany), which utilize a microprocessor to dynamically alter the behavior of the 

prosthesis and react to changes in the environment. However, they do not provide 

additional power to directly propel the user’s movement. Ultimately, passive and semi-

active lower limb prostheses are unable to meet the needs to restore normal gait of lower 

limb amputees. 

1.3.2 Active Powered Lower Limb Prostheses 

Active powered lower limb prostheses can enhance amputee ambulation by 

adding power into different phases of the gait cycle, power that has been lost due to 

amputation of the lower limb muscles. The terms active and powered have been used 

interchangeably in the research community for prostheses that are able to generate power 
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during propulsion. Developing control algorithms for active lower limb prostheses is 

challenging and impacts the level of human adaptation to the device. Controllers for 

active lower limb prostheses range from closed-loop finite state machines (FSMs) driven 

by electromechanical sensors intrinsic to the prosthesis [e.g., inertial sensors, position 

encoders; (Au et al., 2009; Cherelle et al., 2016; Shultz & Goldfarb, 2018; Sun et al., 

2014; Q. Wang et al., 2014)], to continuous proportional myoelectric control [based on 

the amplitude of EMG signals; (Dawley et al., 2013; Hoover et al., 2012; S. Huang et al., 

2016; S. Huang & Huang, 2018, 2019)], as well as hybrid strategies combining 

electromechanical and myoelectric signals (Au et al., 2008; M. Liu et al., 2017; Spanias 

et al., 2018; J. Wang et al., 2013; Kannape & Herr, 2014, 2016). 

Currently, there are several active ankle-foot prostheses, at different stages of 

development and commercialization. The Empower (Ottobock, Duderstadt, Germany) is 

currently the only commercially available active ankle-foot prosthesis. The BiOM’s (the 

preceding model of the Empower) controller uses FSM to identify the current state of the 

prosthesis during gait and select among low-level controllers. The system is capable of 

providing push-off power [torque (i.e., moment) control], varying joint stiffness during 

stance phase (impedance control), and completing toe clearance during swing (position 

control) (Au et al., 2009). In a research setting, myoelectric control in combination with 

FSM has been implemented to switch from level walking to stair descent using the 

residual tibialis anterior and gastrocnemius muscles (Au et al., 2008), and implemented 

as FSM-based proportional control, via the residual gastrocnemius, to modulate torque 

gain during level walking (J. Wang et al., 2013) and stair ascent push-off (Kannape & 

Herr, 2014). 
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The Vanderbilt-Goldfarb active ankle-foot prosthesis employs an impedance-

based supervisory FSM controller to switch between four activity controllers (standing, 

walking, stair ascent, and stair descent) where the ankle behavior within each activity is 

controlled by separate sets of FSMs (Culver et al., 2018; Shultz et al., 2016). Experiments 

with a single transtibial amputee showed that the prosthesis provided benefits (ascent 

power assistance, descent power dissipation and bilateral shock absorption) over passive 

designs during stair ambulation and that the amputee was able to intentionally switch 

between activities but with some difficulty. Similarly, Cherelle et al., Zheng and Shen 

and Wang et al. have used FSM-based impedance (stiffness, damping) controllers to 

actuate their ankle-foot prostheses (Cherelle et al., 2014, 2016; Q. Wang et al., 2014; 

Zheng & Shen, 2015). 

The Walk-Run Ankle is the latest generation of the SPARKy (Spring Ankle with 

Regenerative Kinetics) and is advertised as Ruggedized Odyssey Ankle (SpringActive, 

Tempe, Arizona, United States). The Walk-Run Ankle controller uses the phase planes of 

the angular velocity and acceleration of the tibia to continuously control standing, 

walking, and running using predefined lookup tables (gait selection, gait cycle percent 

determination, angle and moment motor trajectories) from experimental gait studies of 

able-bodied individuals. Using the latest design and complete controller, the system was 

validated with an able-bodied individual using an orthosis fixed parallel to the prosthesis 

(Grimmer et al., 2016) and with a transtibial amputee during constant-speed treadmill 

walking (Grimmer et al., 2017). Running was achieved in transtibial amputees using the 

SPARKy (Hitt et al., 2010) and a preliminary version of the Ruggedized Odyssey Ankle 

(Ward et al., 2015). 
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The Michigan-Ferris ankle-foot prosthesis is the only design that has validated 

continuous proportional myoelectric control (S. Huang et al., 2016). During gait, the 

inflation pressure of pneumatic artificial plantarflexor muscles is proportional to the 

contraction of the residual gastrocnemius. Using this system, transtibial amputees were 

able to control ankle plantarflexion during level treadmill walking only when given an 

explicit muscle contraction goal via real-time visual feedback. Over time, volitional 

actuation of the prosthesis became physically and cognitively demanding for the amputee 

caused by the need to constantly attend to the visual feedback and intentional muscle 

contraction. 

The Marquette-Voglewede active ankle-foot can be controlled by state-based and 

continuous control algorithms. In the state-based controller, a FSM determines the phases 

and sub-phases of the gait cycle, and as a consequence, selects between moment or 

position control to regulate the motor’s behavior (Sun & Voglewede, 2012). This 

controller design was tested with a transtibial amputee during level ground walking (Sun 

et al., 2014). Although it outperformed a passive prosthesis during push-off, the 

prosthesis was not able to fully return to neutral position due to delays in the 

microcontroller and the actuation following sensor signaling of the swing phase (max. 50 

ms). This limitation can be eliminated by incorporating a continuous predictive model to 

signal user intent before the swing phase. For that reason, a predictive stiffness controller 

was developed and bench tested to control the prosthesis continuously (Klein & 

Voglewede, 2018). Other active ankle-foot prototypes developed by Ficanha et al. and 

Yu et al. have reported similar time delays of 40 ms for the system delay between the 

input and output of a two degrees of freedom cable-driven prosthesis (Ficanha et al., 



12 
 

2016), and a maximum of 40 ms for the pull-in response time of a bypass restriction 

valve of an electrohydrostatic-based prosthesis (Yu, 2017; Yu et al., 2019). 

Active ankle-foot prostheses have normalized biomechanical patterns to some 

degree, accommodated common activities, decreased metabolic energy cost when 

compared to passive prostheses, and provided net propulsion work and shock absorption. 

Despite these improvements, continuous and predictive adaptation to changes in the 

environment (gait adaptability) is still a major challenge for lower limb amputees due to 

the limitations in the existing mechanical designs and control algorithms (Kannape & 

Herr, 2016). Gait adaptability can be improved by incorporating information on user 

intent (e.g., via EMG activity), allowing users to modify prosthetic joint dynamics in a 

more natural, and less physically and cognitively demanding way. The following sections 

describe in depth the advantages and limitations of the current control systems. 

1.3.2.1 Finite State Machine Control 

The use of FSM control in combination with electromechanical sensors embedded 

in the prosthesis itself or worn on the residual limb has become an increasingly common 

approach due to their high precision and reliability. FSM-based control is constrained by 

a relatively small number of pre-defined, discrete states and locomotion modes, and the 

need to define switching rules for transitioning between states. User intention is deduced 

indirectly by prosthetic sensors which introduce undesirable delays and/or requires the 

user to intentionally switch between modes based on anticipated changes in terrain. 

Consequently, the system has a limited ability to deal with novel movements and 

noncyclic activities whereas intentional switching may increase physical and cognitive 
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load on the user, particularly in complex environments (Culver et al., 2018; Zhang et al., 

2015). 

Continuous control approaches using intrinsic prosthetic sensors to unify the gait 

cycle have also been explored. Joint phase-based methods have been developed to control 

ankle-foot and multi-joint leg prostheses using shank and hip kinematics, respectively 

(Hitt et al., 2010; Holgate et al., 2009; Quintero et al., 2018). While walking across slopes 

at varying speeds and running have been demonstrated, phase-based algorithms have 

limitations responding to noncyclic and novel movements since they need distinguishable 

phase planes for each ambulation activity. Discrete and continuous approaches designed 

around intrinsic prosthetic sensors provide high fidelity feedback about past limb state 

(indirect user intent) but are generally reactive (rather than predictive) to gait and 

environmental changes, and can introduce delays in the actuation of the prosthesis. 

1.3.2.2 Myoelectric Control 

Myoelectric control systems involve the detection, classification, and application 

of EMG signals to understand and control a wide variety of devices such as exoskeletons 

(Hayashi et al., 2005; Lenzi et al., 2011), wheelchairs (Felzer & Freisleben, 2002; Moon 

et al., 2005), and multifunction limb prostheses (Kuiken et al., 2009; Light et al., 2002; 

Tommasi et al., 2013). Myoelectric control has been used commercially in upper limb 

prostheses for decades (Össur, 2019; Ottobock, 2014). However, implementation in lower 

limb prostheses has been limited due in part to the development of physical systems that 

can achieve the power-to-weight demands of walking (e.g., load-bearing conditions) in 

combination with the challenges in the design of electrode-socket interfaces and the 
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reliable acquisition of EMG signals through bulkier residual limb soft tissue (e.g., subject 

to limb volume fluctuations, sweat accumulation, pistoning) (Fleming et al., 2021; 

Tucker et al., 2015). 

In contrast to upper limb prostheses, fewer degrees of freedom must be controlled 

to restore limb function with lower limb prostheses. For transtibial amputees, most active 

ankle-foot prostheses focus on restoring motion in the sagittal plane only (e.g., ankle 

plantarflexion and dorsiflexion), further reducing the requisite degrees of freedom. This 

maximizes the ratio of myoelectric signal sources to degrees of freedom to several 

muscle sites (e.g., tibialis anterior, medial and lateral gastrocnemius), making the 

myoelectric control potentially more feasible and robust. Additionally, advancements in 

wearable and implantable sensor technology [e.g., knit band sensors (S. Lee et al., 2018), 

prosthetic liner with embedded electrodes (Reissman et al., 2018), flexible dry electrodes 

(Kisannagar et al., 2020)] are promising for implementation in real-time myoelectric 

lower limb prostheses. 

For a seamless and intuitive device actuation, prosthetic controllers must 

recognize the user’s locomotive intention given changes in the environment. Although 

electromechanical prosthetic sensors have high repeatability and reproducibility, they 

introduce an intrinsic delay and the resulting control must infer human intention through 

secondary information such as gait events or joint mechanics. As a result, their actuation 

is reactive to user’s biomechanical changes. EMG measurement of muscle activity 

enables a direct prediction of intended biomechanics. The electrical activity of the muscle 

precedes force generation, and consequently, limb movement, providing opportunities for 

an intuitive and volitional control (Cavanagh & Komi, 1979; Merletti & Parker, 2004). 
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For example, physiological electromechanical delays from onset of surface EMG to the 

neuromotor drive can range between 4 to 170 ms for lower leg muscles (Go et al., 2018). 

Additionally, EMG-driven control is particularly useful in responding to sudden changes 

to the environment. Still, the use of EMG sensors poses challenges in achieving robust 

control due to low signal quality, variability associated with sensor placement and 

electrode-skin conductivity, cross-talk between nearby muscles, and signal processing for 

feature extraction. In spite of these issues, surface EMG have been extensively researched 

as an alternate, minimally-invasive source of control signals. 

1.3.2.2.1 EMG-driven Finite State Machines 

Studies have demonstrated that it is possible to record EMG signals within the 

prosthetic socket of transtibial and transfemoral amputees (Au et al., 2008; S. Huang et 

al., 2016; Kannape & Herr, 2016; Tkach et al., 2013). Current efforts to incorporate user 

intent using EMG activity of shank and thigh muscles for myoelectric control have 

primarily focus on pattern recognition (Au et al., 2008; M. Liu et al., 2017; Spanias et al., 

2018; Tkach et al., 2013), and proportional control (J. Wang et al., 2013; Kannape & 

Herr, 2014, 2016). These hybrid state-based myoelectric approaches use within-socket 

EMG signals to select discrete locomotion modes, or to modify prosthetic behavior 

within a single state using proportional control (e.g., motor torque gain) with the 

prosthesis being controlled by FSM. The combination of direct user intent, via EMG 

signals, and information about limb state, via electromechanical prosthetic sensors, has 

been shown to increase robustness and accuracy of locomotion mode detection (B. Chen 

& Wang, 2015; Tkach & Hargrove, 2013; H. Huang et al., 2011). EMG-driven FSMs can 
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improve flexibility, allowing amputees to transverse different terrains and adapt to 

different walking speeds. However, control may not be as intuitive, requiring the user to 

learn novel muscle activation patterns, and remains constrained to the control of 

predefined locomotion modes, limiting the amputee’s control over the prosthesis. 

Spanias et al. used EMG activity from residual thigh muscles (rectus femoris, 

semitendinosus, tensor fascia latae, and adductor magnus) of transfemoral amputees to 

control a lower limb prosthesis with actively powered knee and ankle joints (Spanias et 

al., 2018). By means of deep belief neural networks, the intent recognition algorithm was 

able to identify gait during level walking, ramps, and stairs over multiple days. 

Synergistic relationships between the thigh muscles and ankle motion were observed by 

Tkach et al., who showed that lower classification errors were obtained in transtibial 

amputees when combining residual shank and intact thigh EMG of the prosthetic side to 

virtually control a three degree-of-freedom ankle-foot prosthesis (Tkach et al., 2013). 

These results suggest that thigh muscle activity could provide an alternative source to 

control ankle dynamics. Furthermore, the acquisition of EMG signals outside the socket 

may reduce within-socket signal disturbances and improve user experience. 

1.3.2.2.2 Continuous Proportional Myoelectric Control 

Alternate approaches that continuously determine the dynamic changes of the 

joint and do not require division into discrete states have begun to emerge. Continuous 

proportional myoelectric control (CPMC) does not rely on a FSM, but instead allows the 

amputee to actuate the prosthesis based on the amplitude of residual muscle activity. 

Residual antagonistic muscles of a single transfemoral amputee have been used to 
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continuously modulate impedance of an active knee prosthesis during level ground 

walking (Dawley et al., 2013; Hoover et al., 2012). Using CPMC, transtibial amputees 

were able to control a virtual environment via their residual ankle dorsiflexor and 

plantarflexor muscles (S. Huang & Huang, 2018, 2019), and control an active ankle-foot 

prosthesis via a single ankle plantarflexor muscle during level treadmill walking (S. 

Huang et al., 2016). CPMC, especially for impedance control, is a promising approach; 

however, it can require extensive user training, increase cognitive processing, and can be 

affected by muscle fatigue. For robust implementation of CPMC, it is imperative to 

extensively assess the capabilities and boundaries of an individual amputee’s volitional 

muscle activation (reciprocal and coactivation) prior to use. 

1.4 CONTINUOUS GAIT MODELS FOR THE ESTIMATION OF LOWER 
LIMB STATE 

Many methods to estimate joint dynamics continuously (time series) have been 

proposed to determine the dynamic changes of the hip, knee, and/or ankle joint without 

the division into discrete locomotion states. In the case of myoelectric control, these 

continuous gait models could reduce user’s cognitive and physical demand and 

dependency on amputees’ ability to generate high quality, independent muscle signals. 

 Impedance and stiffness control based on joint moment and angle have become 

an increasingly common approach for actuating active powered lower limb prostheses 

(Figure 1.1) (Au et al., 2008; Culver et al., 2018; Ha et al., 2011; Hoover et al., 2013; 

Klein & Voglewede, 2018; Spanias et al., 2018). Their development stems from the 

belief that the central nervous system controls the limbs through impedance control since 

human movements are robust to perturbations and changes in terrain despite the inherent 
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delay in signal transmission via neural pathways (Kadiallah et al., 2011; Towhidkhah et 

al., 1997); therefore, prosthetic impedance control can produce a more natural and 

smooth actuation. Ankle angle and ankle moment (i.e., torque) are common targets for 

controlling transtibial prostheses. More generally, limb joint kinematics and kinetics have 

been continuously estimated from EMG signals (Ardestani et al., 2014; Baby Jephil et al., 

2020; J. Chen et al., 2018; Y. Chen et al., 2013; Farmer et al., 2014; Gupta et al., 2020; 

Hahn & O’Keefe, 2008; Huihui et al., 2018; Keleş & Yucesoy, 2020; J. Lee & Lee, 2005; 

Li et al., 2015; J. Liu et al., 2020; Meyer et al., 2017; Ngeo et al., 2014; Prasertsakul et 

al., 2012; Sepulveda et al., 1993; Shao et al., 2009; J. Wang et al., 2020; Zarshenas et al., 

2020; Zhang et al., 2012), hip and knee joint dynamics (Dey et al., 2019; Embry et al., 

2018; Eslamy & Alipour, 2019; Joshi et al., 2011), force myography (Kumar et al., 

2021), and ground reaction forces (Jacobs & Ferris, 2015; Y. Liu et al., 2009), among 

others. Random forest regression (Huihui et al., 2018), Kalman filters (Brantley et al., 

2017), support vector regression (Dey et al., 2019; Li et al., 2015), Gaussian process 

regression (Eslamy & Alipour, 2019), and various types of artificial neural networks 

[e.g., feedforward, time delay, recurrent; (Ardestani et al., 2014; J. Chen et al., 2018; 

Farmer et al., 2014; Hahn & O’Keefe, 2008; Keleş & Yucesoy, 2020; Zarshenas et al., 

2020; Zhang et al., 2012)] have been used as modeling techniques for the continuous 

estimation of gait. 
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Figure 1.1. Stiffness control for actuating an active ankle-prosthesis using ankle angle and moment as 
targets (Klein & Voglewede, 2018). 

This section gives an overview of different methods for time series (continuous) 

modelling, including definitions and terms used later in this dissertation. It also reviews 

continuous gait models developed for the estimation and prediction of ankle dynamics in 

order to identify areas for improvement. In this dissertation, a distinction between 

estimation and prediction is made. Estimation refers to the computation of the next time-

step value of the time series, commonly known as one-step-ahead prediction (Figure 

1.2). Prediction refers to computation of a future value, several time steps ahead of time 

(i.e., n-step-ahead prediction). 

 
Figure 1.2. Graphical representation of one-step-ahead estimation and n-step-ahead prediction. P: time 
point. 
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1.4.1 Time Series Modeling Techniques 

Many traditional modeling techniques have been widely used to estimate time 

series signals. Some examples include AR (autoregressive), ARX (AR model with 

exogenous, i.e., external, inputs), ARMA (autoregressive with moving average), and 

ARMAX (ARMA model with exogenous inputs) models, among others. An 

autoregressive model relates current observations of a variable with past observations of 

itself and other variables in the system to describe and estimate/predict the time-varying 

process. These models assume that the underlying signals are linear and stationary 

(statistical properties constant over time). Due to their linearity, simplicity, and lack of 

prior information (e.g., initial conditions), they can be outperformed by artificial neural 

networks in complex (e.g., nonlinear, numerous variables) and noisy problems, especially 

during long-term prediction (Hu & Hwang, 2001; Mahmoud, 2012). 

Artificial neural networks are derived from traditional linear regression methods, 

and have been expanded to incorporate deep learning and prediction capabilities. Neural 

networks can deal with time-varying challenges such as variability (noise), nonlinearities, 

non-stationary data, and lack of prior knowledge. The most common types of neural 

networks used for continuous estimation of lower limb kinematics and kinetics include 

multilayer feedforward artificial neural networks (FFANN), time delay neural networks 

(TDNN), and recurrent neural networks. Similar to traditional linear regression methods, 

neural networks also characterize the relationship between the inputs and outputs and 

their temporal relationship at different time steps into the model with the purpose to 

estimate/predict. The general neural network structure consist of an input layer, one or 

more hidden layers with nonlinear transfer functions (e.g., sigmoid), and a linear output 
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layer. Each layer is connected by a series of weights (and a corresponding bias) that 

represent the strength of the connections between inputs, hidden units (neurons), and 

outputs. The most popular learning technique used to train neural networks is back-

propagation, which uses the errors between the model output and the desired (target) 

output to readjust the weights and biases in a way that minimizes the overall error across 

the training data. 

Feedforward neural networks are the simplest type of networks, where 

information flows in one direction and no information is fed back to previous layers or 

nodes. For continuous gait estimation/prediction, the ability to incorporate a finite 

memory (e.g., past observations) is particularly useful because timing between EMG 

activity and kinematics is a key discriminant of gait across different terrains (Lencioni et 

al., 2019; Wentink et al., 2013, 2014). Time delay networks also have a feedforward 

information flow; however, they use a tapped delay line to incorporate memory 

information. In a tapped delay line, the input vector to the hidden layer consists of the 

current time-step data and past time-step data as individual inputs. In addition to storing 

memory, TDNN are capable of making ahead of time predictions of the time series 

(Zarshenas et al., 2020). 

Most continuous gait models for the estimation of lower limb state are based on 

feedforward architectures. These models have proven to be successful within an 

acceptable level of accuracy. However, the accuracy and stability of feedforward gait 

models cannot be guaranteed when implemented as part of a feedback control system 

(Lewis & Parisini, 1998; Menezes & Barreto, 2008). Additionally, feedforward 

architectures can have limitations identifying complex dynamical systems (sensitive to 
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noise) and for long-term predictions, require a larger number of hidden units and weights, 

and may be more susceptible to overfitting (Gençay & Liu, 1997; M. Han et al., 2004; 

Menezes & Barreto, 2008). These limitations are mainly associated to the lack of direct 

past values of the model output. 

Recurrent neural networks can minimize these problems due to their reliance on 

past temporal dynamics. Contrary to feedforward models, recurrent networks allow 

previous values of the output to be used as inputs, creating feedback loops. Such 

networks are powerful, particularly for long-term prediction, because they incorporate the 

past history of both inputs and outputs. With the presence of feedback loops (additional 

input information), recurrent networks tend to be robust to overfitting, can function as 

noise filters, and have a compact structure (number of hidden units and weights) that 

outperforms feedforward architectures (Gençay & Liu, 1997; M. Han et al., 2004; 

Menezes & Barreto, 2008). As a consequence, the complexity and the length of training 

are increased. An example of a recurrent network is the nonlinear autoregressive neural 

network with exogenous inputs (NARX) used in this dissertation. 

1.4.1.1 The NARX Model 

The NARX model is a discrete nonlinear model based on the linear ARX and 

ARMAX models (S. Chen et al., 1990; Leontaritis & Billings, 1985), and is 

computationally equivalent to a Turing machine (Siegelmann & Sontag, 1991). The 

general NARX model output, 𝑦𝑦(𝑡𝑡), can be expressed as, 

𝑦𝑦(𝑡𝑡) = 𝑓𝑓 �
𝑥𝑥(𝑡𝑡 − 1), 𝑥𝑥(𝑡𝑡 − 2), … , 𝑥𝑥(𝑡𝑡 − 𝐷𝐷𝑥𝑥),
𝑦𝑦(𝑡𝑡 − 1),𝑦𝑦(𝑡𝑡 − 2), … , 𝑦𝑦�𝑡𝑡 − 𝐷𝐷𝑦𝑦�

�  (1.1) 
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where 𝑥𝑥(𝑡𝑡) is the exogenous model input and 𝑦𝑦(𝑡𝑡) is the model output at discrete time 

step t, f is a nonlinear function, and 𝐷𝐷𝑥𝑥 and 𝐷𝐷𝑦𝑦 are the input and output memory orders. 

The net input vector is built through two separate sets of tapped delay lines, one sliding 

over the input signal and one sliding over the model’s output. 

In this dissertation, the tapped delay lines define (1) the number of past input 

values over time (exogenous and output) used in the prediction (D, sampling window) 

where 𝐷𝐷𝑥𝑥 and 𝐷𝐷𝑦𝑦  are set to be equal, and (2) the time between current inputs (exogenous 

and output) and future model predictions (τ, prediction interval) (Figure 1.3). Given these 

characteristics, the general NARX model output, 𝑦𝑦(𝑡𝑡 +  𝜏𝜏), can be expressed as, 

𝑦𝑦(𝑡𝑡 + 𝜏𝜏) = 𝑓𝑓 �𝑥𝑥
(𝑡𝑡), 𝑥𝑥(𝑡𝑡 − 1), 𝑥𝑥(𝑡𝑡 − 2), … , 𝑥𝑥(𝑡𝑡 − 𝐷𝐷),
𝑦𝑦(𝑡𝑡 − 1), 𝑦𝑦(𝑡𝑡 − 2), … ,𝑦𝑦(𝑡𝑡 − 𝐷𝐷) �  (1.2) 

Consequently, 𝑥𝑥(𝑡𝑡 − 𝑑𝑑) and 𝑦𝑦(𝑡𝑡 − 𝑑𝑑), (for 𝑑𝑑 = 1, … ,𝐷𝐷), denote the prior values 

of the exogenous input and output d time steps in the past. 

 
Figure 1.3. Graphical representation of prediction interval and sampling window. 

The NARX model can be trained in two modes: 

• Open-loop mode (commonly known as Series-Parallel): In this mode, the 

experimentally measured past values of the target, 𝑦𝑦(𝑡𝑡 − 𝑑𝑑), are used in the 
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input vector of the network, together with the exogenous input, to predict the 

future output of the model, 𝑦𝑦�(𝑡𝑡 + 𝜏𝜏):  

𝑦𝑦�(𝑡𝑡 + 𝜏𝜏) = 𝑓𝑓 �𝑥𝑥
(𝑡𝑡), 𝑥𝑥(𝑡𝑡 − 1), 𝑥𝑥(𝑡𝑡 − 2), … , 𝑥𝑥(𝑡𝑡 − 𝐷𝐷),

 𝑦𝑦(𝑡𝑡),𝑦𝑦(𝑡𝑡 − 1),𝑦𝑦(𝑡𝑡 − 2), … ,𝑦𝑦(𝑡𝑡 − 𝐷𝐷)� (1.3) 

The use of error-free targets results in a highly accurate network. This training 

mode has a purely feedforward architecture which allows for simpler and 

faster back-propagation learning algorithms (Menezes & Barreto, 2008). 

However, as an open-loop network, the NARX model is not suitable for real-

time applications since explicit knowledge of the true state (error-free targets) 

is generally not available. This training mode is used in CHAPTER 2 (Aim 1) 

of this dissertation. After training, the feedforward (open-loop) NARX model 

can be converted (without explicit training) to its recurrent (closed-loop) 

architecture (not done in this dissertation). However, accuracy and stability of 

the transformed open-loop NARX model cannot be guaranteed because small 

prediction errors can become amplified, leading to instability and failure. 

• Closed-loop mode (commonly known as Parallel): In this mode, the predicted 

past values of the output, 𝑦𝑦�(𝑡𝑡 − 𝑑𝑑), are fed back to form the input vector of 

the network, together with the exogenous input, and used to predict the future 

output of the model, 𝑦𝑦�(𝑡𝑡 + 𝜏𝜏):  

𝑦𝑦�(𝑡𝑡 + 𝜏𝜏) = 𝑓𝑓 �𝑥𝑥
(𝑡𝑡), 𝑥𝑥(𝑡𝑡 − 1), 𝑥𝑥(𝑡𝑡 − 2), … , 𝑥𝑥(𝑡𝑡 − 𝐷𝐷),
𝑦𝑦�(𝑡𝑡 − 1), 𝑦𝑦�(𝑡𝑡 − 2), … ,𝑦𝑦�(𝑡𝑡 − 𝐷𝐷) � (1.4) 

If the model is trained as closed-loop from the start, the model output error is 

encoded in the input during training, since output predictions are fed back as 

recurrent inputs instead of error-free target data. This results in a recurrent 
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(closed-loop) NARX model architecture that is more robust and stable to 

model uncertainties (e.g., error accumulation and undesired fluctuations). 

Closed-loop model performance tends to be inferior (Menezes & Barreto, 

2008) to open-loop models, but accuracy can be improved by incorporating 

additional input signals (Dey et al., 2019; Eslamy & Alipour, 2019; Keleş & 

Yucesoy, 2020; Gupta et al., 2020). The resulting closed-loop model has the 

same advantages and disadvantages of recurrent neural networks as described 

previously. This training mode is used in CHAPTERS 3 and 4 (Aims 2 and 3) 

of this dissertation. 

1.4.2 Continuous Estimation of Ankle Dynamics 

The continuous estimation of joint moments has focused on the use of multi-body 

dynamic musculoskeletal modelling. While effective, it requires constant and time 

consuming [e.g., 30 min (Meyer et al., 2017)] re-calibration of model parameters that are 

sensitive to changes in muscle-tendon geometry which may not be well characterized for 

amputees or orthopedic impaired individuals (Meyer et al., 2017; Shao et al., 2009), and 

consequently, not suitable for real-time applications. Due to these limitations, regression 

methods, including artificial neural networks, have been explored to estimate moment 

continuously for real-time applications. For example, Lui et al. proposed a FFANN to 

continuously estimate hip, knee, and ankle joint moments using vertical ground reaction 

forces, vertical displacement of center-of-mass, vertical velocity of center-of-mass, and 

jump power while performing two different vertical jumps (Y. Liu et al., 2009). 
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Support vector regression (SVR) and Gaussian process regression (GPR) have 

been used to continuously estimate ankle angle and moment simultaneously using hip and 

knee joint kinematics (Dey et al., 2019) and shank kinematics (Eslamy & Alipour, 2019), 

respectively. Dey et al. used SVR to continuously estimate ankle angle and moment 

during level overground walking [root mean square error (RMSE) = 2.17° and 0.11 

Nm/kg] using two extrinsic inputs (hip and knee angle) of a single healthy participant. 

The generalized inter-subject GPR method, applied to able-bodied participants, was able 

to continuously and simultaneously estimate ankle angle and moment during level 

treadmill walking at varying speeds (0.5, 1, and 1.5 m/s). Using shank kinematics (angle 

and angular velocity) as the two inputs, angle RMSE and moment RMSE were between 

2.2-2.6 degrees and 0.11-0.16 Nm/kg, respectively, with correlations (R2) greater than 

0.82, and 0.86, respectively. Although simultaneous estimation of ankle angle and 

moment was achieved in both studies, performance was characterized during a single 

type of terrain, i.e., level walking. The use of kinematic-only inputs can provide an 

alternative for predicting user intent indirectly but the need for wearable sensors extrinsic 

(and intrinsic) to the prosthesis poses similar challenges to EMG-based systems. 

Classification algorithms have been used together with surface EMG to 

distinguish among discrete locomotion modes (Gupta & Agarwal, 2017; H. Huang et al., 

2009; M. Liu et al., 2017; Young et al., 2014) while other approaches continuously 

estimate ankle joint kinematics and kinetics (Ardestani et al., 2014; Baby Jephil et al., 

2020; J. Chen et al., 2018; Farmer et al., 2014; Gupta et al., 2020; Hahn & O’Keefe, 

2008; Huihui et al., 2018; Keleş & Yucesoy, 2020; Prasertsakul et al., 2012; Sepulveda et 

al., 1993; J. Wang et al., 2020; Zarshenas et al., 2020; Zhang et al., 2012) using EMG 
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signals. Most approaches characterize performance during a single type of terrain [e.g., 

level walking; (Ardestani et al., 2014; J. Chen et al., 2018; Farmer et al., 2014; Hahn & 

O’Keefe, 2008; Keleş & Yucesoy, 2020; Prasertsakul et al., 2012; J. Wang et al., 2020; 

Zarshenas et al., 2020; Zhang et al., 2012)] or ankle motion (e.g., ankle plantarflexion) 

while sitting (Baby Jephil et al., 2020; Huihui et al., 2018; Zhang et al., 2012). Models 

that estimate ankle angle or moment during more than one condition (e.g., speeds) have 

begun to emerge. In the following paragraphs, the latest published EMG-driven 

continuous gait models for the estimation of ankle dynamics are reviewed in detail. 

Zhang et al. used a three-layer nonlinear FFANN to estimate hip, knee, and ankle 

angle simultaneously using a combination of muscle activity from one shank and two 

thigh muscles, including past EMG values (Zhang et al., 2012). Level treadmill walking 

at different speeds and loads was conducted by able-bodied participants and passive 

walking by spinal cord injury patients. Zhang et al. obtained a wide range of ankle angle 

errors (RMSE = 0.82 to 9.3°) during level walking of spinal cord injury patients using 

subject-specific networks. The large variation in errors was attributed to the wide range 

of ankle motion of the patients (i.e., restricted motion resulted in lower errors). A deep 

belief network (DBN) and principal component analysis (PCA) were used separately for 

EMG dimensionality reduction, and combined with a three-layer nonlinear FFANN to 

estimate hip, knee, and ankle angle of healthy participants (J. Chen et al., 2018). Trained 

generalized inter-subject networks continuously estimated changes in speeds during level 

overground walking using ten EMG signals of the thigh and shank muscles. DBN 

outperformed PCA, reducing errors by 50% with average correlations (r) greater than 

0.86 for ankle angle. 
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Gupta et al. proposed separate nonlinear autoregressive models (i.e., NARX) for 

five individual terrain types to estimate ankle angle of healthy participants during gait 

(Gupta et al., 2020). It is believed that the NARX model was implemented as a 

feedforward (open-loop) model using error-free targets instead of estimated outputs. 

Gupta et al. trained and tested separate subject-specific networks and reported errors, 

using three inputs, during level overground walking (RMSE = 2.44 ± 0.45°, r = 0.97), 

stair ascent (RMSE = 3.61 ± 1.00°, r = 0.93), stair descent (RMSE = 5.04 ± 1.56°, r = 

0.85), ramp ascent (RMSE = 4.52 ± 0.94°, r = 0.82), and ramp descent (RMSE = 5.44 ± 

1.64°, r = 0.94). The exogenous inputs of the model consisted of the linear envelopes of 

two shank EMG signals (tibialis anterior and gastrocnemius), individually, and in 

combination with knee angle. Time history was incorporated in the model as time tapered 

delays (equivalent to sampling window) but did not make estimations ahead of time. 

