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ABSTRACT 

IMPROVING CHAR COMBUSTION MODELS USING MICRO-CT, AUTOMATED 

IMAGE ANALYSIS, AND PORE-RESOLVING SIMULATIONS 

 

 

Dongyu Liang, B.E., M.S. 

George Washington University, 2018 

Combustion of pulverized coal and biomass in furnaces and boilers involves 

millions of particles with a distribution of sizes and morphologies. Because char particles 

typically react under zone II conditions, in which pore-diffusion and heterogenous 

reaction both influence the rate of conversion, the morphology of the porous particles 

affects reactor-scale outputs. To understand the impacts of complex morphology, 3-D 

pore-resolving simulations employing real char geometries obtained from high-resolution  

X-ray microtomography are first used to study combustion of 150 coal char particles and 

30 biomass char particles. Localized reactant penetration into the innermost regions of 

the particles is observed, facilitated by the presence of large macropores connected to the 

external surface, resulting in non-monotonic and non-uniform reactant distributions. In 

contrast, temperature distributions are nearly spatially uniform throughout both the large 

pores and microporous char regions. 

Existing analytical effectiveness factor models, which are often used as sub-

models in reactor-scale simulations, are then assessed by comparison to the effectiveness 

factors obtained from the 3-D geometrically-faithful simulations. Conventional, 

frequently used uniform sphere and cylinder models significantly underpredict 

effectiveness factors for real coal and biomass char particles, whereas an accessible 

hollow cylinder model achieves good accuracy for the biomass char. Low connectivity 

coal char particles can be reasonably modeled using an inaccessible hollow sphere model, 

while combustion of coal char particles with higher connectivity can be well-represented 

with an accessible hollow sphere model.  

To facilitate modeling large distributions of particles in reactor-scale codes, 

machine learning algorithms are trained to classify highly porous char particles according 

to their expected combustion behavior and to apply an appropriate, computationally 

efficient, analytical particle-scale combustion model. Whereas existing approaches have 

classified particles solely according to their morphology and used 2-D measurements 

based on particle cross-sections, the present approach classifies particles according to 

their combustion behavior, using 3-D morphology data as input and 3-D pore-resolving 

simulation data for classifier training. Finally, to facilitate application of the workflow to 

other highly porous char particles, an automated 3-D image analysis routine is developed 

to segment carbonaceous regions from resolved pores and to measure the morphological 

parameters required by the classifiers.
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Chapter 1. Introduction 

1.1 Solid fuel gasification and combustion 

Solid fuels like coal and biomass account for a large share of electricity 

generation and chemicals production. In 2020, coal accounted for 27.2% of total primary 

energy consumption globally, which is higher than natural gas (24.7%) and only below 

that of oil (31.2%)[1]. Coal utilization contributed 19.6% (844.1 TWh) of electricity 

generation in the United States and over 57% (7386.4 TWh) in the Asia Pacific [1]. Coal 

is projected to remain 23% of total energy supply until 2030 according to the prediction 

of World Energy Council [2]. Biomass, along with solar, wind, hydro, and geothermal, 

on the other hand, contributed 14.1% of the world’s primary energy supply. Biomass was 

the third largest renewable electricity generating source, with 655 TWh of production in 

2019. However, demand for biomass is growing rapidly. Electricity generated globally 

from biomass has increased fourfold from the year 2000 [3]. The remaining high demand 

for coal and the increasing demand for biomass imply that the utilization of these solid 

fuels should be optimized for efficiency and environmental concerns.  

The most common utilization processes for solid fuels are combustion and 

gasification, which involve numerous chemical and physical processes. The two main 

steps of combustion or gasification are: 1) devolatilization (or pyrolysis for non-reactive 

environments), and 2) char conversion.  For instance, when a pulverized coal particle 

reaches a temperature of 300-600 °C, light gases (volatiles) and heavier gases (tar) are 

released from the particle [4], and subsequently react in the gas phase. While the volatiles 

and tar are emitted, the carbonized residue (char) derived from the original particle forms 



2 
 

 
 

an irregular porous solid due to the escaping gases. During this process, the structure of 

the particle is significantly altered [5, 6]. For entrained flow reactors, furnaces, and 

boilers, the entire process of devolatilization is typically completed in a few milliseconds, 

During char conversion, the porous solid char is converted into product gases by reacting 

with O2, CO2, H2, etc., depending on the environment. Char gasification or combustion 

typically occurs within the particle, to a large degree, on the internal pore surfaces [7]. 

The char conversion process is slower than devolatilization, therefore modeling and 

experimental measurements often focus on char conversion, as it is the rate limiting step.  

During gasification and combustion, carbon dioxide (a contributor to global 

warming) [7], particulate matter (PM2.5) [8], nitrogen oxides (NOx), sulfur dioxide 

(SO2) [9] and other harmful byproducts are released, resulting in environmental and 

health concerns. According to the world energy outlook, around 45% of CO2 emissions 

worldwide due to combustion activities were from coal in 2020 [10]. Many efforts have 

been directed to developing more environmentally-friendly technologies for solid fuel 

utilization. For example, integrated gasification combined cycle (IGCC) and co-firing 

coal with biomass have been investigated to reduce pollutant emissions. To further design 

and optimize solid fuel gasification and combustion processes, a fundamental 

understanding of the conversion behavior is essential.   

1.2 Reactor-scale CFD simulation  

Many types of reactors are in use for solid fuel gasification and combustion. 

Gasifiers, for example, can be divided into three basic designs: fixed bed, fluidized bed, 

and entrained flow gasifiers. Their differences involve how the feedstock is treated and 
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introduced, the oxidant(s) used, the operating temperatures and pressures, and the heating 

method [11]. The height of large-scale gasifiers is usually over 10 meters, depending on 

specific requirements, with the temperature and pressure are typically 1000-1500 °C [12], 

and from atmospheric pressure to 7 MPa, respectively [13]. 

Computational fluid dynamics (CFD) is helpful for optimizing and designing 

reactors for combustion and gasification, given the expense and difficulty of experimental 

data collection in such harsh environments [14] CFD makes it possible to obtain deep 

insights into solid fuel combustion and gasification at a variety of scales, from single 

particles, to groups of particles, and finally to the reactor-scale (pilot- or industrial-scale). 

However, the predictive capability and utility of a CFD model depends on how well the 

physical and chemical processes have been understood and represented.  

Many reactor-scale CFD simulations have been developed to investigate different 

aspects of solid fuel combustion and gasification [15,16,17,18,19]. The first step is to 

convert the reactor into a computational domain for solution of the discretized governing 

conservation equations, as shown in Fig. 1-1. The grid spacing is typically at least one 

order of magnitude larger than the size of particles. 
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Fig. 1-1 Realistic reactor (adapted from [20] (Left)) and simplified computational reactor 

(adapted from [15] (Right)). 

As noted above, all phenomena occurring during combustion and gasification should be 

well understood and considered in reactor-scale CFD simulations for accurate prediction. 

Therefore, the second step is coupling semi-empirical or fundamental submodels in the 

CFD simulation to describe the phenomena of drying, devolatilization, char conversion, 

and ash behavior, among others [21,22,23,24]. The quality of the submodels affects the 

performance of reactor-scale CFD simulations significantly. As one example, the particle 

drag relation has been shown to significantly impact the accuracy of numerical 

simulations [25,26].  

1.3 Importance of particle-scale submodels 

The energy and species source terms in a combustion or gasification process 

originate from the small solid fuel particles. Therefore, it is not surprising that the 

behavior and modeling of individual char particles influences outputs at the reactor-scale. 

This has been demonstrated in many works using modified submodels implanted in CFD 
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simulations at reactor-scale, with experimental validation. An intrinsic-based submodel, 

which accounts for species transport within the particle from the surface, was coupled in 

a CFD gasifier simulation indicating that the kinetics submodel developed from the single 

particle can affect the carbon conversion at reactor-scale [16]. A set of submodels 

representing devolatilization, volatile combustion, char combustion and radiation have 

been employed in a large eddy simulation of a pilot scale furnace. It was found that the 

char combustion model overpredicts the char combustion rate leading to a temperature 

difference observed in a large-scale simulation [27]. A modified intrinsic char 

combustion model which accounts for particle structural parameters (diameter, density, 

porosity) and ash formation was developed and used in an entrained flow simulation with 

superior performance, indicating the importance of the particles’ structure on model 

accuracy [15]. The shape (spherical, cylindrical, discs and slabs) and size of biomass char 

particles and their internal thermal gradients were also investigated and their impact on 

the temperature and residence time was observed to be non-negligible [28].  

Fundamental particle-scale studies thus play a key role in improving reactor-scale CFD 

simulations. Therefore, detailed, particle-scale CFD simulations should be considered to 

develop the simpler, single particle models that are embedded in reactor-scale CFD 

simulations. The relationship between experiments and CFD simulation at different 

scales is shown in Fig. 1-2.  
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Fig. 1-2 Principal scheme of study strategy.  

1.4 Types of particle-scale models 

Many particle-scale models have been developed to describe the physical and 

chemical processes that occur during char conversion. Since solid fuel particles are 

porous, the models must capture diffusion of reactant gases to the particle’s external 

surface from the bulk, diffusion of reactant gases within the porous particles, and reaction 

within the particles. Depending on the operating conditions, one of the steps (reaction or 

diffusion) may be much slower than others and becomes the rate-limiting step. Based on 

this, three regimes have been classified: zones I, II and III, indicating, respectively, that 

the conversion process is controlled by chemical reaction only, by both reaction and 

diffusion, and by external diffusion only [29]. More detailed information about the 

concept of regimes (zones) is discussed in the Chapter 2. Nonetheless, the approach of 

particle-scale models and their fidelity depend on the regime.  Three general modeling 

approaches for char particle conversion are discussed next. 
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1.4.1 Global models 

Global models lump all intra-particle processes (reaction and diffusion) into the 

parameters of a global reaction rate, which is considered to occur on the particle’s 

external surface. This type of model may be predictive for zone III conditions, in which 

the reaction is confined to the external surface, but otherwise, this type of model is only 

valid when used under the same temperature and pressure conditions and particle types 

for which its parameters were fitted. Many such models, often together with models for 

boundary layer transport [30], have been developed. For example, the shrinking core 

model is a common model that may be accurate at high reaction rates under zone III 

condition [31]. However, like other global models, such as the “kinetics/diffusion fixed-

core model” [32] and the “multiple surface reaction model” [33], they all consider 

reaction occurring on the external surface and use lumped parameters to account for the 

intrinsic reactivity, which requires experimental knowledge. The advantage of global 

models is simplicity (explicit algebraic expressions) that can be easily integrated into 

large-scale CFD simulations, where tens of thousands of particles need to be tracked. 