Keleş et al. performed a comprehensive analysis of shank, thigh, and gluteal 

muscle sites and their combinations for use as EMG inputs to estimate ankle angle and 

moment (Keleş & Yucesoy, 2020). Simultaneous estimation of ankle angle and moment 

was achieved during level overground walking at various speeds using a TDNN and 

simulated EMG data of a healthy population, including prior data points. Using ankle 

plantarflexor and dorsiflexor muscles, they reported ankle angle and moment errors 

(RMSE) of 2.34 ± 0.15 degrees and 0.041 ± 0.006 Nm/kg with correlations (r) greater 

than 0.95, although performance was not examined with estimations ahead of time nor 

across ambulation conditions. Greater errors and lower correlations were reported using 

EMG from antagonistic thigh (rectus femoris and bicep femoris) muscles (RMSE = 3.60 

± 2.00°, r = 0.90; RMSE = 0.264 ± 0.123 Nm/kg, r = 0.82). Similar to other continuous 



29 
 

gait models (Dey et al., 2019; Eslamy & Alipour, 2019; Gupta et al., 2020), their study 

revealed that model performance improved by increasing the number of muscle sites (i.e., 

number of inputs) and the inclusion of shank muscle signals. For the case of minimizing 

inputs, the combination of tibialis anterior, gastrocnemius medialis and biceps femoris 

EMG signals yield the best performing model (RMSE = 1.54 ± 0.06°, r = 0.98; RMSE = 

0.038 ± 0.007 Nm/kg, r = 0.99). For the case of minimizing within-socket sites, muscles 

from the shank, thigh, and gluteal area (three signals) were required to achieve acceptable 

performance (RMSE = 2.25 ± 0.34°, r = 0.96; RMSE = 0.042 ± 0.005 Nm/kg, r = 0.99). 

The comprehensive analysis supports prior studies indicating that thigh muscle activity 

contains synergistic gait information about ankle state. 

Ardestani et al. used a generalized inter-subject wavelet neural network (WNN) 

and a three-layer FFANN to estimate ankle plantarflexion moments using a combination 

of six thigh and two shank EMG signals and two ground reaction forces of patients with 

unilateral knee replacement (Ardestani et al., 2014). Ardestani et al. obtained ankle 

moment errors of 4.2% and 8.4% using WNN and FFANN models, respectively, during 

level walking (single walking condition) when trained on three patients, and tested on a 

fourth. They obtained higher errors for normal walking (WNN 8.1% and FFANN 12.9%) 

based on a non-specific inter-subject training paradigm, wherein the network was trained 

on data from three different patients while performing three rehabilitation therapy 

walking programs (normal, medial trust, walking pole), and tested on a fourth participant. 

In their study, the purpose was to create a generalized real-time surrogate inverse 

dynamic model for gait analysis and was not intended for use in prosthetic control. 

Another surrogate gait analysis model of sagittal ankle moment was developed for 
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clinical purposes (Hahn & O’Keefe, 2008). Ankle moment was estimated continuously 

during normal level overground walking using a FFANN with diverse inputs 

(demographics: age and gender; anthropometrics: height, mass, foot inertia; kinematics: 

ankle angle, angular velocity and angular acceleration, and EMG: tibialis anterior and 

gastrocnemius medialis). Correlations (R2) greater than 0.95 were obtained using all 

inputs together with an inter-subject network trained with data from all participants. 

Predictive approaches (n-step-ahead prediction, i.e., future estimates) for 

continuous gait estimation have begun to emerge. Zarshenas et al. utilized a TDNN to 

predict ankle moment up to 2 seconds (0, 0.5, 1, 1.5, and 2 s) ahead of time (equivalent to 

prediction interval) during normal level treadmill walking (Zarshenas et al., 2020). EMG 

signals from four shank muscles (tibialis anterior, gastrocnemius medialis and lateralis, 

and soleus), together with ankle angle and angular velocity, were used as inputs, 

including past values. Favorable results occurred up to 1 second with EMG and ankle 

kinematics (R2 > 0.8) as inputs, and at zero-time with EMG only (R2 > 0.84). Their 

model exploited the cyclic nature of treadmill walking at a constant speed which resulted 

in high accuracy over large prediction intervals, although performance was not examined 

during noncyclic features of gait such as terrain transitions. 

Previous work has demonstrated the ability of a feedforward (open-loop) NARX 

model to continuously predict future ankle kinematics of passive ankle-foot prostheses 

using within-socket EMG activity from the residual limb of unilateral transtibial 

amputees (Farmer et al., 2014; Silver-Thorn et al., 2012). The model used the EMG 

linear envelope of remnant ankle dorsiflexor and plantarflexor as input, together with the 

prior history of the prosthetic ankle angle (i.e., error-free targets), to predict future ankle 
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angle during level treadmill walking. It is believed that this was the first study in which a 

continuous gait model was validated using EMG and kinematic data from transtibial 

amputees. In the presence of co-contraction between antagonistic muscles, Farmer et al. 

reported angle errors (RMSE) ranging from 1.2 to 5.4 degrees across participants for 

prediction intervals of 100 ms ahead of time. The incorporation of natural, yet altered, 

EMG signals significantly reduced average errors in ankle angle during the gait cycle and 

phase transitions. However, the subject-specific model was limited to the prediction of a 

single terrain and did not predict ankle moments needed in stiffness and impedance 

control. 

In summary, these studies support the feasibility of continuously estimating ankle 

joint angles and moments independently and simultaneously using EMG signals. 

However, most models have used a feedforward structure to estimate (i.e., excluding 

future predictions) ankle angle or moment limited to level walking using muscle activity 

from only the shank, or in combination with thigh EMG, of healthy individuals (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜃𝜃 

< 5.3°, 𝑅𝑅𝜃𝜃2 > 0.74; 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀 < 0.18 Nm/kg, 𝑅𝑅𝑀𝑀2  > 0.83). Simultaneous prediction of both 

ankle angle and moment across multiple types of terrain (e.g., level walking, stair 

ascent/descent) including the transitions between terrains has not been demonstrated. 

Moreover, almost all models characterized ankle dynamics using a reactive (i.e., one-

step-ahead estimation) rather than a predictive (i.e., n-step-ahead prediction) approach. A 

continuous predictive approach could help overcome delays in sensing, processing, and 

actuation of the mechanical device and help to modify gait proactively in response to 

upcoming changes in terrain. 
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1.5 SPECIFIC AIMS 

The main goals of this dissertation are (1) to develop a continuous predictive 

model of lower limb state that uses surface EMG of the lower limb to predict (i.e., future 

estimates) ankle angle and moment across ambulation conditions (i.e., level overground 

walking, stair ascent, and stair descent) and the transitions between them (i.e., transitions 

to/from a staircase), and (2) to determine the feasibility of using natural EMG of the 

prosthetic side of transtibial amputees for the continuous prediction of normative ankle 

dynamics. Three specific aims are established to accomplish these goals. Each aim is 

presented in a separate chapter (CHAPTERS 2-4) and formatted as a standalone 

manuscript. 

1.5.1 Specific Aim 1: Develop a Gait Model That Uses Muscle Activity of the 
Lower Leg to Continuously Predict Future Ankle Dynamics across Ambulation 
Conditions 

Efforts to use EMG signals to control active lower limb prostheses have mainly 

focused on discrete approaches that are reactive to changes in terrain, can introduce 

undesirable discontinuities during gait, and limit the amputee’s control over the 

prosthesis. Here, natural muscle activity of the lower leg (i.e., shank) of able-bodied 

individuals will be incorporated into a multiple-input multiple-output nonlinear 

autoregressive model to continuously predict future ankle kinematics and kinetics across 

ambulation conditions and their transitions. The extent to which EMG signals can be used 

in model prediction will be assessed. We hypothesize that the autoregressive model can 

predict the wider ranges of ankle dynamics associated with healthy ambulation across the 

series of self-powered ambulation conditions, and that the incorporation of EMG signals 
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can lower prediction errors. This capability is relevant toward the eventual control of 

prostheses across the range of ankle dynamics in the sound limb needed for restoring 

symmetric gait. The myoelectric predictive model of able-bodied individuals will provide 

a best case characterization of normal gait patterns across multiple terrains and 

transitions. 

1.5.2 Specific Aim 2: Determine the Ability of Using Within-Socket Residual EMG 
Signals of Transtibial Amputees to Continuously Predict Future Ankle Dynamics of 
the Sound Limb across Ambulation Conditions 

Prior work has demonstrated the feasibility of using within-socket residual EMG 

signals from transtibial amputees together with a NARX model to continuously predict 

prosthetic ankle angle during treadmill walking. Here, natural patterns of within-socket 

residual EMG signals of transtibial amputees, in combination with shank kinematics of 

the sound limb, will be used as exogenous inputs to a NARX model to continuously 

predict future ankle kinematics and kinetics of the sound limb across ambulation 

conditions and terrain transitions. We hypothesize that within-socket residual EMG and 

sound-limb shank kinematics can be used effectively to predict ankle dynamics of the 

sound limb, and that model prediction errors will not pose a risk of trip-related falls or 

injury. Continuous predictive models of able-bodied individuals will characterize normal 

ranges of ankle dynamics using normal shank muscle activity and kinematics, and serve 

as a normative comparison of model performance and EMG contribution to model 

prediction of amputee models. We expect that amputee models will have performance 

comparable to able-bodied models, and that within-socket residual EMG will be used in 

the model prediction to the same extent as normal ankle dorsiflexor and plantarflexor 
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muscle activity. Most amputees develop altered lower limb EMG activity, kinematic, and 

kinetic patterns to compensate for limitations in their prosthesis. The approach of 

mapping ankle dynamics of the sound limb with residual EMG of the prosthetic side, will 

take an important step toward establishing a more normal gait by overlaying the 

dynamics of the sound limb onto the prosthesis to create symmetric gait patterns. 

1.5.3 Specific Aim 3: Examine the Feasibility of Using Thigh Muscle Activity to 
Continuously Predict Future Ankle Dynamics 

While thigh muscles do not control ankle motion directly, their synergistic 

activity and control of the knee and hip joints may provide an alternate source of 

information to differentiate among multiple terrains. A systematic comparison of gait 

model performance has not been performed using within-socket residual shank or intact 

thigh muscle activity of the prosthetic side to predict ankle dynamics with transtibial 

amputees. Here, natural patterns of thigh EMG of the prosthetic side from transtibial 

amputees, in conjunction with sound-limb shank kinematics, will be used as exogenous 

inputs to a NARX model to continuously predict future ankle kinematics and kinetics of 

the sound limb across ambulation conditions and terrain transitions. We hypothesize that 

prosthetic-side thigh EMG can be used effectively to predict sound-limb ankle dynamics 

similar to model predictions based on within-socket residual shank EMG. We expect that 

thigh muscle activity of the prosthetic side will be used in the model prediction, and to 

the same extent as residual ankle dorsiflexor and plantarflexor muscle activity. Similar to 

Aim 2, continuous predictive models of able-bodied individuals will be developed. The 

ability to use thigh muscles to predict ankle dynamics may enhance long-term comfort 

and improve myoelectric control of ankle-foot prostheses by reducing signal disturbances 
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(e.g., motion artifacts) that occur within the prosthetic socket during repeated loading and 

unloading of the prosthesis during gait. 

A continuous predictive model of gait that incorporates direct user intent, vis-à-

vis EMG signals, could provide a more natural, intuitive, and robust control for a better 

reproduction of normal human gait of active powered lower limb prostheses, particularly 

ankle-foot prostheses. 
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CHAPTER 2: CONTINUOUS MYOELECTRIC PREDICTION OF FUTURE 
ANKLE ANGLE AND MOMENT ACROSS AMBULATION CONDITIONS 

AND THEIR TRANSITIONS 

This chapter has been previously published: 
Zabre-Gonzalez EV, Riem L, Voglewede PA, Silver-Thorn B, Koehler-McNicholas SR and Beardsley SA 
(2021) Continuous myoelectric prediction of future ankle angle and moment across ambulation conditions 
and their transitions. Front. Neurosci. 15:709422. doi: 10.3389/fnins.2021.709422 

2.1 ABSTRACT 

A hallmark of human locomotion is that it continuously adapts to changes in the 

environment and predictively adjusts to changes in the terrain, both of which are major 

challenges to lower limb amputees due to the limitations in prostheses and control 

algorithms. Here, the ability of a single-network nonlinear autoregressive model to 

continuously predict future ankle kinematics and kinetics simultaneously across 

ambulation conditions using lower limb surface electromyography (EMG) signals was 

examined. Ankle plantarflexor and dorsiflexor EMG from ten healthy young adults were 

mapped to normal ranges of ankle angle and ankle moment during level overground 

walking, stair ascent, and stair descent, including transitions between terrains (i.e., 

transitions to/from staircase). Prediction performance was characterized as a function of 

the time between current EMG/angle/moment inputs and future angle/moment model 

predictions (prediction interval), the number of past EMG/angle/moment input values 

over time (sampling window), and the number of units in the network hidden layer that 

minimized error between experimentally measured values (targets) and model predictions 

of ankle angle and moment. Ankle angle and moment predictions were robust across 

ambulation conditions with root mean square errors less than 1 degree and 0.04 Nm/kg, 

respectively, and cross-correlations (R2) greater than 0.99 for prediction intervals of 58 
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ms. Model predictions at critical points of trip-related fall risk fell within the variability 

of the ankle angle and moment targets (Benjamini-Hochberg adjusted p > 0.065). EMG 

contribution to ankle angle and moment predictions occurred consistently across 

ambulation conditions and model outputs. EMG signals had the greatest impact on 

noncyclic regions of gait such as double limb support, transitions between terrains, and 

around plantarflexion and moment peaks. The use of natural muscle activation patterns to 

continuously predict variations in normal gait and the model’s predictive capabilities to 

counteract electromechanical inherent delays suggest that this approach could provide 

robust and intuitive user-driven real-time control of a wide variety of lower limb robotic 

devices, including active powered ankle-foot prostheses. 

2.2 INTRODUCTION 

Human locomotion continuously adapts to changes in the environment to 

maintain balance, reacts to unpredictable perturbations, and predictively adjusts walking 

patterns to changes in the terrain (Choi & Bastian, 2007; Pearson, 2000). Gait 

adaptability is a major challenge to lower limb amputees due to the limitations in 

prostheses and control algorithms (Kannape & Herr, 2016). Accurately and continuously 

predicting variations in gait, particularly during transitions and noncyclic activities, is 

limited in commercially available lower limb prostheses. Gait adaptability could be 

improved by incorporating information on user intent (e.g., myoelectric control), 

allowing users to modify prosthetic joint dynamics in a more natural, and less physically 

and cognitively demanding way. 
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Developing control algorithms for lower limb prostheses is challenging and 

impacts the level of human adaptation to the device (S. Huang et al., 2016). The use of 

finite state machines (FSM) in combination with mechanical intrinsic sensors embedded 

in the prosthesis itself (Cherelle et al., 2014; Culver et al., 2018; Sun et al., 2014) or worn 

on the residual limb (Au et al., 2008; Kannape & Herr, 2014; Hoover et al., 2013; 

Spanias et al., 2018) has become an increasingly common approach due to their high 

precision and reliability. However, FSM-based control is limited by the relatively small 

number of pre-defined, discrete states, the need to define switching rules for transitioning 

between states, and the inability to deal with novel movements. 

Alternate approaches have been developed that would continuously determine the 

dynamic changes of the joint and would not require division into discrete states. 

Impedance and stiffness control based on joint moment and angle have an increasingly 

common approach for actuating active powered (i.e., able to generate power during 

propulsion) lower limb prostheses (Au et al., 2008; Culver et al., 2018; Ha et al., 2011; 

Hoover et al., 2013; Kannape & Herr, 2014; Klein & Voglewede, 2018; Spanias et al., 

2018). Specifically, ankle angle and ankle moment are common targets for controlling 

transtibial prostheses. The continuous estimation of joint moments has focused on the use 

of multi-body dynamic musculoskeletal modelling. While effective, it requires constant 

and time consuming [e.g., 30 min (Meyer et al., 2017)] re-calibration of model 

parameters that are sensitive to changes in muscle-tendon geometry which may not be 

well characterized for amputees or orthopedic impaired individuals (Meyer et al., 2017; 

Shao et al., 2009), and consequently, not suitable for real-time applications. Limb joint 

mechanics and kinematics have been continuously estimated from electromyography 
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(EMG) signals (Meyer et al., 2017; Shao et al., 2009; J. Liu et al., 2017, 2020; Ngeo et 

al., 2014; Farmer et al., 2014; Zhang et al., 2012; Gupta et al., 2020; J. Chen et al., 2018; 

J. Wang et al., 2020; Prasertsakul et al., 2012; Huihui et al., 2018; Keleş & Yucesoy, 

2020; Sepulveda et al., 1993; Baby Jephil et al., 2020; Ardestani et al., 2014; Li et al., 

2015; Y. Chen et al., 2013; J. Lee & Lee, 2005), hip joint dynamics (Dey et al., 2019; 

Embry et al., 2018; Eslamy & Alipour, 2019), knee joint dynamics (Embry et al., 2018; 

Eslamy & Alipour, 2019; Joshi et al., 2011), force myography (Kumar et al., 2021), and 

ground reaction forces (GRF) (Jacobs & Ferris, 2015; Y. Liu et al., 2009), among others. 

Support vector regression (SVR) and Gaussian process regression have been used to 

continuously estimate ankle angle and ankle moment simultaneously using hip and knee 

joint kinematics (Dey et al., 2019) and shank kinematics (Eslamy & Alipour, 2019), 

respectively. Although simultaneous estimation of ankle angle and moment was 

achieved, performance was characterized during a single type of terrain, i.e., level 

walking, and implementation would require deducing user intent indirectly from 

mechanical extrinsic or intrinsic prosthetic sensors. 

For a seamless and intuitive device actuation, controllers must recognize the 

user’s locomotive intention given changes in the environment. Although mechanical 

intrinsic sensors have high repeatability and reproducibility, they introduce an intrinsic 

delay and the resulting control must infer human intention through secondary information 

such as gait events or joint mechanics. Therefore, their actuation is reactive to user’s 

biomechanical changes. Surface EMG activity enables a direct prediction of intended 

biomechanics given that muscle activity precedes force generation, and consequently, 

limb movement, on the order of 10 ms (Cavanagh & Komi, 1979). Still, the use of EMG 
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sensors poses challenges in achieving robust control due to low signal quality, variability 

associated with sensor placement and electrode-skin conductivity, cross-talk between 

nearby muscles, and signal processing for feature extraction. 

Classification algorithms have been used together with surface EMG to 

distinguish among discrete locomotion modes (Gupta & Agarwal, 2017; H. Huang et al., 

2009; M. Liu et al., 2017; Young et al., 2014) while other approaches continuously 

estimate ankle joint kinematics (Farmer et al., 2014; Zhang et al., 2012; Gupta et al., 

2020; J. Chen et al., 2018; J. Wang et al., 2020; Prasertsakul et al., 2012; Huihui et al., 

2018; Keleş & Yucesoy, 2020; Sepulveda et al., 1993; Baby Jephil et al., 2020) and 

kinetics (Ardestani et al., 2014; Baby Jephil et al., 2020; Keleş & Yucesoy, 2020; 

Sepulveda et al., 1993) using EMG signals. Most approaches characterize performance 

during a single type of terrain [e.g., level walking; (Farmer et al., 2014; Zhang et al., 

2012; Gupta et al., 2020; J. Chen et al., 2018; J. Wang et al., 2020; Prasertsakul et al., 

2012; Keleş & Yucesoy, 2020; Ardestani et al., 2014)] or ankle motion while sitting 

(Baby Jephil et al., 2020; Huihui et al., 2018; Zhang et al., 2012). Models that estimate 

ankle angle or ankle moment during more than one condition (e.g., speeds) have begun to 

emerge. A deep belief network and principal component analysis, for EMG 

dimensionality reduction from ten muscle signals, individually combined with a 

nonlinear back-propagation network have been used to estimate hip, knee, and ankle 

angle of healthy participants (J. Chen et al., 2018). Trained generalized inter-subject 

networks continuously estimated changes in speeds during level walking. Gupta et al. 

proposed separate subject-specific autoregressive models for five individual terrain types 

(level walking, stair ascent, stair descent, ramp ascent, ramp descent) to estimate ankle 



41 
 

angle using two able-bodied lower limb EMG signals and knee angle (Gupta et al., 2020). 

A generalized inter-subject wavelet neural network (WNN) and feedforward artificial 

neural network (FFANN) are capable of estimating ankle moments using EMG activity 

from eight muscles and two GRFs of patients with unilateral knee replacement while 

performing three rehabilitation therapy walking programs (Ardestani et al., 2014). Keleş 

et al. achieved the simultaneous estimation of ankle angle and moment during level 

walking using a time-delay FFANN and simulated EMG data of a healthy population 

(Keleş & Yucesoy, 2020). These studies support the feasibility of continuously 

estimating ankle joint angles and ankle moments independently and simultaneously using 

EMG signals. However, simultaneous estimation of both ankle angle and moment across 

multiple types of terrains (e.g., level walking, stair ascent/descent) including transitions 

between them has not been demonstrated. Moreover, almost all estimations of ankle 

angle and moment were reactive rather than predictive (i.e., future estimates). A 

predictive approach would help overcome delays in sensing, processing, and actuation of 

the mechanical device and also help to modify gait proactively in response to upcoming 

changes in terrain. 

An EMG-driven nonlinear autoregressive neural network with exogenous inputs 

(NARX) with predictive future states can address these challenges and provide a robust 

and intuitive control of active powered ankle-foot prostheses. Previous work has 

demonstrated the ability of a single-output feedforward (open-loop) NARX model to 

continuously predict future ankle angle of the prosthesis using within-socket EMG 

activity from the residual limb of transtibial amputees (Farmer et al., 2014; Silver-Thorn 

et al., 2012). The incorporation of natural, yet abnormal, EMG signals significantly 
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reduced average errors in ankle angle during the gait cycle and phase transitions. 

However, the subject-specific model was limited to the prediction of a single ambulation 

condition (level treadmill walking) and did not estimate ankle moments needed in 

stiffness and impedance control. 

In this study, the feedforward NARX model architecture was expanded to a 

multiple-output model that provided simultaneous estimates of future intended state of 

ankle angle and ankle moment across multiple ambulation conditions using lower limb 

surface EMG signals as input. Ankle plantarflexor and dorsiflexor EMG signals 

(antagonistic muscles) from healthy young adults were used to continuously predict 

normal ranges of ankle angle and moment during level overground walking, stair ascent, 

and stair descent, including transitions between terrains (i.e., transitions to/from 

staircase). Prediction performance was quantified using novel data sets and characterized 

as a function of the model parameters (prediction interval, sampling window, and number 

of hidden units) to identify optimal subject-specific parameters that minimized error. 

Models were trained and optimized for each participant to account for individual’s 

specific variations of EMG activity and limb dynamics. The suitability of the model 

prediction for prosthetic control was then examined by statistically analyzing the 

prediction variability at critical performance points (Loverro et al., 2013; Protopapadaki 

et al., 2007; Sinitski et al., 2012) within ambulation conditions where excessive 

deviations could lead to trips or falls. Gait intention, via lower limb EMG signals, was 

explored by quantifying the impact of EMG inputs on the model prediction of ankle angle 

and moment. 
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2.3 MATERIALS AND METHODS 

2.3.1 Participants 

Ten healthy young adults (7 males; age = 21.9 ± 1.4; mass = 72.5 ± 8.8 kg; height 

= 1.8 ± 0.09 m) participated in the study. Participants were excluded if they presented 

neurologic or orthopedic impairments that would affect their ability to walk or follow 

instructions. The study was approved by the Institutional Review Board at Marquette 

University (Milwaukee, Wisconsin), and all participants provided written informed 

consent. 

2.3.2 Experimental Procedure 

During a single experimental session, participants ambulated at a self-selected 

speed wearing athletic shoes in three different ambulation conditions, level overground 

walking (LW), stair ascent (AS), and stair descent (DS). Twenty-five reflective markers 

were placed on the participant’s key anatomical landmarks (posterior superior iliac spine 

and bilaterally on the anterior superior iliac spine, greater trochanters, thighs, medial and 

lateral femoral condyles, shanks, medial and lateral malleoli, calcaneus, second and fifth 

metatarsal heads, anterior end of first distal phalanx) to define seven lower body 

segments (pelvis, thighs, shanks, feet) based on a modified Helen Hayes marker set 

(Figure 2.1A). Trigno™ wireless surface EMG electrodes (Delsys, Inc., Natick, MA) 

were placed bilaterally over the tibialis anterior (dorsiflexor), and the gastrocnemius 

medialis (plantarflexor). Anthropometric measures (height and weight) were then taken. 

The walkway was instrumented with two 3-dimensional 6-channel force plates 
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(Advanced Mechanical Technology, Inc., Watertown, MA) embedded in the floor, a 

modified 4-step (17.78 cm rise, 60.45 cm width, 29.10 cm run; 1st step: 46.34 cm width, 

26.45 cm run) instrumented staircase (Advanced Mechanical Technology, Inc., 

Watertown, MA) and a landing platform (1.22 x 0.91 m) (Figure 2.1B). To minimize 

session duration and set-up time, ambulation conditions were not randomized 

(APPENDIX E). Prior to data collection, participants walked on the walkway to get 

accustomed to the researcher instructions and staircase setup. First, during stair ascent 

trials, participants traversed the walkway (~3 m), ascended the stairs in a step-over-step 

fashion, and walked to the end of the landing platform (AS trial). Each stair ascent trial 

was followed by a subsequent stair descent trial, during which participants turned when 

instructed, crossed the platform, descended the stairs, step-over-step, and returned to their 

starting position (DS trial). For level ground walking, the staircase and landing platform 

were removed and participants walked the entire length of the walkway (~5 m). 

Participants were encouraged to take breaks as needed to minimize potential fatigue. A 

minimum of 15 trials were completed for each ambulation condition. 

 
Figure 2.1. Marker and EMG sensor placement and experimental walkway. (A) Modified Helen Hayes 
infrared lower limb marker set and EMG sensor placement. (B) Experimental walkway setup including (a) 
force plates embedded in the floor, (b) stair force plates, (c) staircase, (d) landing platform, and (e) infrared 
motion cameras (APPENDIX D). (C) Schematic of step-over-step stair ambulation gait cycles (GC). Foot 
contact occurred on the shaded force plates (red, stair ascent; blue, stair descent). 
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2.3.3 Data Acquisition and Signal Processing 

Surface EMG activity, kinetic, and kinematic data were collected and 

synchronized. Surface differential EMG recordings were amplified (909 V/V), sampled at 

1,200 Hz, filtered to obtain linear envelopes, and down sampled to 120 Hz. EMG linear 

envelopes were obtained using a band-pass filter from 20-499.5 Hz (4th order zero-phase 

Butterworth), followed by full-wave rectification, and a low-pass filter with a 5.5 Hz 

cutoff frequency (4th order zero-phase Butterworth). Kinetic data were sampled at 1,200 

Hz, low-pass and notch filtered (4th order zero-phase Butterworth) at 15 Hz and 59-61 

Hz, respectively, and down sampled to 120 Hz. Kinematic data were sampled at 120 Hz 

using an OptiTrack (NaturalPoint, Inc., Corvallis, OR) motion capture system (14 to 16 

Flex 13 cameras). Markers were manually identified using AMASS (C-Motion, Inc., 

Germantown, MD) software and processed in Visual 3D (C-Motion, Inc., Germantown, 

MD) to extract limb kinematic (ankle angle) and foot kinetic (ankle moment, normalized 

to participant’s body mass) time series and gait events. Marker trajectories, and kinematic 

and kinetic time series were subsequently low-pass filtered (15 Hz, 4th order zero-phase 

Butterworth) and interpolated (3rd order polynomial, max. gap of 20 frames) in Visual 

3D. Ankle angle in the sagittal plane was computed as the motion of the foot segment 

relative to the shank segment coordinate system using Euler angles. Ankle moment in the 

sagittal plane was calculated using conventional inverse dynamics and resolved to the 

shank segment coordinate system (C-Motion, 2015). 

Gait events were defined kinematically as HS for heel strike and TO for toe off on 

floor, and kinetically as ON for first foot contact on force plate, OFF for last foot contact 

on force plate (threshold 10 N). All trials were temporally normalized and truncated from 
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225 ms before the first foot contact on the first force plate to the first heel strike before 

contralateral last foot contact on the last force plate (percent trial). As a result, level 

walking condition consisted of one gait cycle and each stair ambulation condition 

consisted of three continuous gait cycles, as of traversing from level walking to stair 

stepping to level walking (Figure 2.1C). Staircase transitions, the short instance when 

transitioning between terrains, were defined from the start of the swing phase of the limb 

being investigated to the start of the swing phase of the contralateral limb of the transition 

step, except during the transition from the platform to the staircase (stair descent) where 

the transition limb was the contralateral limb. 

2.3.4 NARX Neural Network Model 

A model of lower limb state was developed to continuously predict simultaneous 

ankle kinematics and kinetics across ambulation conditions and terrain transitions. 

Specifically, a feedforward (open-loop) multiple-input multiple-output NARX model 

(Leontaritis & Billings, 1985; Narendra & Parthasarathy, 1990) was created, trained, and 

tested in MATLAB (R2017a, The MathWorks Inc., Natick MA) using the Neural 

Network Toolbox. The feedforward NARX model consisted of an input layer containing 

the windowed EMG linear envelopes of the ankle dorsiflexor and plantarflexor and the 

experimentally measured values of ankle angle and ankle moment (targets) passed 

through separate tapped delay lines, a single hidden layer containing nonlinear units, and 

a linear output layer containing separate outputs for the predicted (i.e., future estimates) 

ankle angle and moment in the sagittal plane (Figure 2.2). 
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The feedforward NARX model output, 𝑦𝑦�𝑗𝑗(t+m), at each time point was calculated 

as, 

𝑣𝑣𝑛𝑛(𝑡𝑡 + 𝑚𝑚) = 𝑓𝑓1 ���𝑎𝑎𝑛𝑛𝑛𝑛(𝑞𝑞)
2
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where 𝑣𝑣𝑛𝑛(𝑡𝑡 + 𝑚𝑚) was the output of nth unit in the hidden layer, N was the total number of 

hidden units, m was the prediction interval in time steps (𝜏𝜏 =  𝑚𝑚𝑚𝑚𝑡𝑡), d was the sampling 

window length (𝐷𝐷 =  𝑑𝑑𝑚𝑚𝑡𝑡), 𝑥𝑥𝑛𝑛(𝑡𝑡 − 𝑞𝑞) was the input of the ith EMG linear envelope for 

the prior q time step, 𝑦𝑦𝑗𝑗(𝑡𝑡 − 𝑞𝑞) was the past jth desired target value (ankle angle and 

moment), 𝑎𝑎𝑛𝑛𝑛𝑛, 𝑐𝑐𝑛𝑛𝑗𝑗, and 𝑤𝑤𝑗𝑗𝑛𝑛 were the weights of EMG inputs, desired target values, and 

ankle angle and moment outputs, respectively, 𝑏𝑏1𝑛𝑛 and 𝑏𝑏2𝑗𝑗 were the bias weights at the 

hidden and output layers, respectively, 𝑓𝑓1 was a nonlinear hyperbolic tangent sigmoid 

function, and 𝑓𝑓2 was a linear function with unit slope. The sampling window specified the 

number of prior input values over time (exogenous and targets) used to calculate future 

ankle angle and moment. The prediction interval specified the time between the current 

inputs (exogenous and targets) and the model output predictions of future ankle angle and 

moment. 
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Figure 2.2. Multiple-input multiple-output feedforward (open-loop) NARX model. EMG linear envelopes 
(ankle dorsiflexor and plantarflexor) and experimentally measured values of ankle angle and ankle moment 
were weighted and fed via tapped delay lines to a single hidden layer containing nonlinear units with 
hyperbolic tangent sigmoid transfer functions. Intermediate outputs were weighted and linearly combined 
to provide continuous and simultaneous predictions of future ankle angle and moment over time. 

Separate models were trained for each participant. During training, ten 

randomized trials from each ambulation condition of a single limb were organized as a 

concurrent set of sequences and divided into contiguous blocks where 80-percent (8 

complete trials/condition) were used for training and 20-percent (2 complete 

trials/condition) were used for validation. An additional trial of each ambulation 

condition (novel test trial) was held back and used to separately assess model 

performance after training using a leave-one-out 10-fold cross-validation. Each model 

was trained and optimized to minimize the mean squared error (MSE) between the ankle 

angle and moment targets and the model predictions using a Levenberg-Marquardt 

backpropagation supervised learning procedure. To fit ankle angle and moment equally, 

training errors (i.e., MSE) were normalized to the range of [-2, 2] corresponding to 

normalizing model predictions and targets between -1 and 1 using a min-max mapping of 

the k-fold training dataset. For each training dataset, ten networks were trained using 

different initial weights and biases to improve shallow network generalization and avoid 

overfitting. The network with the lowest MSE averaged across ambulation conditions 
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was selected as the generalized network for that k-fold dataset. To explore the capabilities 

of the network, NARX model performance was characterized as a function of the 

prediction interval (τ: 33, 42, 50, 58, 67, 75, 83, 108, 142 ms), sampling window (D: 8, 

17, 33, 50, 67, 83 ms), and number of hidden units (N: 2 to 16 in steps of 2) with error 

goal bounded to 1-percent of the moment variance of all recorded trials (1% training error 

goal). Subsequently, while the prediction interval was fixed to 58 ms (7 time steps) to 

counteract electromechanical inherent delays of the Marquette University’s ankle-foot 

prosthesis (Klein & Voglewede, 2018; Sun et al., 2014; Sun & Voglewede, 2012), 

minimum MSE averaged over all novel test trials and ambulation conditions (10 

complete trials/condition) was used to determine the optimal sampling window and 

number of hidden units. The training process was then repeated using the fixed prediction 

interval and the optimal sampling window and number of hidden units with an error goal 

of zero to maximize network performance for each participant. This optimized subject-

specific network structure was used to evaluate model performance after training, unless 

otherwise specified. 