However, the limitation is that the lumped parameters are restricted to certain conditions.  

1.4.2 Effectiveness factor models 

Effectiveness factor models account for diffusion within the porous particles in a 

simplified manner, using an analytical solution to a simplified reaction-diffusion 

equation. The effectiveness factor (𝜂), is a nondimensional number representing the ratio 

of the actual reaction rate integrated over the entire porous particle, which is limited by 

diffusion, to the ideal reaction rate in the absence of any diffusion limitations [34]. The 

effectiveness factor, 𝜂𝑖, modifies reaction rate i for the particle to account for the 
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presence of diffusion limitations in Zone II. For a common nth order reaction rate 

expression [35,36,37] 

𝑅𝑖 = 𝜂𝑖𝑆𝑘𝑖𝑃𝑖
𝑛 (1 − 1) 

𝑘𝑖 = 𝐴𝑠,𝑖 exp (
−𝐸𝑖

𝑅𝑢𝑇𝑝
) (1 − 2) 

where 𝑅𝑖 is the reaction rate that is modified by effectiveness factor (𝜂𝑖), and is 

proportional to the specific internal surface area of the char particle (𝑆), the intrinsic 

rate constant (𝑘𝑖), and the partial pressure (𝑃𝑖
𝑛) for species i with reaction order of n. 

The intrinsic rate constant is expressed in Arrhenius form and depends on particle 

temperature (𝑇𝑝), an overall activation energy (𝐸𝑖), and specific pre-exponential factor 

(𝐴𝑠,𝑖) for species i. 𝑅𝑢 is the gas constant.  

Using the effectiveness factor, the overall reaction rate considering intraparticle 

diffusion can be determined using information about the reactant concentration at the 

particle surface. The effectiveness factor approach can also be readily integrated into 

reactor-scale CFD simulations. Because the reaction rate terms can be measured in lab-

scale experiments, the methods to calculate effectiveness factors (which account for 

pore diffusion effects) become a key factor requiring specification, and effectiveness 

factor calculation require accuracy in parameters associated with diffusion in the 

porous particles. Since a portion of the present works involves effectiveness factor 

model evaluation, the calculation and classification of effectiveness factor models will 

be detailed in Chapter 2 and Chapter 4.  
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1.4.3 Models based on spatially resolved conservation equations  

Models based on conservation equations solve partial differential equations for 

mass, momentum, species, and energy over the entire computational domain. Due to the 

complexity of the actual structure of particles with irregular pores, most conservation 

equation approaches have been developed as effective continuum models [38], with pore 

resolving models being recently developed [26]. Unlike global models and effectiveness 

factor models, profiles of all species and temperature distributions are available inside 

and outside the particle. More detailed information about these two approaches are 

presented in Chapter 2. Since models based on conservation equations solve multiple 

partial or ordinary differential equations numerically, the submodels that describe 

phenomena occurring within the porous particle during the gasification and combustion 

process can be implemented flexibly. Furthermore, this type of model can be 

implemented in 1-D, 2-D, or 3-D. However, this type of model is computationally 

expensive. Therefore, while models based on conservation equations are good for 

fundamental study at the particle-scale, they are impractical for incorporation into 

reactor-scale CFD simulations. On the other hand, this modeling approach can be used to 

assess simpler models that are able to be employed in reactor-scale CFD simulations. 

1.5 Thesis outline 

This thesis seeks to understand the impacts of realistic char particle morphologies 

on particle conversion for industrially-relevant zone II conditions and to provide a means 

to incorporate these fundamental insights into reactor-scale CFD codes. In Chapter 2, a 

literature review is presented for char particle combustion and gasification processes, 
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single particle simulations, including effectiveness factor models, and approaches to 

characterize of char morphology. In Chapter 3, a three-dimensional, pore-resolving 

simulation approach based on real char particles with morphologies obtained using 

micro-CT will be employed to study the behavior of intraparticle diffusion and reaction 

for a distribution of coal and biomass char particles. The accuracy of several existing 

effectiveness factor models will be assessed for coal and biomass char in Chapter 4. In 

Chapter 5, machine learning algorithms are trained to classify particles according to their 

expected combustion behavior and to select accurate, computationally efficient analytical 

(effectiveness factor) particle-scale combustion models for distributions of morphologies 

in reactor-scale CFD. Finally, in Chapter 6, to facilitate application of the workflow to 

other highly porous coal chars, an automated image analysis routine is developed to filter 

and segment particles and to measure their morphological parameters. Conclusions are 

provided in Chapter 7. 
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Chapter 2. Background and Literature Review 

Relevant background regarding char particle combustion, effectiveness factor 

models, spatially resolved simulation approaches, and char particle morphology 

characterization will be reviewed in this chapter. Based on the literature, the limitations 

of current approaches and the objectives of this work will be described.  

2.1 Char particle combustion 

2.1.1 Particle conversion process 

Conversion behavior at the scale of char particles can influence reactor-scale 

outputs during coal combustion, such as carbon residence time, temperature, and ignition 

[16,27,39]. Therefore, reactor-scale CFD codes require predictive char particle 

submodels to accurately represent the behaviors at the reactor-scale. These submodels 

require fundamental knowledge of the reaction and diffusion behavior, which has not yet 

been examined for realistic, complex, irregular char particle structures.  

There are many physical and chemical processes involved in char conversion 

[40], but the basic process can be summarized with the following steps, shown in Fig. 2-

1:  
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Fig. 2-1 Char particle conversion steps. 

The first step is diffusion of reactant gases through the boundary layer (dash line 

outside of the particle) to the char particle’s external surface (1-2), which is called “bulk,” 

“external,” or “film” diffusion. In the second step, reactant gases are transported, 

primarily via diffusion, into the porous particle (“pore diffusion”, 2-3), while some of the 

reactant gases react with carbon at the particle external surface. However, the fraction of 

reactant which fails to penetrate the particle to any degree is small, due to the vastly 

larger surface area inside the particle’s pores compared to the outer surface of the 

particle. In the pores, the remaining reactant gases experience absorption (3-4), chemical 

reaction (4) and desorption (5-6) as products. Finally, the product gases diffuse and 

convect from the porous particle to the surroundings (6-7). Due to the heterogeneous 

chemical reactions, the increased gas volume (number of moles) inside the particle causes 

a convective flux called “Stefan flow” away from the particle. In many cases, Stefan flow 

is negligible, bulk diffusion is relatively fast, and char conversion rate is controlled by 

pore diffusion and heterogeneous reaction [41,42]. The steps shown above indicate that 
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char particle conversion is highly dependent on the rate of chemical reactions and the 

ability of the reactants species to diffuse within the particle structure.  

2.1.2 Reaction regimes 

As the chemical reactions and the species diffusion dominate char particle 

consumption, one or both of them, based on the char properties and operating conditions, 

can be the rate-limit factor(s) controlling the overall consumption rate, as noted in 

Chapter 1. Therefore, depending on which constrains the overall consumption rate, the 

phenomenon is often classified into three regimes (zones) [29]. The evolving density and 

size of char particles are also affected by the regimes [43]. Fig. 2-2 shows the distribution 

of reactant concentration from the surroundings to the center of a porous particle when 

the process is controlled by reaction, reaction and diffusion, and external diffusion, 

respectively. The relationship between the temperature and the reaction rate is displayed 

in the Fig. 2-2 as well. 
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Fig. 2-2 Regimes of char conversion illustrated in the Arrhenius plot.  

Regime I, also known as the chemical reaction control regime, is the regime 

appearing at relatively low temperatures. The overall char conversion rate is controlled 

by reaction since the reaction rate is much slower than diffusion. Because diffusion is 

relatively fast, reactant concentration is uniform (green line in Fig 2-2) since they can 

easily penetrate the porous particle from the external surface into the center. Thus, 

reaction occurs uniformly throughout the particle. The kinetic parameters (activation 

energy and the reaction order) measured in this regime are the true activation energy and 

reaction order. The particle size remains unchanged throughout conversion. 

Regime II, also known as pore diffusion control regime, is the regime appearing 

at higher temperatures where significant reactant concentration gradients exist within the 

porous particle (blue line in Fig. 2-2). The timescales of diffusion through the particle and 

of chemical reaction are comparable under regime II. Therefore, reactant species are 
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consumed throughout the pore structure, so concentration gradients appear. The char 

consumption rate is influenced by both diffusion and reaction. The effects of particle 

morphology must be well understood in order to predict char particle conversion behavior 

in this regime, since morphology significantly affects diffusion. In entrained flow 

gasification and combustion, char conversion usually occurs in this regime [44]. 

Regime III, also known as external diffusion control regime, is the regime 

appearing at a very high temperatures where the reaction rate is much faster than the rate 

of diffusion. Therefore, all reactant is consumed at the external particle surface before it 

can diffuse into the particle. This effect leads to a steep concentration gradient established 

between the particle’s external surface and the surroundings (orange line in Fig. 2-2).  

As discussed in the previous chapter, the development of global particle-scale 

models is related to the reaction regime. When the char particle conversion is controlled 

by kinetics (regime I), the effects of diffusion are negligible, leading to a simplified 

expression that can describe the conversion rate. In Regime III, the diffusion rate is 

slower than reaction and becomes the char conversion rate limiting factor. Since only a 

tiny fraction of the reactant can penetrate the particle’s external surface [45] under this 

condition, intraparticle behaviors are unimportant, and their effects can be omitted from 

models. Commonly applied SCM [31], kinetics/diffusion fixed-core models [32] and 

multiple surface reaction models [33], may all be accurate for this situation. For regime 

II, in which char particles typically react for combustion and high-temperature 

gasification of pulverized coal and biomass [41,42,46,47], both the kinetics and transport 

affect the overall char conversion rate. Intra-particle diffusion and heterogeneous kinetics 

should both be considered for predictive modeling. The importance of char morphology 
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should be investigated, as it significantly affects the transport process through the porous 

particles in industrially-relevant Regime II conditions [48]. 

2.2 Effectiveness factor models 

The definition and role of the effectiveness factor (𝜂𝑖) has been briefly explained 

in Chapter 1. A review of classic effectiveness factor models is performed in this section. 

The goal of effectiveness factor models is to consider the effects of intraparticle diffusion 

on the overall reaction rate and to obtain a rapid and accurate solution for the overall 

reaction rate. Effectiveness factor models are simple particle-scale models that can be 

solved analytically and are often used in reactor-scale CFD codes. Based on the 

definition, the effectiveness factor is: 

𝜂 =
𝑅𝑎𝑐𝑡𝑢𝑎𝑙

𝑅𝑖𝑑𝑒𝑎𝑙
 (2 − 1) 

where 𝑅𝑎𝑐𝑡𝑢𝑎𝑙 is the real reaction rate within the particle domain, and 𝑅𝑖𝑑𝑒𝑎𝑙 is the ideal 

reaction rate when no pore diffusion limitations exist over the same domain. Thus, the 

effectiveness factor measures the limitations of diffusion on the overall reaction rate. 

Aside from implementations in gas-solid reactions, it is also (and originally) used in 

porous catalyst applications [49]. In zone I, the effectiveness factor equals one, indicating 

the porous particle is uniformly filled with reactant and the reaction rate everywhere is 

identical to the rate on the external surface. In zone II, as temperature increases, the 

effectiveness factor starts to decrease from one as the effects of pore diffusion become 

more important (slower) relative to the reaction. When char conversion is fully controlled 

by external diffusion and there is no reactant penetration, which is zone III, the 
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effectiveness factor drops to zero since there are no species that can be transported into 

char particle since they react as soon as they reach the surface [50].  

As outlined in Section 2.1.1, the reactant concentration distribution is determined 

by pore diffusion inside the particle under regime II conditions. It has been noted that the 

inner surface area is much larger than the external surface which is exposed to the 

surroundings [51], indicating that most char conversion takes place on the inner surface 

where more active sites can participate in reactions. This suggests the significant 

influence of pore diffusion process on the overall char particle conversion rate. 

Obviously, pore structure, which impacts the pore diffusion, is important in capturing the 

conversion rate. Based on the size of the pores, they are characterized as: micropores (<2 

nm), mesopores (2-50 nm), and macropores (>50 nm) [52].  

Diffusion of species in confined pores occurs via molecular diffusion (dominated 

by molecular collisions) as well as Knudsen diffusion (dominated by collisions between 

gas molecules and the pore walls) which becomes more important for smaller pore sizes 

(micropores and mesopores). Therefore, the effects of the pore diffusion (molecular and 

Knudsen) should be considered while calculating effectiveness factor. The calculations of 

molecular diffusion, Knudsen diffusion within small pores, and their effective pore 

diffusion are provided in [53,54]and will be briefly described here and detailed in 

Chapter 3. Moreover, during combustion and gasification, carbon is consumed on the 

pore walls within the particle, leading to a change of the pore structure and internal 

surface area. The altered pore structure causes the evolution of the internal pore surface 

which changes the amount of surface area available for reactions. For internal pore 

surface evolution, many models, such as grain models (different sizes of non-porous sub-



18 
 

 
 

sphere) [55], random pore models (pores with random sizes and orientation, most widely 

used) [56], and average pore size models (pores with the same length and diameter) [57], 

have been developed.  

2.2.1 Conventional analytical effectiveness factor models 

Simple analytical and semi-analytical models have been developed to calculate 

effectiveness factors. Effectiveness factor models are based on solving a steady, one-

dimensional reaction diffusion problem with appropriate boundary conditions, with 

simplifications, such as a single gas species and isothermal particles. The diffusion 

equation with reaction, in spherical coordinates (the most common used form), can be 

written as: 

𝐷𝑒𝑓𝑓 (
d2𝑐

d𝑅2
+

2

𝑅

d𝑐

d𝑅
) − 𝑆𝑘𝑐 = 0 (2 − 2) 

Where 𝐷𝑒𝑓𝑓 (
𝑚2

𝑠
) is the effective diffusivity, 𝑐 (

𝑚𝑜𝑙

𝑚3 ) is the species concentration, 𝑅 (𝑚) is 

the particle radius, 𝑆 (
𝑚2

𝑚3
) is specific internal surface area per unit volume, and 𝑘 (

1

𝑠
) is the 

rate constant. Based on the reaction-diffusion equation, a nondimensional number, the 

Thiele modulus (𝜙𝑖), has been introduced to describe the ratio of the chemical reaction 

rate to the rate of mass transport (diffusion) within the porous particle [58] (similar to a 

Damkohler number). Its original form is expressed as: 

𝜙 = 𝑅√
𝑆𝑘

𝐷𝑒𝑓𝑓
 (2 − 3) 
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When chemical reaction is slower than diffusion, the Thiele modulus is smaller 

than one, while the Thiele modulus is larger than one when the diffusion rate is slower 

than the chemical reaction rate. For a uniform solid sphere, the effectiveness factor can be 

expressed in terms of the Thiele modulus: 

𝜂𝑖 =
3

𝜙𝑖
(

1

tanh(𝜙𝑖)
−

1

𝜙𝑖
) (2 − 4) 

This basic effectiveness factor approach is still widely applied in both coal and biomass 

research [15,59,60,61,62].  

The mixture-averaged effective diffusivity for species i in a porous medium can 

be obtained by a simple approximation that considers the effects of both molecular 

diffusion and Knudsen diffusion [50]: 

𝐷𝑒𝑓𝑓,𝑖 = 
𝜃

𝜏
(

1

𝐷𝑘𝑛𝑢𝑑,𝑖
+

1

𝐷𝑚,𝑖
) (2 − 5) 

where 𝜃 and 𝜏 are particle porosity and tortuosity of the pores, 𝐷𝑘𝑛𝑢𝑑,𝑖 is the Knudsen 

diffusion coefficient given by [54], and 𝐷𝑚,𝑖 is the molecular diffusion coefficient for 

species i. Knudsen diffusion occurs when the scale length of a system is comparable to or 

smaller than the mean free path of the species particle [63] within the solid char particle.   

However, it has been demonstrated experimentally that it is incorrect to employ a 

spherical model for many realistic coal char particles with that have high porosity and 

thin walls [64,48]. It has been suggested that these common particle geometries should be 

treated as flat plates instead of spheres, due to the small diffusion length and small local 

curvature due to the thin walls and high internal void porosity. Thus, some researchers 
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[65,66,67] have used the classical effectiveness factor expression for flat plate 

geometries, with the Thiele modulus defined as: 

𝜙 =
𝑙

2
√

𝑆𝑘

𝐷𝑒𝑓𝑓
 (2 − 6) 

where 𝑙 is the measured wall thickness of char particle. In some applications, the 

effective thickness is calculated by Vmps /𝑆𝑚𝑝𝑠,𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒, where Vmps is the micropore solid 

volume and 𝑆𝑚𝑝𝑠,𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 is the total surface area of solid particle. Then, the 

effectiveness factor is calculated as: 

𝜂𝑖 =
tanh𝜙𝑖

𝜙𝑖
 (2 − 7) 

The assumption of a uniformly porous spherical and flat plate models for char 

particles, used in the classical approach, is insufficient for real char particles that often 

have highly non-uniform morphologies [64] (See Section 2.4). For coal char, while the 

hollow sphere approach (discussed in Chapter 4) is better for some cases, and models 

based on cylinders (such as the uniform finite cylinder (UFC) and uniform infinite 

cylinder (UIC) models, etc.) have been used for biomass. Other more complex 

effectiveness factor approaches, such as 1D–GC and 1D–GV models [68,69] and Pellet-

Particle Model [70], also face difficulties due to simplifying assumptions and/or the 

complexity of real particle structures. In other words, existing analytical models may 

agree well with certain particle types, but their performance need to be investigated for a 

distribution of particles with different structures. So far, no research has evaluated the 

performance of effectiveness factor models using geometrically-faithful 3-D solutions for 

real char particles. The 3-D, pore-resolving simulation approach is well-suited to carry 
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out such an evaluation. The performance of effectiveness factor models suitable for use in 

reactor-scale CFD codes (not only the uniform sphere and flat plates model, but also the 

models described above) is examined in Chapter 4.  

2.3 Partial differential equation-based simulation approaches  

2.3.1 Spatially resolved effective continuum models 

In contrast to the analytical effectiveness factor models, which are based on 

several simplifications of the physics (e.g., single gas species, isothermal particles), it is 

possible to solve conservation equations for a reacting char particle using numerical 

methods. This type of partial differential equation-based model is used for fundamental 

investigation because it is too expensive for particle-scale submodels in reactor-scale 

CFD codes. Since real char particles contain a wide variety of pores with different sizes 

(see Section 2.1.2), conservation equations based on first principle are impossible to 

solve for the actual pore space. Therefore, for simplification, an effective continuum 

model based on the “upscaled” (volume-averaged) conservation equations [38,71], is 

widely employed in porous char simulations. The pore structure and internal surface area 

of the pores are modeled at the sub-grid-scale [72,73,74]. Upscaling transforms 

conservation equations for the actual pore space into “effective-continuum” conservation 

equations for smoothly varying variables. The validity of the effective-continuum 

approach requires a separation of length scales; the upscaling must be performed over 

representative volume elements that are large enough to contain a statistical number of 

heterogeneities (pores), but small enough to resolve particle-scale gradients, such as 

temperature and concentration gradients [75]. This implies that the characteristic size of 
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the pores is much smaller than: (a) the size of the particle itself, and (b) the characteristic 

length of the physical processes to be resolved [76,77]. Valid and invalid situations for an 

effective-continuum approach are illustrated in Fig 2-3. 

 

Fig. 2-3 Length constrains for “upscaled” method. 

Char particles produced from many coals and biomass feedstock contain a range 

of pore sizes, including large macro-pores that can approach the size of the particles 

themselves. Therefore, the length-scale constraints for upscaling are often violated 

[76,78]. A typical coal char particle cross-section obtained from high-resolution micro-

CT is shown in Figure 2-4, with the solid microporous char in red, and the large 

macropores and voids, which clearly violate the conditions for upscaling, shown in blue. 