2.3.5 Model Performance Measurements and Statistical Analysis 

The number of participants included in the analysis of stair ambulation conditions 

was reduced to eight because two participants initiated trials with the limb opposite to the 

one being analyzed. All performance measurements and statistical analysis were 

averaged across ten novel test trials and then across participants for each ambulation 

condition (LW, n = 10; AS and DS, n = 8). 
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Root mean square error (RMSE) and coefficient of determination (R2) were 

calculated between the target and model prediction of ankle angle and moment for each 

test trial to evaluate model performance. The coefficient of determination (R2), obtained 

from squaring the cross-correlation peak, was used to quantify the ability of the model to 

reproduce the temporal profiles of angle and moment for each ambulation condition and 

their transitions. 

Using the first set of models (1% training error goal), simple linear regressions 

were performed to examine the effects of prediction interval, sampling window, and 

number of hidden units on model performance. For each model output and ambulation 

condition, a linear fit (slope and intercept) was performed in MATLAB (R2017a) using 

the average RMSE collapsed along a single model parameter dimension (i.e., RMSE 

averaged across two of the three model parameters). Goodness of fit was assessed by the 

coefficient of determination (R2), and an ANOVA (p < 0.001) was performed for each 

model parameter and ambulation condition to determine whether the fitted slope was 

significantly different from zero. 

Using the second set of models (optimized subject-specific network structure), 

RMSE was computed over each trial to characterize maximal model performance across 

participants. To evaluate the impact of EMG signals on model performance, the 

instantaneous RMSE over time of NARX model predictions (time-varying EMG) were 

compared against errors of NARX models having constant EMG inputs. Constant EMG 

inputs, x = �̅�𝑥, for each participant, were calculated as the average EMG signal over time 

for each test trial and ambulation condition to provide the same average signal power 

while omitting the time-varying information. To facilitate analysis across test trials and 
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participants of instantaneous RMSE, individual trials were interpolated to a common 

length for each ambulation condition (LW: 145, AS: 430, DS: 400 samples). 

Two types of critical performance points, clearance intervals (Loverro et al., 

2013) and stance critical points (Protopapadaki et al., 2007; Sinitski et al., 2012), were 

assessed for each ambulation condition to verify that the NARX model predictions where 

within the variability of the measured targets. Staircase leg dynamics in this study were 

matched to the steps from Loverro’s et al. 7-step staircase, and clearance intervals were 

selected corresponding to the locations of minimum foot and toe clearance, i.e., points 

with the highest tripping risk. Intervals were defined by the range of timings (mean ± 

standard deviation, i.e., thirty total points) of the minimum clearance angle. Single stance 

critical points (i.e., nineteen points) were extracted at crucial kinematic (TO, maximum 

dorsiflexion, maximum plantarflexion) and kinetic (maximum plantarflexion moment) 

events for prosthetic design. For each critical point, samples were tested for normality 

using the Shapiro-Wilk test. For normally distributed samples, a paired-samples t-test 

was used to determine if inter-subject NARX predictions were statistically different from 

that target. Sign test was performed for non-normally and asymmetric distributed critical 

points. Statistical analyses were performed using SPSS 22 (SPSS Inc., Chicago, IL) with 

a significance level of p < 0.05. The Benjamini-Hochberg (B-H) procedure was used to 

adjust p values with a false discovery rate of 0.05 to correct for multiple comparisons 

(Benjamini & Hochberg, 1995). 
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2.4 RESULTS 

Experimentally measured ankle dorsiflexor and plantarflexor EMGs, ankle angles 

and ankle moments used to train and test the NARX models of a typical participant 

(AB4) are illustrated in Figure 2.3. EMG activity was variable across trials, occasionally 

exhibiting co-activation; however, activation patterns were consistent with the reported 

literature for all ambulation conditions for all participants (Benedetti et al., 2012; Y. Han 

et al., 2015; Selk Ghafari et al., 2009). Ankle angle was consistent across trials with the 

greatest ankle range of motion occurring for stair descent, while ankle moment exhibited 

more variability. 

 
Figure 2.3. Experimentally measured EMG activity, kinetic, and kinematic data. Linear envelope of EMG 
signals, ankle angle, and ankle moment for level overground walking, stair ascent, and stair descent of a 
typical participant (AB4) are shown. Percent trial is normalized from 225 ms before the first foot contact on 
the first force plate to the first heel strike before contralateral last foot contact on the last force plate. 
Vertical lines denote gait events (solid: limb used to train the model; dashed: contralateral limb) defined 
based on force plate and floor contact (ON, first contact on force plate; OFF, last contact on force plate; 
HS, heel strike on floor; TO, toe off on floor). Contralateral gait events are identified by a lowercase ‘c’ 
(e.g., cTO, contralateral toe off). Staircase ambulation (black horizontal bar) is defined as the first foot 
contact on the staircase to the first foot contact on level ground of the limb used during training. Staircase 
transitions to/from level ground are shaded gray. Double limb support occurs when both feet are in contact 
with the ground simultaneously (ON to cTO or ON to cOFF and cON to OFF). 
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The performance of the NARX model was comparable across a wide range of 

sampling windows, and the number of hidden units; however, it was dependent on the 

size of the prediction interval (Figure 2.4). As prediction interval increased, RMSE had a 

significant linear increase for ankle angle and moment across ambulation conditions 

(ANOVA p < < < 0.001, R2 > 0.98). Model error for predicting ankle angle and moment 

was largely unaffected by the size of the sampling window across ambulation conditions 

(ANOVA p > 0.009, R2 = [0.65, 0.85]) with error saturating after 33 ms (ANOVA p > 

0.033, R2 = [0.81, 0.94]). The number of hidden units used in the network showed a small 

negative correlation with ankle angle and moment RMSE across ambulation conditions 

(ANOVA p > 0.008, R2 = [0.54, 0.71]) that was significant for ankle angle RMSE during 

level walking and stair ascent (ANOVA p < 0.001, R2 = 0.88). After 8 hidden units, 

RMSE saturated for ankle angle and moment across ambulation conditions (ANOVA p > 

0.003, R2 = [0.61, 0.96]). There were minimal differences in angle and moment error 

among ambulation conditions (Figure 2.4). When collapsed across model parameters, 

angle RMSE, averaged across participants and ambulation conditions, ranged from 0.73 

to 1.16 degrees for a 33 ms prediction interval, 1.18 to 2.01 degrees for a 58 ms 

prediction interval, and 2.60 to 4.49 degrees for a 142 ms prediction interval with 1% 

training error goal. Similarly, moment RMSE ranged from 0.025 to 0.052 Nm/kg, 0.040 

to 0.094 Nm/kg, and 0.099 to 0.215 Nm/kg, for 33, 58, and 142 ms prediction intervals, 

respectively. 
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Figure 2.4. Space error based on model parameters. (A) RSME between predicted and experimentally 
measured ankle angle and ankle moment as a function of NARX model prediction interval, sampling 
window, and number of hidden units, averaged across participants. (B) RMSE ankle angle and moment 
collapsed across model parameters (i.e., averaged across two of the three dimensions). Shaded regions 
denote ±1 standard deviation. RMSE is shown for the first set of NARX models trained with error goal 
bounded to 1-percent of the moment variance of all recorded trials. 

Joint ankle angle and ankle moment model predictions closely matched the 

experimentally measured targets in all ambulation conditions and staircase transitions as 

shown in Figure 2.5. The figure shows the comparison of model predictions and targets 

of a typical participant using optimal model parameters (τ: 58 ms, D: 83 ms, N: 6). 
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Figure 2.5. Time series of NARX model prediction of ankle angle and ankle moment. Level ground 
walking and stair ambulation of a typical participant (AB4) using optimal model parameters (τ: 58 ms, D: 
83 ms, N: 6) are displayed. NARX model predictions are shown for the k-fold novel test trials with the best 
accuracy across ambulation conditions and model outputs. Critical performance points used to test for 
statistically significant differences between the model prediction and experimentally measured targets are 
denoted by yellow blocks (clearance intervals), and green lines (stance points). No significant differences 
were found across participants (B-H adjusted p > 0.05). Shading and line markers are defined the same as 
in Figure 2.3. 

Table 2.1 lists the mean and standard deviations of the correlations (R2) and 

errors (RMSE) of the NARX model prediction of ankle angle and moment across 

participants for all ambulation conditions. The results show high levels of accuracy in all 

ambulation conditions and model outputs. R2 ranged between 0.989 and 0.999. All peak 

cross-correlations occurred at zero time lag. Stair descent had the lowest RMSE and the 

highest correlations for both ankle angle (RMSE = 0.55 ± 0.13°, R2 = 0.999 ± 0.001) and 

moment (RMSE = 0.025 ± 0.007 Nm/kg, R2 = 0.999 ± 0.001). The maximum error 

occurred in the prediction of ankle angle during level ground walking (RMSE = 0.84 ± 

0.23°, R2 = 0.989 ± 0.005) and in the prediction of ankle moment during stair ascent 

(RMSE = 0.036 ± 0.009 Nm/kg, R2 = 0.997 ± 0.001). Using the Benjamini-Hochberg 
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multiple comparisons procedure, no significant difference across participants was found 

between targets and NARX model predictions in any of the critical performance points 

(B-H adjusted p > 0.065). Detailed statistical scores, and mean and standard deviation of 

ankle angle and moment predictions and targets of all critical points are listed in 

Supplementary Table A.1. 

Table 2.1. RMSE and R2 values of NARX model predictions for each ambulation condition averaged 
across participants. 

Ambulation 
Condition 

Model 
Output 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹��������� 𝝈𝝈𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 Units 𝑹𝑹𝟐𝟐���� 𝝈𝝈𝑹𝑹𝟐𝟐  

Level Ground 
(n = 10) 

Angle 0.84 0.23 Degrees 0.989 0.005 

Moment 0.026 0.006 Nm/kg 0.998 0.001 

Stair Ascent 
(n = 8) 

Angle 0.78 0.14 Degrees 0.995 0.002 

Moment 0.036 0.009 Nm/kg 0.997 0.001 

Stair Descent 
(n = 8) 

Angle 0.55 0.13 Degrees 0.999 0.001 

Moment 0.025 0.007 Nm/kg 0.999 0.001 

 

Comparison of the instantaneous RMSE over time for the NARX models using 

the participant’s time-varying EMG as inputs against models using average EMG showed 

larger errors and increased variability for the constant-EMG NARX predictions across all 

ambulation conditions and staircase transitions for both ankle angle and ankle moment 

(Figure 2.6, Table 2.2). The patterns of EMG contribution were consistent among 

ambulation conditions and model outputs. Removal of the time-varying EMG input had 

the largest impact during double limb support for both ankle angle and moment. 

Additionally, the error increased around maximum plantarflexion and going into 

maximum plantarflexion moment for constant-EMG predictions. The use of time-varying 

EMG inputs decreased peak errors of ankle angle and moment by approximately 50 and 



57 
 

60% to values less than 1.11 degrees and 0.077 Nm/kg, respectively, across ambulation 

conditions. 

 
Figure 2.6. Impact of EMG signals on model performance. Instantaneous RMSE between experimentally 
measured values and NARX model predictions of ankle angle and ankle moment across trials and 
participants is displayed. Errors are shown for model predictions using the participant’s time-varying EMG 
as input (red trace) and for model predictions using the average EMG signal as a constant input (blue trace). 
Shaded regions denote ±1 standard deviation. The ankle angle and moment targets averaged across trials 
and participants are shown for reference (black trace) and scaled accordingly to the right-side vertical axis. 
Double limb support intervals and gait event markers are defined the same as in Figure 2.3. 

Table 2.2. Temporal average of the instantaneous RMSE. Error is calculated across participants for the 
NARX models using the participant’s time-varying EMG as input and the NARX models using the average 
EMG as a constant input. 

Ambulation 
Condition 

Model 
Output Units 

Time-varying EMG Constant EMG 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹��������� 𝝈𝝈𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹��������� 𝝈𝝈𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 

Level Ground 
(n = 10) 

Angle Degrees 0.67 0.35 0.92 0.51 

Moment Nm/kg 0.022 0.010 0.039 0.017 

Stair Ascent 
(n = 8) 

Angle Degrees 0.64 0.29 1.02 0.44 

Moment Nm/kg 0.028 0.015 0.058 0.022 

Stair Descent 
(n = 8) 

Angle Degrees 0.50 0.17 0.82 0.40 

Moment Nm/kg 0.023 0.009 0.039 0.018 

 



58 
 

2.5 DISCUSSION 

An approach was presented for continuous predictive mapping of lower limb state 

that incorporated user intent, vis-à-vis surface EMG of the lower limb, to predict future 

ankle joint kinematics and kinetics simultaneously across ambulation conditions, 

including transitions between terrains. The single-network, feedforward NARX model 

had the ability to characterize normal gait patterns of ankle angle and ankle moment with 

predictions that fell within the experimentally measured variability of the kinematic and 

kinetic targets across trials and participants. 

The autoregressive model presented here continuously models the nonlinear 

dynamic relationships between muscle activation and ankle dynamics to predict ankle 

kinematics and kinetics across ambulation conditions and terrain transitions. In contrast, 

EMG-driven FSMs to control active powered lower limb prostheses typically allow the 

amputee to select a discrete locomotion mode (M. Liu et al., 2017; Spanias et al., 2018) 

or to control a single parameter (e.g., motor torque gain) during a discrete period of the 

gait cycle (J. Wang et al., 2013; Kannape & Herr, 2014), and consequently, limit the 

amputee’s control over the prosthesis. Despite proportional myoelectric approaches that 

enable continuous prosthetic control throughout the gait cycle using volitional muscle 

contractions, the volitional actuation of the prosthesis can become physically and 

cognitively demanding over time (S. Huang et al., 2016). Here, the NARX model 

leverages the user’s natural muscle activation patterns to reduce muscle fatigue and the 

cognitive demand on the user to provide a continuous predictive characterization of gait 

over time without the need for explicit identification of gait events or selection of 

ambulation modes. Moreover, the training and optimization of the network structure to 
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maximize individual performance is relevant for the use in prosthetic applications where 

amputees may develop abnormal muscle activity and gait patterns to maintain stability 

and compensate for limitations in their prosthesis (Herr & Grabowski, 2012; S. Huang & 

Ferris, 2012; Seyedali et al., 2012; Silver-Thorn et al., 2012). 

The autoregressive model structure exploits the cyclic process of lower limb 

motion, to anticipate repetitive components of movement, resulting in a high overall 

performance (R2 > 0.989) while reducing the model degrees of freedom needed to predict 

limb kinematics and kinetics during gait. The use of time-varying EMG signals during 

gait resulted in less error compared to model predictions without time-varying 

information (Table 2.2, Figure 2.6). EMG signals provided an important source of 

information about limb state that was used to differentiate the temporal profiles of ankle 

dynamics. Although EMG signals contributed to the model prediction of ankle angle and 

ankle moment across ambulation conditions, the cyclic nature of walking and the open-

loop structure of the feedforward model (which used experimentally error-free ankle 

angle and moment past values) limited the strength of the EMG contribution to the model 

predictions across ambulation conditions in healthy young adults. Similar to Farmer et 

al., while using residual within-socket EMG of transtibial amputees (Farmer et al., 2014), 

EMG signals had the greatest impact on error in regions where the gait profile was 

noncyclic, such as transitions to and from single limb support, staircase transitions, and 

around plantarflexion and moment peaks. Contrary to previous studies in transtibial 

amputees (Farmer et al., 2014) and able-bodied participants (Gupta et al., 2020), ankle 

angle accuracy and overall level of EMG contribution did not depend on the range of 

motion of the ankle, yielding similar levels of error across ambulation conditions and 
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model types tested. These results suggest that EMG signals from the lower leg (ankle 

dorsiflexor and plantarflexor) can be used to accurately predict noncyclic variations in 

amplitude and timing of ankle movement intrinsic to human walking across different 

terrains. 

Unlike other nonlinear regressive neural networks (Ardestani et al., 2014; J. Chen 

et al., 2018; Gupta et al., 2020; Zhang et al., 2012), the current NARX model included 

temporal relationships (prediction interval, 𝜏𝜏 =  𝑚𝑚𝑚𝑚𝑡𝑡) of inputs and outputs allowing for 

the prediction of future limb state. A crucial advantage of prediction (i.e., future 

estimates) for the control of active ankle-foot prostheses is the ability to counteract delays 

from prosthetic actuation, signal processing (e.g., filtering, sampling), and sensor 

response inherent to electromechanical systems. In this study, the performance of the 

optimized NARX models was evaluated using a prediction interval of 58 ms to account 

for microcontroller and motor actuation delays (max. 50 ms) inherent to Marquette 

University’s active powered ankle prosthesis (Sun et al., 2014; Klein & Voglewede, 

2018; Sun & Voglewede, 2012). Other active ankle-foot designs have reported time 

delays of 40 ms for the system delay between the input and output of a two degrees of 

freedom cable-driven prosthesis (Ficanha et al., 2016), and maximum 40 ms for the pull-

in response time of a bypass restriction valve of an electrohydrostatic-based prosthesis 

(Yu, 2017). Given the robust performance over a wide range of prediction intervals, 

sampling windows, and number of hidden units (Figure 2.4), models containing larger 

(or smaller) prediction intervals could be used with comparable results. 

Despite variations in ankle moment, walking speed, and muscle activation 

patterns, the prediction error remained within the range of walking variability measured 
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across ambulation conditions. The use of two antagonist muscles as inputs, mainly 

responsible for sagittal ankle motion, resulted in minimal output oscillations that can 

occur when redundant information is present across multiple inputs (Ardestani et al., 

2014; Gupta et al., 2020; Zhang et al., 2012), and simplified the intrinsic [EMG; 

(Ardestani et al., 2014; J. Chen et al., 2018)] and extrinsic [e.g., knee angle, hip angular 

velocity; (Ardestani et al., 2014; Dey et al., 2019; Eslamy & Alipour, 2019; Gupta et al., 

2020)] inputs needed for implementation in a myoelectric ankle-foot prosthesis. 

The NARX model performance complements and extends other feedforward 

estimation approaches for continuously estimating ankle kinematics and kinetics in 

healthy individuals (Zhang et al., 2012; Gupta et al., 2020; J. Chen et al., 2018; Keleş & 

Yucesoy, 2020; Dey et al., 2019; Eslamy & Alipour, 2019) and impaired patients 

(Ardestani et al., 2014; Farmer et al., 2014; Zhang et al., 2012). Across studies in health 

individuals, reported errors (RMSE) and correlations (R2) of ankle angle varied between 

2.44 and 5.29 degrees, and between 0.74 and 0.94, respectively, during level walking at 

different speeds and with various inputs. Specifically, Gupta et al. reported ankle angle 

errors, across healthy participants, during level walking (RMSE = 2.44 ± 0.45°, r = 0.97), 

stair ascent (RMSE = 3.61 ± 1.00°, r = 0.93), and stair descent (RMSE = 5.04 ± 1.56°, r 

= 0.85) using subject-specific NARX models trained and tested separately for each 

condition (Gupta et al., 2020). In comparison, average angle errors in this study were a 

factor of five lower for networks trained across the three terrains (RMSE < 0.84°). This 

may be tied to differences in the data organization (i.e., concurrent set of sequences) and 

the division of trials (i.e., contiguous blocks) used here during training which minimized 

discontinuities in the data that would cause inherent training errors, and ensured that 
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random trials, instead of random points, were used during training. Ardestani et al. 

obtained ankle moment errors up to 13% and 8% using FFANN and WNN models, 

respectively, during normal walking in patients with unilateral knee replacement 

(Ardestani et al., 2014). Interestingly, their results were based on a non-specific inter-

subject training paradigm wherein the network was trained on data from three different 

patients while performing three walking conditions, and tested on a fourth participant. In 

their study, the purpose was to create a generalized real-time surrogate inverse dynamic 

model for gait analysis and was not intended for use in prosthetic control. Dey et al. used 

an SVR approach to continuously estimate ankle angle and moment during level ground 

walking (RMSE = 2.17° and 0.11 Nm/kg, respectively) using two extrinsic inputs (hip 

and knee angle) of a single healthy participant (Dey et al., 2019). The use of kinematic-

only inputs could provide an alternative for predicting user intent indirectly but the need 

for wearable sensors extrinsic to the prosthesis poses similar challenges to EMG-based 

systems. Keleş et al. performed a comprehensive analysis of muscle sites and their 

combinations for use as EMG inputs to estimate ankle angle and moment during walking 

in healthy participants (Keleş & Yucesoy, 2020). Using the same ankle plantarflexor and 

dorsiflexor muscles, they reported ankle angle and moment errors (RMSE) of 2.34 ± 0.15 

degrees and 0.041 ± 0.006 Nm/kg, in comparison to 0.84 ± 0.23 degrees and 0.026 ± 

0.006 Nm/kg in this study. Correlations were comparable to those reported here, although 

performance was not examined across ambulation conditions. 

The robust performance of the feedforward NARX model across ambulation 

conditions and terrain transitions suggest that it could provide intuitive user-driven 

control of an active powered ankle-foot prosthesis, however, additional work is needed. 
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Implementation in a physical system will require a closed-loop architecture wherein 

previous values of the predicted (rather than desired) ankle angle and moment are used to 

estimate changes in ankle dynamics. Feedback of the model predictions is expected to 

place greater emphasis on the use of EMG inputs to control for errors in the predicted 

ankle dynamics and to signal user intent during transitions and noncyclic activities (e.g., 

standing, sitting, obstacle avoidance). While previous studies have demonstrated the 

feasibility of continuously predicting ankle angle (Farmer et al., 2014; Zhang et al., 2012) 

and ankle moment (Ardestani et al., 2014), independently from neurological and 

neuromuscular impaired participants, the simultaneous prediction of ankle angle and 

moment across ambulation conditions must also be demonstrated with pathological 

muscle activity and gait data. Lastly, the effects on model performance associated with 

changes in EMG signal over time caused by variations in sensor placement and electrode-

skin conductivity were not evaluated. Future work will characterize closed-loop NARX 

model performance across ambulation conditions using EMG activity from amputees’ 

residual lower limb muscles as inputs. Furthermore, for real-time implementation in a 

prosthetic design, the model would be validated with data acquired from commonly used 

angle and moment sensors [e.g., encoders, inertial measurement units, force sensitive 

resistors, potentiometers, torque, load cells (Au et al., 2007; Klein & Voglewede, 2018; 

Sup et al., 2009)] intrinsic to the prosthesis instead of motion capture and force plate data 

as done in this study. 
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2.6 CONCLUSION 

This study has demonstrated that a single-network nonlinear autoregressive model 

with exogenous EMG inputs can continuously predict future ankle angle and ankle 

moment simultaneously during normal walking across ambulation conditions (level 

ground walking, stair ascent/descent) and transitions between terrains. The natural 

patterns of muscle activation used to predict variations in normal gait, particularly during 

transitions, suggests that this approach could be used to create a seamless and intuitive 

interface for an active powered ankle-foot prosthesis that incorporates user intent and 

does not require conscious user control. The model’s accuracy, robustness, and predictive 

capabilities (i.e., future estimates) suggest that the approach could be adapted for real-

time closed-loop control of a wide variety of lower limb robotic devices, including 

actuated orthoses and exoskeletons. Further research will characterize the ability of 

within-socket residual EMG activity from amputees to continuously predict limb 

kinematics and kinetics across a variety of ambulation conditions.  
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CHAPTER 3: CLOSED-LOOP FUTURE PREDICTION OF CONTINUOUS 
ANKLE KINEMATICS AND KINETICS USING RESIDUAL MUSCLE 

SIGNALS OF TRANSTIBIAL AMPUTEES 

This chapter has been submitted by the authors for publication: 
Journal: Journal of NeuroEngineering and Rehabilitation  
Title: “Closed-Loop Future Prediction of Continuous Ankle Kinematics and Kinetics Using Residual 
Muscle Signals of Transtibial Amputees” 
Authors: Erika V. Zabre-Gonzalez, Barbara Silver-Thorn, Thomas Current, Philip A. Voglewede, Sara R. 
Koehler-McNicholas, and Scott A. Beardsley 

3.1 ABSTRACT 

Despite performance improvements in active lower limb prostheses, there remains 

a need for robust and accurate control techniques that incorporate direct user intent (e.g., 

myoelectric control) to limit the amputee’s physical and cognitive demands and provide 

continuous, natural gait across terrains. Here, the ability of a nonlinear autoregressive 

neural network with exogenous (i.e., external) inputs (NARX) to continuously predict 

future (up to 142 ms ahead of time) ankle angle and moment of three transtibial amputees 

was examined across ambulation conditions (i.e., level overground walking, stair ascent, 

and stair descent) and terrain transitions. Within-socket residual EMG of the prosthetic 

side, in conjunction with sound-limb shank velocity, were used as inputs to the single-

network NARX model to predict ankle dynamics of the sound limb. By overlaying the 

ankle dynamics of the sound limb onto the prosthesis, the approach is a step forward to 

establish a more normal gait by creating symmetric gait patterns between the limbs. The 

NARX model was trained and tested as a closed-loop network (model predictions fed 

back as recurrent inputs, rather than error-free targets) to ensure accuracy and stability 

when implemented in a feedback control system. Models of six able-bodied participants 

were also analyzed to provide a normative comparison of amputee model performance as 
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well as the best case characterization of normal gait patterns. Ankle angle and moment 

predictions of amputee models were accurate across ambulation conditions and terrain 

transitions with root mean square errors (RMSE) less than 3.7 degrees and 0.22 Nm/kg, 

respectively, and cross-correlations (R2) greater than 0.89 and 0.93, respectively, for 

predictions 58 ms ahead of time. With similar model performance, the closed-loop 

NARX model had the ability to characterize normal ranges of ankle angle and moment of 

able-bodied participants (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜃𝜃 < 2.7°, 𝑅𝑅𝜃𝜃2 > 0.95, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀 < 0.11 Nm/kg, 𝑅𝑅𝑀𝑀2  > 0.98 

for predictions 58 ms ahead of time). Model performance was stable across a range of 

different EMG profiles, leveraging both EMG and shank velocity inputs for the 

prediction of ankle dynamics across ambulation conditions. The use of natural, yet altered 

in amputees, muscle activity with information about limb state, coupled with the closed-

loop predictive design, could provide intuitive user-driven and robust prosthetic control 

by counteracting delays and proactively modifying gait in response to terrain changes 

observed by the user. The model takes an important step forward toward continuous real-

time feedback control of active ankle-foot prostheses and other lower limb robotic 

devices. 

3.2 INTRODUCTION 

Advances in robotic systems and human interface design have facilitated the 

development of rehabilitation devices, exoskeletons, and limb prostheses, including state-

of-the-art active ankle-foot prostheses (Sun et al., 2014; Au et al., 2009; Shultz & 

Goldfarb, 2018; Q. Wang et al., 2014; Cherelle et al., 2016; Bellman et al., 2008; 

Grimmer et al., 2016). For successful rehabilitation of lower limb amputees, prostheses 
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seek to mimic the biomechanical patterns of gait that occur during daily living activities. 

In spite of these advancements, most lower limb amputees develop altered muscle 

activity and biomechanical patterns of gait to maintain stability and compensate for 

limitations in the prosthesis (Herr & Grabowski, 2012; S. Huang & Ferris, 2012; Seyedali 

et al., 2012; Silver-Thorn et al., 2012). Despite performance improvements in active (i.e., 

able to generate power during propulsion) lower limb prostheses over passive designs, 

there remains a need for robust and accurate control techniques that incorporate user 

intent to limit physical and cognitive demands and provide a more natural gait across 

terrains (e.g., level ground, stairs, ramps) and environmental conditions. 

Controllers for active lower limb prostheses range from closed-loop finite state 

machines (FSMs) driven by electromechanical sensors intrinsic to the prosthesis [e.g., 

inertial sensors, position encoders; (Au et al., 2009; Cherelle et al., 2016; Shultz & 

Goldfarb, 2018; Sun et al., 2014; Q. Wang et al., 2014)], to continuous proportional 

myoelectric control (Dawley et al., 2013; Hoover et al., 2012; S. Huang et al., 2016; S. 

Huang & Huang, 2018, 2019), as well as hybrid strategies combining electromechanical 

and myoelectric signals (Au et al., 2008; M. Liu et al., 2017; Spanias et al., 2018; J. 

Wang et al., 2013; Kannape & Herr, 2014, 2016). FSMs using intrinsic prosthetic sensors 

have been widely used to control active ankle-foot prostheses (Au et al., 2009; Cherelle et 

al., 2016; Shultz & Goldfarb, 2018; Sun et al., 2014; Q. Wang et al., 2014). However, 

robust control is constrained to a number of predefined locomotion modes. User intention 

is deduced indirectly by prosthetic sensors and/or requires the amputee to intentionally 

switch between modes based on anticipated changes in terrain. Consequently, the system 

has a limited ability to deal with novel movements and noncyclic activities whereas 
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intentional switching may increase physical and cognitive load on the user, particularly in 

complex environments (Culver et al., 2018; Zhang et al., 2015). 

Continuous control approaches using intrinsic prosthetic sensors to unify the gait 

cycle have also been explored. Joint phase-based methods have been developed to control 

ankle-foot and multi-joint leg prostheses using shank and hip kinematics, respectively 

(Hitt et al., 2010; Holgate et al., 2009; Quintero et al., 2018). Phase-based approaches can 

accommodate speed changes of cyclic motion (e.g., walking at different speeds), 

however, they have limitations for noncyclic and novel movements in which phase planes 

are not well-defined. Discrete and continuous approaches designed around intrinsic 

prosthetic sensors provide high fidelity feedback about past limb state but are generally 

reactive (rather than predictive) to gait and environmental changes, and can introduce 

undesirable delays in the actuation of the prosthesis. In spite of their higher signal 

variability, surface electromyography (EMG) signals have been widely examined as an 

alternate, minimally-invasive source of control signals that incorporate direct user intent 

about intended movement and upcoming changes in terrain. 

Hybrid state-based myoelectric approaches have used EMG signals within the 

prosthetic socket to select discrete locomotion modes (Au et al., 2008; M. Liu et al., 

2017; Spanias et al., 2018), or to modify prosthetic behavior within a state [e.g., motor 

torque gain; (J. Wang et al., 2013; Kannape & Herr, 2014, 2016)]. EMG-driven FSMs 

can improve flexibility, allowing amputees to transverse different terrains and adapt to 

different walking speeds. However, control may not be intuitive, requiring the user to 

learn novel muscle activation patterns, and remains constrained to the control of 

predefined locomotion modes, limiting the amputee’s control over the prosthesis. 
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Continuous proportional myoelectric control (CPMC) does not rely on a FSM, but 

instead allows the amputee to actuate the prosthesis based on the amplitude of residual 

muscle activity. Residual antagonistic muscles of a single transfemoral amputee have 

been used to continuously modulate impedance of an active knee prosthesis during level 

ground walking (Dawley et al., 2013; Hoover et al., 2012). Using CPMC, transtibial 

amputees were able to control a virtual environment via their residual ankle dorsiflexor 

and plantarflexor muscles (S. Huang & Huang, 2018, 2019), and control an active ankle-

foot prosthesis via a single ankle plantarflexor muscle during level treadmill walking (S. 

Huang et al., 2016). CPMC, especially for impedance control, is a promising approach; 

however, it can require extensive user training, increase cognitive processing, and can be 

affected by muscle fatigue. 

Many methods to estimate joint dynamics continuously have been proposed to 

eliminate the need for a discrete state-based control, and in the case of myoelectric 

control, to reduce user’s cognitive and physical demands and to eliminate the need for 

high quality, independent muscle signals. EMG signals, ground reaction forces, and hip, 

knee, and shank dynamics have been used as inputs to continuously estimate (i.e., one-

step-ahead estimate) (Dey et al., 2019; Eslamy & Alipour, 2019; Keleş & Yucesoy, 2020; 

J. Chen et al., 2018; Hahn & O’Keefe, 2008; Ardestani et al., 2014; Zhang et al., 2012; 

Gupta et al., 2020) and predict (i.e., n-step-ahead estimate) (Farmer et al., 2014; Zabre-

Gonzalez, Riem, et al., 2021; Zarshenas et al., 2020) ankle kinematics and kinetics. These 

continuous gait models have proven successful, however, they typically focus on using 

muscle activity of healthy individuals to estimate ankle angle or moment during a single 

type of terrain (e.g., level walking). 
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Autoregressive models, such as nonlinear autoregressive neural network with 

exogenous (i.e., external) inputs (NARX), have been shown to work well for continuous 

myoelectric estimation/prediction of limb dynamics (Farmer et al., 2014; Gupta et al., 

2020; J. Liu et al., 2017; Zabre-Gonzalez, Riem, et al., 2021). The NARX model can be 

trained in an open-loop mode (feedforward structure; error-free targets as inputs) or 

closed-loop mode (recurrent structure; model output estimates fed back as recurrent 

inputs). In previous work, EMG-driven feedforward (open-loop) NARX models have 

demonstrated the feasibility of continuously predicting future intended prosthetic ankle 

angle during level treadmill walking using within-socket residual surface EMG of 

transtibial amputees (Farmer et al., 2014), and ankle angle and moment across 

ambulation conditions (i.e., level overground walking, stair ascent, and stair descent) in 

healthy individuals [see CHAPTER 2 (Zabre-Gonzalez, Riem, et al., 2021)]. However, 

the accuracy and stability of the open-loop NARX model cannot be guaranteed when 

implemented in a feedback control system (Lewis & Parisini, 1998; Menezes & Barreto, 

2008), commonly used for actuating ankle-foot prostheses. Explicit training as a recurrent 

(closed-loop) NARX model can overcome these shortcomings. Closed-loop model 

performance tends to be inferior (Menezes & Barreto, 2008) but model accuracy can be 

improved by incorporating additional input signals (Dey et al., 2019; Eslamy & Alipour, 

2019; Keleş & Yucesoy, 2020; Gupta et al., 2020). 

The combination of direct user intent, via EMG signals, and information about 

limb state, via electromechanical sensor signals, can increase the robustness and accuracy 

of locomotion mode detection (B. Chen & Wang, 2015; Tkach & Hargrove, 2013; H. 