 

Fig. 2-4 A 3-D char particle morphology and macro-pore structure obtained from micro-

CT. 
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Nonetheless, most char consumption models assume, explicitly or implicitly, that 

particles are amenable to treatment as volume-averaged spheres or cylinders, with 

smoothly varying effective properties and sub-grid-scale porosity. This is the case for 

stand-alone, spatially resolved models that examine the impacts of reaction, advection, 

and diffusion on density/diameter evolution [59,79,80], including those that explicitly 

attempt to account for the presence of large pores [81], as well as effectiveness factor 

models used in reactor-scale CFD codes. However, the application of effective-

continuum models in the absence of scale separation can lead to inaccurate predictions of 

heterogeneous reactions [82], mixing [83] and hotspots [84] . Experiments have 

demonstrated that real char particles cannot be accurately modeled as homogeneous, 

porous spheres [64] and that char morphology has a strong impact on conversion for zone 

II conditions [64,43] .  

2.3.2 Spatially resolved pore resolving models 

Because the constraints for upscaling are often violated, effective continuum models fail 

to predict the true behaviors of char particle combustion. Some studies have used discrete 

networks to model char consumption [85,86,87,88] instead of using upscaling method, 

but the ability of such networks to emulate real char morphology is unconfirmed and the 

approach is difficult to combine with other physics. Others have modeled reaction and 

transport in char particles using resolved, but idealized, pores, which are called pore 

resolving models. For instance, a few simple idealized pores were created in form of 

short gaps, long gaps, rings, and layers respectively within the solid spherical particles. 

The temperature distribution through the particles and Stefan flow effects were 

investigated and compared with the pure solid spherical particle [26]. More 
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complicatedly, an agglomerate of 185 smaller monodisperse non-porous spheres 

comprising a larger sphere has been used for modeling oxy-combustion of a porous coal 

char particle [89]. The details of the particle conversion process within the idealized 

resolve pores was studied under the changed regime conditions and the flow velocity. 

Similar research focusing on single particle oxy-combustion simulation was performed 

using idealized, resolved cone-shaped pores to understand the effect of particle size and 

porosity on coal char conversion [90]. The monodisperse/polydisperse pores cut from a 

3-D volume of spherical particles forming a packed-bed structure was numerically 

obtained to examine the impact of different pore size distributions on the particle carbon 

conversion rate [91,92]. Human-made catalyst particles, which often contain 

geometrically regular pores, are more amenable to treatments using idealized, resolved 

pores. For instance, reaction and transport in porous catalyst particles were studied using 

resolved cylindrical holes while the surrounding grains were treated as an effective 

continuum [93,94]. Moreover, pore resolving models can be employed for biomass as 

well. An idealized 3-D structure of biomass particles with morphological parameters 

based on confocal scanning laser microscopy was developed for non-reacting simulations 

of heat and mass transfer [95]. Some idealized resolved pore structures used in the 

mentioned pore resolved simulations are shown in Fig. 2-5. 
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Fig. 2-5 Pore resolved geometries of (a) agglomerate of smaller non-porous spheres [89], 

(b) layers [26], (c) cone-shaped pores [90], (d) monodisperse pores [91], and (e) biomass 

particle [95].  

However, the cited studies are not the most accurate in the sense that real porous 

structures have not been employed in the particle-scale simulations [96]. To capture the 

impact of realistic and actual particle morphology, the first realistic, pore-resolving, 

reacting flow simulation for char particle conversion was developed [44]. The simulation 

was compared to an effective-continuum simulation of a spherical char particle with 

identical initial mass, volume, porosity, surface area and equivalent diameter. The oxygen 

penetration and rates of conversion differed significantly between the two models before 

the gasification transitioned from zone II to zone I conditions.  
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This thesis extends this approach to study a distribution of particle morphologies, 

since only a few coal char particles were examined in the previous work and uses the 

approach to assess and implement effectiveness factor models. This model and its 

application will be discussed in Chapter 3. Briefly, the real, irregular resolved pore 

structures, which often violate the length-scale constraints for upscaling are resolved 

using micro-CT. After meshing the real particle geometry, conservation equations based 

on the first principles are solved in the large, resolved pores (blue areas in Fig. 2-4), and 

effective continuum equations are applied only to the surrounding microporous grains 

(red areas in Fig. 2-4), where volume averaging is appropriate because the pores are very 

small and numerous.  

2.4 Characterizing char morphology 

2.4.1 Conventional image analysis and limitations 

Characterizing char morphology enables a better understanding of the conversion 

behavior during combustion and gasification. In regime II, the morphology of the “large 

macropores” (of similar order of magnitude as the particle length-scale) can sometimes 

play a more influential role in particle burnout than intrinsic kinetics [97]. Therefore, the 

effects of the char morphology should be considered in conversion models to improve 

their predictive capabilities. Optical microscopy and scanning electron microscopy 

(SEM) are typically used for char particle morphology assessment [98,99]. These 

techniques disperse a distribution of particles in epoxy resin, which is hardened and 

sliced to obtain cross-sections. The two-dimensional (2-D) cross-sections provide for 

observation of the “large macropores” within the char particles (any pores that are 
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smaller than the image resolution will be lumped into the solid material) allowing the 

measurement of volume of pores, wall-thickness, swelling degree, unfused material, size 

and shape of particles, and can be used for carbon conversion models 

[100,101,102,103,104,105]. Resolved pore porosity is estimated for each particle in the 

sample by calculating the fraction of its area occupied by visible pores to its total cross-

sectional area. Wall thickness is determined for each particle by using measurement lines 

extending from the center of a single cross section of the particle image. 

Nevertheless, as pointed out in [103], methods based on 2-D cross-sections lack 

accuracy due to the complex, 3-D structures of real particles. For instance, the estimation 

of macro-porosity based on cross-sectional particle area assumes the ratio of macropore 

volume to particle volume equals the ratio of macropore area to particle area for the 

cross-sectional image. For the three-dimensional char particle, this assumption is only 

valid when the particle is perfectly symmetric and the cross-sectional image passes 

through the center of the particle. Apparently, this assumption would fail all the time 

since the realistic char particle is, in general, highly asymmetric due to the irregular 

geometry. Moreover, it is unlikely that the cross-sectional image would exactly cross the 

center of the particle while preparing sliced samples in the epoxy resin.  

Two masked cross-sectional images from the same particle, but with different 

orientations, are illustrated in Fig. 2-5. The microporous solid regions are in red, and the 

resolved pores are in blue.  
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Fig. 2-6 The same char particle shown in two different orientations. 

The cross section on the left of Figure 2-6 exhibits a thinner wall thickness and a 

higher porosity than the cross section on the right. Realistic char particles with non-

uniform macropores and asymmetric geometry clearly cannot be characterized based on 

single cross section method. It results in a high variability of macro-porosity 

measurements. Therefore, the morphological properties measured by the existing 2-D 

methods with simplifying assumptions cause a potential accuracy issue and biased results 

for a particle distribution (discussed in Chapter 6) for char particle characterization and 

introduces error into the char particle conversion models that rely on a proper distribution 

of morphological parameters. Although automated techniques have recently been 

developed to efficiently quantify morphological properties for char particle distributions 

[106,107], such measurements are still based on 2-D cross sections and only accurate 

when the char particle is symmetric at the measured section. 

2.4.2 Char particle classification 

In order to consider the effects of the char particle morphology in char conversion 

models, a classification methodology is necessary for a distribution of particles. For coal 
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char particles, a complex particle classification system was developed by [108] that 

divided coal char particles into 11 categories: tenuisphere, crassisphere, tenuinetwork, 

mesosphere, fragment, inertoid, solid, fusinoid, mixed porous, mixed dense, and 

mineroid, that were mainly classified by the pore volume and wall thickness obtained 

from microscopy analysis. Similarly, the International Committee for Coal and Organic 

Petrology (ICCP) has defined nine coal char types [109], including tenuisphere, 

crassisphere, tenuinetwork, crassinetwork, mixed porous, mixed dense, inertoid, 

fusinoid/solid and mineroid. The strategy of the classification system is based on the 

amount of unfused material, wall thickness and porosity. Examples of particle geometries 

of the typical complex classification system are illustrated in Figure 2-7. 

 

Fig. 2-7 Structures of typical char particle in complex classification (Adapted from 

[102]). 

In many works [64,48,101,102,103] that rely on the classified char particle 

morphologies to improve the char particle conversion models, three coarse coal char 
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morphologies are often used for pulverized particles (~100 μm): cenospheres, solid, and 

mixed porous-solid structures [110], as shown in Figure 2-8. 

 

Fig. 2-8 Structures of typical char particle in simplified classification (adapted from 

[110]). 

The censopherical-type particles have high macropore volume leading to a 

highporosity (> 60%) and swelling ratio (> 1.3), and thin wall (< 5 μm). Solid-type of 

particles have low porosity (< 40%), low swelling ratio (< 0.9), and thick walls (> 5 μm). 

Mixed porous-solid type particles have intermediate characteristics.  

Biomass char morphology depends on the fuel’s cellulose, hemicellulose, and 

lignin content, cell wall characteristics, and devolatilization conditions, such as the 

heating rate [111,112]. Irregular void structures, cenospheres, and dense chars have been 

observed [111–114], as well as features not typical of coal char, such as high aspect 

ratios, large cellular structures, and anisotropic pores [95,112,115]. A classification 

system has been developed based on aspect ratio, wall thickness and porosity [113] with 

a similar method based on 2-D cross-sectional images.  

However, the existing classification systems for both coal and biomass have 

classified particles solely according to their morphology and used 2-D measurements 
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based on particle cross-sections. A new classification system is therefore needed to select 

an accurate, computationally efficient 1-D particle-scale combustion model based on 

combustion behavior for a distribution of morphologies.  

As discussed previously, the char particle conversion process is usually analyzed 

with the simplified particle shapes (sphere, cylinder etc.). However, the shape and 

morphology of char particles vary from particle-to-particle in the large distribution of 

particles in a reactor. The calculation of effectiveness factors for every particle tracked in 

reactor-scale CFD using a single model structure would likely be inaccurate.   

2.5 Conclusions 

As discussed in this chapter, the overall goal of this thesis is to improve the 

accuracy of reactor-scale CFD codes by improving particle-scale models for char particle 

combustion. However, models based on idealized particle geometries are insufficient to 

capture the phenomena occurring in the real char particle during combustion. To 

overcome these shortcomings, pore-resolving simulations for a distribution of particles 

will be used to generate fundamental knowledge about reaction and diffusion in real 

particles imaged with micro-CT. These will be used to assess and propose simple 

effectiveness factor models utilizing a strategy that can be integrated in reactor-scale 

CFD codes for an array of char particle types. A better representation of distributions of 

real particle morphologies can be then used in the reactor-scale CFD simulation, thus 

improving their predictive capabilities. 
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2.5.1 Research objectives 

2.5.1.1 Objective 1: Analyze the interplay of reaction and diffusion in a population of real 

coal and biomass char particles using pore-resolving, micro-CT-based combustion 

simulations.  

Due to the shortcomings that effective continuum models have with (a) upscaling 

constraints being violated by large macropores and resolved pores, and (b) the 

inapplicability of perfectly spherical particle structures, a pore-resolving approach is 

needed for accurate analysis. This work, therefore, aims to use a new char conversion 

simulation based on real particle geometries obtained with micro-CT to study the 

fundamentals of char particle combustion for many small coal and biomass char particles. 

The pore-resolving model will be used to draw conclusions about the effects of real char 

morphology, and to quantify the impacts of morphological parameters, on the coupling of 

reaction and diffusion during combustion. 

2.5.1.2 Objective 2: Analyze, recommend, and develop effectiveness factor models that 

can be applied to a range of real particle geometries. 

Many effectiveness factor models have been developed using a variety of 

simplifications and can yield good predictions in certain cases. However, the applicability 

to real char particles is unknown. Therefore, the pore-resolving simulation tool provides 

an opportunity to evaluate existing effectiveness factor models’ performance by 

comparing the results with those of the CFD simulation of real particles. To set up a 

comparable evaluation method between these models, morphological properties of the 

char particles, and kinetic, transport and thermodynamic parameters should be consistent 
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between the analytical and 3-D models.  

2.5.1.3 Objective 3: Develop an automated 3-D image analysis tool and classification tool 

to quantify particle morphology and apply an accurate effectiveness factor model for 

every particle in a distribution. 

The morphology of char particles, such as porosity, surface area and effective 

wall thickness, can have a significant influence on the overall char conversion process. 

Furthermore, those morphological parameters can be used to classify the char particles 

and assign appropriate effectiveness factor model (“appropriateness is to be determined 

based on comparison with 3-D simulations). However, 3-D image analysis requires 

manual segmentation by processing scanned images, selecting thresholding values, 

segmenting the solid particle area from the background, etc. The process is time 

consuming and cannot be easily integrated into our proposed workflow of characterizing 

char particle distributions in 3-D and assigning a distribution of effectiveness factor 

models (based on the knowledge obtained from our pore-resolving simulations). 

Therefore, for the purpose of conveniently and quickly characterizing particle geometries 

for a distribution of particles, an automated 3-D image analysis tool for micro-CT data 

will be developed for a distribution of particles. Compared to current 2-D techniques for 

measuring char particle geometry, an automated image analysis based on real, 3-D 

particle structures is more accurate and faster. This aim will be integrated with machine 

learning (ML) algorithms that use the quantified morphological parameters to classify 

particles by suitable effectiveness factor models. Using the automated image analysis and 

classification workflow, reactor-scale CFD codes can account for a realistic distribution 

of char particle morphologies with a corresponding distribution in combustion models.  
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Chapter 3. Conversion Behaviors in a Population of Real Coal and Biomass Char 

Particles Using Pore-Resolving, Micro-CT-Based Combustion Simulations   

This chapter will discuss the effects of porous char particle (both coal and pine 

biomass) morphology on its combustion using pore-resolving simulations based on real 

3-D particle structures obtained from high-resolution micro-CT. “Morphology” refers to 

geometrical features and large pores (> a few microns) which affect gas diffusion 

throughout the particle. A distribution of coal and biomass char particles will be 

examined with the 3-D pore-resolving model. The impacts of char morphology on the 

reaction-diffusion interplay will be studied.  

In Section 3.1, background information regarding micro-CT and its utilization in 

coal and biomass research are briefly reviewed. Fundamental assumptions, governing 

equations and the computational approach for the micro-CT based, pore-resolving 

simulation are presented in Section 3.2. A comparison between transient and steady 

simulations, and a mesh convergence study is presented in Section 3.2, as well. The 

impacts of morphological parameters like the distribution of porosity and external void 

fraction, on temperature and oxygen fraction profiles within the particles is discussed in 

Section 3.3 for coal and biomass particles.  

3.1 Introduction 

As discussed in the last chapter, many idealized pore resolving models have been 

used by other researchers to address the deficiencies associated with effective-continuum 

models due to the presence of large macropores in sub-millimeter char particles. Their 

insufficiencies have been demonstrated as well. In this thesis, the alternate approach to 
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modeling reaction and transport in disordered porous char while respecting the length-

scale constraints is to experimentally obtain the real particle morphology in three 

dimensions (3-D) and to perform pore-resolving simulations.  

X-ray computed tomography (CT) is an attractive technique for obtaining the 

internal and external geometry of disordered porous media due to its non-destructive 

nature, acquisition speed, high resolution, and convenience. With the development of 

computer technology, applications utilizing X-ray CT have increased (mineralogy, 

cleaning, pyrolysis, combustion and gasification, and carbon dioxide sequestration) 

related to coal and biomass research. The number of published journal articles applying 

X-ray CT for coal-related studies increased around six times over the last 20 years [116]. 

It is likely that this technology will become more common in the future for biomass fuel 

characterization.  

 

Fig. 3-1 Example of X-ray CT principle (adapted from [117]). 
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The basic principle of X-ray CT is illustrated in Fig. 3-1. X-rays are a form of 

electromagnetic radiation that contains much higher energy than visible light. This 

intensive energy is usually generated by using focused electron beam that bombards a 

target that consists of high-density object to release high energy photons that form X-

rays. The electron beam, as the key to create those photons, is produced by the 

“excitation” voltage (usually in keV) to accelerate electrons excited from a filament 

cathode and concentrated onto a metallic cathode. The “bremsstrahlung” radiation 

consists of X-rays emitted with the photon energy. And it equals to the input voltage, due 

to the interaction of the high-density cathode and activated electrons [116]. X-rays 

released from the source pass through the object that is placed on the rotatable base. (The 

high energy photons can penetrate through most objects.) With increased penetration 

depth, the intensity of the X-rays is reduced, causing a different attenuation, that can be 

captured by the detector to form a 2-D X-ray image showing different levels of greyscale. 

For instance, the organ tissue has a lower attenuation than the bone when the X-rays 

passing through. Instead of 2-D X-ray image based on fixed angle, a rotatable base 

provides views along various angles to generate a series of images of the object. A full 3-

D structure (external and internal) of the object can then be mathematically reconstructed. 

X-ray CT technology is widely used and has been applied in solid fuel analysis (3-D 

petrography and mineralogy [118], drying [119], swelling [120], carbon dioxide 

sequestration [121]).  

X-ray micro-computed tomography (or “micro-CT,” which is X-ray CT with a 

resolution lower than 15 µm) has been used to image the internal and external structure of 

sub-millimeter char particles in three dimensions (3-D) and can help elucidate the impact 
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of real morphology during char combustion of pulverized char [122,115]. Micro-CT (135 

µm voxels) was recently used to image the evolution of solid density and gas temperature 

in large (~19 mm), smoldering biomass particles in-situ, and revealed the importance of 

biomass structure (e.g., cracks) on char oxidation [123]. A subsequent study found that 

pore orientation affected volatile transport, while char oxidation was largely confined to 

the edges of 16 mm particles [124]. Micro-CT (2 µm voxels) was also used in 

conjunction with zone II experiments to qualitatively examine the impact of anisotropy, 

pore morphology, and gas transport on the evolution of cylindrical wood char particles (2 

mm) [115]. For cylindrical biomass char with large pores (>5 µm) oriented along the 

particle axis, gasification likewise occurred primarily in the axial direction rather than in 

the radial direction. For coal, non-reacting simulations of transport in coal macropores 

and resolved pores larger than 13.85 µm based on geometries obtained from micro-CT 

[125] have been reported. Micro-CT has also been used to generate geometries for 3-D, 

pore resolving CFD simulations to examine the impacts of real char morphology during 

gasification [44]and combustion [122]. Moreover, pulverized char particle morphology 

has been quantified (porosity and wall thickness) in three dimensions by applying micro-

CT images [100]. 

By taking advantages of micro-CT, the first realistic, pore-resolving, reacting 

flow simulation for char particle conversion was developed [44] to address the violation 

of the length-scale constraints by effective-continuum models. An 850 µm coal char 

particle was imaged in three dimensions using micro-CT (voxel size 20 µm). The particle 

was then isotropically scaled to 100 µm to represent pulverized char and was meshed and 

exported for CFD simulation under entrained flow gasification conditions. Conservation 
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equations based on first principles were applied within the resolved large pores, which 

could not be included in the effective-continuum due to their violation of the length-scale 

constraints for upscaling. For the regions of “microporous” char that surround the resolve 

pores, effective-continuum equations were employed, since they contain smaller pores 

amenable to upscaling. The simulation was compared to an effective-continuum 

simulation of a spherical char particle with identical initial mass, volume, porosity, 

surface area and equivalent diameter. The oxygen penetration and rates of conversion 

differed significantly between the two models before the gasification transitioned from 

zone II to zone I conditions [44]. 

In this chapter, the micro-CT-based, pore-resolving simulation approach is 

extended to a distribution of particles, with smaller sizes (~100 µm), reacting in a 

combustion environment. Pore-resolving simulations are used to study a population of 

150 pulverized, bituminous coal char particles and 30 biomass char particles formed at a 

high heating rate, whose 3-D internal and external geometries have been obtained from 

high resolution micro-CT. The simulations are used to assess (in later chapters) the 

fidelity of existing one-dimensional effectiveness factor models, which are often used as 

particle-scale models in reactor-scale CFD codes. 

3.2 Micro-CT-based pore-resolving simulations 

3.2.1 Char production  

3.2.1.1 Coal char 

Bituminous coal particles (Illinois #6) were sieved to a 100 µm nominal diameter. 