Huang et al., 2011) and continuous estimation of lower limb kinematics (Gupta et al., 
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2020; López-Delis et al., 2018). EMG and kinematic analyses suggest that timing in the 

local patterns of EMG activity is a key discriminant of gait while traversing different 

types of terrains (Lencioni et al., 2019; Wentink et al., 2013, 2014). The integration of 

EMG signals with information about limb state in a continuous predictive model of gait 

would provide intuitive and robust prosthetic control by counteracting delays (e.g., 

sensing, signal processing, and actuation), and proactively modifying gait in response to 

unexpected perturbations and upcoming changes in terrain. 

The purpose of this study was to determine whether within-socket residual EMG 

of transtibial amputees could be used to continuously predict future ankle kinematics and 

kinetics across ambulation conditions including transitions between terrains (i.e., 

transitions to/from a staircase). Unlike previous approaches [see CHAPTER 2 (Farmer et 

al., 2014; Zabre-Gonzalez, Riem, et al., 2021)], here a recurrent (closed-loop) NARX 

model was used to predict future ankle angle and ankle moment of the sound limb using 

residual EMG of the prosthetic side, in conjunction with shank kinematics of the sound 

limb. By overlaying the ankle dynamics of the sound limb onto the prosthesis, the 

approach takes an important step toward establishing a more normal gait by creating 

symmetric gait patterns between the limbs. Prediction variability was statistically 

analyzed at critical points where excessive deviations in model prediction could lead to 

falls or injury during prosthetic control. Model performance and EMG contribution to 

model prediction in amputees were compared to models of able-bodied participants as 

best case characterization of normal gait patterns. 
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3.3 MATERIALS AND METHODS 

3.3.1 Participants 

Three male unilateral transtibial amputees (TTA) (age = 52.9 ± 6.2; with 

experimental prosthesis donned: mass = 90.9 ± 26.3 kg and height = 1.78 ± 0.08 m; time 

since amputation = 11.6 ± 4.8 years) and six able-bodied, healthy young adults (AB) (3 

females; age = 21.7 ± 1.8; mass = 69.0 ± 9.0 kg; height = 1.77 ± 0.10 m) participated in 

the study (Supplementary Table B.1). For both groups, participants were excluded if 

they presented a neurologic or orthopedic impairment (other than amputation for TTAs) 

that would affect their ability to walk or follow instructions. All amputees were K3-K4 

ambulators (e.g., variable cadence, community ambulator, independent ambulation 

without assistive devices), and two actively participated in sports activities. All amputees 

used energy-storing-and-returning feet with a pin-lock gel liner suspension system, and 

had volitional control of their remnant ankle flexors and extensors with stable residual 

volume. The study was approved by the Institutional Review Board at Marquette 

University (Milwaukee, Wisconsin, United States) and all participants provided written 

informed consent prior to participation. 

3.3.2 Electrode-Socket Integration 

A plastic electrode-housing test socket and a modified pin-lock gel liner were 

designed to integrate wireless surface EMG electrodes and allow the acquisition of EMG 

signals within the prosthetic socket of amputee participants. Prior to participation in the 

experimental session, each transtibial amputee was evaluated by a certified prosthetist to 
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assess the amputee’s ability to independently control their residual tibialis anterior and 

gastrocnemius medialis and lateralis muscles, and to identify the three muscle sites for 

recording within socket (the gastrocnemius lateralis site was not used in this study). 

Amputees were instructed to “point up or down” the toes of their phantom limb. Muscle 

sites were then palpated, verified with a MyoBoy® (Ottobock, Duderstadt, Germany), 

and marked on the skin. After amputees donned a gel liner, molds of a Trigno™ wireless 

surface EMG electrode (Delsys, Inc., Natick, MA, United States) were placed inside the 

liner at the identified sites and marked on the liner’s exterior surface. The marked liner 

was used by the prosthetist to transfer the desired electrode locations to a duplicate socket 

mold which was used to fabricate an individualized test socket for each amputee (Figure 

3.1A). At each electrode site, the test socket contained openings with protruding walls 

sized to the thickness of the Trigno electrode, to provide reliefs that enhanced comfort 

and minimized electrode motion during ambulation. Similarly, the electrode locations in 

the marked liner were cut out to produce a small aperture for the electrode to make 

contact with the skin. 

At the beginning and end of the experimental session, a certified prosthetist 

replaced the amputee’s original socket with the duplicate electrode-housing test socket, 

and vice versa, and verified alignment. The test socket was mounted to the amputee’s 

current prosthetic pylon and ankle-foot, and electrode sites were marked on their residual 

limb. Cover-Roll® Stretch dressing, with an electrode cut out, was placed over the 

cleaned skin to delineate electrode sites, and to protect skin from protrusion and pinching 

between the socket opening and the electrode. Electrodes were then secured on the 

residual limb and the modified liner was donned. Electrodes were adjusted to fit properly 
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through the liner holes and EMG signal quality was verified. A prosthetic shrinker was 

used to apply compression and facilitate donning of the socket. After the test prosthesis 

was donned, electrodes were adjusted within the socket openings, and electrode molds 

were placed externally to fill the walled empty space to minimize skin and electrode 

protrusion. After the donning procedure was completed, the amputee was asked to walk 

to verify comfort and alignment of the test prosthesis. 

 
Figure 3.1. Electrode-socket integration and experimental walkway. (A) Individualized duplicate 
electrode-housing test socket and prosthetic shrinker used during amputee testing. (B) Modified Helen 
Hayes infrared lower limb marker set and EMG electrode placement on a transtibial amputee. (C) 
Experimental walkway including (a) embedded floor force plates, (b) stair force plates, (c) staircase, (d) 
landing platform, and (e) infrared motion cameras (APPENDIX D). (D) Schematic of step-over-step stair 
ambulation gait cycles (GC; red, stair ascent; blue, stair descent) used in the contralateral gait-cycle 
alignment. Gait cycles of the sound limb (lead limb) whose kinematics (ankle angle, shank velocities) and 
kinetics (ankle moment) were used as the target movement during training are shown as solid lines. Dashed 
lines denote consecutive gait cycles of the prosthetic limb (trail limb) whose residual EMG was aligned 
with the target kinematic/kinetic gait cycles. 

3.3.3 Experimental Procedure 

Participants ambulated at a comfortable, self-selected speed wearing athletic 

shoes, in three different ambulation conditions, level overground walking (LW), stair 

ascent (AS), and stair descent (DS). Ambulation conditions were not randomized to 

minimize set-up time and session duration (APPENDIX E). The walkway was 

instrumented with four 3-dimensional 6-channel force plates (Advanced Mechanical 
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Technology, Inc., Watertown, MA, United States), two embedded in the floor, and two 

built-in under a modified 4-step (60.5 cm width x 17.8 cm rise x 29.1 cm run; 1st step: 

46.3 cm width, 26.5 cm run) staircase (Advanced Mechanical Technology, Inc., 

Watertown, MA, United States) connected to a landing platform (1.22 x 0.91 m) (Figure 

3.1C). Prior to data collection, participants walked on the walkway to get accustomed to 

the staircase setup and task instructions. First, participants traversed the walkway (~3 m), 

ascended the stairs in a step-over-step fashion, and walked to the end of the platform 

(stair ascent trial). When instructed, they walked the platform, descended the stairs step-

over-step, and returned to their starting position on level ground (stair descent trial). 

During stair ambulation, amputees had access to handrails for support and protection, 

however, their use was minimal. For level ground walking trials, the staircase and landing 

platform were removed, and participants walked the entire length of the walkway (~5 m). 

Participants completed a minimum of fifteen trials per ambulation condition. Breaks were 

encouraged to reduce risk of fatigue. 

3.3.4 Data Acquisition and Signal Processing 

Surface EMG activity, kinematic, and kinetic data were collected and 

synchronized. Trigno™ wireless surface EMG electrodes were placed on clean skin, 

bilaterally over the tibialis anterior (dorsiflexor) and the gastrocnemius medialis 

(plantarflexor) of able-bodied participants. EMG electrode placement on amputees was 

performed as described previously (Electrode-Socket Integration). Surface EMG 

recordings were sampled at 1,200 Hz, differentially amplified (909 V/V), filtered and 

rectified to obtain the linear envelope (band-pass filter: 4th order zero-phase Butterworth 
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at 20-499.5 Hz, full-wave rectified, low-pass filter: 4th order zero-phase Butterworth at 

5.5 Hz), and down sampled to 120 Hz. The band-pass filter removed potential within-

socket motion artifacts below 20 Hz similar to Hefferman et al. (Hefferman et al., 2015). 

Kinetic data was sampled at 1,200 Hz, low-pass (4th order zero-phase Butterworth at 15 

Hz) and notch (4th order zero-phase Butterworth at 59-61 Hz) filtered, and down sampled 

to 120 Hz. Seven lower body segments (pelvis, thighs, shanks, feet) were defined based 

on a modified Helen Hayes marker set using twenty-five reflective markers placed on the 

participant’s key anatomical landmarks (posterior superior iliac spine and bilaterally on 

the anterior superior iliac spine, greater trochanters, thighs, medial and lateral femoral 

condyles, shanks, medial and lateral malleoli, calcaneus, second and fifth metatarsal 

heads, anterior end of first distal phalanx) (Figure 3.1B). Marker locations on the 

prosthetic limb were approximated based on the sound-limb locations for amputees. 

Anthropometric measures (height and weight) were taken. Kinematic data were sampled 

at 120 Hz using an OptiTrack (NaturalPoint, Inc., Corvallis, OR, United States) motion 

capture system (14 to 16 Flex 13 cameras). AMASS and Visual 3D (C-Motion, Inc., 

Germantown, MD, United States) were used to extract limb kinematic (shank velocities 

and sagittal ankle angle) and foot kinetic (sagittal ankle moment, normalized to 

participant’s body mass) time series and gait events. Pre-processing of kinematic and 

kinetic time series are explained in detail in previous work [see CHAPTER 2 (Zabre-

Gonzalez, Riem, et al., 2021)]. Shank segment center of mass linear velocity was 

obtained in three axes (sagittal, longitudinal, and frontal) relative to the global coordinate 

system using the finite difference method (C-Motion, 2014). The sagittal axis was 
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defined along the anterior-posterior (AP) direction, the longitudinal axis in the vertical 

direction, and the frontal axis in the medial-lateral (ML) direction. 

All trials were truncated and temporally normalized from 225 ms before the first 

foot contact on the first force plate to the first heel strike before contralateral last foot 

contact on the last force plate (percent trial). Consequently, the level walking trial 

consisted of one gait cycle, and each stair ambulation trial consisted of three continuous 

gait cycles including two staircase transitions, as participants traversed from level 

walking to stair stepping to level walking (Figure 3.1D), as detailed in previous work 

[see CHAPTER 2 (Zabre-Gonzalez, Riem, et al., 2021)]. To overlay the dynamics of the 

sound limb onto the prosthetic limb to restore symmetric gait using residual EMG, 

kinematic (ankle angle, shank velocities) and kinetic (ankle moment) trials of the sound 

limb were temporally aligned with within-socket residual EMG trials of the prosthetic 

limb to create the dataset for model training and testing. EMG gait cycles of the 

prosthetic limb (trail limb) were interpolated (piece cubic spline) within a gait cycle to 

correspond with the length of the gait cycles of the sound limb (lead limb). For stair 

ambulation, EMG gait cycles were consecutively selected, instead of maximum profile 

similarities, to avoid introducing error during training associated with discontinuities in 

the data (Supplementary Figure B.4). This method is referred as contralateral gait-

cycle alignment (Figure 3.1D). Similarly, an additional dataset for able-bodied 

participants was created where EMG signals of the contralateral limb were aligned and 

interpolated to the gait cycles of the limb used to train the model (i.e., ankle kinematic 

and kinetic predictions). EMG of this dataset is referred as contralateral EMG and the 

participants as ABcEMG. 
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3.3.5 NARX Model 

A model of future lower limb state was developed to continuously predict (i.e., 

future estimates) ankle kinematics and kinetics of the sound limb of transtibial amputees, 

across ambulation conditions and terrain transitions. Specifically, a recurrent (closed-

loop) multiple-input multiple-output NARX model (S. Chen et al., 1990; Leontaritis & 

Billings, 1985) was created, trained, and tested using the Neural Network Toolbox in 

MATLAB (R2017a, The MathWorks Inc., Natick, MA, United States). The NARX 

model consisted of an input layer containing windowed time series of five exogenous 

inputs and two feedback model outputs (i.e., as recurrent inputs) fed via separate tapped 

delay lines to a single hidden layer containing nonlinear units. The exogenous inputs 

consisted of the within-socket residual EMG linear envelopes of the ankle dorsiflexor and 

plantarflexor and the 3-axis shank velocities of the sound limb. The recurrent inputs 

corresponded to the prior predictions of the sagittal ankle angle and ankle moment of the 

sound limb fed back from the model output. The hidden layer output was then fed to a 

linear output layer containing separate outputs of the predicted ankle angle and moment 

of the sound limb (Figure 3.2). 

The prediction of the recurrent (closed-loop) NARX model output, 𝑦𝑦�𝑛𝑛(𝑡𝑡 + 𝑚𝑚), at 

each time point was calculated by the following equations, 
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𝑣𝑣𝑛𝑛(𝑡𝑡 + 𝑚𝑚) = 𝑓𝑓1 ���𝑎𝑎𝑛𝑛𝑛𝑛(𝑞𝑞)
5

𝑛𝑛=1

𝑥𝑥𝑛𝑛(𝑡𝑡 − 𝑞𝑞) −��𝑐𝑐𝑛𝑛𝑗𝑗(𝑞𝑞)𝑦𝑦�𝑗𝑗(𝑡𝑡 − 𝑞𝑞)
2

𝑗𝑗=1

+ 𝑏𝑏1𝑛𝑛

𝑑𝑑

𝑞𝑞=1

𝑑𝑑

𝑞𝑞=0

�, 

 𝑛𝑛 = 1, 2, … ,𝑁𝑁 (3.1) 

𝑦𝑦�𝑗𝑗(𝑡𝑡 + 𝑚𝑚) = 𝑓𝑓2 ��𝑤𝑤𝑗𝑗𝑛𝑛𝑣𝑣𝑛𝑛(𝑡𝑡 + 𝑚𝑚) + 𝑏𝑏2𝑗𝑗

𝑁𝑁

𝑛𝑛=1

�, 

 𝑗𝑗 = 1, 2 (3.2) 

where 𝑣𝑣𝑛𝑛(𝑡𝑡 + 𝑚𝑚) is the output of nth unit in the hidden layer, N is the size of the hidden 

layer, d is the sampling window length in time steps (𝐷𝐷 =  𝑑𝑑𝑚𝑚𝑡𝑡), m is the prediction 

interval in time steps (𝜏𝜏 =  𝑚𝑚𝑚𝑚𝑡𝑡), 𝑥𝑥𝑛𝑛(𝑡𝑡 − 𝑞𝑞) is the ith exogenous input (EMG linear 

envelopes or shank velocities) for the prior q time step, 𝑦𝑦�𝑗𝑗(𝑡𝑡 + 𝑞𝑞) is the prior prediction 

of the jth output (ankle angle or moment), 𝑎𝑎𝑛𝑛𝑛𝑛, 𝑐𝑐𝑛𝑛𝑗𝑗, and 𝑤𝑤𝑗𝑗𝑛𝑛 are the weights of EMG and 

shank velocity inputs, feedback outputs, and model outputs, respectively, 𝑏𝑏1𝑛𝑛 and 𝑏𝑏2𝑗𝑗 are 

the bias weights of the nth hidden unit and jth output unit respectively, 𝑓𝑓1 is a nonlinear 

hyperbolic tangent sigmoid function, and 𝑓𝑓2 is a linear function with unit slope. The 

prediction interval specified the time relative to the current time step for which future 

ankle angle and moment were calculated. The length of the sampling window specified 

the number of prior inputs (exogenous and recurrent) used to predict future ankle angle 

and moment. 

Additional to the amputee models, two NARX models were created using the 

same set of able-bodied participants (AB model and ABcEMG model). AB models used 

inputs (EMG and shank velocities) and outputs (ankle angle and moment) of the same 

limb (i.e., limb used to train the model), whereas ABcEMG models used the aligned 

contralateral EMG as the EMG input. AB and ABcEMG NARX models served as control 
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models (1) to determine the ability of a single-network, closed-loop model to 

continuously predict normal ranges of ankle dynamics associated with healthy 

ambulation, (2) for a normative comparison of amputee model performance, (3) to 

determine if using contralateral EMG as inputs was a viable approach, and (4) to 

determine the influence of the contralateral gait-cycle alignment on model performance. 

 
Figure 3.2. Multiple-input multiple-output recurrent (closed-loop) NARX model for transtibial amputees. 
The linear envelope of within-socket residual EMG (ankle dorsiflexor and plantarflexor), shank linear 
velocities of the sound limb, and prior predictions of ankle angle and ankle moment of the sound limb were 
weighted and fed via tapped delay lines to a single hidden layer containing nonlinear units with hyperbolic 
tangent sigmoid transfer functions. Intermediate outputs were weighted and linearly combined to provide 
continuous predictions of future ankle angle and moment over time of the sound limb. Models of able-
bodied participants (AB and ABcEMG models) differed in the use of inputs and outputs of the same limb 
(AB), and the use of the aligned contralateral EMG as the EMG input (ABcEMG). 

To sample model parameter ranges relevant for the optimization of the model [see 

CHAPTER 2 (Zabre-Gonzalez, Riem, et al., 2021)], NARX model performance was 

characterized as a function of prediction interval (τ: 8, 58, 142 ms), sampling window (D: 

17, 42, 83 ms), and number of hidden units (N: 16, 30, 50) using a leave-one-out 10-fold 

cross-validation procedure. The model was optimized using a supervised learning 

procedure to minimize the mean squared error (MSE) between the experimentally 

measured ankle angle and moment (targets) and the model predictions where angle and 

moment errors were fitted equally. For each participant, all trials were randomized and 
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ten separate model fits, with randomized initial weights, were trained with ten trials of 

each ambulation condition (80% used for training, 20% for validation). Training trials 

were organized as concurrent set of sequences and divided into contiguous blocks to 

avoid discontinuities in the data that would cause inherent training errors, and to ensure 

that random trials, instead of random points, were used during training. One trial of each 

ambulation condition was held back (novel test trial) to avoid overfitting and to 

separately assess model performance after training. All networks were trained and tested 

in a closed-loop mode whereby model predictions of ankle angle and moment from the 

output layer were fed back as recurrent inputs rather than the experimentally measured 

targets. From the ten model fits, the generalized network for that k-fold dataset was 

determined by the model with the lowest MSE averaged across novel test trials and 

ambulation conditions. The procedures used for training and testing are explained in 

detail in previous work [see CHAPTER 2 (Zabre-Gonzalez, Riem, et al., 2021)]. The 

prediction interval was chosen to be 58 ms (7 time steps) to counteract electromechanical 

inherent delays (max. 50 ms) of the Marquette University’s active ankle-foot prosthesis 

(Klein & Voglewede, 2018; Sun et al., 2014; Sun & Voglewede, 2012). The optimal 

sampling window and number of hidden units were determined by the network with the 

minimum MSE averaged over the ten novel test trials of the stair descent condition. 

Model performance after training was evaluated using this optimized subject-specific 

network structure to characterize maximal performance for each participant. For each 

able-bodied participant, optimal sampling window and number of hidden units were 

selected for each AB and ABcEMG model. 
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3.3.6 Model Performance Measurements and Statistical Analysis 

All performance measurements and statistical analyses were averaged across ten 

novel test trials for each ambulation condition and model output (ankle angle and 

moment), individually for amputees and averaged across able-bodied participants (AB 

group and ABcEMG group), unless otherwise specified. 

Coefficient of determination (R2; obtained from squaring the cross-correlation 

peak) and root mean square error (RMSE) were calculated between the model prediction 

and the experimentally measured target of ankle angle and moment to characterize model 

performance. R2 and time lags were used to quantify the model ability to reproduce angle 

and moment profiles and to identify temporal offsets in the model prediction for each 

ambulation conditions and their transitions. 

The effects of prediction interval, sampling window, and number of hidden units 

on model performance were examined using the average RMSE collapsed along a single 

dimension (i.e., RMSE averaged across two of the three model parameters). RMSE was 

averaged across participants for each participant group (TTA, AB, and ABcEMG). RMSE 

was also computed using the optimal subject-specific model parameters, individually for 

amputees, and averaged across participants for able-bodied groups. Model performance 

was further investigated by analyzing changes in RMSE distribution within the gait 

cycles of the ambulation conditions. Each gait cycle was divided into the standard seven 

gait periods based on gait events (Neumann, 2017): loading response (initial foot contact 

to contralateral toe off), mid-stance (1-50% of single-limb support), terminal stance (50-

100% of single-limb support), pre-swing (contralateral initial foot contact to toe off), 

initial swing, mid-swing, and terminal swing. The three swing periods represented one-
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third of the swing phase. RMSE was then computed within each gait period and then 

averaged across trials. 

To evaluate the impact of EMG signals on model prediction, the sum of weighed 

inputs (SWI) was calculated for each exogenous input using the novel test trials and the 

trained weights from the input to the hidden layer. The SWI of the ith input, was 

calculated as, 

𝑅𝑅𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑡𝑡) = 𝑟𝑟𝑚𝑚𝑟𝑟��𝑎𝑎𝑛𝑛𝑛𝑛(𝑞𝑞)
𝑑𝑑

𝑞𝑞=0

𝑥𝑥𝑛𝑛(𝑡𝑡 − 𝑞𝑞)��

𝑁𝑁

, 

 𝑛𝑛 = 1, 2, … ,𝑁𝑁  (3.3) 

where for each time step, the windowed input is multiplied by the associated hidden-layer 

weights, 𝑎𝑎𝑛𝑛𝑛𝑛, and summed across the sampling window to quantify the strength of the ith 

input to each hidden unit. The root mean square (rms) was then computed across hidden 

units to characterize the total contribution of the ith input to the model prediction 

throughout the trial. SWI was averaged over time and across trials for each ambulation 

condition to quantify the overall contribution of each input. Similar to the analysis of the 

RMSE distribution within ambulation conditions, the SWI distribution of the inputs 

(ankle dorsiflexor and plantarflexor EMG and AP shank velocity) were analyzed within 

the gait cycles for each ambulation condition (gait cycle 2 for stair ambulation). The SWI 

over time of each gait cycle was divided into the seven gait periods and then averaged 

across trials. 

Several critical performance points, clearance intervals (Loverro et al., 2013) and 

stance critical points (Protopapadaki et al., 2007; Sinitski et al., 2012), were selected from 

literature to verify that the NARX model predictions where within the variability of the 
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targets of each participant at those locations. Leg dynamics of Loverro’s et al. staircase 

steps were matched to the stair steps of this study, and clearance intervals were identified, 

corresponding to the minimum foot and toe clearance with the highest tripping risk 

during normal gait (Loverro et al., 2013). For each clearance interval, three critical points 

were identified corresponding to the range of timings of the minimum clearance angle 

(mean ± standard deviation, i.e., 30 total points). Crucial kinematic (toe off, maximum 

dorsiflexion, maximum plantarflexion) and kinetic (maximum plantarflexion moment) 

events for prosthetic design were defined as single stance critical points (i.e., 19 points). 

For each participant, a paired-samples t-test was performed for each critical point to 

determine whether NARX model predictions were statistically different from 

experimentally measured targets across trials. If the Shapiro-Wilk normality test failed, a 

nonparametric sign test was performed instead. SPSS 22 (SPSS Inc., Chicago, IL, United 

States) was used for all statistical analyses with a significance level of p < 0.05. For each 

participant, the p values of the critical points (i.e., 49 total points) were adjusted for 

multiple comparisons using the Benjamini-Hochberg (B-H) procedure with a false 

discovery rate of 0.05 (Benjamini & Hochberg, 1995). 

3.4 RESULTS 

Aligned experimentally measured shank linear velocities, ankle angle and ankle 

moment of the sound limb, and residual ankle dorsiflexor and plantarflexor EMG used 

during training and testing are shown for an amputee (TTA3, most active amputee) in 

Figure 3.3. Experimental data of the remaining amputees and a typical able-bodied 
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participant (AB3) are provided in the Supplementary Material (Supplementary Figures 

B.1-B.3). 

 
Figure 3.3. Aligned experimentally measured trials used to train and test the NARX model of a transtibial 
amputee (TTA3). Shank linear velocities, ankle angle, and ankle moment of the sound limb, and the linear 
envelope of within-socket residual EMG (ankle dorsiflexor and plantarflexor) are shown during level 
overground walking and stair ambulation. Percent trial is normalized from 225 ms before the first foot 
contact on the first force plate to the first heel strike before contralateral last foot contact on the last force 
plate. Vertical lines denote gait events (solid: sound limb; dashed: contralateral limb, i.e., prosthetic limb) 
defined based on force plate (threshold 10 N) and floor contact (ON, first contact on force plate; OFF, last 
contact on force plate; HS, heel strike on floor; TO, toe off on floor). Contralateral gait events are identified 
by a lowercase “c” (e.g., cTO, contralateral toe off). Staircase ambulation (black horizontal bar) is defined 
as the first foot contact on the staircase to the first foot contact on level ground of the sound limb. Staircase 
transitions to/from level ground are shaded gray. Single-limb support occurs when only one limb is in 
contact with the ground (cTO to cON or cOFF to cON). Experimental data of the remaining amputees and 
a typical able-bodied participant (AB3) are provided in the Supplementary Material (APPENDIX B). 

All amputees were able to activate both muscles with voluntary sustained 

contractions. Within-socket residual and able-bodied EMG activation patterns were 

consistent across trials for each ambulation condition; however, residual EMG showed 

different temporal profiles among amputees and in comparison to able-bodied 

participants. EMG activity within the prosthetic socket exhibited different levels of co-

contraction between antagonistic muscles (e.g., Supplementary Figure B.1). Able-
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bodied participants exhibited a phasic pattern of activity within the muscle pair with 

minimal co-contraction in each ambulation condition (Supplementary Figure B.3). 

When comparing EMG from both limbs of able-bodied participants, the contralateral 

gait-cycle alignment affected the aligned contralateral EMG patterns (e.g., different 

shapes), especially during gait cycle 1 and 3 of stair ambulation, but maintained a phased 

pattern (Supplementary Figures B.3 and B.4). Amputee EMG amplitudes tended to be 

lower than those of able-bodied participants and tended to have a greater amplitude 

difference within the muscle pair. Shank velocities and ankle dynamics were also 

consistent across trials in all ambulation conditions for both amputees’ sound limb and 

able-bodied participants. The largest shank velocity occurred in the AP direction in all 

ambulation conditions and participant groups. Across participants, the greatest ankle 

range of motion occurred during stair descent, whereas a qualitative assessment 

suggested that ankle moment exhibited more trial-wise variability also during stair 

descent. 

Contrary to the feedforward NARX model developed previously [see CHAPTER 

2 (Zabre-Gonzalez, Riem, et al., 2021)], closed-loop model error for the prediction of 

ankle angle and moment varied nonlinearly with prediction interval across ambulation 

conditions and participant groups (Figure 3.4 and Supplementary Figure B.5). RMSE 

had a slightly parabolic shape where 8 and 142 ms had similar values but larger than 58 

ms. In contrast, RMSE of ankle angle and moment had a small decrease as sampling 

window increased across ambulation conditions and participant groups. RMSE were 

similar with 16 and 30 hidden units but increased with 50 units for ankle angle and 

moment in all ambulation conditions and participant groups. Amputees had similar angle 
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and moment RMSE to the ABcEMG group, but both groups had slightly larger errors than 

the able-bodied group (AB) for all model parameters and ambulation conditions. RMSE 

of the predicted ankle angle and moment were consistently lowest for level walking and 

largest for stair descent, but with overlapping standard deviations among ambulation 

conditions, across parameters and participant groups. 

 
Figure 3.4. Parameter space error of the recurrent (closed-loop) NARX model for transtibial amputees. 
RSME between predicted and experimentally measured ankle angle and ankle moment is shown as a 
function of prediction interval, sampling window, and number of hidden units, averaged across amputees. 
RMSE is collapsed across model parameters (i.e., averaged across two of the three dimensions). Shaded 
regions denote ±1 standard deviation. Results for able-bodied groups are provided in the Supplementary 
Material (APPENDIX B). 

Closed-loop NARX model predictions of ankle angle and ankle moment closely 

matched the experimentally measured targets in all ambulation conditions and staircase 

transitions for all amputees and able-bodied participants (AB and ABcEMG models). 

Figure 3.5 shows the comparison of model predictions and targets for each amputee 

using their optimal model parameters (τ: 58 ms, TTA1 - D: 83 ms, N: 50; TTA2 - D: 42 

ms, N: 30; TTA3 - D: 83 ms, N: 50). Prediction time series of a typical able-bodied 

participant trained with same-limb data (AB3) and trained with aligned contralateral 

EMG as the EMG input (AB3cEMG) are provided in the Supplementary Material 

(Supplementary Figure B.6). 
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Figure 3.5. Time series of NARX model prediction of ankle angle and ankle moment for all transtibial 
amputees. Optimal model parameters were used for each amputee (τ: 58 ms, TTA1 - D: 83 ms, N: 50; 
TTA2 - D: 42 ms, N: 30; TTA3 - D: 83 ms, N: 50). Closed-loop NARX model predictions during level 
overground walking and stair ambulation are shown for the k-fold novel test trials with the best accuracy 
across ambulation conditions and model outputs. Critical performance points (CPs), used to test for within-
subject significant differences (B-H adjusted p < 0.05) between the model prediction and experimentally 
measured targets, are shown under TTA3 plots (clearance intervals as yellow blocks; stance critical points 
as green lines). Single asterisks (*) indicate CPs with significant difference in at least two amputees. 
Double asterisks (**) indicate significance differences in at least two amputees as well as in more than 50% 
of ABcEMG participants. Shading and line markers are defined the same as in Figure 3.3. Prediction time 
series of a typical able-bodied participant trained with same-limb data (AB3) and trained with aligned 
contralateral EMG as the EMG input (AB3cEMG) are provided in the Supplementary Material (APPENDIX 
B). 
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Table 3.1 lists average errors (RMSE) and correlations (R2) of the NARX model 

predictions of ankle angle (θ) and moment (M) for each ambulation condition, 

individually for amputees and averaged across able-bodied participants (AB and ABcEMG 

groups). The results show high levels of accuracy for both ankle angle and moment 

across participant groups and ambulation conditions and their transitions. For amputees, 

RMSE and R2 of ankle angle ranged from 2.06 to 3.74 degrees and from 0.886 to 0.970, 

respectively, while moment values ranged from 0.096 to 0.213 Nm/kg and from 0.930 to 

0.982, respectively. Amputees and the ABcEMG group had similar RMSE and R2 for both 

model outputs in all ambulation conditions. Model predictions for the able-bodied group 

(AB) had lower errors (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜃𝜃 = [2.03, 2.65] °, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀 = [0.071, 0.108] Nm/kg) and 

higher correlations (𝑅𝑅𝜃𝜃2 = [0.954, 0.971], 𝑅𝑅𝑀𝑀2  = [0.979, 0.992]) than amputees and the 

ABcEMG group across ambulation conditions. Model predictions accurately aligned with 

the ankle angle and moment targets where 91% of time lags were within one time step (8 

ms) across all trials (i.e., participants and ambulation conditions). Stair descent had the 

largest RMSE for both angle and moment across groups; yet, it had the highest R2 for 

angle among ambulation conditions. Prediction of ankle moment resulted in higher 

correlations than angle predictions across ambulation conditions and groups, except 

TTA2 stair ambulation. 
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Table 3.1. RMSE and R2 values of NARX model predictions for each ambulation condition, individually 
for transtibial amputees (TTA) and averaged across able-bodied participants (AB and ABcEMG groups). 

Model 
Output Group Units 

Level Ground Stair Ascent Stair Descent 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝝈𝝈𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝑹𝑹𝟐𝟐���� 
Unitless 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝝈𝝈𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝑹𝑹𝟐𝟐���� 

Unitless 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝝈𝝈𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝑹𝑹𝟐𝟐���� 
Unitless 

A
ng

le
 

TTA1 

D
eg

re
es

 

2.65 0.59 0.907 3.05 0.64 0.933 3.24 0.47 0.959 
TTA2 2.75 0.54 0.886 3.42 0.46 0.949 3.54 0.56 0.970 
TTA3 2.06 0.59 0.946 3.43 0.74 0.910 3.74 0.69 0.957 
𝑨𝑨𝑨𝑨����𝒄𝒄𝑹𝑹𝑹𝑹𝒄𝒄 2.70 0.66 0.923 3.31 0.22 0.923 3.46 0.41 0.951 
𝑨𝑨𝑨𝑨���� 2.03 0.35 0.957 2.49 0.16 0.954 2.65 0.19 0.971 

M
om

en
t 

TTA1 

N
m

/k
g 

0.116 0.027 0.977 0.132 0.014 0.974 0.149 0.019 0.962 
TTA2 0.118 0.026 0.967 0.151 0.027 0.948 0.167 0.030 0.938 
TTA3 0.096 0.018 0.982 0.168 0.032 0.959 0.213 0.047 0.930 
𝑨𝑨𝑨𝑨����𝒄𝒄𝑹𝑹𝑹𝑹𝒄𝒄 0.106 0.015 0.987 0.136 0.018 0.966 0.162 0.021 0.951 
𝑨𝑨𝑨𝑨���� 0.071 0.010 0.992 0.094 0.021 0.984 0.108 0.011 0.979 

 

Critical performance points within ambulation conditions are shown in Figure 

3.5. Statistical analysis revealed several critical points that repeated in at least two 

amputees (i.e., 8 of 49 points) and in more than 50% of ABcEMG participants (i.e., 9 of 49 

points), for which NARX model predictions were statistically different (B-H adjusted p < 

0.05, asterisks in Figure 3.5 and Supplementary Figure B.6) from the experimentally 

measured ankle dynamics (see Supplementary Table B.2 for statistical scores). For 

models trained with same-limb data, no significant differences were observed at critical 

points in more than 50% of able-bodied participants (Supplementary Figure B.6). 