The coal contained 46.61% fixed carbon, 40.34% volatile matter and 13.05% ash on a dry 
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basis, and was composed of 67.48% carbon, 4.82% hydrogen, 8.60% oxygen, 1.53% 

nitrogen and 4.52% sulfur. The particles were scattered in a single layer on a sheet of 

aluminum foil, covered with a glass beaker, filled with argon, and sealed. The inverted 

beaker was then placed in a pre-heated, 800°C muffle oven for 30 seconds, resulting in a 

maximum initial heating rate estimated to exceed 1000 K/s.  

3.2.1.2 Biomass char 

Pine sawdust from a woodworking facility (Larrabee, Iowa) was sieved to a 100 

µm nominal diameter. Biomass particles were dispersed in a single layer on a sheet of 

aluminum foil, covered with a beaker, purged with nitrogen, and sealed. To produce char 

at a high heating rate, the inverted beaker was placed in a pre-heated muffle oven at 

800°C for 30s. 

3.2.2 Micro-CT imaging and image processing 

3.2.2.1 Coal char 

Dozens of coal char particles were attached to a micro-pipette tip and imaged 

using a GE v|tome|x s 240 X-ray micro-CT scanner operating at 80 kV and 130 µA, with 

a voxel size of 1.632 µm. The stack of reconstructed TIFF images was then imported into 

ScanIP (Synopsys, Mountain View, USA) software for processing, segmentation, and 

meshing. Individual particles were segmented from one another and from the pipette 

support material. A recursive Gaussian filter was initially applied to the greyscale images 

of the individual particles, which were then segmented into what is termed the 

“microporous solid” and “resolved voids/pores” using manual grey-scale thresholding. 

The microporous solid region is comprised of unresolved micropores, mesopores and 
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macropores, as well as carbonaceous char. The distribution of particles was comprised of 

cenospheres (particles with a large central resolved pores) and network-type particles 

with a more complex pore structure [109]. Most of the cenospheres could be classified as 

thick-walled crassispheres rather than thin-walled tenuispheres. Three dimensional 

renderings of a cenospherical particle, a transitional particle, and a more complex particle 

structure, after filtering and segmentation, are shown in Fig. 3-2, indicating the resolved 

pores and the microporous char.          

 

Fig. 3-2 Three-dimensional rendering of three char particles, with the resolved pores 

shown in blue and the microporous solid in red for cenosphere (left), transitional 

(middle), and network (right) particle. 

3.2.2.2 Biomass char 

Like the coal char, dozens of biomass char particles were imaged simultaneously 

using a high-resolution micro-CT (GE v|tome|x s 240) operating at 60 kV and 190 μA, 

with a voxel size of 2.00 μm. Following reconstruction, the TIFF stack was imported into 

ScanIP. Thirty particles were separated and segmented from one another and from the 

support. For each particle, a recursive Gaussian filter was applied, and grey-scale 

thresholding was used to segment the resolved “large pores” from the “microporous char” 

which was comprised of carbonaceous solid and unresolved porosity, as shown in Fig 3-

3. 
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Fig. 3-3 Three-dimensional rendering of representative biomass char particles, with the 

resolved pores shown in blue and the microporous solid in red.  

3.2.3 Pore-resolving CFD simulation 

3.2.3.1 Coal char 

To focus on the impacts of particle morphology on the reaction-transport balance, 

the effective particle diameter and the total particle volume were made identical for every 

particle by using the isotropic scaling factor 

𝑅𝑠𝑐𝑎𝑙𝑒 =
(
6

𝜋
(𝑉𝑚𝑝𝑠+𝑉𝑣𝑜𝑖𝑑𝑠))

1
3

100 µm
 (3 − 1)

   

where Vmps is the volume of microporous solid and Vvoids is the volume of the resolved 

pores, which were calculated using volume integration of the 3-D geometries obtained 

from micro-CT imaging (see Appendix for measured data), because most pulverized 

particles were approximately 100 µm in diameter prior to devolatilization, the scale 

factors ranged only between 0.663 and 1.411.  

The unresolved porosity of the sub-grid-scale microporous solid regions, 𝜃𝑚𝑝𝑠, 

was set to 25.6% for all particles. All transport and thermodynamic parameters and all 

kinetic parameters, including the sub-grid-scale surface area per unit volume of the 

50 μm 
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microporous solid regions, S (3.79 x 107 m2
C/m3), were identical for every particle in the 

distribution. Although these sub-grid-scale parameters are not based on experimental data 

for this coal char, they are typical for coal char and most importantly, are consistent from 

particle to particle, allowing for an evaluation of the impacts of the large pore 

morphology. The resolved pore volume, Vvoids, and the microporous solid volume, Vmps, 

differed between the particles, as did the spatial distribution and morphology of the 

resolved pores. The resolved porosity of the particles, 𝜃, ranged from 11.9% to 60.3%. 

The particles were individually placed at the center of a spherical domain with a 

diameter of 1000 µm. Far-field boundary conditions of 1373 K, and mole fractions of 

12% O2, 10% H2O, 74% CO2, and 4% CO are based on the pre-flame region of a 100 

kWth pilot scale furnace [126]. No relative velocity was imposed, as the small particles 

are treated as entrained in the surrounding flow. However, the velocity at the boundary 

was free to adjust itself according to Stefan flow effects, which resulted in a net flux 

away from the particles.  

Figure 3-4 shows a cross-section of part of a computational domain. In the 

resolved pores (blue regions of Fig. 3-4), as well as in the gas-phase boundary layer 

surrounding, the porous particle (green region of Fig. 3-4), standard gas-phase 

conservation equations for mass, momentum, species, and thermal energy were employed 

(See Section 3.2.3.3). In this way, large heterogeneities (pores) which are not amenable to 

upscaling were treated in a mathematically valid manner [44]. Because the microporous 

char (red regions of Fig. 3-4) contains sub-grid-scale, sub-micron pores that are amenable 

to upscaling, effective-continuum conservation equations for mass, momentum, species, 

and thermal energy were employed in these regions to account for the presence of both 
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gas and solid phases (see Section 3.2.3.3).  All heterogeneous reactions occur on the 

unresolved surface area, S, of the microporous solid regions, because the total resolved 

interfacial area was at least two and half orders of magnitude smaller than the unresolved 

surface area of the microporous solid. 

 

Fig. 3-4 Cross-section of a portion of the meshed computational domain for a char 

particle: Resolved pores (blue), microporous solid (red) and part of the surrounding 

boundary layer (green). 

3.2.3.2 Biomass char 

To focus on the impacts of morphology, all biomass particles were isotropically 

scaled by a small factor such that the total volume of each char particle (which includes 

the volume of microporous char and resolved pores) was identical. Morphological 

measurements for each particle were then performed (see Appendix). Individual biomass 

char particles were placed in the center of a spherical domain with a diameter of 1300 

μm, which was meshed with tetrahedra using Scan IP’s “+FE Free” algorithm. The same 

boundary conditions were used for biomass and coal char. Particles were assumed to be 

perfectly entrained in the flow, so, again, no relative (slip) velocity was imposed, 
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although the boundary velocity was free to adjust itself according to Stefan flow effects 

arising from non-equimolar heterogeneous reaction. 

A cross-section of a typical segmented and meshed biomass particle is shown in 

Fig. 3-5. Like the coal char particles, the large pores (blue regions), which violate the size 

constraints for an effective continuum treatment, were fully resolved in the geometry, and 

standard gas-phase conservation equations (mass, momentum, species, and thermal 

energy) were applied in those regions. The same first-principles conservation equations 

were applied in the gas boundary layer surrounding the particles (green regions). For the 

“microporous char” (red regions), which contains much smaller micropores, mesopores, 

and macropores that satisfy the size constraints for upscaling, effective-continuum 

conservation equations were applied (for mass, momentum, species, and thermal energy, 

see Section 3.2.3.3). A mass source term was included in the mass conservation equation 

to account for gas species generated due to the heterogeneous reactions, which occur on 

the surface of unresolved microporous char. The ideal gas equation of state was 

employed for these high-temperature, atmospheric pressure combustion simulations.  

 

Fig. 3-5 Cross-section of typical meshed domain of a biomass particle, showing 

surrounding gas (green), microporous char (red), and resolved pores (blue). 
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All submodels and parameters for transport and reaction are identical to those 

used in the microporous char in the pore-resolving simulations, except for the subgrid-

scale porosity, which is larger in the effective-continuum model, because large pores are 

lumped into the subgrid-scale. The boundary conditions and solvers were identical to 

those used for the pore-resolving model. A finite cylindrical particle with uniform 

porosity and identical total volume to the pore-resolving particles was meshed. The total 

porosity and aspect (length-to-radius) ratio, β, were chosen to be identical to one of the 

biomass char particles described in next section.  

3.2.3.3 Governing equations and sub-models 

In the “resolved pores” region (as well as the “surrounding gas” region) that 

violates the size constraints for an effective continuum assumption, standard conservation 

equations based on the first principles were applied. The conservation equations are given 

by [44]:  

∂(𝜌)

∂𝑡
+ ∇ ∗ (𝜌�⃗�) = 0 (3 − 2) 

∂(𝜌�⃗�)

∂𝑡
+ ∇ ∗ (𝜌�⃗��⃗�) = −∇𝑝 + ∇ ∗ (τ

=
) (3 − 3) 

∂(𝜌𝑌𝑖)

∂𝑡
+ ∇ ∗ (𝜌�⃗�𝑌𝑖) = −∇𝐽𝑙⃗⃗⃗ (3 − 4) 

𝜕(𝜌𝐸)

𝜕𝑡
+ ∇ ∙ (�⃗�(𝜌𝐸 + 𝜌)) = ∇ ∙ [𝑘∇𝑇 − (∑ℎ𝑖𝐽𝑖⃗⃗ )

𝑖

+ (𝜏̿ ∗ �⃗�)] (3 − 5) 
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Classical upscaled effective continuum equations for mass, momentum, species, 

and energy conservation were solved within the “microporous char” region, which 

contains smaller, sub-grid-scale pores [44,127]. 