Maximum ankle plantarflexion in the stance phase was significantly different during gait 

cycle 2 of stair descent in at least two amputees as well as in more than 50% of ABcEMG 

participants (as double asterisks in Figure 3.5), whereas level walking was only different 

for amputees. For ankle moment, six critical points showed significant differences in at 

least two amputees except gait cycle 1 of stair descent which was only different for 

TTA3. Similarly, four out of those six peak plantarflexion moments were also statistically 
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different in more than 50% of ABcEMG participants (as double asterisks in Figure 3.5). 

During level walking in particular, peak moment predictions were significantly different 

in all ABcEMG participants (n = 6). The percentage difference (absolute difference over 

mean) between the target and model prediction at all peak plantarflexion moments were 

up to 19% for level walking, 27% for stair ascent and 24% for stair descent for amputees, 

21%, 23% and 28% for ABcEMG participants, and 11%, 10% and 19% for able-bodied 

participants, respectively. Differences were also observed in four critical points during 

stair descent in more than 50% of ABcEMG participants but did not occur in at least two 

amputees (i.e., peak dorsiflexion of gait cycle 2; two angle points in the second clearance 

interval and peak moment of gait cycle 1; Supplementary Figure B.6). 

The distribution of RMSE within ambulation conditions showed variations in the 

accuracy of the predicted ankle angle and moment within and across gait cycles for 

amputees and able-bodied groups (Figure 3.6 and Supplementary Figures B.7 and B.8). 

In able-bodied groups, the largest deviations occurred during initial swing for ankle angle 

and during pre-swing for ankle moment in every gait cycle and ambulation condition. 

Ankle angle errors also increased during mid-swing for gait cycle 2 and 3 of stair ascent 

and during loading response for gait cycle 2 and 3 of stair descent. For both able-bodied 

groups, the patterns of error were consistent across gait cycles but were generally larger 

for the ABcEMG group, as well as, more substantial moment error at terminal stance. 

Amputee RMSE patterns were subject-specific and diverged from able-bodied patterns in 

several cases. Yet, for the most part, the largest errors occurred during the same gait 

periods as able-bodied groups, including similar error patterns for a subset of gait cycles 

(e.g., level walking for TTA2 angle and moment and gait cycle 1 of stair ascent for TTA1 
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angle in Supplementary Figure B.7). All participant groups had minimal moment errors 

during the swing phase in all gait cycles. Angle RMSE stayed below 3.4 degrees, 4.3 

degrees, and 6 degrees during all gait periods for able-bodied, ABcEMG, and amputee 

participants, respectively, while moment RMSE stayed below 0.155 Nm/kg, 0.255 

Nm/kg, and 0.365 Nm/kg, respectively. 

 
Figure 3.6. RMSE distribution within ambulation conditions for the continuous prediction of ankle angle 
and moment for a transtibial amputee (TTA3) and the able-bodied group (AB). Each gait cycle is divided 
into the standard seven gait periods based on gait events: loading response (LOAD; initial foot contact to 
contralateral toe off), mid-stance (MID ST; 1-50% of single-limb support), terminal stance (TERM ST; 50-
100% of single-limb support), pre-swing (PRE SW; contralateral initial foot contact to toe off), initial 
swing (INIT SW; 1-33% of swing phase), mid-swing (MID SW; 33-66% of swing phase), and terminal 
swing (TERM SW; 66-100% of swing phase). Stance and swing phases are shaded light orange and white, 
respectively. RMSE distribution of the remaining amputees and the ABcEMG group are provided in the 
Supplementary Material (APPENDIX B). 

The sum of weighed inputs, averaged over time, showed that both residual ankle 

dorsiflexor and plantarflexor muscle contribution to the model prediction were 
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comparable to AP shank velocity, the largest velocity contributor, for each amputee and 

both able-bodied groups across ambulation conditions (Figure 3.7A). Amputees and both 

able-bodied groups had similar relative contribution of EMG and AP shank velocity 

across ambulation conditions. 

 
Figure 3.7. Exogenous input contribution to NARX model prediction for each ambulation condition. (A) 
Sum of weighted inputs (SWI) for each input averaged over time. Error bars represents ±1 standard 
deviation of averaged able-bodied participants. (B) SWI distribution of EMG and AP shank velocity inputs 
within the gait cycle for level ground walking and the second gait cycle of stair ascent and stair descent for 
a transtibial amputee (TTA3) and the able-bodied group (AB). Because the network bias (offset) was not 
included in the SWI calculation, SWI absolute values can vary across participants without affecting the 
relative contribution among inputs. Gait periods and stance and swing phases are defined the same as in 
Figure 3.6. SWI distribution of the remaining amputees and the ABcEMG group are provided in the 
Supplementary Material (APPENDIX B). Dorsiflexor: tibialis anterior, Plantarflexor: gastrocnemius 
medialis, ML: medial-lateral, AP: anterior-posterior, V: vertical, Vel: velocity. 

SWI distribution within ambulation conditions showed that EMG and AP shank 

velocity had alternating contributions within the gait cycle for all participant groups 

(Figure 3.7A and Supplementary Figure B.9). The contribution of AP shank velocity 

varied continuously within the gait cycle with a pattern that was consistent across 

participant groups. EMG contribution predominated during loading response, pre-swing 

and terminal swing for level walking, swing phase for stair ascent, and during pre-, initial 
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and mid- swing for stair descent for able-bodied groups. While the patterns of EMG 

contribution differed for amputees, the largest EMG contribution to the model prediction 

occurred during similar intervals to the able-bodied groups. 

3.5 DISCUSSION 

This study demonstrated that the use of within-socket residual EMG of transtibial 

amputees can be used, in conjunction with shank kinematics of the sound limb, to 

continuously predict normative ankle kinematics and kinetics of the sound limb across 

ambulation conditions and terrain transitions. Additionally, the single-network, closed-

loop NARX model had the ability to characterize normal gait patterns of ankle angle and 

moment of able-bodied participants. The need for explicit identification of gait events or 

selection of locomotion modes was eliminated due to the ability of the autoregressive 

model to continuously predict ankle dynamics within and across ambulation conditions 

(i.e., level overground walking, stair ascent, and stair descent), including transitions 

between terrains. 

The proposed NARX model could be used in real-time to generate continuous 

ankle angle and ankle moment commands for the control of an active ankle-foot 

prosthesis using impedance, stiffness, or similar control schemes (Au et al., 2008; 

Kannape & Herr, 2014; Klein & Voglewede, 2018; Shultz & Goldfarb, 2018). It is 

believed that this work is the first in which a fully closed-loop model with predictive 

capabilities (i.e., future estimates) has been developed to continuously predict ankle state. 

In the closed-loop NARX model, prior model error was directly encoded during training 

because output predictions were fed back as recurrent inputs instead of using error-free 
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target data (as in open-loop models). A closed-loop structure would make the system 

robust to model uncertainties (e.g., error accumulation and undesired fluctuations), thus 

ensuring accuracy and stability when implemented in a feedback control system. 

Moreover, the prediction of future limb state enables a control system to counteract 

control and actuation delays, and allows gait changes to be modified proactively in 

response to terrain changes perceived by the user. Results show that similar performance 

can be achieved for prediction intervals ranging from 8 to 142 ms (Figure 3.4 and 

Supplementary Figure B.5) which would accommodate prosthetic delays [e.g., 40-50 

ms response time of ankle-foot prostheses (Ficanha et al., 2016; Sun et al., 2014; Yu, 

2017)] and enable future predictions given the physiological electromechanical delay 

from onset of surface EMG to the neuromotor drive [4-170 ms for lower leg muscles (Go 

et al., 2018)], while keeping ankle angle error less than 5 degrees [see CHAPTER 2 

(Zabre-Gonzalez, Riem, et al., 2021)]. These features make the recurrent (closed-loop) 

NARX model appealing for real-time feedback control in a wide variety of lower limb 

robotic devices, including actuated orthoses and exoskeletons. 

In lower limb amputees, gait asymmetries between the sound and prosthetic limb 

are primary attributed to limitations in the prostheses, even active prostheses, and are a 

major concern in achieving normal gait (Bateni & Olney, 2002; Pröbsting et al., 2020; 

Schmalz et al., 2007; Sinitski et al., 2012). The practical need to adapt to such 

asymmetries often leads to differences in kinematics and kinetics of the sound limb when 

compared to able-bodied controls (Grabowski & D’Andrea, 2013; Rábago & Wilken, 

2016). The approach presented here, mapping ankle dynamics of the sound limb with 

residual EMG of the prosthetic side (i.e., aligned), takes an important step toward 
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establishing a more normal gait by overlaying the dynamics of the sound limb onto the 

prosthesis to create symmetric gait patterns. However, the long-term impact on gait is 

dependent on the interaction between the model prediction and the human user as they 

adapt and react to changes (e.g., muscle recruitment, environment, and control errors). In 

previous work, a human-in-the-loop model was developed to simulate the user's EMG in 

response to changes in ankle dynamics (Zabre-Gonzalez, Amieva-Alvarado, et al., 2021). 

Real-time performance of the autoregressive model during human-in-the-loop control is 

needed to ensure safety and stability of the physical prosthetic system prior human 

testing. 

Despite amputees in this study having a wide array of residual ankle dorsiflexor 

and plantarflexor profiles with different levels of EMG activation and co-activation, 

walking patterns, and foot placement strategies during stair ambulation, the closed-loop 

NARX model performance was accurate and robust across amputees and ambulation 

conditions, including terrain transitions (R2 = [0.886, 0.982]), suggesting that the model 

can be used consistently across amputees. The strength of the model lies in its ability to 

account for individual’s specific variations of limb dynamics and muscle activity by 

training and optimizing the model to maximize performance for each amputee. 

Similarities in ankle angle and moment RMSE (across gait cycles and ambulation 

conditions) between individual amputees and the ABcEMG group suggest that the 

combination of antagonistic residual EMG along with sound-limb shank motion can 

effectively predict normative ankle dynamics. Importantly, the contribution of natural 

residual EMG signals of amputees, to the prediction of ankle dynamics across ambulation 

conditions, was consistent with normal muscle activity of able-bodied participants 
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(Figure 3.7 and Supplementary Figure B.9). In contrast to proportional myoelectric 

control systems, the ability to use natural, yet altered, amputee muscle activation profiles, 

eliminates the need for conscious, intentional muscle contraction, extensive user training, 

and high quality, independent muscle signals. When implemented in a prosthesis, the 

cognitive and physical demand on the user is expected to be less than current myoelectric 

control systems (S. Huang et al., 2016; S. Huang & Huang, 2019; Kannape & Herr, 2014, 

2016). 

The use of shank kinematics and antagonistic surface EMG signals allowed for 

accurate and robust model performance that included information about limb state and 

direct user intention. While the model developed here used shank linear velocity, other 

measures of shank kinematics (e.g., angle, angular velocity) could be used as well (B. 

Chen & Wang, 2015; Eslamy & Alipour, 2019; Holgate et al., 2009; Stolyarov et al., 

2018). A benefit of using shank kinematics in transtibial amputees is that the motion of 

the residual shank is still governed by the central nervous system and contains 

information about the limb state in relation to the gait cycle. Furthermore, in real-time 

application, shank kinematics could be obtained intrinsically from sensors embedded in 

the prosthesis (e.g., inertial measurement units, gyroscopes, accelerometers), similar to 

within-socket EMG, minimizing design complexity and facilitating donning and doffing 

of the prosthesis. 

Ankle angle and moment predictions closely matched the experimentally 

measured targets in all ambulation conditions for all participants. However, deviations in 

the predicted values were still present, particularly at local minima and maxima. Analyses 

revealed a number of critical points where predictions of amputee and ABcEMG models 
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repeatedly fell outside the variability of the targets. While sample size may have been a 

contributing factor, differences in model predictions may not necessarily correlate with 

practical disruptions of gait. For example, ankle angle predictions deviated from the 

targets at one critical point during the stance phase of level walking and stair descent. 

Studies suggest that foot placement during stair use is not a factor that contributes to a 

stumble or fall (Ramstrand & Nilsson, 2009), especially if the obstacle is seen beforehand 

(Schulz, 2011). Since the foot was already in contact with the surface, trip-related fall 

risk or injury from such prediction errors would be minimal. However, more generally, 

the impact of critical point errors on prosthetic control during gait remains an 

underdeveloped area of study in the field, particularly during human-in-the-loop control 

of an active prosthesis. 

While the influence of push-off has not been linked to fall risk (Müller et al., 

2019), limb asymmetry and offsets in the timing of push-off have been associated with 

increased metabolic rates, excessive limb loading, osteoarthritis, and back pain among 

lower limb amputees (Hill & Herr, 2013; Kulkarni et al., 2005; Miller et al., 2001; 

Montgomery & Grabowski, 2018; Morgenroth et al., 2011) and controls (Malcolm et al., 

2015). Although significant differences were also found at peak moments for the 

amputees, the peak percentage differences across ambulation conditions were lower than 

those present in commercially available ankle-foot prostheses (i.e., active to SACH) 

compared to able-bodied individuals [LW: 28% (Ferris et al., 2012; Pröbsting et al., 

2020; Rábago & Wilken, 2016; Sinitski et al., 2012), AS: 41% (Aldridge et al., 2012; 

Schmalz et al., 2007; Sinitski et al., 2012; Vack et al., 1999), DS: 50% (Schmalz et al., 

2007; Sinitski et al., 2012)]. Moreover, timing differences relative to the desired profile 
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were present in the peak moments of those commercial prostheses, unlike the prediction 

peaks in this study (>84% of moment predictions in amputees were within one time step 

of the targets). It is known that push-off timing is a key factor to maintain gait stability 

and stride variability (Malcolm et al., 2015). The ability of lower limb amputees to adapt 

to these limitations in their own prostheses (Hak et al., 2013) suggests that the moment 

prediction errors of the NARX model may not negatively impact the robust control of a 

prosthesis. 

The recurrent (closed-loop) NARX model predicted ankle angles and moments 

over a wider range of conditions at levels comparable to, and in some instances better 

than, other continuous gait models (Ardestani et al., 2014; J. Chen et al., 2018; Dey et al., 

2019; Eslamy & Alipour, 2019; Gupta et al., 2020; Hahn & O’Keefe, 2008; Keleş & 

Yucesoy, 2020; Zhang et al., 2012). Most models have used a feedforward structure to 

estimate (i.e., one-step-ahead estimate) ankle dynamics of healthy individuals limited to 

level walking [𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜃𝜃 < 4.7°, 𝑅𝑅𝜃𝜃2 > 0.74; 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀 < 0.16 Nm/kg, 𝑅𝑅𝑀𝑀2  > 0.86; (J. Chen et 

al., 2018; Dey et al., 2019; Eslamy & Alipour, 2019; Hahn & O’Keefe, 2008; Keleş & 

Yucesoy, 2020)]. In impaired populations, ankle angle errors (RMSE) ranging from 1.2 

to 5.4 degrees and from 0.82 to 9.3 degrees have been reported for transtibial amputees 

(Farmer et al., 2014) and spinal cord injury patients (Zhang et al., 2012), respectively, 

during level treadmill walking. For the errors of transtibial amputees, ankle angle of their 

passive prostheses was predicted 100 ms ahead of time using two antagonistic within-

socket residual EMG (i.e., same limb) as inputs to an open-loop NARX model (Farmer et 

al., 2014). In the current study, even with a greater model complexity, similar errors were 

achieved in transtibial amputees during level ground walking (RMSE < 2.8° for τ = 58 
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ms) with the inclusion of shank kinematics as inputs. In comparison to the 2-input open-

loop NARX model developed previously [see CHAPTER 2 (Zabre-Gonzalez, Riem, et 

al., 2021)], while ankle angle and moment errors increased by at least a factor of two 

across ambulation conditions for the closed-loop model, they remained less than 2.7 

degrees and 0.11 Nm/kg for able-bodied participants with correlations greater than 0.95 

for both models. Zarshenas et al. obtained favorable results (R2 > 0.8) using a time delay 

neural network with ankle kinematics and EMG inputs to predict ankle moment of 

healthy participants up to 1 second ahead of time (Zarshenas et al., 2020). Their model 

exploited the cyclic nature of treadmill walking at a constant speed which resulted in high 

accuracy over large prediction intervals, although performance was not examined during 

noncyclic features of gait such as terrain transitions. Gupta et al. estimated (i.e., 

excluding future predictions) ankle angle of able-bodied individuals during level ground 

walking (RMSE = 2.44 ± 0.45°, r = 0.97), stair ascent (RMSE = 3.61 ± 1.00°, r = 0.93), 

and stair descent (RMSE = 5.04 ± 1.56°, r = 0.85) using NARX models trained for each 

terrain individually (Gupta et al., 2020). It is believed that the NARX model was 

implemented as an open-loop model using error-free targets. The closed-loop model 

presented here had better performance, possibly due to the use of more relevant inputs 

(shank versus knee kinematics) and the absence of discontinuities in the training data, 

with the added benefit of being implemented in a single-network model capable of 

continuous prediction across ambulation conditions and terrain transitions. 

The use of contralateral EMG to align residual EMG from the prosthetic side with 

sound-limb dynamics was a viable approach that yielded accurate predictions of ankle 

dynamics. While this approach provides a path toward the implementation of sound-limb 
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ankle dynamics in the prosthetic limb, there remains room for improvement. When 

comparing able-bodied groups, where the only training difference was the use of aligned 

contralateral EMG instead of data from the same limb (EMG, ankle angle and moment, 

and shank velocities), the ABcEMG group had worse performance in all metrics (e.g., 

higher errors, lower correlations, model predictions that fell outside the variability of 

targets) than the able-bodied group (AB). Assuming limb symmetry in able-bodied 

participants (Sadeghi et al., 2000), large discrepancies in EMG profiles and ankle 

dynamics were observed during transition steps onto and off the staircase due to 

differences in step limb dynamics between the lead limb (i.e., limb of ankle kinematic 

and kinetic predictions) and the aligned trail limb (i.e., limb of contralateral EMG) 

(Supplementary Figure B.4). The limiting factor was the lack of EMG trials from both 

legs as the lead limb. The use of contralateral EMG collected as the lead limb would be 

expected to improve model performance by more accurately matching step dynamics 

with EMG signals. 

In this study, the impact of post-processing motion artifacts on model 

performance was not analyzed in depth for the electrode-housing test socket design. 

Given the consistency of trial-wise variability and the absence of high-frequency, large 

amplitudes in the EMG linear envelopes across amputees, the potential impact on the 

current results was considered minimal. Additionally, it has been shown that a similar 

design using the same EMG electrodes and filtering techniques (i.e., band-pass filter at 

20-450 Hz) in a transfemoral amputee produced negligible motion artifacts during level 

walking and stair ambulation, and produced a high level of user comfort when compared 

to other designs and electrodes (Hefferman et al., 2015). Furthermore, the effects of 
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variations in EMG signal due to changes in electrode placement and electrode-skin 

interface were not evaluated. Although studies suggest that these factors can adversely 

affect myoelectric pattern recognition (L. Chen et al., 2011; Hargrove et al., 2006; 

Radmand et al., 2014), preliminary testing of trained NARX models with EMG from 

subsequent days suggests the impact may be more limited. However, further research is 

needed to validate robustness over time. Finally, while the current results demonstrate the 

feasibility to continuously predict ankle angle and moment across a subset of common 

ambulation conditions and transitions, additional work is needed to validate the model 

training and performance with a larger cohort of participants under additional ambulation 

conditions (e.g., ramps, cadence modulation, noncyclic activities) and in response to 

untrained situations such as recovering from an unexpected perturbation. 

3.6 CONCLUSION 

This work demonstrated the ability of an autoregressive model to continuously 

predict (i.e., future estimates up to 142 ms) desired ankle kinematics and kinetics of the 

sound limb of transtibial amputees using within-socket residual EMG and sound-limb 

shank kinematics. The recurrent (closed-loop) NARX model successfully predicted ankle 

angle and ankle moment during multiple ambulation conditions (i.e., level overground 

walking and stair ambulation) including terrain transitions. Models of able-bodied 

participants were presented as a reference for the model performance possible under the 

same training methodology as amputees, as well as the maximum accuracy possible when 

predicting normal gait patterns. Model performance was stable and accurate across a 

range of different EMG profiles, leveraging both EMG and shank velocity inputs for the 
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prediction of ankle dynamics across ambulation conditions. The use of natural, yet 

altered, muscle activation as inputs could facilitate the design of intuitive and robust 

control strategies that reduce the cognitive and physical demands associated with 

volitional actuation of an ankle-foot prosthesis. This closed-loop predictive model is a 

step forward for continuous feedback control of lower limb robotic devices, particularly 

active ankle-foot prostheses, and has the potential to improve prosthetic function for 

lower limb amputees toward establishing a more normal, symmetric gait patterns. Further 

research is needed to validate the model on a larger cohort of amputees, characterize the 

impact of EMG signal changes on model performance, and evaluate real-time 

performance during human-in-the-loop control.  
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CHAPTER 4: CONTINUOUS PREDICTION OF FUTURE ANKLE DYNAMICS 
USING THIGH EMG: IMPLICATIONS FOR THE CONTROL OF 

ACTIVE POWERED LOWER LIMB PROSTHESES 

This chapter will be submitted for peer review: 
Journal: Journal of Neural Engineering  
Title: “Continuous Prediction of Future Ankle Dynamics Using Thigh EMG: Implications for the Control 
of Active Powered Lower Limb Prostheses” 
Authors: Erika V. Zabre-Gonzalez, Barbara Silver-Thorn, Philip A. Voglewede, Sara R. Koehler-
McNicholas, and Scott A. Beardsley 

4.1 ABSTRACT 

While thigh muscles do not control ankle motion directly, their synergistic 

activity and control of the knee and hip may provide an alternate source of locomotion 

intent to differentiate among terrains. The feasibility of using thigh electromyography 

(EMG) signals to continuously predict future ankle dynamics was examined to address 

some of the current challenges with the reliable acquisition of within-socket EMG signals 

from residual shank muscles. Thigh EMG of the prosthetic side, in conjunction with 

sound-limb shank kinematics, were used as inputs to an nonlinear autoregressive model 

to continuously predict ankle kinematics and kinetics of the sound limb in three 

transtibial amputees. Ankle angle and moment were predicted 58 ms ahead of time across 

three ambulation conditions (level walking, stair ascent, and stair descent) and terrain 

transitions. Model performance and EMG contribution to model prediction was then 

compared to models trained using within-socket residual shank EMG and to models of 

six able-bodied participants. Amputee models trained with thigh EMG accurately 

predicted ankle angle and moment across ambulation conditions and terrain transitions 

with root mean square errors (RMSE) less than 3.7 degrees and 0.21 Nm/kg, respectively, 

and cross-correlations (R2) greater than 0.91 and 0.94, respectively. Model performance 



105 
 

was similar to model predictions based on within-socket residual shank EMG without 

significant RMSE differences (within-subject ANOVA, p > 0.05). Thigh EMG was used 

in the model prediction to the same extent as residual ankle dorsiflexor and plantarflexor 

EMG as well as normal thigh EMG of able-bodied participants. The continuous 

predictive model provides opportunities for counteracting prosthetic delays, proactively 

modifying gait, and intuitively controlling ankle dynamics using different muscle groups. 

The ability to use natural thigh muscle activity to predict ankle dynamics may improve 

myoelectric control of ankle-foot prostheses by reducing within-socket signal 

disturbances and enhancing long-term user comfort. 

4.2 INTRODUCTION 

Surface electromyography (EMG) has been extensively researched for the non-

invasive control of robotic devices such as prosthetic limbs (Moon et al., 2005; Hayashi 

et al., 2005; Asghari Oskoei & Hu, 2007; Fleming et al., 2021). Generation of EMG 

activity precedes limb motion which allows the direct interpretation of the user’s intended 

biomechanics providing an intuitive and volitional control (Cavanagh & Komi, 1979; Go 

et al., 2018; Merletti & Parker, 2004). Additionally, EMG-driven control is particularly 

useful in responding to sudden changes to the environment. Myoelectric control has been 

used commercially in upper limb prostheses for decades (Össur, 2019; Ottobock, 2014). 

However, implementation in lower limb prostheses has been limited due in part to the 

development of physical systems that can achieve the power-to-weight demands of 

walking (e.g., load-bearing conditions) in combination with the challenges in the design 

of electrode-socket interfaces and the reliable acquisition of EMG signals through bulkier 
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residual limb soft tissue (e.g., subject to limb volume fluctuations, sweat accumulation, 

pistoning) (Fleming et al., 2021; Tucker et al., 2015). 

Recent studies have demonstrated that it is possible to record EMG signals within 

the prosthetic socket of transtibial and transfemoral amputees to control lower limb 

prostheses (Au et al., 2008; Kannape & Herr, 2014; S. Huang et al., 2016; Spanias et al., 

2018; Tkach et al., 2013). Active powered (i.e., able to generate power during 

propulsion) ankle-foot prostheses have been controlled using neural networks as 

locomotion classifiers (Au et al., 2008) and proportional control (S. Huang et al., 2016; 

Kannape & Herr, 2014) during level walking using within-socket EMG signals from 

residual shank muscles of transtibial amputees. While amputees are able to activate their 

residual muscles, EMG patterns differed from healthy individuals, and are highly variable 

across amputees, (S. Huang & Ferris, 2012; Seyedali et al., 2012) due to atrophy and 

changes in muscular attachment points after amputation (Brown et al., 2014; Clites et al., 

2018). Within-socket EMG signal variability is also sensitive to physiological and skin-

electrode interface changes (e.g., motion artifacts, electrode location variation, fatigue), 

which can impact performance (Hargrove et al., 2006; Young et al., 2012), while the use 

of embedded electrodes in the socket or liner can compromise socket suspension and user 

comfort (Wagner et al., 2020; Hefferman et al., 2015; Nakamura & Hahn, 2017). 

Human locomotion is achieved by anticipatory changes in EMG activation and 

the subsequent joint and segment movements by means of coordinated synergies of the 

upper limbs, trunk, and lower limbs (Dietz et al., 1987; Hirschfeld & Forssberg, 1991). 

This suggests that EMG activity from thigh muscles could be used to inform ankle 

motion. Spanias et al. used within-socket EMG signals from residual thigh muscles 
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(rectus femoris, semitendinosus, tensor fascia latae, and adductor magnus) of 

transfemoral amputees to control a lower limb prosthesis with actively powered knee and 

ankle joints (Spanias et al., 2018). By means of deep belief neural networks, the intent 

recognition algorithm was able to identify gait during level walking, ramps, and stairs 

over multiple days. Synergistic relationships between the thigh muscles and ankle motion 

were also observed by Tkach et al., who showed that lower classification errors were 

obtained in transtibial amputees when combining residual shank and intact thigh EMG of 

the prosthetic side to virtually control a three degree-of-freedom ankle-foot prosthesis 

(Tkach et al., 2013). For transtibial amputees, intact thigh muscle activity of the 

prosthetic side has been shown to be less variable than residual muscles and more similar 

to normal muscle activation patterns (S. Huang & Ferris, 2012; Seyedali et al., 2012). 

From a practical standpoint, the acquisition of EMG signals outside the socket may 

reduce within-socket signal disturbances and improve user experience. These studies 

suggest that thigh muscle activity of the prosthetic side could provide an alternative 

source of locomotion intent for controlling ankle dynamics in transtibial amputees. 

The present study addresses the feasibility of using muscle activity of the upper 

leg (i.e., thigh) to predict (i.e., generate future estimates of) gait continuously. A 

continuous predictive approach to characterize gait over time, as opposed to discrete 

locomotion classifiers to differentiate joint motion and terrains (e.g., level, stairs, ramps), 

would provide more natural and robust prosthetic control for restoring normal human gait 

(Zabre-Gonzalez, Riem, et al., 2021; Farmer et al., 2014; Zarshenas et al., 2020). Studies 

have shown that myoelectric signals in combination with neural networks (e.g., 

autoregressive, time delay, feedforward, wavelet) provide a promising solution for the 
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continuous estimation of ankle kinematics and kinetics (Zabre-Gonzalez, Riem, et al., 

2021; Farmer et al., 2014; Zarshenas et al., 2020; Zhang et al., 2012; Ardestani et al., 

2014; Keleş & Yucesoy, 2020; Gupta et al., 2020; J. Chen et al., 2018; Hahn & O’Keefe, 

2008). Most approaches have characterized ankle dynamics (angle or moment) using 

muscle activity of the lower leg (i.e., shank) of healthy participants during a single type 

of terrain (e.g., level walking) in a reactive (i.e., one-step-ahead estimate) rather than a 

predictive (i.e., n-step-ahead estimate) approach. In previous work, a nonlinear 

autoregressive neural network with exogenous (i.e., external) inputs (NARX) has been 

used to continuously predict future prosthetic ankle angle using within-socket residual 

EMG of transtibial amputees during level treadmill walking (Farmer et al., 2014), and 

ankle angle and moment across multiple terrains using lower-leg EMG of healthy 

individuals [see CHAPTER 2 (Zabre-Gonzalez, Riem, et al., 2021)]. Continuous 

prediction of ankle angle and moment across multiple terrains has not been demonstrated 

using muscle activity from only the upper leg of healthy individuals or transtibial 

amputees. 

The purpose of this study was to determine whether natural patterns of thigh 

EMG activity can used as exogenous inputs to a NARX model to effectively predict 

future ankle kinematics and kinetics across ambulation conditions (i.e., level walking, 

stair ascent, and stair descent) including terrain transitions. The upper-leg NARX model 

was developed using thigh muscle activity of the prosthetic side from transtibial 

amputees, in conjunction with sound-limb shank kinematics, to continuously predict 

ankle angle and moment of the sound limb. To train the system, prosthetic-side EMG 

signals were mapped with sound-limb ankle dynamics with the intention of creating 
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symmetric gait patterns and establishing a more normal gait by overlaying the ankle 

dynamics of the sound limb onto the prosthesis. The performance of upper-leg NARX 

models was statistically compared to models trained with within-socket EMG activity 

from residual shank muscles. The extent in which thigh muscle activity was used in the 

model prediction was examined and compared to within-socket residual EMG activity, 

which is primarily used for the control of ankle-foot prostheses due to its biomechanical 

coupling and proximity to the ankle. Normal ranges of ankle angle and moment of able-

bodied participants were characterized using either upper-leg or lower-leg muscle activity 

as inputs as a normative comparison to amputee model performance, and to determine 

whether the use of contralateral EMG to predict ankle dynamics of the opposite limb was 

a viable approach for controlling a lower limb prosthesis. 

4.3 MATERIALS AND METHODS 

Surface EMG, kinematic, and kinetic data were collected previously from three 

unilateral transtibial amputees (TTA) and six able-bodied young adults (AB) during three 

ambulation conditions (LW, level overground walking; AS, stair ascent; DS, stair 

descent). Written informed consent was provided by each participant, and the 

experimental protocol was approved by Marquette University Institutional Review Board. 

Additional participant and methodology details can be found in CHAPTERS 2 and 3 

(Zabre-Gonzalez et al., 2022; Zabre-Gonzalez, Riem, et al., 2021). 



110 
 

4.3.1 Experimental Protocol 

During a single session, each participant ambulated along an instrumented 

walkway at a self-selected speed. Ambulation conditions were not randomized to 

minimize session length (APPENDIX E). First, during stair ascent (AS trial), participants 

traversed part of the walkway (~3 m) and over two floor-embedded force plates, 

ascended step-over-step a 4-step instrumented staircase with two additional force plates, 

and walked to the end of a landing platform (1.2 x 0.9 m) (Supplementary Figure 

C.1C). Participants then turned, and when instructed, walked the platform, descended the 

stairs, and returned to their starting position (DS trial). During stair ambulation, staircase 

handrails were available to amputees, with minimal use, for protection and support. 

During level ground walking, the staircase and platform were removed, and participants 

traversed the entire walkway length (~ 5 m; LW trial). A minimum of fifteen trials per 

condition were completed. Breaks were encouraged to minimize potential fatigue. 

4.3.2 Data Acquisition and Processing 

TrignoTM wireless electrodes (Delsys, Inc., Natick, MA) were used to record 

bilateral surface EMG activity (sampled at 1200 Hz) from thigh muscles (rectus femoris 

and semitendinosus, i.e., upper leg) and shank muscles (tibialis anterior and 

gastrocnemius medialis, i.e., lower leg). Amputees demonstrated volitional control of 

their residual ankle flexors and extensors, and residual myosites were identified 

(MyoBoy®, Ottobock, Duderstadt, Germany) prior to testing. For each amputee, a 

duplicate electrode-housing test socket and a modified pin-lock gel liner were fabricated 

to allow EMG acquisition from within-socket residual shank muscles and intact thigh 
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muscles (i.e., under the gel liner) from the prosthetic side (Supplementary Figure 

C.1B). The test socket was attached to the amputee’s current pylon and energy-storing-

and-returning foot. Residual myosite selection, test socket fabrication, and within-socket 

electrode placement are described in more detail in CHAPTER 3 (Zabre-Gonzalez et al., 

2022). EMG signals were band-pass filtered (4th-order zero-phase Butterworth at 20-

499.5 Hz), full-wave rectified, and low-pass filtered (4th-order zero-phase Butterworth at 

5.5 Hz) to obtain the low-frequency EMG linear envelope. 

Kinetic data, recorded from the force plates embedded in the floor and integrated 

under the staircase (Advanced Mechanical Technology, Inc., Watertown, MA), were 

sampled at 1,200 Hz. EMG linear envelopes and force plate data were subsequently down 

sampled to 120 Hz and time-locked with the kinematic data. Kinematic data were 

sampled at 120 Hz using an OptiTrack motion capture system (NaturalPoint, Inc., 

Corvallis, OR). Lower limb motion was tracked using a modified Helen Hayes twenty-

five marker set (Supplementary Figure C.1A). For amputees, marker locations on the 

prosthetic limb were approximated based on sound-limb locations. Kinetic and kinematic 

data were processed using AMASS and Visual3D software (C-Motion, Inc., 

Germantown, MD) to extract gait events and time series of ankle angle (sagittal plane), 

shank segment center-of-mass linear velocity (AP, anterior-posterior; ML, medial-lateral; 

V, vertical directions), and ankle moment (sagittal plane; normalized to the participant’s 

body mass). EMG, kinetic, and kinematic time series were temporally normalized as a 

percentage of the trial that contained data from 225 ms before the first foot contact on the 

first force plate to the last time point where force data were available for the lead limb 

(i.e., limb of first foot contact on first force plate). Consequently, the level walking 
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condition contained one full gait cycle, and each stair ambulation condition contained 

three continuous gait cycles and two transitions between terrains, i.e., from level ground 

to the stair step, and vice versa (Supplementary Figures C.1C-D and C.2). 