𝜕𝜃𝜌

𝜕𝑡
+ ∇(𝜃𝜌�⃗�) = 𝑆𝑚 (3 − 6) 

𝜕𝜃𝜌�⃗�

𝜕𝑡
+ ∇(𝜃𝜌�⃗��⃗�) =  −𝜃∇𝑃 + ∇(𝜃𝜏̿) − (

𝜃2𝜇

𝐵
�⃗�) (3 − 7) 

𝜕𝜃𝜌𝑌𝑖

𝜕𝑡
+ ∇(𝜃𝜌�⃗�𝑌𝑖) = −∇𝐽𝑖 + 𝑅𝑖  (3 − 8) 

𝜕(𝜃𝜌𝑓𝐸𝑓 + (1 − 𝜀)𝜌𝑠𝐸𝑠)

𝜕𝑡
+ ∇ ∗ (�⃗�(𝜌𝑓𝐸𝑓 + 𝑝)) = ∇(𝑘𝑓∇𝑇 − (∑ℎ𝑖𝐽𝑖

𝑖

) + (τ
=

𝑒𝑓𝑓 ∗ �⃗�))

                                                                                                                                           +𝑆𝑓
ℎ  (3 − 9)

 

where 𝜃 is the porosity, 𝜌 is the density, �⃗� is the velocity, 𝑆𝑚 is the mass source term, 𝑡 is 

the time, 𝑃 is the pressure, 𝜏̿ is the stress tensor, 𝜇 is the dynamic viscosity, 𝐵 is the 

permeability, 𝑌𝑖 is the mass fraction for species 𝑖, 𝐽𝑖 is the diffusion flux for species 𝑖, 𝑅𝑖 

is the rate of production for species 𝑖, ℎ is the enthalpy, 𝐸𝑓 is the total fluid energy, 𝐸𝑠 is 

the total solid medium energy, 𝑘𝑒𝑓𝑓 is the effective thermal conductivity of the medium, 

𝑇 is the temperature, and 𝑆𝑓
ℎ is the fluid enthalpy source term.       

A source term in the continuity equation represents net positive gaseous species 

generated by heterogeneous reactions within the porous region (leading to Stefan Flow). 

Heterogeneous reactions occur on the sub-grid-scale surface which belongs to the 

effective continuum region. A viscous resistance term corresponding with permeability is 

to account for the effects caused by porous medium. The volumetric species and energy 
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source terms contributed by the diffusion and reactions are also included in equations. 

The intrinsic reaction rate has been described in the previous section and standard models 

for molecular and Knudsen diffusion are included. 

One oxidation reaction and two gasification reactions are represented by global 

heterogeneous expressions for coal char combustion 

 
𝐶 +

𝜔 + 2

2(𝜔 + 1)
𝑂2 →

𝜔

𝜔 + 1
𝐶𝑂 +

1

𝜔 + 1
𝐶𝑂2 

 

R1 

 𝐶 + 𝐶𝑂2 → 2𝐶𝑂 R2 

 𝐶 + 𝐻2𝑂 = 𝐻2 + 𝐶𝑂 R3 

where 𝜔 is the product ratio of 𝐶𝑂 to 𝐶𝑂2 and can be obtained from [128] 

𝜔 = 70 exp (−
3070

𝑇𝑝
) (3 − 10) 

For coal char particles, heterogeneous oxidation and gasification reactions were 

considered but gasification reactions were nearly three orders of magnitudes slower than 

oxidation at the conditions simulated. For the biomass particles, the gasification reactions 

were not considered.  Homogenous reactions were not considered for either coal or 

biomass, due to the small particle size [81], and radiation was assumed to be dominated 

by particle-to-particle radiation among particles of similar temperature.  

Power law (nth order) kinetic expressions were employed for gasification and a 1st 

order expression was used for oxidation. Arrhenius rate constants with pre-exponential 

factors and activation energies based on the review in [46,129]were used (see table 4-1) 

and are the same as used in [128] for coal char. For biomass, kinetic parameters in 
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Arrhenius rate constant and reaction order for biomass char oxidation [130] used in the 3-

D pore-resolving simulations (see table 4-2). Generally, the reaction source term in 

species conversion equation represents intrinsic reaction kinetic, which is expressed as 

𝑅𝑖 = 𝑆𝑘𝑖𝑃𝑖
𝑛 (3 − 11) 

𝑘𝑖 = 𝐴𝑠,𝑖 exp (
−𝐸𝑖

𝑅𝑢𝑇𝑝
) (3 − 12) 

Table 3-1 Reaction kinetic parameters for coal char particle. 

Reaction 
𝑆 (

𝑚2

𝑚3
) 𝐴𝑠 (

𝑘𝑚𝑜𝑙

𝑚3 · 𝑠 · 𝑎𝑡𝑚𝑛
) 𝐸 (

𝑘𝑗

𝑚𝑜𝑙
) 

𝑛 

R1 3.79 × 107 7.91 × 107 127 1 

R2 3.79 × 107 1.45 × 108 230 0.4 

R3 3.79 × 107 2.90 × 108 230 0.4 

Table 3-2 Reaction kinetic parameters for biomass char particle. 

Reaction 
𝐴𝑠 (

𝑘𝑚𝑜𝑙

𝑚3 · 𝑠 · 𝑎𝑡𝑚𝑛
) 𝐸 (

𝑘𝑗

𝑚𝑜𝑙
) 𝑛 

R1 1.52 × 107 100.4 1 

 

The molecular diffusion expression employed in the resolved pores and gas 

regions is given by [131]: 

𝐷𝑚,𝑖 =

(1.0 ∗ 10−7)𝑇1.75√
𝑀𝑊𝑖 + 𝑀𝑊𝑎𝑣𝑔

𝑀𝑊𝑖𝑀𝑊𝑎𝑣𝑔

𝑃 (𝑣
𝑖

1
3 + 𝑣𝑎𝑣𝑔

1
3 )

2 (3 − 13) 
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In the microporous solid, both Knudsen and molecular diffusion were considered 

in formulating effective diffusion coefficients, Deff, due to the small pore sizes in those 

regions. The Knudsen diffusion coefficient for species i is given by: 

𝐷𝐾𝑛𝑢𝑑,𝑖 =
𝑑𝑝𝑜𝑟𝑒

3
√

8𝑅𝑢𝑇

𝜋𝑀𝑊𝑖
 (3 − 14)

where the mean pore diameter, 𝑑𝑝𝑜𝑟𝑒, is calculated using   

𝑑𝑝𝑜𝑟𝑒 =
4𝜃

𝑆
 (3 − 15)

where 𝜃 represents the porosity. 

The effective diffusivity of the microporous solid is then calculated from 𝐷𝐾𝑛𝑢𝑑,𝑖, 

the mixture-averaged molecular diffusion coefficient, 𝐷𝑚,𝑖, the porosity, 𝜃 , and the 

tortuosity τ, which is taken to be unity  

𝐷𝑒𝑓𝑓,𝑖 =
1

(
1

𝜃
𝜏 𝐷𝐾𝑛𝑢𝑑,𝑖 

 +  
1

𝜃
𝜏 𝐷𝑚,𝑖

)

 (3 − 16)

 

In the surrounding boundary layer and in the resolved pores, standard, gas-phase mixture-

averaged diffusion coefficients were used. The viscosity and thermal conductivities were 

determined using kinetic theory and standard mixing rules and the ideal gas equation was 

used. The density of species i in the gas phase is determined by the ideal gas equation of 

state. Viscosity and thermal conductivity for each species are based on kinetic theory.  

3.2.3.4 Discretization and mesh validation 

Each segmented particle was individually meshed with tetrahedra using Scan IP’s 

“+FE Free” meshing algorithm. A finer mesh was used in the particles and near the 
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interface between microporous solid and resolved pores, while a coarser mesh was 

employed in the boundary layer (see Fig. 3-4 and 3-5). Being a low Mach number, 

variable density problem, the pressure-based solver was used for solving the governing 

equations, using the coupled algorithm. The power law scheme was used for most spatial 

finite volume discretization, but the PRESTO! scheme was used to compute the pressure.   

A mesh study was performed to ensure that the solution was converged with 

respect to the spatial discretization. Three meshes (consisting of approximately one 

million, two million and four million elements) were used to compute the steady state 

solution for a particle chosen at random. The oxygen mole fraction, a variable which 

varies drastically and irregularly throughout the computational domain (as will be seen in 

next section), was averaged over polar and azimuthal directions, and plotted versus radius 

in Fig. 3-6. The relative error for the one- and two-million element meshes was 0.0173 

and 0.0144, respectively. A mesh of approximately two million elements was deemed 

sufficient and used for every particle studies. The computation time for each 3-D particle 

with a two million element mesh was approximately 140 hours on a 28-core CPU.  

 

Fig. 3-6 Comparison of directionally averaged oxygen mole fraction for different meshes. 
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3.3 Results and discussion 

3.3.1 Transient and steady-state solutions  

Studies have established, at least for simple effective-continuum geometries, that 

the instantaneous distribution of species in reacting sub-millimeter char particles is 

approximately quasi-steady at any time [132,133]. In other words, a transient simulation 

for a reacting pulverized char particle would be closely represented by a series of steady 

state simulations at different levels of char conversion. This implies that steady-state 

simulations provide an accurate representation of the transport-reaction coupling for a 

given morphology. However, a comparison between steady-state and transient solutions 

was performed to ensure that the former provides an adequate representation of the latter 

for the complex char particles and conditions simulated in this study. 

 

Fig. 3-7 Comparison of directionally averaged oxygen mole fraction within three 

different particles for steady and transient simulations. 

Radial distributions of oxygen mole fraction averaged over polar and azimuthal 

angles are compared for transient [44] and steady-state simulations in Fig. 3-7, for three 
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coal particles. The predictions are compared at (an early time of) 25 ms to minimize the 

degree of structural evolution that occurred in the transient simulation. The reason that an 

even earlier time was not used for comparison is because fast transients exist at the 

beginning of the unsteady simulation as the species profiles adjust to the imposition of 

the boundary conditions. All three particles yielded similar results for both transient and 

steady simulations, with average relative differences of 6.93%, 4.63%, 4.46%. Some, or 

perhaps most, of this difference can be attributed to the carbon conversion that occurred 

in the first 25 ms of the transient simulation. It is concluded that steady state simulations 

are reasonable representations of the interplay of reaction and diffusion for a given 

morphology and therefore sufficient for the purposes of this study. 

3.3.2 3-D simulations for coal char particles 

The combustion of 150 char particles imaged with high-resolution micro-CT was 

then simulated using the pore-resolving CFD model, with approximately two million 

elements per particle. Figure 3-8 shows 3-D morphologies of six representative char 

particles ranging from highly cenospherical to more complex pore structures (Fig. 3-

8(a)), as well as the oxygen mole fraction distributions (Fig. 3-8(b)) and temperature 

distributions (Fig. 3-8(c)) for planes passing through the centers of the same particles. It 

is noted that the oxygen mole fraction and temperature are shown for both the resolved 

pores and the microporous char regions.  