To overlay the dynamics of the sound limb onto the prosthesis with the intention 

of restoring symmetric gait using EMG activity of the prosthetic side, upper-leg and 

lower-leg EMG gait cycles of the prosthetic limb were temporally interpolated (piece 

cubic spline) to correspond with the length of the gait cycles of the sound limb. This 

contralateral gait-cycle alignment generated an amputee dataset for model training and 

testing that contained EMG trials from the prosthetic limb (trail limb) aligned with 

kinematic/kinetic (shank velocities, ankle angle and moment) trials from the sound limb 

(lead limb). Supplementary Figure C.1D depicts the EMG gait cycles and the 

kinematic/kinetic gait cycles during stair ascent and stair descent. Similarly, an additional 

dataset was created for able-bodied participants in which EMG signals of the 

contralateral limb (trail limb) were aligned and interpolated to the gait cycles of the limb 

used to train the model (lead limb). EMG signals in this dataset are referred as 

contralateral EMG and the participants as ABcEMG. Processing of EMG, kinetic, and 

kinematic trials, and description of ambulation conditions and staircase transitions are 

described in more detail in CHAPTERS 2 and 3 (Zabre-Gonzalez et al., 2022; Zabre-

Gonzalez, Riem, et al., 2021). 

4.3.3 NARX Model 

Nonlinear autoregressive models were developed to continuously predict future 

ankle kinematics and kinetics across ambulation conditions and staircase transitions using 
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either upper-leg or lower-leg muscle activity as inputs. Multiple-input multiple-output 

recurrent (closed-loop) NARX models (S. Chen et al., 1990; Leontaritis & Billings, 1985) 

were implemented in MATLAB (R2017a, The MathWorks Inc., Natick, MA, United 

States) using the Neural Network Toolbox. 

The general network structure consisted of an input layer in which windowed 

exogenous inputs and feedback model outputs (as recurrent inputs) were passed through 

separate tapped delay lines, a single nonlinear hidden layer, and a linear output layer 

containing separate outputs corresponding to predictions (i.e., future estimates) of ankle 

angle and moment (Figure 4.1). The tapped delay lines defined the time between current 

inputs (exogenous and recurrent) and future model predictions (τ, prediction interval), 

and the number of past input values over time (exogenous and recurrent) used in the 

prediction (D, sampling window). Given these characteristics, the general recurrent 

(closed-loop) NARX model output, 𝑦𝑦�(𝑡𝑡 + 𝜏𝜏), can be expressed as, 

𝑦𝑦�(𝑡𝑡 + 𝜏𝜏) = 𝑓𝑓 �𝑥𝑥
(𝑡𝑡), 𝑥𝑥(𝑡𝑡 − 1), 𝑥𝑥(𝑡𝑡 − 2), … , 𝑥𝑥(𝑡𝑡 − 𝐷𝐷),
𝑦𝑦�(𝑡𝑡 − 1), 𝑦𝑦�(𝑡𝑡 − 2), … ,𝑦𝑦�(𝑡𝑡 − 𝐷𝐷) � (4.1) 

where 𝑥𝑥(𝑡𝑡) and 𝑦𝑦�(𝑡𝑡) are the exogenous input and the model output, respectively, at 

discrete time step t, f is a nonlinear ‘tansig’ function, and 𝑥𝑥(𝑡𝑡 − 𝑑𝑑) and 𝑦𝑦�(𝑡𝑡 − 𝑑𝑑), (for 

𝑑𝑑 = 1, … ,𝐷𝐷), denote prior values of the exogenous input and model output at d time 

steps in the past. Further details on the structure of the recurrent (closed-loop) NARX 

model and the prediction of the model output can be found in CHAPTER 3 (Zabre-

Gonzalez et al., 2022). 

For models of amputees, the exogenous inputs consisted of the shank velocities of 

the sound limb in all directions and aligned EMG linear envelopes of the prosthetic side 

corresponding to either the rectus femoris and semitendinosus muscles for upper-leg 
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NARX models, or the tibialis anterior and gastrocnemius medialis muscles for lower-leg 

NARX models. Ankle angle and moment (sagittal plane) of the sound limb were the 

target outputs in both model types (UL: upper-leg model and LL: lower-leg model). For 

each model type, two models were created using the same set of able-bodied participants 

(AB model and ABcEMG model). Models differed in the source of EMG inputs (AB: 

same-limb inputs and outputs; ABcEMG: aligned contralateral EMG), and were used as 

control models to determine the ability a single-network, closed-loop model to 

continuously predict normal ranges of ankle dynamics associated with healthy 

ambulation using thigh muscle activity as inputs, and to determine whether the use of 

contralateral EMG was a viable approach to predict dynamics of the opposite limb. 

 
Figure 4.1. Multiple-input multiple-output recurrent (closed-loop) upper-leg NARX model for transtibial 
amputees. Inputs consisted of sound-limb shank velocities (medial-lateral, anterior-posterior, vertical) and 
the EMG linear envelopes of the prosthetic-side thigh (rectus femoris and semitendinosus) for upper-leg 
models. Within-socket residual EMG from the tibialis anterior and gastrocnemius medialis muscles were 
used for lower-leg models. Future predictions of sound-limb ankle angle and moment (sagittal plane) were 
the target outputs in both model types. Models of able-bodied participants differed in the use of same-limb 
EMG (AB models), or aligned contralateral EMG (ABcEMG models). The sum of weighted inputs for each 
exogenous input was calculated using the trained weights from the input to the hidden layer (𝑎𝑎𝑛𝑛𝑛𝑛; shaded 
gray area). Experimentally measured input and output data of one amputee (TTA1) and a representative 
able-bodied participant (AB4) are provided in the Supplementary Material (APPENDIX C). 

For each participant, upper-leg and lower-leg NARX models were trained 

independently using the same order of randomized trials. The models were optimized for 

a prediction interval of 58 ms (7 time steps) to counteract electromechanical delays (i.e., 
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microcontroller and motor actuation) inherent to the Marquette University active ankle-

foot prosthesis (Sun et al., 2014; Sun & Voglewede, 2012). For each model type, 

performance was evaluated as a function of sampling window (D: 17, 42, 83 ms) and the 

number of hidden units (N: 16, 30, 50) using a supervised learning procedure to minimize 

the mean squared error (MSE) between the experimentally measured ankle angle and 

moment (targets) and the model predictions. During training, ten complete trials per 

ambulation condition (80% training, 20% validation) were grouped as concurrent 

sequences (for discontinuity minimization) and divided into contiguous blocks (to use 

random trials, instead of random points). Using a leave-one-out 10-fold cross-validation 

procedure, one trial of each ambulation condition (novel test trial) was held back to 

prevent overfitting and to separately assess model performance after training. For each k-

fold dataset, a generalized network was selected from ten model fits based on the smallest 

MSE averaged across novel test trials and ambulation conditions. All models were 

trained and tested in a closed-loop mode such that the model output (rather than the error-

free target) was fed back to the input layer. The optimal sampling window and number of 

hidden units for each model type (upper-leg and lower-leg) were determined by the 

minimum averaged MSE of the stair descent novel test trials since it had the lowest 

performance among the ambulation conditions. Independent sets of optimal model 

parameters were selected between AB and ABcEMG models. Training procedures are 

explained in more detail in CHAPTER 3 (Zabre-Gonzalez et al., 2022). The optimized 

subject-specific networks were then used to evaluate the effects of EMG source (upper 

leg or lower leg) on the model prediction of ankle dynamics. 
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4.3.4 Analysis of the Effects of EMG sources on Model Performance 

Pairwise cross-correlations between pairs of trials used to train and test the NARX 

models were calculated for each input and output to examine within-subject trial-wise 

variability. Individual trials were interpolated to a common length for each ambulation 

condition (LW: 145, AS: 430, DS: 400 samples) to facilitate analysis across trials. Upper-

leg and lower-leg EMG signals of amputees (i.e., prosthetic side) and able-bodied 

participants (i.e., both limbs) were normalized by the ensemble peak average across trials 

(for a given participant, EMG, and ambulation condition) to allow comparisons (Sinclair 

et al., 2015). In addition to the trial-wise variability of EMG signals, the upper-leg and 

lower-leg EMG patterns of amputees (i.e., prosthetic side) and contralateral EMG of 

able-bodied participants (ABcEMG) were compared to the group averaged muscle 

activation pattern of able-bodied participants (AB, i.e., normal pattern). Group averaged 

EMG signals were created by averaging trials for each muscle and ambulation condition. 

Pairwise cross-correlations were then calculated between the group averaged AB EMG 

signal and trials of amputee EMG and able-bodied contralateral EMG (ABcEMG). All 

pairwise cross-correlations are reported as the coefficient of determination (R2, obtained 

from squaring the cross-correlation peak), averaged across trials, ambulation conditions, 

and participants within the group. 

The strength and patterns of the contribution of upper-leg and lower-leg EMG 

inputs to the model prediction of ankle angle and moment was evaluated using the sum of 

weighed inputs (SWI) [see CHAPTER 3 (Zabre-Gonzalez et al., 2022)]. For each upper-

leg and lower-leg NARX model, the 𝑅𝑅𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑡𝑡) of each exogenous input was computed 

using novel test trials such that, 
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𝑅𝑅𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑡𝑡) = 𝑟𝑟𝑚𝑚𝑟𝑟��𝑎𝑎𝑛𝑛𝑛𝑛(𝑞𝑞)
𝑑𝑑

𝑞𝑞=0

𝑥𝑥𝑛𝑛(𝑡𝑡 − 𝑞𝑞)��

𝑁𝑁

, 

 𝑛𝑛 = 1, 2, … ,𝑁𝑁 (4.2) 

where 𝑥𝑥𝑛𝑛(𝑡𝑡 − 𝑞𝑞) is the ith input (EMG or shank velocity) for the prior q time step, and 

𝑎𝑎𝑛𝑛𝑛𝑛, is the trained weight connecting the ith input and the nth unit of the hidden layer, 

which represents the input strength. The root mean square (rms) was then computed 

across hidden units (N) to characterize the total contribution of the ith input to the model 

prediction throughout the trial. SWI was averaged over time and across test trials for each 

ambulation condition, individually for amputees and averaged across able-bodied 

participants (AB and ABcEMG groups), to quantify the overall contribution of each 

exogenous input. To compare the impact of upper-leg and lower-leg EMG signals on 

model performance, a ratio of the SWI of the EMG input divided by the SWI of the AP 

shank velocity input was calculated for each muscle, and then averaged for each muscle 

pair (ratioUL for upper-leg muscles and ratioLL for lower-leg muscles) to determine the 

relative contribution of the EMG inputs. Ratios were calculated for each ambulation 

condition, individually for amputees and averaged across able-bodied participants (AB 

and ABcEMG groups). The contribution patterns of EMG and anterior-posterior shank 

velocity inputs were evaluated within the gait cycles of each ambulation condition (gait 

cycle 2 for stair ambulation). Each gait cycle of SWI over time was divided into the 

standard seven gait periods based on gait events (Neumann, 2017): loading response 

(initial foot contact to contralateral toe off), mid-stance (1-50% of single-limb support), 

terminal stance (50-100% of single-limb support), pre-swing (contralateral initial foot 

contact to toe off), initial swing (1-33% of swing phase), mid-swing (33-66% of swing 
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phase), and terminal swing (66-100% of swing phase). The SWI of each period was then 

averaged across test trials, individually for amputees and averaged across able-bodied 

participants (AB and ABcEMG groups). 

The performance of upper-leg and lower-leg NARX models was evaluated using 

root mean square error (RMSE) and the coefficient of determination (R2; from squaring 

the cross-correlation peak), calculated between the experimentally measured ankle angle 

and moment and the corresponding model prediction for the novel test trials. RMSE and 

R2 were averaged across test trials for each ambulation condition, model output, and 

model type, individually for amputees and averaged across able-bodied participants (AB 

and ABcEMG groups). Similar to the analysis of the SWI across gait periods, model 

performance was further investigated by analyzing ankle angle and moment RMSE 

within the gait cycles for each ambulation condition. RMSE was computed within each 

gait period and then averaged across test trials for each amputee and able-bodied 

participant (AB and ABcEMG). Separate within-subject three-way ANOVA analyses were 

used to identify significant differences (p < 0.05) in angle RMSE and moment RMSE 

when using either upper-leg or lower-leg muscle activity as inputs. The factors in the 

analysis were muscle group (upper leg and lower leg), ambulation condition (as seven 

gait cycles: 1-LW, 3-AS, and 3-DS), and gait period (loading response, mid-stance, 

terminal stance, pre-swing, initial swing, mid-swing, and terminal swing). Prior the 

ANOVA tests, normality of the data was confirmed using the Kolmogorov–Smirnoff test. 

Tukey’s honest significant difference criterion (p < 0.05) was used in multiple 

comparison tests. Statistical analyses were performed in MATLAB (R2017a). 
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4.4 RESULTS 

Experimentally measured inputs and outputs of the NARX models were highly 

consistent across trials and ambulation conditions for amputees and able-bodied 

participants with the exception of medial-lateral shank velocity (𝑅𝑅�2 > 0.46) 

(Supplementary Table C.1). Input and output data used to train and test the NARX 

models of an amputee (TTA1) and a representative able-bodied participant (AB4) are 

provided in the Supplementary Material (Supplementary Figures C.2 and C.3). For 

amputees and able-bodied participants, pairwise cross-correlations between trials (𝑅𝑅�2), 

averaged across ambulation conditions and participants within the group, were greater 

than 0.91, 0.94, 0.90 for ankle angle, ankle moment, and shank velocities (AP and 

vertical directions), respectively. EMG patterns presented minimal within-subject trial-

wise variability (𝑅𝑅�2 > 0.80) for upper-leg and lower-leg muscles of amputees (i.e., 

prosthetic side) and able-bodied participants (i.e., both limbs). When comparing to the 

group averaged AB EMG pattern, amputees had lower pairwise cross-correlations (mean, 

[min max]) across conditions (𝑅𝑅�𝑇𝑇𝑇𝑇2  = 0.58, [0.47, 0.78], 𝑅𝑅�𝑀𝑀𝑀𝑀2  = 0.64, [0.51, 0.86]) than the 

ABcEMG group (𝑅𝑅�𝑇𝑇𝑇𝑇2  = 0.81, [0.66, 0.92]; 𝑅𝑅�𝑀𝑀𝑀𝑀2  = 0.75, [0.49, 0.98]) for lower-leg muscles, 

and had comparable values for upper-leg muscles (TTA: 𝑅𝑅�𝑅𝑅𝑅𝑅2  = 0.74, [0.57, 0.92], 𝑅𝑅�𝑆𝑆𝑇𝑇2  = 

0.63, [0.48, 0.82]; ABcEMG: 𝑅𝑅�𝑅𝑅𝑅𝑅2  = 0.76, [0.61, 0.95], 𝑅𝑅�𝑆𝑆𝑇𝑇2  = 0.69, [0.54, 0.91]). 

NARX models trained with upper-leg muscle activity showed comparable 

performance to models trained with lower-leg muscle activity across ambulation 

conditions and staircase transitions. Figure 4.2 shows a comparison of predicted ankle 

angle (θ) and ankle moment (M) across ambulation conditions for upper-leg and lower-

leg NARX models of an amputee (TTA1, τ: 58 ms, D: 83 ms, UL - N: 16; LL - N: 50) 
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and a representative able-bodied participant (AB4, τ: 58 ms, UL - D: 83 ms, N: 16; LL - 

D: 42 ms, N: 30). Model predictions of the remaining amputees and the same 

representative able-bodied participant trained with aligned contralateral EMG as the 

EMG input (AB4cEMG) are provided in the Supplementary Material (Supplementary 

Figures C.4 and C.5). The predicted outputs of both model types accurately aligned with 

the experimentally measured ankle angle and moment across ambulation conditions and 

participant groups (𝑅𝑅�𝑈𝑈𝑈𝑈,𝜃𝜃
2 = [0.908, 0.966], 𝑅𝑅�𝑈𝑈𝑈𝑈,𝑀𝑀

2 = [0.935, 0.989]; 𝑅𝑅�𝑈𝑈𝑈𝑈,𝜃𝜃
2 = [0.886, 0.971], 

𝑅𝑅�𝑈𝑈𝑈𝑈,𝑀𝑀
2 = [0.930, 0.992]; Supplementary Table C.2). Cross-correlation time lags were 

within one time step (8 ms) for more than 87% of upper-leg (TTA: 94%, ABcEMG: 87%, 

AB: 88%) and lower-leg (TTA: 89%, ABcEMG: 87%, AB: 96%) model predictions. Both 

upper-leg and lower-leg models provided stable and robust prediction across ambulation 

conditions and participant groups (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅��������𝑈𝑈𝑈𝑈= [1.98, 3.69] °, [0.097, 0.213] Nm/kg; 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅��������𝑈𝑈𝑈𝑈= [2.03, 3.74] °, [0.071, 0.213] Nm/kg; Supplementary Table C.2). Amputees 

and the ABcEMG group had minimal differences in RMSE and R2 between upper-leg and 

lower-leg models (Supplementary Table C.2). The able-bodied group (AB) had the 

largest error differences between model types with a less than 1 degree and 0.05 Nm/kg 

difference and less than 3.5% reduction in R2 for upper-leg models in all ambulation 

conditions (Figure 4.3 and Supplementary Table C.2). 
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Figure 4.2. Comparison of ankle angle and moment NARX model predictions using either upper-leg or 
lower-leg muscle activity as inputs. Experimentally measured targets and the model predictions of a 
transtibial amputee (TTA1, τ: 58 ms, D: 83 ms, UL - N: 16; LL - N: 50) and a representative able-bodied 
participant (AB4, τ: 58 ms, UL - D: 83 ms, N: 16; LL - D: 42 ms, N: 30) are displayed during level 
overground walking, stair ascent, and stair descent. Model predictions are shown for the k-fold novel test 
trials with an average performance (mid-point performance) across ambulation conditions, model outputs 
(angle, moment), and model types (upper-leg and lower-leg). Staircase ambulation (black horizontal bar) is 
defined as the first foot contact on the staircase to the first foot contact on level ground of the lead limb 
(i.e., sound limb for amputees). Staircase transitions to/from level ground are shaded gray. Percent trial is 
normalized from 225 ms before the first foot contact on the first force plate to the first heel strike before 
contralateral last foot contact on the last force plate. Vertical lines denote gait events (solid: lead limb; 
dashed: contralateral limb, i.e., prosthetic limb) defined based on force plate (threshold 10 N) and floor 
contact (ON, first contact on force plate; OFF, last contact on force plate; HS, heel strike on floor; TO, toe 
off on floor). Contralateral gait events are identified by a lowercase ‘c’ (e.g., cTO, contralateral toe off). 
Single-limb support occurs when only one foot is in contact with the ground (cTO or cOFF to cON). Model 
predictions of the remaining amputees and the same representative able-bodied participant trained with 
aligned contralateral EMG as the EMG input (AB4cEMG) are provided in the Supplementary Material 
(APPENDIX C). 
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Figure 4.3. RMSE and R2 values of upper-leg and lower-leg NARX model predictions for the able-bodied 
group trained with same-limb data (AB). Values are averaged across trials and participants. Error bars 
denote ±1 standard deviation for RMSE, and minimum and maximum values for R2. Amputees and the 
ABcEMG group exhibited smaller differences between model types than the data shown. 

Upper-leg (rectus femoris and semitendinosus) and lower-leg (tibialis anterior and 

gastrocnemius medialis) muscle activity had contributions to the prediction of ankle 

dynamics that were similar to the largest shank velocity contributor (AP direction) for 

each amputee and able-bodied group (AB and ABcEMG) in all ambulation conditions (sum 

of weighted inputs averaged over time, Figure 4.4A and Supplementary Figure C.6). 

Both able-bodied groups had similar EMG contributions (i.e., ratio of SWI of EMG to 

AP shank velocity, Figure 4.4B) of upper-leg (ratioUL > 0.67) and lower-leg (ratioLL > 

0.64) muscles across ambulation conditions. Amputees also had similar relative 

contributions between upper-leg (ratioUL = [0.62, 0.89]) and lower-leg (ratioLL = [0.41, 

0.96]) EMG and were comparable to the able-bodied groups. 
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Figure 4.4. Exogenous input contribution to model prediction for upper-leg NARX models for each 
ambulation condition. (A) Sum of weighted inputs (SWI) for each input averaged over time. SWI for 
lower-leg models is provided in the Supplementary Material (APPENDIX C). (B) Comparison of EMG 
relative contribution between upper-leg and lower-leg models expressed as a ratio of SWI of EMG to AP 
shank velocity. The average between paired muscle ratios (UL - RecFem: rectus femoris and SemTen: 
semitendinosus; LL - tibialis anterior and gastrocnemius medialis) is shown. Error bars represents ±1 
standard deviation of averaged able-bodied participants. ML: medial-lateral, AP: anterior-posterior, V: 
vertical, Vel: velocity, UL: upper leg, LL: lower leg. 

The SWI distribution within ambulation conditions showed that EMG and AP 

shank velocity had an alternating contribution within the gait cycle in amputees and able-

bodied groups for both upper-leg and lower-leg models. Figure 4.5 highlights the 

alternation among the inputs for the second gait cycle of stair ascent of amputees and the 

able-bodied group (AB). Additional ambulation conditions and the ABcEMG group are 

provided in the Supplementary Material (Supplementary Figure C.7). The patterns of 

EMG contribution between amputees and able-bodied groups tended to be more similar 

when using upper-leg EMG versus lower-leg EMG; whereas AP shank velocity had 

consistent contribution patterns between model types across participant groups. Input 

contribution patterns of upper-leg and lower-leg models were different across amputees. 

Both able-bodied groups had the same relative contribution patterns (EMG and AP shank 

velocity) between groups in both model types (Supplementary Figure C.7). 
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Figure 4.5. Comparison of sum of weighted inputs (SWI) distribution within the gait cycle between upper-
leg and lower-leg NARX models. SWI of EMG and AP shank velocity inputs for the second gait cycle of 
stair ascent are shown for transtibial amputees and the able-bodied group (AB). Because the network bias 
(offset) was not included in the SWI calculation, SWI absolute values can vary across participants without 
affecting the relative contribution among inputs. Each gait cycle is divided into the standard seven gait 
periods based on gait events: loading response (LOAD; initial foot contact to contralateral toe off), mid-
stance (MID ST; 1-50% of single-limb support), terminal stance (TERM ST; 50-100% of single-limb 
support), pre-swing (PRE SW; contralateral initial foot contact to toe off), initial swing (INIT SW; 1-33% 
of swing phase), mid-swing (MID SW; 33-66% of swing phase), and terminal swing (TERM SW; 66-100% 
of swing phase). Stance and swing phases are shaded light orange and white, respectively. RecFem: rectus 
femoris, SemTen: semitendinosus, TibAnt: tibialis anterior, MedGas: gastrocnemius medialis, AP: anterior-
posterior, Vel: velocity. SWI distribution of additional ambulation conditions and the ABcEMG group are 
provided in the Supplementary Material (APPENDIX C). 

In the further analysis of the RMSE across gait periods, RMSE of ankle angle and 

moment varied within and across gait cycles in upper-leg and lower-leg NARX models 

for each amputee and able-bodied participant (AB and ABcEMG) (Figure 4.6 and 

Supplementary Figures C.8-C.11). Angle and moment error patterns within the gait 

cycle were similar between model types in every participant. In each able-bodied 

participant (AB and ABcEMG), the largest error mostly occurred, in both model types, 

during initial swing for level walking and stair ascent and during loading response for 

stair descent for ankle angle, and during pre-swing for ankle moment across ambulation 



125 
 

conditions. For the most part, maximum errors for amputees occurred during the same 

periods as able-bodied participants. RMSE stayed below 6 degrees and 0.36 Nm/kg 

during all gait periods in both upper-leg and lower-leg amputee models. Able-bodied 

participants (AB) had errors less than 7 degrees and 0.32 Nm/kg and 5 degrees and 0.27 

Nm/kg for upper-leg and lower-leg models, respectively. Able-bodied participants trained 

with contralateral EMG (ABcEMG) had maximum moment errors of 0.38 and 0.31 Nm/kg 

in upper-leg and lower-leg models, respectively, and up to 8 degrees in both model types. 

 
Figure 4.6. RMSE distribution within ambulation conditions of upper-leg and lower-leg NARX models for 
the continuous prediction of ankle moment. All gait cycles for each ambulation condition of a transtibial 
amputee (TTA1) and a representative able-bodied participant (AB4) are shown. Asterisks (*) indicate 
within-subject significant (ANOVA, p < 0.05) main effect for muscle group (upper leg versus lower leg) 
and significant interactions between muscle group and ambulation-condition gait cycle, or between muscle 
group and gait period (Tukey’s for multiple comparisons, p < 0.05) that are present in the displayed 
participant and in more than 50% of the able-bodied participants (AB). Gait periods and stance and swing 
phases are defined the same as in Figure 4.5. RMSE distribution of ankle angle, the remaining amputees, 
and the same representative able-bodied participant trained with aligned contralateral EMG as the EMG 
input (AB4cEMG) is provided in the Supplementary Material (APPENDIX C). 



126 
 

Within-subject three-way ANOVA revealed no significant differences in angle 

and moment RMSE when using either upper-leg or lower-leg muscle activity of amputees 

as inputs (ANOVA, p > 0.10; Figure 4.6 and Supplementary Figures C.8 and C.10) 

expect for TTA2 where upper-leg models had lower moment errors [F(1,882) = 4.6, p = 

0.03; Supplementary Figure C.9]. Detailed ANOVA scores are listed in the 

Supplementary Material (Supplementary Table C.3). All able-bodied participants 

trained with same-limb data (AB) had significantly higher angle (ANOVA, p << 0.05; 

Supplementary Figure C.8) and moment (ANOVA, p << 0.05; Figure 4.6) errors using 

upper-leg muscles as inputs. On the contrary, only two able-bodied participants trained 

with contralateral EMG (AB2cEMG and AB6cEMG) had significantly higher upper-leg angle 

errors (ANOVA, p < 0.02); and one participant trained with contralateral EMG 

(AB2cEMG) had significantly higher upper-leg moment errors, F(1,882) = 5.74, p = 0.02. 

There were no significant three-way interactions, or interactions between muscle group 

and either ambulation-condition gait cycle or gait period for angle (ANOVA, p > 0.12) 

and moment (ANOVA, p > 0.08) RMSE for amputees and able-bodied participants 

trained with contralateral EMG (ABcEMG), except for AB1cEMG which had a significant 

interaction between muscle group and gait period in moment RMSE, F(6,882) = 3.22, p = 

0.004. For models trained with same-limb data, a significant interaction was found 

between muscle group and ambulation-condition gait cycle in more than 50% of the able-

bodied participants (AB) for both angle (n = 3, ANOVA, p < 0.01; Supplementary 

Figure C.8) and moment (n = 4, ANOVA, p < 0.02; Figure 4.6) RMSE. There was also 

a significant interaction between muscle group and gait period in moment RMSE in all 

able-bodied participants (AB; ANOVA, p < 0.05), but only in two participants (AB4 and 
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AB6) in angle RMSE (ANOVA, p < 0.03). There were no significant three-way 

interactions (ANOVA, p > 0.17) for angle or moment across able-bodied participants 

(AB). When significant ANOVA interactions were found in more than 50% of the 

participants (i.e., AB participants only), post hoc Tukey’s test identified significant 

differences in angle RMSE between upper-leg and lower-leg models during the last gait 

cycle of stair ascent (Tukey’s, p < 0.02; Supplementary Figure C.8), and in moment 

RMSE during stair ascent (GC 2 and 3, Tukey’s, p << 0.05) and the last gait cycle of stair 

descent (Tukey’s, p < 0.02) (Figure 4.6). Additionally, upper-leg models had higher 

moment errors than lower-leg models during mid-stance (Tukey’s, p <<< 0.05), terminal 

stance (Tukey’s, p < 0.01) and pre-swing (Tukey’s, p <<< 0.05) (Figure 4.6). 

4.5 DISCUSSION 

The autoregressive neural network presented here continuously modelled the 

nonlinear synergistic relationships between muscle activation of the upper leg and ankle 

dynamics. The NARX model demonstrated the feasibility of using natural patterns of 

thigh muscle activity of the prosthetic side from transtibial amputees, in conjunction with 

sound-limb shank kinematics, to predict future ankle kinematics and kinetics of the sound 

limb across ambulation conditions (i.e., level walking, stair ascent, and stair descent) and 

terrain transitions. It is believed that this work is the first to perform a systematic 

comparison of gait model performance using either intact thigh or within-socket residual 

shank EMG of the prosthetic side to continuously predict ankle dynamics across a variety 

of terrains. 
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The NARX model had the ability to characterize normal ranges of ankle angle 

and moment of able-bodied participants using either upper-leg or lower-leg muscle 

activity as inputs. Importantly, the model was able to use contralateral EMG, suggesting 

that the prediction of the opposite-limb ankle dynamics may be a viable approach toward 

replicating sound-limb dynamics onto the prosthesis tied to thigh muscle activity of the 

prosthetic side. By overlaying the ankle dynamics of the sound limb onto the prosthesis, 

the approach is a step forward to establish a more normal gait by creating symmetric gait 

patterns. The single-network, closed-loop NARX model with predictive capabilities (i.e., 

future estimates) was robust and stable to prediction errors due to its closed-loop training 

(use of predicted values rather than error-free targets), and allowed for the estimation of 

future limb state. These characteristics are useful to avoid undesired fluctuations and 

instability when introduced to feedback control systems, and to proactively modify gait in 

response to observed changes in terrain and overcome prosthetic delays (e.g., signal 

processing and actuation). 

The NARX model takes advantage of the cyclic nature of gait, the need for 

constant signals (low variability) rather than high amplitudes, and the use of past output 

values, to accurately predict ankle angle and moment across ambulation conditions and 

terrain transitions using upper-leg EMG activity and shank kinematics as inputs. Intact 

thigh muscle activity of the prosthetic side was used in the model prediction to the same 

extent as residual ankle dorsiflexor and plantarflexor EMG as well as normal thigh 

muscle activity of able-bodied participants (Figure 4.4B). For the small sample of 

amputees tested, thigh musculature changes of the prosthetic side that could have 

occurred after amputation did not impede the continuous prediction of ankle dynamics 
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since amputees (e.g., 𝑅𝑅�𝑈𝑈𝑈𝑈2 > 0.91) had comparable upper-leg model performance as able-

bodied participants (e.g., AB and ABcEMG: 𝑅𝑅�𝑈𝑈𝑈𝑈2 > 0.92) despite having different gait 

patterns [e.g., EMG profiles (pairwise correlation to normal pattern R2 > 0.48), foot 

placement]. This suggests that the upper-leg NARX model can be used consistently 

across transtibial amputees. Prosthetic-side thigh muscle activity was used effectively to 

predict sound-limb ankle dynamics similar to model predictions based on within-socket 

residual shank EMG without significant deterioration on model performance 

(Supplementary Table C.3). In CHAPTER 3 (Zabre-Gonzalez et al., 2022), it was 

shown that predictions of lower-leg amputee models fell outside the range of variability 

of the experimentally measured targets in a few instances. However, the timing of the 

errors were not located at regions that could contribute to trip-related falls or injury. This 

suggests that the robust control of a prosthesis would not be negatively impacted by 

prediction errors of the upper-leg NARX models. These results support that while thigh 

muscles do not control ankle motion directly, their synergistic activity and control of the 

knee and hip joints provided an alternate source of information to differentiate 

ambulation conditions and terrain transitions to the same extent as ankle dorsiflexor and 

plantarflexor muscles. 

With the use of shank kinematics and two antagonistic EMG signals as inputs, the 

upper-leg NARX model provided robust performance that included information about 

limb state and direct information of user intent. Given the similarities in performance of 

the upper-leg and lower-leg models in transtibial amputees, the ability to use intact thigh 

muscles from the prosthetic side to predict ankle dynamics may enhance long-term 

comfort and improve EMG-driven prostheses by reducing signal disturbances (e.g., 



130 
 

motion artifacts) that occur within the prosthetic socket during repeated loading and 

unloading of the prosthesis during gait. When implemented in a physical system, shank 

kinematics could be reliably measured from sensors (e.g., gyroscopes, accelerometers) 

within the prosthesis, reducing design complexity and facilitating prosthetic donning and 

doffing. EMG from the prosthetic-side thigh would require wearable sensors, extrinsic to 

the prosthesis, to obtain the required inputs signals. Advancements in wearable and 

implantable sensor technology [e.g., knit band sensors (S. Lee et al., 2018), prosthetic 

liner with embedded electrodes (Reissman et al., 2018), flexible dry electrodes 

(Kisannagar et al., 2020)] are promising for implementation in real-time myoelectric 

lower limb prostheses. 

The NARX model proposed here can be used to generate real-time continuous 

ankle angle and moment commands needed for closed-loop control [e.g., impedance, 

stiffness (Au et al., 2008; Klein & Voglewede, 2018; Spanias et al., 2018)] of myoelectric 

lower limb devices such as transtibial and transfemoral prostheses. Current efforts to 

incorporate direct user intent using EMG activity from thigh and shank muscles for 

myoelectric control have primarily focused on pattern recognition for discrete locomotion 

identification (Au et al., 2008; Spanias et al., 2018; Tkach et al., 2013) and proportional 

control [i.e., discrete (Kannape & Herr, 2014) and continuous (S. Huang et al., 2016)], 

which limit the user’s control over the device. In contrast, the NARX model uses natural 

muscle activity to provide a continuous gait prediction without explicitly identifying 

modes or gait events. The use of natural EMG signals of the upper leg, while different in 

transtibial amputees (pairwise correlation to normal pattern R2 > 0.48), as inputs to the 

model could facilitate the design of intuitive and direct controllers that reduce the 
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amputee’s cognitive and physical effort associated with intentional muscle contraction for 

actuating a prosthesis. Additionally, the optimized subject-specific networks maximized 

individual performance by taking into account individual variations in limb dynamics and 

EMG activity, reducing the need for extensive muscle training and high quality, 

independent muscle signals. 

The upper-leg NARX model, coupled with its closed-loop structure, predicted 

future ankle angle and moment across multiple terrains to a similar level to other EMG-

driven continuous gait models (Zabre-Gonzalez, Riem, et al., 2021; Farmer et al., 2014; 

Zarshenas et al., 2020; Zhang et al., 2012; Ardestani et al., 2014; Keleş & Yucesoy, 2020; 

Gupta et al., 2020; J. Chen et al., 2018; Hahn & O’Keefe, 2008). However, those models 

mostly focused on using lower-leg EMG, or in combination with upper-leg EMG, of 

healthy individuals to estimate (i.e., one-step-ahead estimate) ankle angle or moment 

limited to level walking using a feedforward structure (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜃𝜃 < 5.3°, 𝑅𝑅𝜃𝜃2 > 0.74; 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀 < 0.18 Nm/kg, 𝑅𝑅𝑀𝑀2  > 0.83). In contrast to the feedforward (open-loop) NARX 

model previously developed using two lower-leg EMG signals as the only inputs [see 

CHAPTER 2 (Zabre-Gonzalez, Riem, et al., 2021)], peak errors of ankle angle and 

moment of able-bodied participants increased by a factor of two for level walking and 

stair ascent and by a factor of four for stair descent for the upper-leg (closed-loop) model. 

While correlations remained high for both models (𝑅𝑅𝑈𝑈𝑈𝑈,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑
2  > 0.92, 𝑅𝑅𝑈𝑈𝑈𝑈,𝑐𝑐𝑜𝑜𝑐𝑐𝑛𝑛

2  > 0.99), 

the open-loop structure (which used error-free targets during training rather than output 

predictions) resulted in minimal errors for the lower-leg (open-loop) model (e.g., 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑈𝑈𝑈𝑈,𝑐𝑐𝑜𝑜𝑐𝑐𝑛𝑛 = 0.55 ± 0.13°, 0.03 ± 0.01 Nm/kg). Farmer et al. utilized an open-loop 

NARX model to predict prosthetic ankle angle during level treadmill walking using 
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antagonistic within-socket residual EMG (i.e., same limb) of transtibial amputees, and 

reported errors between 1.2 to 5.4 degrees for predictions 100 ms ahead of time (Farmer 

et al., 2014). In comparison, using prosthetic-side upper-leg EMG to predict sound-limb 

ankle dynamics resulted in comparable errors (RMSE < 3.7° for τ = 58 ms) across 

ambulation conditions with the inclusion of shank kinematic inputs and improved 

training paradigm (e.g., concurrent sequence organization and contiguous block division). 

Zhang et al. obtained a wide range of ankle angle errors (RMSE = 0.82 to 9.3°) during 

level walking when estimating (i.e., excluding future predictions) hip, knee, and ankle 

angles of spinal cord injury patients using a combination of two upper-leg and one lower-

leg EMG signals (Zhang et al., 2012). The large variation in errors was attributed to the 

wide range of ankle motion of the patients (i.e., restricted motion resulted in lower 

errors). Ardestani et al. also used a combination of six upper-leg and two lower-leg EMG 

signals and two ground reaction forces to estimate ankle plantarflexion moment during 

level walking in patients with unilateral knee replacement (Ardestani et al., 2014). Ankle 

moment errors of 4 and 8% were reported using wavelet and feedforward neural 

networks, respectively. Similar performance (TTAUL: 7.8%, ABUL: 6.2%) was achieved 

here for level walking with networks trained across three terrains. Keleş et al. used 

combinations of upper-leg, lower-leg, and gluteal muscles sites from a healthy population 

to estimate ankle angle and moment during level walking at various speeds (Keleş & 

Yucesoy, 2020). Greater error differences were reported, especially for ankle moment 

(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑈𝑈𝑈𝑈 = 0.26 ± 0.12 Nm/kg, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑈𝑈𝑈𝑈 = 0.04 ± 0.01 Nm/kg), using similar 

antagonistic upper-leg and lower-leg EMG signals as the only inputs to a time delay 

feedforward neural network. Although they reported the pair of upper-leg muscles as 
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inaccurate models (𝑅𝑅𝜃𝜃2 = 0.81, 𝑅𝑅𝑀𝑀2  = 0.67), the results support that thigh muscle activity 

contains some degree of synergistic gait information about ankle state. 

Model performance may have been influenced by limitations in the present study. 

EMG electrode placement of the posterior thigh muscle (approximated as 

semitendinosus) varied in amputees and able-bodied participants, although locations were 

identified by consistent placement techniques (i.e., most prominent muscle belly when 

flexing the knee in the presence of resistance). The subject-specific NARX model 

accounted for the antagonistic muscle activity generated by each participant, limiting the 

effect of electrode placement inconsistencies on the current results. An in-depth motion 

artifact analysis was not conducted on EMG signals collected using the electrode-housing 

test prosthesis. The potential impact on model performance was considered minimal 

given the low trial-wise variability (pairwise correlation 𝑅𝑅�𝐸𝐸𝑀𝑀𝑀𝑀2  > 0.80) and the absence of 

spike amplitudes in the EMG linear envelopes, and the filtering techniques used (De Luca 

et al., 2010; Hefferman et al., 2015). The model results suggest that the contralateral gait-

cycle alignment was a viable approach for using contralateral EMG as inputs. However, 

it may have introduced a source of variability, for example, the resulting discrepancies in 

EMG and ankle dynamic profiles between the lead limb and the aligned trail limb (i.e., 

limb of contralateral EMG) during transition steps onto and off the staircase 

[Supplementary Figure C.3; see CHAPTER 3 for detailed explanation (Zabre-Gonzalez 

et al., 2022)]. In able-bodied individuals, the coupling between shank muscle activation 

and ankle dynamics is biomechanically stronger than thigh muscles due to the increased 

number of degrees of freedom associated with the knee joint. Supporting these 

differences in coupling levels, errors within ambulation conditions of upper-leg able-
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bodied models trained with same-limb data were statistically higher than lower-leg 

models (Supplementary Table C.3). In contrast, the strong shank-ankle coupling was 

disrupted by the contralateral gait-cycle alignment in the ABcEMG dataset resulting in 

larger errors in the lower-leg ABcEMG models causing no statistical differences with 

upper-leg models. For the transtibial amputees, the effects of the contralateral gait-cycle 

alignment on model performance cannot be differentiated in upper-leg and lower-leg 

models because the degree of ankle coupling to the thigh muscles and the residual shank 

muscles due to amputation is not known. Regardless of the possible influence on the 

current results, errors and correlations of the upper-leg amputee models were comparable 

to upper-leg able-bodied models trained with same-limb data. 

Despite the ability of the model to effectively map ankle dynamics of the sound 

limb with EMG activity from the prosthetic-side thigh muscles, establishing a normal, 

symmetric gait brings additional challenges. It is unknown how model performance and 

control stability would be impacted by having a user in the feedback control loop, one 

that is continuously adapting and reacting to changes in the environment (e.g., 

perturbations, terrain) and prosthetic control errors. Model performance may need to be 

maintained by iterative training as a result of the user’s adaptation (e.g., changes in 

muscle recruitment). Preliminary work had examined the feasibility of predicting user’s 

EMG responses to changes of ankle dynamics for simulating human-in-the-loop control 

(Zabre-Gonzalez, Amieva-Alvarado, et al., 2021). Forward stability of the autoregressive 

model presented here and its interaction with a closed-loop prosthetic controller, in 

conjunction with the human-in-the loop model, will be evaluated in future studies to 

ensure stability and safety of the system prior human testing. With a larger cohort of 
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participants, prediction of ankle dynamics in response to external perturbations and 

additional conditions (e.g., varying speeds, ramps, noncyclic activities) is also needed to 

explicitly model user’s EMG corrective actions of both muscle groups in response to 

changes in gait. Further research will also assess model performance to changes in EMG 

signals over time due to variations in the electrode-skin interface, and systematically 

evaluate the benefits (e.g., user comfort, motion artifacts, signal variability) of using 

either intact thigh or residual shank muscle activity as inputs given the differences in 

electrode placement methodologies (i.e., under the gel liner with variable position versus 

within-socket with fixed position). 

4.6 CONCLUSION 

Natural muscle activity from the thigh muscles can be used together with a 

NARX model to continuously predict (up to 58 ms) ankle dynamics across ambulation 

conditions and terrain transitions. The predictive closed-loop model could prove useful 

for counteracting delays, proactively modifying gait in response to observed changes in 

terrain, and maintaining its stability when introduced to a feedback control system. The 

use of natural thigh muscle activity of transtibial amputees could provide an alternative 

for intuitively controlling ankle dynamics, especially when acquisition of residual EMG 

signals is not possible (e.g., lack of muscle control, short residual limb, dermatological 

problems). Alternatively, when coupled with the ability to use within-socket EMG 

signals, the model could be adapted to control a robotic leg (i.e., above the knee) using 

residual thigh muscle activity within the prosthetic socket of transfemoral amputees. The 

nonlinear autoregressive model provides opportunities for continuous myoelectric control 



136 
 

using different muscle groups and takes an important step toward user-driven real-time 

control of lower limb robotic systems including actuated orthoses and exoskeletons. 
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CHAPTER 5: SIGNIFICANCE OF RESEARCH AND FUTURE DIRECTIONS 

5.1 CONCLUDING REMARKS 

The purpose of this dissertation was to develop a continuous predictive model of 

lower limb state that uses lower limb surface EMG signals to predict future ankle 

dynamics across multiple terrains and the transitions between them. A continuous 

myoelectric predictive approach that incorporates user intent could provide a more 

natural, intuitive, and robust control for a better reproduction of normal human gait using 

active powered lower limb prostheses, particularly ankle-foot prostheses. To that end, a 

single-network nonlinear autoregressive model was developed to continuously predict 

(i.e., future estimates) ankle angle and ankle moment simultaneously across three 

ambulation conditions (i.e., level overground walking, stair ascent, and stair descent) and 

four terrain transitions (i.e., to/from staircase). This dissertation is the first study to 

develop a single-network continuous gait model that accounts for multiple terrains and 

transitions. 

The work in Aim 1 (CHAPTER 2) demonstrated the feasibility of using EMG as 

the only exogenous inputs to an open-loop NARX model to continuously predict the 

normal ranges of ankle angle and moment associated with healthy locomotion across 

ambulation conditions. A network training paradigm was developed to minimize 

discontinuities in the training data and to ensure that random trials, instead of random 

points, were used during training. Prediction performance was extensively characterized 

across model parameters (i.e., prediction interval, sampling window, and the number of 

hidden units) to optimize model structure within and across ambulation conditions. The 
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training paradigm resulted in improved prediction performance in comparison to other 

continuous gait models (Ardestani et al., 2014; J. Chen et al., 2018; Dey et al., 2019; 

Eslamy & Alipour, 2019; Farmer et al., 2014; Gupta et al., 2020; Hahn & O’Keefe, 2008; 

Keleş & Yucesoy, 2020; Zarshenas et al., 2020; Zhang et al., 2012). Moreover, the model 

yielded robust performance over a relatively wide range of prediction intervals that can 

overcome delays of the prosthesis. 

The work in the subsequent aims demonstrated that natural patterns of within-

socket residual shank EMG (Aim 2, CHAPTER 3) and prosthetic-side intact thigh EMG 

(Aim 3, CHAPTER 4) from transtibial amputees can be used in conjunction with the 

NARX model to accurately predict ankle dynamics, similar to normal muscle activity of 

able-bodied individuals. To accommodate EMG sensing from the prosthetic side, a 

custom electrode-housing test socket was designed to allow EMG acquisition from within 

the prosthetic socket using commercially available wireless surface EMG sensors. It is 

believed that this dissertation is the first study to characterize the ability of using muscle 

activity (within-socket residual shank or thigh) from transtibial amputees to continuously 

predict future ankle kinematics and kinetics across a variety of ambulation conditions. 

The remainder of this section summarizes key results of the final model (developed in 

Aims 2 and 3), and describes its properties and their significance toward the development 

of an intuitive user interface for prosthetic control. 

The final model consisted of a recurrent (closed-loop) MIMO (five-input, two-

output) NARX model to continuously predict (i.e., future estimates) ankle angle and 

moment of the sound limb of transtibial amputees using prosthetic-side EMG and sound-

limb shank velocities as exogenous inputs. The prediction of the intended future limb 
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state is crucial for the control of lower limb prostheses to counteract prosthetic delays 

(e.g., sensing, signal processing, and actuation), and to modify gait proactively (not 

reactively as in current prostheses) in response to upcoming terrain changes and 

unexpected perturbations. The model implementation as a closed-loop network structure 

eliminated the need for explicit knowledge of the true limb state and is an important 

characteristic for real-time feedback applications within physical prosthetic systems. 

The NARX model effectively mapped muscle activity of the prosthetic side 

(within-socket residual shank or thigh) with ankle kinematics and kinetics of the sound 

limb of each amputee. Although the sound limb of lower limb amputees may have 

kinematic and kinetic differences when compared to able-bodied individuals (Grabowski 

& D’Andrea, 2013; Rábago & Wilken, 2016), the approach of mapping prosthetic-side 

EMG (i.e., aligned) with sound-limb ankle dynamics is the first step toward establishing a 

more normal gait by overlaying the dynamics of the sound limb onto the prosthesis to 

create symmetric gait patterns between the limbs. However, to individualize the model to 

restore gait for each user and be widely accessible, simpler equipment [e.g., inertial 

sensors, instrumented foot insoles (Gupta et al., 2020; Jacobs & Ferris, 2015; Sivakumar 

et al., 2019)] is required to obtain the kinematic and kinetic data needed to train the 

algorithm in a clinical setting. 

The strength of the autoregressive model developed here lies in its ability to 

account for individual’s specific variations of limb dynamics and muscle activity 

patterns. Amputees may develop abnormal and variable muscle activity and gait patterns 

(S. Huang & Ferris, 2012; Pröbsting et al., 2020; Seyedali et al., 2012; Sinitski et al., 

2012). The use of natural, yet altered, muscle activation eliminates the need for conscious 
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muscle contraction, extensive muscle training, and high quality, independent muscle 

signals. In doing so, the system enables seamless and intuitive control strategies and 

reduces the cognitive and physical demands of the user by removing the need to 

volitionally actuate the prosthesis, a shortcoming of current myoelectric control systems. 

The proposed NARX model can be used to generate real-time continuous ankle angle and 

moment commands needed for the control of lower limb devices (e.g., impedance, 

stiffness). Unlike EMG-driven pattern recognition and FSM-based proportional control 

systems (Au et al., 2008; Kannape & Herr, 2014; M. Liu et al., 2017; Spanias et al., 2018; 

J. Wang et al., 2013), the NARX model characterizes gait over time without the need for 

explicit identification of gait events and terrains, or selection of locomotion modes. 

The incorporation of shank velocity together with EMG signals (within-socket 

residual shank or thigh) as inputs to the model resulted in robust and accurate model 

performance that included information about limb state and direct information of user’s 

intention. The combination of only two antagonistic EMG signals with intrinsic 

electromechanical signals could simplify implementation in a real-time system. Shank 

velocities could be reliably obtained from embedded sensors within the prosthesis 

making them readily available as inputs, minimizing design complexity and facilitating 

prosthetic donning and doffing. Other shank kinematic signals (e.g., angle, angular 

velocity) could also be used, however, model performance might differ from this study. 

The resulting autoregressive model accurately predicted (prediction interval, τ = 

58 ms) ankle angle and moment across ambulation conditions and terrain transitions 

using either within-socket residual shank or prosthetic-side thigh EMG as inputs, in 

conjunction with shank kinematics. The closed-loop NARX model had the ability to 
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characterize normal ranges of ankle dynamics of able-bodied participants using either 

shank or thigh muscle activity, including the use of contralateral EMG as the EMG input 

which determined that predicting ankle dynamics of the opposite limb was a viable 

approach. For the small sample of amputees tested, the trained models had similar angle 

and moment prediction errors and correlations to able-bodied models despite amputees 

having different gait patterns (e.g., EMG profiles, contraction levels, foot placement). 

This suggests that the model can be used consistently across transtibial amputees. In a 

few instances, predictions of amputee lower-leg models fell outside the range of 

variability of the experimentally measured targets. However, the timing of the errors were 

not located at regions that could contribute to trip-related falls or injury. The impact of 

critical point errors on prosthetic control during gait remains an underdeveloped area of 

study in the field. 

The contribution to the model prediction of muscle activity of the prosthetic side 

(within-socket residual shank or thigh) and anterior-posterior shank velocity of the sound 

limb were generally equal on average and throughout the gait cycle (alternating 

contribution). Importantly, prosthetic-side muscle activity (within-socket residual shank 

or thigh) of the amputees was used in the model prediction to the same extent as normal 

muscle activity of able-bodied participants. These results support that EMG changes in 

the prosthetic side of transtibial amputees do not hinder the continuous prediction of 

ankle dynamics across ambulation conditions. 

The results of this research provide opportunities for continuous myoelectric 

control of lower limb prostheses using two different muscle groups that is intuitive for the 

user and robust to changes in the type of ambulation. While implementation has signal 
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quality and user comfort considerations, the use of thigh muscle activity of transtibial 

amputees could provide an alternative to control ankle dynamics, without significant 

deterioration on model performance, when acquisition of residual EMG signals is not 

possible (e.g., lack of muscle control, short residual limb, dermatological problems). 

Alternatively, when coupled with the ability to use within-socket EMG signals, the model 

could be adapted to use within-socket thigh muscle activity of transfemoral amputees to 

control a robotic leg (i.e., above the knee). While the focus of this dissertation has been 

toward active powered ankle-foot prostheses, the autoregressive model developed here 

could provide robust and intuitive user-driven real-time control of a wide variety of lower 

limb robotic devices including exoskeletons and actuated orthoses. 

5.2 FUTURE DIRECTIONS 

The integration of the autoregressive model into a real-time prosthetic controller 

brings additional challenges that would need to be addressed in future studies. Despite the 

NARX model’s ability to successfully predict ankle dynamics continuously during level 

walking, stair ascent, and stair descent, the model would need to be expanded to include 

additional conditions and transitions encountered in every day ambulation (e.g., ramps, 

cadence modulation, noncyclic activities). While the NARX model took advantage of the 

cyclic nature of gait to accurately predict ankle dynamics, the ability to also predict 

transitions from level walking to/from stair stepping of the stair conditions suggests it is 

also capable of predicting changes in ankle movement during noncyclic activities (e.g., 

sit-to-stand, turning, jumping, avoiding obstacles). Since the model cannot be trained in 

every scenario, it will be important to assess the model’s capability to extrapolate 
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untrained situations (such as recovering from an unexpected perturbation), and to 

determine whether the model fails gracefully before it is integrated into the myoelectric 

controller of a physical system. Catastrophic prediction errors are not anticipated due to 

the generalization capabilities of neural networks (Ardestani et al., 2014; Keleş & 

Yucesoy, 2020; Q. Liu et al., 2020), especially if the model has been trained with 

activities that encompass the complete spectrum of ankle and leg motion and muscle 

contraction. 

Donning and doffing of the prosthesis is a daily activity for lower limb amputees. 

For myoelectric control, this action introduces disturbances (e.g., changes in socket 

alignment, electrode position, pressure distribution) that could impact the acquisition of 

EMG signals and the performance of the predictive model. Additionally, muscles of the 

prosthetic side, particularly residual muscles, are subject to continuous weight bearing 

forces, socket pistoning, limb volume fluctuations, sweat accumulation, and impedance 

variations at the electrode-skin interface, which increase EMG signal variability, 

consequently, affecting model performance (Hargrove et al., 2006; Radmand et al., 2014; 

Young et al., 2012). For these reasons, the robustness of NARX model needs to be 

investigated during a longitudinal study across days to determine how performance is 

affected by the changes in EMG signal quality over time. In a preliminary analysis, a 

single-output NARX model was trained with data from an able-bodied participant across 

ambulation conditions obtained in a single experimental session (e.g., Day 1). The model 

had similar average ankle angle errors for novel test trials from the same session 

(RMSEascent = 2.8 ± 0.1°) and from trials collected in sessions on two additional days 
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(e.g., Day 2 and 3, RMSEascent = 2.4 ± 0.1°). Further research is needed to validate these 

results. 

During the gait experiments, it was observed that the custom-design test socket 

increased the repeatability of the sensor placement on the residual muscles in comparison 

to prosthetic-side thigh muscles. However, the electrode-socket interface caused greater 

skin irritation and discomfort than having the sensors placed on the thigh under the 

prosthetic liner. For the case of transtibial amputees, additional work should 

systematically evaluate the benefits (e.g., user comfort, motion artifacts, signal 

variability) of using either residual shank or intact thigh muscle activity as inputs given 

the differences in electrode placement methodologies (i.e., under the gel liner with 

variable position versus within-socket with fixed position). In addition to obtaining robust 

EMG signals, the model needs to be validated using shank and ankle data acquired from 

sensors [e.g., encoders, inertial measurement units, force sensitive resistors, 

potentiometers, torque, load cells (Au et al., 2007; Klein & Voglewede, 2018; Sup et al., 

2009)] intrinsic to the prosthesis instead of motion capture and force plate data as was 

done in the current series of experiments. In this dissertation, data were acquired from 

only three amputees with similar characteristics (e.g., age, gender, cause of amputation) 

but different level of ambulation activity (e.g., athletes and non-athletes), muscle control 

awareness, and staircase foot placement. Although the small number of participants did 

not affect the good performance of each amputee model, the improvements and studies 

mentioned above will require a larger cohort of participants with diverse characteristics to 

validate model performance across the amputee population. 
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While the NARX model had favorable performance in transtibial amputees 

offline, it is unknown how model accuracy and control stability would be impacted by 

having a user in the feedback control loop, one that is continuously adapting and reacting 

to changes in the environment (e.g., perturbations, terrains) and limitations in prosthetic 

control (e.g., errors). The user’s adaptation (e.g., change in muscle recruitment) to the 

system will likely require iterative training to maintain robust and stable model 

performance. In a study outside the aims of this dissertation, the feasibility of predicting 

user’s EMG responses to changes of ankle angle dynamics for simulating human-in-the-

loop control was demonstrated (Zabre-Gonzalez, Amieva-Alvarado, et al., 2021). The 

NARX-based user response model predicted ankle plantarflexor and dorsiflexor EMG 

continuously across ambulation conditions (i.e., level walking, stair ascent, stair descent) 

using variable inputs (i.e., ankle kinetics, and shank and/or ankle kinematics). Forward 

stability of the autoregressive model presented here and its interaction with a closed-loop 

prosthetic controller, in conjunction with the human-in-the loop model, must be evaluated 

in future studies (e.g., in MATLAB Simulink) to ensure the safety and stability of the 

physical system prior human testing. 

The end goal of the project, beyond this dissertation, is to integrate the 

autoregressive model developed here into the controller and hardware of existing 

research and commercially available active powered lower limb prostheses, for example, 

Marquette University’s active ankle-foot (Sun et al., 2014; Sun & Voglewede, 2012). 

Once the physical system is fully implemented, it would be tested with human 

participants to determine whether the NARX model predictions of continuous ankle angle 

and moment can be applied to real-time control of the stiffness (or impedance) of the 
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ankle joint. The continuous and predictive qualities of the EMG-driven NARX model has 

the potential to accelerate the development of myoelectric controlled devices, especially 

to improve prosthetic function for lower limb amputees by returning the user to a more 

normal gait pattern and enabling them to live more active lives. 
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APPENDIX A: SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

Supplementary Table A.1. Statistical scores for CHAPTER 2. Model predictions and targets of ankle 
angle and ankle moment at critical performance points across participants for each ambulation condition. 
Significant differences between experimentally measured targets and the model predictions were assessed 
using a paired-samples t-test (normally distributed samples) and Sign test (non-normally and asymmetric 
distributed samples). Bold numbers indicate significance using the Benjamini-Hochberg (B-H) multiple 
comparisons procedure with a false discovery rate of 0.05. Shaded areas represent staircase transition gait 
cycles during stair ambulation. 

  

Critical Performance Points Units Mean ± SD t (df) p value B-H 
p value Target Prediction 

    Level Ground (n = 10) 
    Gait Cycle 1 
Clearance Intervals during swing phase            
Interval 1: MTC (Mean - SD) Degrees -6.03 ± 3.93 -6.03 ± 3.72 t(9) = -0.010 0.992 0.992 
Interval 1: MTC (Mean) Degrees -3.56 ± 3.73 -3.67 ± 3.79 t(9) = 1.507 0.166 0.407 
Interval 1: MTC (Mean - SD) Degrees -1.04 ± 3.55 -0.92 ± 3.56 t(9) = -1.463 0.178 0.414 
Interval 2: MFC (Mean + SD) Degrees 2.44 ± 3.15 2.34 ±3.10 t(9) = 1.203 0.260 0.471 
Interval 2: MFC (Mean) Degrees 3.33 ± 2.89 3.09 ± 2.66 Sign Test 0.344 0.581 
Interval 2: MFC (Mean + SD) Degrees 3.80 ± 3.09 3.53 ± 2.74 t(9) = 2.163 0.059 0.213 
              
Stance Phase Critical Points             
Flexion at Toe Off Degrees -2.00 ± 2.10 -1.97 ± 1.94 t(9) = -0.186 0.857 0.893 
Dorsiflexion Degrees 13.93 ± 1.94 13.99 ± 1.88 t(9) = -1.303 0.225 0.455 
Plantarflexion Degrees -4.56 ± 4.59 -4.77 ± 4.76 t(9) = 1.518 0.163 0.407 
Plantarflexor moment Nm/kg 1.64 ± 0.11 1.62 ± 0.10 t(9) = 4.577 0.001 0.065 
              
    Stair Ascent (n = 8) 
    Gait Cycle 1 
Clearance Intervals during swing phase            
Interval 1: MTC (Mean - SD) Degrees 12.35 ± 4.77 12.20 ± 4.77 t(7) = 2.825 0.026 0.125 
Interval 1: MTC (Mean) Degrees 13.70 ± 4.35 13.55 ± 4.45 t(7) = 1.408 0.202 0.450 b 
Interval 1: MTC (Mean - SD) Degrees 14.37 ± 4.12 14.33 ± 3.97 t(7) = 0.348 0.738 0.803 b 
Interval 2: MFC (Mean + SD) Degrees 13.70 ± 4.35 13.55 ± 4.45 t(7) = 1.408 0.202 0.450 b 
Interval 2: MFC (Mean) Degrees 14.37 ± 4.12 14.33 ± 3.97 t(7) = 0.348 0.738 0.803 b 
Interval 2: MFC (Mean + SD) Degrees 14.15 ± 4.18 14.02 ± 4.24 t(7) = 1.247 0.252 0.471 
              
Stance Phase Critical Points             
Flexion at Toe Off Degrees 6.17 ± 2.77 6.37 ± 2.58 Sign Test 0.727 0.803 
Dorsiflexion Degrees d 
Plantarflexion Degrees d 
Plantarflexor moment Nm/kg 1.58 ± 0.11 1.58 ± 0.12 t(7) = 0.616 0.557 0.759 
              
    Stair Descent (n = 8) 
    Gait Cycle 1 
Clearance Intervals during swing phase            
Interval 1: MTC (Mean - SD) Degrees 9.03 ± 5.05 9.09 ± 4.97 t(7) = -0.812 0.444 0.639 
Interval 1: MTC (Mean) Degrees 6.82 ± 4.79 7.04 ± 4.79 t(7) = -3.574 0.009 0.065 
Interval 1: MTC (Mean - SD) Degrees 2.89 ± 4.89 3.26 ± 5.06 t(7) = -4.502 0.003 0.065 
Interval 2: MFC (Mean + SD) Degrees -4.99 ± 5.91 -4.54 ± 6.05 t(7) = -3.391 0.012 0.068 
Interval 2: MFC (Mean) Degrees -8.53 ± 6.17 -8.13 ± 6.23 t(7) = -3.706 0.008 0.065 
Interval 2: MFC (Mean + SD) Degrees -10.96 ± 6.28 -10.61 ± 6.39 t(7) = -3.339 0.012 0.068 
              
Stance Phase Critical Points             
Flexion at Toe Off Degrees 19.89 ± 4.47 19.94 ± 4.45 t(7) = -0.506 0.629 0.786 
Dorsiflexion Degrees d 
Plantarflexion Degrees d 
Plantarflexor moment Nm/kg 1.24 ± 0.21 1.24 ± 0.21 t(7) = -0.550 0.600 0.773 
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Supplementary Table A.1. cont. 

 

  

Critical Performance Points Units Mean ± SD t (df) p value B-H 
p value Target Prediction 

    Stair Ascent (n = 8) 
    Gait Cycle 2 
Clearance Intervals during swing phase            
Interval 1: MTC (Mean - SD) Degrees 11.57 ± 6.19 11.60 ± 6.25 t(7) = -0.301 0.772 0.823 b 
Interval 1: MTC (Mean) Degrees 13.22 ± 5.78 13.34 ± 5.82 t(7) = -1.349 0.219 0.455 b 
Interval 1: MTC (Mean - SD) Degrees 14.73 ± 5.29 14.78 ± 5.39 Sign Test 0.727 0.803 b 
Interval 2: MFC (Mean + SD) Degrees -8.61 ± 5.69 -8.84 ± 5.56 t(7) = 2.231 0.061 0.213 
Interval 2: MFC (Mean) Degrees -15.03 ± 4.70 -15.75 ± 4.52 t(7) = 3.551 0.009 0.065 
Interval 2: MFC (Mean + SD) Degrees -9.83 ± 5.81 -9.91 ± 5.76 t(7) = 0.413 0.692 0.803 
              
Stance Phase Critical Points             
Flexion at Toe Off Degrees -6.95 ± 5.64 -7.12 ± 5.43 t(7) = 1.683 0.136 0.393 c 
Dorsiflexion Degrees 16.10 ± 3.00 16.04 ± 3.00 t(7) = 1.078 0.317 0.555 
Plantarflexion Degrees -6.95 ± 5.64 -7.12 ± 5.43 t(7) = 1.683 0.136 0.393 c 
Plantarflexor moment Nm/kg 1.59 ± 0.20 1.59 ± 0.21 t(7) = -0.674 0.522 0.730 
              
    Stair Descent (n = 8) 
    Gait Cycle 2 
Clearance Intervals during swing phase            
Interval 1: MTC (Mean - SD) Degrees 10.37 ± 4.29 10.20 ± 4.44 t(7) = 2.090 0.075 0.245 
Interval 1: MTC (Mean) Degrees 9.29 ± 3.98 9.20 ± 4.07 t(7) = 0.935 0.381 0.600 
Interval 1: MTC (Mean - SD) Degrees 7.45 ± 3.64 7.44 ± 3.66 t(7) = 0.162 0.876 0.894 
Interval 2: MFC (Mean + SD) Degrees 5.26 ± 3.75 5.33 ± 3.73 t(7) = -0.487 0.641 0.786 
Interval 2: MFC (Mean) Degrees 2.15 ± 4.46 2.33 ± 4.41 t(7) = -1.308 0.232 0.455 
Interval 2: MFC (Mean + SD) Degrees -2.06 ± 5.65 -1.75 ± 5.64 t(7) = -1.834 0.109 0.335 
              
Stance Phase Critical Points             
Flexion at Toe Off Degrees 21.14 ± 3.83 21.25 ± 3.88 t(7) = -1.606 0.152 0.407 
Dorsiflexion Degrees 32.94 ± 4.05 32.79 ± 4.10 t(7) = 2.644 0.033 0.148 
Plantarflexion Degrees -23.01 ± 1.88 -22.82 ± 1.77 t(7) = -2.487 0.042 0.170 
Plantarflexor moment Nm/kg 1.20 ± 0.23 1.22 ± 0.22 t(7) = -4.035 0.005 0.065 
              
              
MTC, Minimum Toe Clearance; MFC, Minimum Foot Clearance; SD, Standard Deviation; df. Degrees of Freedom 
a No MTC or MFC was reported for an equivalent step in literature reference       
b Overlapped MTC and MFC intervals           
c Point overlaps with another critical point           
d Only stair step analyzed             
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Supplementary Table A.1. cont. 

 

  

Critical Performance Points Units Mean ± SD t (df) p value B-H 
p value Target Prediction 

    Stair Ascent (n = 8) 
    Gait Cycle 3 
Clearance Intervals during swing phase            
Interval 1: MTC (Mean - SD) Degrees a 
Interval 1: MTC (Mean) Degrees a 
Interval 1: MTC (Mean - SD) Degrees a 
Interval 2: MFC (Mean + SD) Degrees -7.98 ± 5.01 -8.05 ± 4.85 t(7) = 0.584 0.578 0.765 c 
Interval 2: MFC (Mean) Degrees -15.06 ± 4.56 -14.90 ± 4.41 t(7) = -0.902 0.397 0.600 
Interval 2: MFC (Mean + SD) Degrees -14.98 ± 5.27 -14.85 ± 5.43 t(7) = -0.887 0.404 0.600 
              
Stance Phase Critical Points             
Flexion at Toe Off Degrees -7.98 ± 5.01 -8.05 ± 4.85 t(7) = 0.584 0.578 0.765 c 
Dorsiflexion Degrees d 
Plantarflexion Degrees d 
Plantarflexor moment Nm/kg 1.55 ± 0.21 1.55 ± 0.20 t(7) = -0.975 0.362 0.591 
              
    Stair Descent (n = 8) 
    Gait Cycle 3 
Clearance Intervals during swing phase            
Interval 1: MTC (Mean - SD) Degrees a 
Interval 1: MTC (Mean) Degrees a 
Interval 1: MTC (Mean - SD) Degrees a 
Interval 2: MFC (Mean + SD) Degrees a 
Interval 2: MFC (Mean) Degrees a 
Interval 2: MFC (Mean + SD) Degrees a 
              
Stance Phase Critical Points             
Flexion at Toe Off Degrees -1.37 ± 4.22 -1.05 ± 4.23 t(7) = -3.722 0.007 0.065 
Dorsiflexion Degrees d 
Plantarflexion Degrees d 
Plantarflexor moment Nm/kg 1.71 ± 0.17 1.70 ± 0.18 t(7) = 0.382 0.714 0.803 
              
              
MTC, Minimum Toe Clearance; MFC, Minimum Foot Clearance; SD, Standard Deviation; df. Degrees of Freedom 
a No MTC or MFC was reported for an equivalent step in literature reference       
b Overlapped MTC and MFC intervals           
c Point overlaps with another critical point           
d Only stair step analyzed             
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APPENDIX B: SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

 
Supplementary Figure B.1. Aligned experimentally measured training and testing trials for TTA1. Shank 
linear velocities, ankle angle, and ankle moment of the sound limb, and the linear envelope of within-socket 
residual EMG (ankle dorsiflexor and plantarflexor) are shown. Shading and line markers are defined the 
same as in Figure 3.3. 

 
Supplementary Figure B.2. Aligned experimentally measured training and testing trials for TTA2. Shank 
linear velocities, ankle angle, and ankle moment of the sound limb, and the linear envelope of within-socket 
residual EMG (ankle dorsiflexor and plantarflexor) are shown. Shading and line markers are defined the 
same as in Figure 3.3. 
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Supplementary Figure B.3. Experimentally measured training and testing trials for a typical able-bodied 
participant (AB3). EMG linear envelopes, shank linear velocities, ankle angle, and ankle moment of the 
limb used to train the model, and aligned contralateral EMG signals are shown. Shading and line markers 
are defined the same as in Figure 3.3 except the following elements. Vertical lines denote gait events of the 
limb used to train the model as solid lines and the contralateral limb as dashed lines. Staircase ambulation is 
based on the limb used during training. 
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Supplementary Figure B.4. Comparison of experimentally measured EMG profiles and ankle dynamics of 
the consecutively aligned gait cycles of a typical able-bodied participant (AB3). Large discrepancies are 
present during gait cycle 1 and 3 of stair ambulation. Force plate data of the contralateral limb during gait 
cycle 1 of stair descent is not available; however, analysis was unaffected because ankle dynamics of the 
contralateral limb (blue traces) were not used during training. Shading and line markers are defined the 
same as in Figure 3.3 and Supplementary Figure B.3. 

 
Supplementary Figure B.5. Parameter space error of the closed-loop NARX model for able-bodied 
participants. RMSE, averaged across participants (AB and ABcEMG groups), is collapsed across model 
parameters (i.e., averaged across two of the three dimensions). Shaded regions denote ±1 standard 
deviation. 
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Supplementary Figure B.6. Time series of closed-loop NARX model prediction of normal ranges of ankle 
angle and moment for a typical able-bodied participant trained with same-limb data (AB3 - τ: 58 ms, D: 17 
ms, N: 16) and trained with aligned contralateral EMG as the EMG input (AB3cEMG - τ: 58 ms, D: 42 ms, 
N: 16). NARX model predictions of AB and ABcEMG models are shown for the k-fold novel test trials of the 
AB model with the best accuracy across ambulation conditions and model outputs. Critical performance 
points (CPs), used to test for within-subject significant differences (B-H adjusted p < 0.05) between the 
model prediction and experimentally measured targets, are denoted by yellow blocks (clearance intervals) 
and green lines (stance points). Each asterisk (*) represent a critical point with significant differences in 
more than 50% of ABcEMG participants. For models trained with same-limb data, no significant differences 
were observed at critical points in more than 50% of able-bodied participants (AB). Shading and line 
markers are defined the same as in Figure 3.3 and Supplementary Figure B.3. 
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Supplementary Figure B.7. RMSE distribution within ambulation conditions for TTA1 and TTA2 for the 
continuous prediction of ankle angle and moment. Gait periods and stance and swing phases are defined the 
same as in Figure 3.6. 
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Supplementary Figure B.8. RMSE distribution within ambulation conditions for the able-bodied group 
trained with aligned contralateral EMG (ABcEMG group) for the continuous prediction of ankle angle and 
moment. Gait periods and stance and swing phases are defined the same as in Figure 3.6. 

 
Supplementary Figure B.9. Sum of weighted inputs (SWI) distribution for TTA1, TTA2, and the able-
bodied group trained with aligned contralateral EMG (ABcEMG group) of EMG and anterior-posterior shank 
velocity inputs within the gait cycle for level ground walking and the second gait cycle of stair ascent and 
stair descent. Because the network bias (offset) was not included in the SWI calculation, SWI absolute 
values can vary across participants without affecting the relative contribution among inputs. Gait periods, 
stance and swing phases, and labels are defined the same as in Figures 3.6 and 3.7. 
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Supplementary Table B.1. Characteristics of transtibial amputees and able-bodied participants. 
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Supplementary Table B.2. Statistical scores for CHAPTER 3. Significant differences between targets and 
model predictions were assessed using a paired-samples t-test (normally distributed samples) and sign test 
(non-normally and asymmetric distributed samples). For each participant, p values of all critical points (49 
total points) were adjusted for multiple comparisons using the Benjamini-Hochberg (B-H) procedure with a 
false discovery rate of 0.05. Numbers indicate the first critical point that crossed the significance threshold. 

Participant t (df = 9) p value B-H 
p value 

TTA1 3.405 0.008 0.048 
TTA2 3.646 0.005 0.024 
TTA3 3.859 0.004 0.031 

AB1cEMG 3.520 0.007 0.032 
AB2cEMG 3.995 0.003 0.038 
AB3cEMG 4.170 0.002 0.039 
AB4cEMG 4.008 0.003 0.030 
AB5cEMG -3.702 0.005 0.040 
AB6cEMG 3.062 0.014 0.039 

AB1 4.831 0.001 0.046 
AB2 4.211 0.002 0.037 
AB3 5.590 0.000 0.008 
AB4 4.858 0.001 0.022 
AB5 ns ns ns 
AB6 -5.367 0.000 0.022 

ns: no significant differences were found 
df: degrees of freedom 
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APPENDIX C: SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

 
Supplementary Figure C.1. Electrode-socket integration and instrumented walkway. (A) EMG electrode 
placement and modified Helen Hayes infrared lower limb marker set on a transtibial amputee. (B) 
Individualized duplicated electrode-housing test socket and prosthetic shrinker used during amputee 
testing. (C) Instrumented walkway including (a) embedded floor force plates, (b) stair force plates, (c) 
staircase, (d) landing platform, and (e) infrared motion cameras. (D) Schematic of step-over-step stair 
ambulation gait cycles (GC; red, stair ascent; blue, stair descent) used in the contralateral gait-cycle 
alignment. Dashed lines denote consecutive gait cycles of the prosthetic limb (trail limb) whose residual 
upper-leg and lower-leg EMG was aligned with the target kinematic/kinetic gait cycles. Gait cycles of the 
sound limb (lead limb) whose kinematics (ankle angle, shank velocities) and kinetics (ankle moment) were 
used as the target movement during training are shown as solid lines. 
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Supplementary Figure C.2. Aligned experimentally measured input and output trials used to train and test 
upper-leg and lower-leg NARX models of TTA1. Inputs consists of shank linear velocities of the sound 
limb (medial-lateral, anterior-posterior, vertical) and EMG linear envelope of the prosthetic-side thigh 
(rectus femoris and semitendinosus) for upper-leg NARX models, and instead, within-socket residual EMG 
(tibialis anterior and gastrocnemius medialis) for lower-leg NARX models. Ankle angle and moment of the 
sound limb (sagittal plane) are the outputs of both model types. Shading and line markers are defined the 
same as in Figure 4.2. 
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Supplementary Figure C.3. Experimentally measured training and testing trials used in upper-leg and 
lower-leg models of a representative able-bodied participant (AB4). Upper-leg and lower-leg EMG linear 
envelopes, shank linear velocities, ankle angle, and ankle moment of the lead limb (i.e., limb used to train 
the models), and aligned contralateral EMG signals are shown. Differences in EMG shapes can be observed 
when comparing signals to their aligned contralateral EMG (e.g., rectus femoris during the first gait cycle 
of stair descent). These differences are the effects of the contralateral gait-cycle alignment. Shading and 
line markers are defined the same as in Figure 4.2 except the following elements. Vertical lines denote gait 
events of the limb used to train the model as solid lines and the contralateral limb as dashed lines. Staircase 
ambulation is based on the limb used during training. 
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Supplementary Figure C.4. Comparison of upper-leg and lower-leg NARX model predictions for the 
remaining transtibial amputees. Model predictions and experimentally measured targets of TTA2 (τ: 58 ms, 
UL - D: 83 ms, N: 16; LL - D: 42 ms, N: 30) and TTA3 (τ: 58 ms, D: 83 ms, UL - N: 30; LL - N: 50) are 
displayed. Model predictions are shown for the k-fold novel test trials with an average performance (mid-
point performance) across ambulation conditions, model outputs (angle, moment) and model types (upper-
leg and lower-leg). Shading and line markers are defined the same as in Figure 4.2. 



179 
 

 
Supplementary Figure C.5. Comparison of upper-leg and lower-leg NARX model predictions for a 
representative able-bodied participant trained with aligned contralateral EMG (AB4cEMG, τ: 58 ms, N: 30, 
UL - D: 42 ms; LL - D: 83 ms). Model predictions and experimentally measured targets are shown for the 
same k-fold novel test trials as AB4 in Figure 4.2. Shading and line markers are defined the same as in 
Figure 4.2 and Supplementary Figure C.3. 

 
Supplementary Figure C.6. Sum of weighted inputs (SWI) for selected lower-leg exogenous inputs 
averaged over time. Error bars represents ±1 standard deviation of averaged able-bodied participants. 
TibAnt: tibialis anterior, MedGas: gastrocnemius medialis, AP: anterior-posterior, Vel: velocity. 
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Supplementary Figure C.7. Comparison of sum of weighted inputs (SWI) distribution within the gait 
cycle between upper-leg and lower-leg NARX models for level ground walking and second gait cycle of 
stair descent. Gait periods, stance and swing phases, and labels are defined the same as in Figure 4.5. 
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Supplementary Figure C.8. RMSE distribution within ambulation conditions of upper-leg and lower-leg 
NARX models for TTA1 and a representative able-bodied participant (AB4) for the continuous prediction 
of ankle angle. Asterisks (*) indicate within-subject significant (ANOVA, p < 0.05) main effect for muscle 
group (upper leg versus lower leg) and significant interaction between muscle group and ambulation-
condition gait cycle (Tukey’s for multiple comparisons, p < 0.05) that are present in the displayed 
participant and in more than 50% of the able-bodied participants (AB). Gait periods and stance and swing 
phases are defined the same as in Figure 4.5. 
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Supplementary Figure C.9. RMSE distribution within ambulation conditions of upper-leg and lower-leg 
NARX models for TTA2 for the continuous prediction of ankle angle and moment. Asterisk (*) indicate 
significantly lower moment error when using upper-leg muscle activity as inputs (ANOVA, p < 0.05). Gait 
periods and stance and swing phases are defined the same as in Figure 4.5. 



183 
 

 
Supplementary Figure C.10. RMSE distribution within ambulation conditions of upper-leg and lower-leg 
NARX models for TTA3 for the continuous prediction of ankle angle and moment. Gait periods and stance 
and swing phases are defined the same as in Figure 4.5. 
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Supplementary Figure C.11. RMSE distribution within ambulation conditions of upper-leg and lower-leg 
NARX models for a representative able-bodied participant trained with aligned contralateral EMG 
(AB4cEMG) for the continuous prediction of ankle angle and moment. Gait periods and stance and swing 
phases are defined the same as in Figure 4.5. 
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Supplementary Table C.1. Pairwise cross-correlations (R2) for input and output trials (averaged across 
trials, participants, and ambulation conditions). Shank velocity and output trials for the ABcEMG group are 
the same as the AB group. 

  

Within-Subject Trial-Wise Variability 
TTA Group ABcEMG Group AB Group 

LW AS DS 𝑹𝑹𝟐𝟐���� LW AS DS 𝑹𝑹𝟐𝟐���� LW AS DS 𝑹𝑹𝟐𝟐���� 
In

pu
t 

TibAnt 0.87 0.75 0.79 0.80 0.90 0.90 0.79 0.86 0.91 0.89 0.75 0.85 

MedGas 0.92 0.83 0.82 0.86 0.93 0.90 0.86 0.90 0.95 0.89 0.87 0.90 

RecFem 0.92 0.86 0.83 0.87 0.94 0.89 0.91 0.91 0.92 0.87 0.87 0.89 

SemTen 0.88 0.84 0.80 0.84 0.89 0.84 0.80 0.85 0.89 0.85 0.81 0.85 

ML 
Shank Vel 0.51 0.48 0.4 0.46 na 0.65 0.53 0.49 0.56 

AP 
Shank Vel 0.99 0.96 0.95 0.97 na 0.99 0.98 0.98 0.98 

Vertical 
Shank Vel 0.91 0.92 0.87 0.90 na 0.94 0.95 0.95 0.95 

O
ut

pu
t Ankle 

Angle 0.93 0.89 0.91 0.91 na 0.93 0.91 0.93 0.93 

Ankle 
Moment 0.99 0.94 0.91 0.94 na 0.99 0.96 0.95 0.97 

    

  

Correlation to Normal Pattern 
TTA Group ABcEMG Group 

LW AS DS 𝑹𝑹𝟐𝟐���� 𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎𝟐𝟐  𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎𝟐𝟐  LW AS DS 𝑹𝑹𝟐𝟐���� 𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎𝟐𝟐  𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎𝟐𝟐  

E
M

G
 

TibAnt 0.59 0.53 0.61 0.58 0.47 0.78 0.89 0.83 0.71 0.81 0.66 0.92 

MedGas 0.70 0.63 0.59 0.64 0.51 0.86 0.93 0.73 0.58 0.75 0.49 0.98 

RecFem 0.84 0.73 0.65 0.74 0.57 0.92 0.86 0.74 0.69 0.76 0.61 0.95 

SemTen 0.67 0.69 0.53 0.63 0.48 0.82 0.81 0.65 0.62 0.69 0.54 0.91 

O
ut

pu
t Ankle 

Angle 0.83 0.75 0.82 0.80 0.69 0.92 na 

Ankle 
Moment 0.97 0.85 0.86 0.89 0.82 0.99 na 

na: not applicable 
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Supplementary Table C.2. RMSE and R2 values of upper-leg and lower-leg NARX model predictions for 
each ambulation condition, individually for transtibial amputees (TTA) and averaged across able-bodied 
participants (AB and ABcEMG groups). Values were calculated between experimentally measured targets 
and model predictions of ankle angle and moment using optimal model parameters for each model type. 
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Supplementary Table C.2. cont. 
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Supplementary Table C.3. Within-subject three-way ANOVA. The factors are muscle group (upper leg 
and lower leg), ambulation condition (as seven gait cycles: 1-LW, 3-AS, and 3-DS), and gait period 
(loading response, mid-stance, terminal stance, pre-swing, initial swing, mid-swing, and terminal swing). 
Asterisk (*) indicate significance (p < 0.05) of higher upper-leg errors except TTA2 moment main effect. 

Model 
Output Participant 

Main Effect 
muscle 

F(1,882) = p value 

A
ng

le
 

TTA1 2.67 0.103   
TTA2 0.04 0.841   
TTA3 2.39 0.123   

AB1cEMG 4E-03 0.949   
AB2cEMG 9.95 1.66E-03 * 
AB3cEMG 0.34 0.558   
AB4cEMG 2.56 0.110   
AB5cEMG 0.60 0.439   
AB6cEMG 5.30 0.022 * 

AB1 17.28 3.54E-05 * 
AB2 16.91 4.29E-05 * 
AB3 36.31 2.47E-09 * 
AB4 78.30 4.77E-18 * 
AB5 9.41 2.22E-03 * 
AB6 152.15 2.31E-32 * 

M
om

en
t 

TTA1 0.68 0.410   
TTA2 4.60 0.032 * 
TTA3 1.39 0.238   

AB1cEMG 0.83 0.363   
AB2cEMG 5.74 0.017 * 
AB3cEMG 0.96 0.326   
AB4cEMG 1.10 0.296   
AB5cEMG 0.46 0.499   
AB6cEMG 0.02 0.876   

AB1 52.48 9.56E-13 * 
AB2 32.09 1.99E-08 * 
AB3 63.50 4.93E-15 * 
AB4 167.02 4.09E-35 * 
AB5 10.65 1.14E-03 * 
AB6 191.61 1.41E-39 * 
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Supplementary Table C.3. cont. 

Model 
Output Participant 

Interactions 
muscle*gait cycle muscle*gait period muscle*gait cycle*gait period 

F(6,882) = p value F(6,882) = p value F(36,882) = p value 
A

ng
le

 

TTA1 0.38 0.893   1.52 0.168   0.64 0.951   
TTA2 1.68 0.123   0.58 0.745   0.79 0.802  

TTA3 0.64 0.698   0.31 0.929   0.72 0.886   
AB1cEMG 0.66 0.680   0.67 0.671   0.88 0.673   
AB2cEMG 1.02 0.410   0.82 0.557   0.74 0.867   
AB3cEMG 0.53 0.789   0.91 0.487   0.81 0.780   
AB4cEMG 0.37 0.897   0.41 0.870   0.53 0.991   
AB5cEMG 0.82 0.558   0.51 0.803   0.69 0.918   
AB6cEMG 1.10 0.360   0.81 0.564   0.37 0.999   

AB1 1.38 0.220   1.05 0.391   0.55 0.986   
AB2 2.82 1.01E-02 * 0.57 0.754   1.10 0.323   
AB3 1.47 0.18   1.20 0.305   0.84 0.735   
AB4 4.63 1.21E-04 * 2.32 3.12E-02 * 0.68 0.927   
AB5 2.91 8.12E-03 * 0.99 0.432   1.05 0.384   
AB6 1.37 0.22   4.99 4.90E-05 * 1.23 0.170   

M
om

en
t 

TTA1 1.29 0.258   1.29 0.258   0.62 0.960   
TTA2 0.90 0.493   0.39 0.886   0.67 0.932   
TTA3 1.10 0.362   0.68 0.667   0.52 0.992   

AB1cEMG 1.78 0.100   3.22 3.91E-03 * 0.56 0.984   
AB2cEMG 0.84 0.537   0.80 0.568   1.00 0.476   
AB3cEMG 0.60 0.728   0.47 0.829   0.79 0.812   
AB4cEMG 1.58 0.151   0.35 0.911   0.50 0.995   
AB5cEMG 1.41 0.208   0.86 0.526   0.65 0.947   
AB6cEMG 1.90 0.078   1.10 0.361   0.89 0.659   

AB1 2.42 2.49E-02 * 3.37 2.75E-03 * 0.92 0.603   
AB2 2.74 1.21E-02 * 3.21 4.05E-03 * 1.19 0.205   
AB3 1.65 0.129   2.14 0.047 * 1.07 0.360   
AB4 3.00 6.65E-03 * 9.94 1.23E-10 * 1.21 0.185   
AB5 1.73 0.111   3.77 1.02E-03 * 1.11 0.303   
AB6 3.42 2.44E-03 * 5.46 1.47E-05 * 1.03 0.429   
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APPENDIX D: SYSTEM INTEGRATION AND CONNECTIONS 
FOR GAIT ANALYSIS 

 
Supplementary Figure D.1. Instrumented walkway and motion base systems. 

 
Supplementary Figure D.2. Data collection workflow for level overground walking and stair ambulation 
on the instrumented walkway. 
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Supplementary Figure D.3. Software for data collection on the instrumented walkway. Caputre2D, AMTI 
NetForce, AMASS, LabVIEW, and Trigno Utility Control are shown. 

 
Supplementary Figure D.4. Motion base system with visual feedback for ramp incline, ramp decline and 
level treadmill walking conditions. 
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Supplementary Figure D.5. Data collection workflow for motion base system with visual feedback.  
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APPENDIX E: TESTING CHECKLIST – GAIT ANALYSIS PROTOCOL 

Protocol including all ambulation conditions (Instrumented Walkway and Motion Base with Visual 
Feedback). 

 
Before Testing Day 

� Send confirmation email with date, time, and location to test subject. Remind of tight shorts and t-
shirt, athletic shoes (same as previous sessions if applicable), no recent injuries 

 
Before Testing Day or Before Subject Arrival (30-45 mins)  

� Rewire and reorient cameras and HUBs to Walkway Mode. Use detailed connection diagram 
(HPL System.pdf, Supplementary Figure D.2) and photos with reflective markers on walkway 
as a guide. Put retractable barriers in place 

� Verify treadmill sensors offsets and force-voltage calibration 
 
Testing Day – Before Subject Arrival (30-45 mins) 

� Turn on master computer, motion base, treadmill, motion base computer (MBC), treadmill 
computer, TV displays, and Unity computer 

� On Master Computer, create a main New Folder for subject using subject’s ID number. Create a 
subfolder called Day # to refer to the session number 

� Cameras Calibration for Walkway Mode 
o Clear walkway for calibration by removing chairs, landing platform, and staircase 
o Launch AMASS, create a New Project (MMDDYY_SubjectID#) in subject’s main folder, 

and update settings (see list below) 
o Launch Capture2D from AMASS 
o Place L-frame on floor force plates with the arrow pointing north as going “up the stairs”. 

Use L-frame screw and levels as alignment guide 
o Verify that all cameras have the L-frame in view and cover any reflective areas 
o Update filename to MMDDYY_SubjectID#_cal_up and complete 140 seconds of wanding 

calibration with proper technique 
o In AMASS, calibrate file. Aim for >90% Image for every camera. If lower, verify field of 

view or retake calibration. If satisfied, close window 
o Repeat with L-frame facing south as going “down the stairs”. Name file as 

MMDDYY_SubjectID#_cal_down 
� Set equipment for Stair Ambulation Condition  

o Without touching, moving tripods and cameras, wheel staircase to align legs with floor 
marks and floor force plate edge with 1st stair step. Avoid wheeling staircase over floor 
force plates 

o Wheel landing platform. Use floor marks and black spacers for alignment. Lower and 
secure legs and check stability by walking on landing platform 

o For able-bodied subjects, remove staircase handrails and landing platform guardrails 
o Pull the AMTI GEN5s (#1&2) from the wall, connect USB and Pulse cable, and zero 

plates 
o Connect staircase cables to AMTI GEN5s (#3&4), zero plates, and pull cables out of 

space 
o Verify staircase level and remove handles 

� Put all instruments, materials, and consumables containers needed for testing on a table 
� Prepare 25 reflective markers with adhesive and cover-roll stretch tape 
� Clean 16 EMG sensors with alcohol wipes, dry and apply adhesive, turn on and start running 

Trigno Utility Control, verify signal and battery 
� Print out Consent, EMG Questionnaire, Participant Record, and Payment Verification forms 
� In the last session, have payment available 
� Open software and update settings 
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o AMASS: Calibrate: Reference marker file; Track: Error: 5, Residual: 3, Cameras: 2, 
Diam: 14, Calibration File; Identify: Leave empty Marker and Link files 

o AMTI Netforce: Hardware Installation; Export and File Options; Set/View Protocol: 
Data Rate: 1200; Data Folder; Hardware Zero; Acquisition Settings; Trigger Settings: 
Event Type: [x] by External Source, Edge: Rising, Trigger Position: 5%, Amp ID 1&3 

o Capture2D: Countdown: 2 s 
o Trigno Utility Control 
o TriggerEMG.vi  
o Explorer Data Folder 
o MVCsEMG_Timed.vi 
o NI Max 

 
Testing Day – Subject Arrival and Preparation (60 mins) 

� Greet subject and ask to change clothing if necessary 
� Explain testing protocol briefly and answer any question or concerns 
� Subject will fill out and sign (4) forms if required 
� During any time of the testing, allow subject to rest and offer water 
� Take subject measurements: ○ Knee diameter ○ ankle diameter 
� Place markers on skin (except greater trochanter) 

o 2nd and 5th metatarsal 
o Heel: leveled with 2nd metatarsal 
o Lateral and medial malleolus 
o Tip of shoe: in line with 2nd metatarsal 
o Shank: in line with lateral knee and ankle markers at widest shank width 
o Lateral and medial femur epicondyles  
o Thigh: in line with lateral knee and greater trochanter markers, below hand plane 
o Greater trochanter: over shorts 
o Middle point of PSIS and ASIS 

� Take subject measurements:  
○ ASIS distance   ○ASIS to lateral malleoli   ○ Heel to shoe tip   ○ 2nd metatarsal to shoe tip 

� To place EMG (16) electrodes, wipe skin over muscle belly with alcohol wipe, follow Participant 
Record Form for number order, place electrodes with arrow pointing up and in line with muscle 
belly 

� Test EMG signals using NI Max software by instructing subject to contract the specific muscle 
� Wrap EMG electrodes with COBAN  
� MVCs Data Collection 

o Pull testing bed closer to computer desk  
o In MVCsEMG_Timed.vi, update testing information and select muscle group (9) 
o Instruct subject about experiment (3 series of maximal contraction with resting states) 

and run VI 
 Tibialis anterior: subject: standing up, dorsiflexes; tester: holds foot down 

against floor 
 M/L Gastrocnemius: tester: adjust aluminum bar to shoulder’s subject height, 

place wedge on floor against aluminum frame; subject: with locked knee, 
contracts calf by pushing up against the aluminum bar  

 Quadriceps: subject: lying down facing up with plastic tube underneath knee, 
extends knee; tester: holds shank down 

 Hamstrings: subject: lying down facing down with plastic tube underneath 
ankle, flexes knee; tester: holds shank down 

 Lower back: subject: lying down facing down with straps around shanks and 
thighs, extends back upward; tester: holds upper back down  

� Remove testing bed and check marker and electrode placement  
 
Testing Day – Walking and Stair Ascent/Descent Conditions (50 mins) 

� In Capture2D, set pulse parameters in External Sync Out Settings 
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○ Mode: On during recording    ○ Duration: Recording level    
○ Pulse Phase: In phase   ○ [x] Invert pulse polarity 

� Run Static Trials 
o Place 16 reflective markers on each corner of the 4 force plates 
o In AMTI NetForce, zero unloaded plates 
o Set filenames to: 

 Capture2D: MMDDYY_SubjectID#_static_up 
 AMTI NetForce: MMDDYY_SubjectID#_Force_static 
 TriggerEMG.vi: MMDDYY_SubjectID#_EMG_static 

o Set settings to: 
 Capture2D: Duration: 5 s 
 AMTI NetForce: Duration: 5 s; File Seed No.: 00000 
 TriggerEMG.vi: Recording Time: 5 s; Number of Trials: 1 

o Ask subject to stand on plate #1 facing north with anatomical position (or arms crossed 
across chest) and not to move for 5 seconds when signaled 

o Take Static Up trial and save EMG and Force baseline files 
 Run TriggerEMG.vi, Start and Arm in AMTI NetForce, Start Recording in 

Capture2D, signal subject not to move 
 Next Capture2D, Export Data File in AMTI NetForce. Verify EMG and force 

data files 
o Take Static Down trial 

 Ask subject to face south. Take only kinematic data in Capture2D by changing 
filename to MMDDYY_SubjectID#_static_down  

o Ensure that at least one static trial has all (41) markers visible by tracking in AMASS. 
Look for noise, and dropped and ghost markers. Verify also in Dynamic files and Motion 
Base files 

o Remove force plate markers (16) 
� Run Stair Ascent/Descent Dynamic Trials 

o Instruct subject on how to ambulate during trial, which signals to expect, and from where 
to start 

o Set filenames to: 
 Capture2D: MMDDYY_SubjectID#_stairs_ 
 AMTI NetForce: MMDDYY_SubjectID#_Force_stairs_ 
 TriggerEMG.vi: MMDDYY_SubjectID#_EMG_stairs_ 

o Set settings to: 
 Capture2D: Duration: 10 s 
 AMTI NetForce: Duration: 10.5 s; File Seed No.: 00000 
 TriggerEMG.vi: Recording Time: 10 s; Number of Trials: 30 

o Take Dynamic trials and save files 
 Run TriggerEMG.vi  
 1. Start and Arm in AMTI NetForce, Start Recording in Capture2D 
 2. Stair Ascent or Descent: signal subject “Ready, Go, Turn around”  
 3. Next Capture2D, Export Data File in AMTI NetForce 
 On the Participant Record Form, record successful/unsuccessful hits on each 

force plate  
 After 2 or 4 trials, verify content of kinematic, EMG, and force data files. 

Subsequently, only verify that files are being created in data folder 
 Repeat until all stair ascent/descent trials are collected 

� Run Walking Dynamic Trials 
o Disconnect staircase cables and turn off AMTI GEN5s (#3&4) 
o In AMTI NetForce, update Hardware Installation and Amp ID to 1&2 
o Without touching, moving tripods and cameras, remove landing platform and staircase 

from walkway. If cameras are even slightly moved, new calibrations (up and down) must 
be recorded 

o Set filenames to: 
 Capture2D: MMDDYY_SubjectID#_walk_ 
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 AMTI NetForce: MMDDYY_SubjectID#_Force_walk_ 
 TriggerEMG.vi: MMDDYY_SubjectID#_EMG_walk_ 

o Set settings to: 
 Capture2D: Duration: 8 s 
 AMTI NetForce: Duration: 8.4 s; File Seed No.: 00000 
 TriggerEMG.vi: Recording Time: 8 s; Number of Trials: 16 

o Take Dynamic trials as described previously under Stair Ascent/Descent 
 
Testing Day – Motion Base with Visual Feedback Mode: Ramp Incline/Decline Condition (60 mins) 

� Disconnect and return AMTI GEN5s (#1&2) to the wall 
� Rewire cameras and HUBs to Motion Base with Visual Feedback Mode. Use detailed connection 

diagram (HPL System.pdf, Supplementary Figure D.4) 
� On Master Computer, close AMTI NetForce and TriggerEMG.vi, open HostController.vi, set 

LabVIEW priority to ‘Real Time’ under Task Manager 
� On MBC, ensure system is running 
� On Unity Computer, open Unity simulation. Turn on TV displays 
� On Treadmill Computer, open treadmill control software 
� Run motion base and unity program to ensure no immediate errors 
� Cameras Calibration for Motion Base Mode 

o Engage motion base and remove velcro treadmill (4) markers 
o Place L-frame on middle of the treadmill with the arrow pointing south (TV displays) 
o Verify that all cameras have the L-frame in view and cover any reflective areas 
o Update filename as MMDDYY_SubjectID#_cal_MOOG and complete 120 seconds of 

wanding calibration with proper technique 
o In AMASS, calibrate file. Aim for >90% Image for every camera. If lower, verify field of 

view or retake calibration. If satisfied, apply and close 
� Fit subject with safety harness and verify marker placement 
� In Capture2D, set pulse parameters in External Sync Out Settings 

○ Mode: On during recording    ○ Duration: Recording level    
○ Pulse Phase: In phase   ○ [x] Invert pulse polarity 

� Run Static trial and save EMG and Force baseline files 
o Place velcro treadmill (4) markers 
o Engage motion base and secure subject to fall-arrest system. Point out emergency stop  
o Ask subject to cross arms across chest and stand still  
o In Capture2D, change filename to MMDDYY_SubjectID#_static_MOOG and record 5 s 

 ADD/Verify HostController.vi can record EMG and Force baseline files 
o Ensure static trial is valid by tracking in AMASS 

� Run Ramp Incline/Decline Dynamic Trials 
o Verify treadmill Reverse mode. Begin treadmill and increase speed gradually until 

subject’s self-selected speed (SSS) is reached. Pause belts and record speed on 
Participant Record Form 

o Follow Motion Base System with Visual Feedback Data Collection in HPL 
System.pdf (Supplementary Figure D.5) to collect and save data in each of the 
following runs: 

 Run a single trial of 35 s at SSS. Verify content of kinematic and EMG&Force 
files 

• Set filenames to: 
o Capture2D: MMDDYY_SubjectID#_MOOG_single 
o HostController.vi: 

MMDDYY_SubjectID#_EMG&Force_MOOG_single 
• Set settings to: 

o Capture2D: Duration: 5 s 
o HostController.vi: Recording Time: 5 s; Number of Trials: 2 
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 Run 2 multiple trial simulation (7s-8 trials) of ~5 mins each at SSS. Change 
filename from _1 to _2 to avoid overwriting files. Verify content of files at the 
end of each run 

• Set filenames to: 
o Capture2D: MMDDYY_SubjectID#_MOOG_multi_1 
o HostController.vi: 

MMDDYY_SubjectID#_EMG&Force_MOOG_multi_1 
• Set settings to: 

o Capture2D: Duration: 290 s 
o HostController.vi: Recording Time: 290 s; Number of Trials: 

2 
 If required, run multiple trial simulation (7s – 8 trials) of ~5 mins each at 

different speeds 
o After all trials are collected, disengage motion base and remove subject fall-arrest harness 

system 
 
Testing Day – Subject Dismissal (15 mins) 

� Remove EMG electrodes and markers from subject 
� If last session, sign Payment Verification Form and make payment 
� Thank and escort subject out of the room/building 

 
After Subject Dismissal (30-45 mins) 

� Organize files to subfolders labeled MOOG: MVCs and Walkway: UP, DOWN, MVCs. If 
necessary, rename files to match kinematic, EMG, and force names and numbers 

� Copy and rename AMASS project file into subfolders MOOG: MMDDYY_SubjectID#_MOOG, 
UP: MMDDYY_SubjectID#_up, and DOWN: MMDDYY_SubjectID#_down 

� Compile all information on Participant Record Form 
� Clean 16 EMG sensors with alcohol wipes and place them in the Trigno box 
� Turn off equipment and computers  
� Put all instruments, materials, and consumables containers in cabinet 
� Prepare lab for class 

o Wheel in staircase and landing platform 
o Disconnect cameras and move tripods and retractable barriers 
o Move chairs back around tables 
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