It is observed in Fig. 3-8(b) that the oxygen mole fraction distribution is highly 

dependent on the structure of the resolve pores and pores and is elevated in those regions. 

For all char particles, the minimum oxygen mole fraction is located within the 

microporous char and not at the particle center. This indicates that for most particles, 
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small holes exist that allow for enhanced transport between the particles’ interior pores 

and the external surface. Even for the most cenospherical particle (the leftmost particle in 

Fig. 3-8), the minimum oxygen mole fraction occurs in the thickest region of 

microporous solid, although the concentration in the central resolve pore is only slightly 

higher than its minimum value due to the lack of holes on the surface of this particle (this 

was verified in three dimensions). For the more complex network-type char structures, 

the oxygen mole fraction is highly asymmetric and does not vary monotonically between 

the particle surface and its center.   

 

Fig. 3-8 (a) Three dimensional geometries of six particles, showing microporous char 

(red) and resolved pores (blue), together with, (b) oxygen mole fraction distributions, and 

(c) temperature distributions, for two dimensional sections of the same particles. 

In contrast to the highly non-uniform oxygen mole fraction, the temperature 

distribution is nearly spatially uniform and does not exhibit marked differences between 

the resolved pores and the microporous char, as shown in Fig. 3-8(c). The observed 

temperature gradients reside primarily around the outer edge of the particles. This is not 

unexpected, due to the small size of the pulverized char particles, their relatively high 
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thermal conductivity, and the quiescent atmosphere associated with particles assumed to 

be entrained in the surrounding flow. This gives rise to a Biot number much smaller than 

unity and nearly uniform internal temperatures. It is noted that this conclusion may not 

hold in conditions closer to zone III (diffusion-limited) combustion in which the 

temperature rise would be higher. The volume averaged particle temperature for the 

hottest burning particle was 1430 K, while for the coolest particle it was 1403K. 

 The reactant and temperature distributions are also investigated with increased 

boundary temperature to simulate the combustion condition transitioning from zone II to 

zone III. Fig. 3-9 shows temperature and oxygen mole fraction distributions for planes 

passing through the centers of three representative particles, for several values of the far 

field temperature based on certain properties. Particle 1 (P1) has resolved pores which are 

isolated from the external surface and low 𝜃 ( 𝜃 = 0.188) (Fig. 3-8(a)). Particle 2 (P2) has 

a high portion of resolved pores connected to the external surface and high 𝜃 ( 𝜃 = 0.411) 

(Fig. 3-9(b)), and Particle 3 (P3) has a low portion of its resolved pores connected to the 

external surface, but high 𝜃 (𝜃 = 0.528) (Fig. 3-9(c)).   

It is observed in Fig. 3-8 that the distribution of oxygen (reactant) within a 

particle depends on whether its large pores are accessible to the outer surface. For P1, 

which has a single, isolated resolve pore, the minimum oxygen mole fraction is widely 

distributed across both microporous solid and the central resolve pore, with higher levels 

only observed near the particle surface. The oxygen mole fraction decreases 

monotonically toward the particle center through the thick microporous solid region due 

to the lack of pores that intersect the external surface. With increasing boundary 



55 
 

 
 

temperatures, there is little difference in the oxygen mole fraction distributions for the P1 

particle.  

 

 

 

Fig. 3-9  3-D morphology of particles P1, P2 and P3 and their oxygen mole fraction (XO2) 

and temperature (T) distributions, for several temperature boundary conditions. 

The P2 particle, which has several pores which penetrate the external surface, 

exhibits a non-uniform and non-monotonic oxygen mole fraction distribution that is 

highly dependent on the morphology of the pores. The minimum oxygen mole fraction 

for P2 is located within its microporous solid, which is not the case for P1. Similar to 

what has been found previously, the oxygen mole fraction in the resolved pores is highly 
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asymmetric, with pores intersecting the external surface exhibiting higher oxygen mole 

fractions. Holes in the particle surface enhance reactant transport within the particle. The 

oxygen mole fraction decreases and becomes more uniform within the resolved pores as 

the far-field boundary temperature increases because conditions become closer to zone III 

combustion (external-diffusion-limited), decreasing the importance of surface 

accessibility. 

The P3 particle exhibits elevated oxygen mole fraction in the cracks with a 

somewhat more uniform oxygen distribution inside the particle. At a given temperature, 

the average oxygen mole fraction within P3 is higher than P1, which has a similar 

structure but lower resolved porosity, but it is lower than P2 even though the P3 has a 

higher resolved porosity. This is because gas transport is controlled by the morphology of 

the pore-structure, and particularly, by pores with access to the external surface.  

Temperature distributions for all particles are nearly spatially uniform, regardless 

of the accessibility of the pores or the far field boundary temperature, with temperature 

gradients observed only near the particle edges. The nearly-uniform internal temperatures 

are due to the small size of the pulverized particles, high thermal conductivity, and the 

entrained flow assumption, leading to small Biot numbers as discussed before. However, 

it is noted that P2 has a higher temperature than P3, and P1 has the lowest temperature, 

because oxygen readily penetrates the P2 particle via its small holes, causing increased 

rates of exothermic oxidation. 

The types of coal particles mentioned above are summarized from the particles 

that are arranged on the abscissa in an increasing order of the external void fraction 
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(EVF), an indicator which increases as particles transition from cenospheres with isolated 

resolve pore to more complex and connected pore structures. The EVF is defined as 

EVF =  
𝑆𝑒𝑥𝑡,𝑣𝑜𝑖𝑑

𝑆𝑒𝑥𝑡,𝑡𝑜𝑡𝑎𝑙
 (3 − 17)  

where Sext,total is the total interfacial area between the particle and surrounding boundary 

layer (the green/red and green/blue interface areas in Fig. 3-4), and Sext,void represents the 

interface area between the resolve pores and surrounding boundary layer (the green/blue 

interface in Fig. 3-4). This ratio decreases as the particles becomes more cenospherical, 

with a single, isolated central resolve pore, and increases for particles with more 

numerous and complex pores that penetrate the particle surface. In other words, the order 

of particles along the abscissa places the (mostly thick-walled) cenospheres on the left 

and the more connected, complex pore structures on the right. 

Based on that, the distribution of oxygen within in the selected particles are 

displayed in Fig. 3-10, in which the oxygen mole fraction calculated by the pore-

resolving simulations, xO2, within microporous solid regions is averaged over polar and 

azimuthal angles at every radial position, using 

𝑥𝑂2,𝑚𝑝𝑠 =
∫ ∫ 𝛿 𝑥𝑂2(𝑟, 𝜃, 𝜑)𝑟2 sin(𝜃) 𝑑𝜃𝑑𝜑

𝜋

0

2𝜋

0

∫ ∫ 𝛿𝑟2 sin(𝜃)𝑑𝜃𝑑𝜑
𝜋

0

2𝜋

0

(3 − 18) 

where 𝛿 is unity for microporous solid regions and zero elsewhere. Microporous solid 

oxygen mole fraction distributions are shown for 15 representative particles in Fig. 3-10: 

five cenospheres (“Group 1”), five transitional particle (“Group 2”), and five particles 

with network structures (“Group 3”). The plot lines are interrupted when there is no 

microporous solid at a particular radial position.  
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The oxygen mole fraction on the external surface is similar across all groups, and 

all three groups exhibit a sharp decrease in the oxygen mole fraction between the external 

surface and a radius of ~40 μm. This drop is likely due to those points being comprised of 

protrusions where the average oxygen mole fraction is high, and the reaction rate is 

correspondingly fast.  

 

Fig. 3-10 Oxygen mole fraction in the microporous solid as a function of radius 

(averaged over polar and azimuthal angles) for 5 particles (P1-P5) from (a) 

cenospherical, (b) transitional and (c) network particle groups calculated from the pore-

resolving simulation. 

More pronounced differences are observed in Fig. 3-10 near the center of the 

particles. For Group 1, the oxygen mole fraction keeps decreasing in the microporous 

solid regions toward the particle center until it approaches or reaches zero. Conversely, 

for Groups 2 and 3, the oxygen mole fraction increases toward the particle center. In fact, 

for some particles in Group 3, the oxygen mole fraction in microporous regions near the 

particle center approaches its surface value. The large pores connected to the external 

surface facilitate the transport of oxygen throughout the particle and the characteristic 

length-scale for diffusion is much smaller than the particle radius. This leads to higher 

oxygen concentration in the microporous solid in the complex particles compared to the 

particles that have isolated central resolve pores, as seen in Fig. 3-10. 
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The relatively high oxygen mole fraction throughout the pore space of the more 

complex particles is verified in Fig. 3-11, in which the oxygen mole fraction within the 

resolved pores is averaged over polar and azimuthal angles at every radial position for the 

same 15 particles shown in Fig. 3-10. To obtain the data in Fig. 3-11, Eq. (3-18) is again 

used, but in this case 𝛿 is unity for the resolved pores and zero in other regions. For the 

cenospherical particles (Group 1) the oxygen mole fraction is nearly uniform in the 

resolve pore space and significantly lower than its surface value, due to the near isolation 

of the central resolve pore from the external surface. For the transitional (Group 2) and 

network-type (Group 3 – highest EVF) particles, the oxygen mole fraction is higher in the 

resolved pores due to their connectedness to the external surface. 

 

Fig. 3-11 Oxygen mole fraction in the resolved pores as a function of radius (after 

averaging over polar and azimuthal angles) for (a) cenospherical, (b), transitional and (c), 

network particles calculated from the pore-resolving simulation. 

3.3.3 3-D simulations for biomass char particles 

Zone II combustion of 30 biomass char particles with geometries obtained from 

high-resolution micro-CT was studied using the pore-resolving simulations. Figure 3-12 

shows the 3-D segmented geometries for five representative particles as well as an 

effective-continuum cylinder (top row) and cut-away views of the same segmented 
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particles (second row). The particles are generally long and thin, with a mean aspect ratio 

of 6.25. This suggests that simple models based on cylindrical particles rather than 

spherical particles, are more appropriate for this biomass char, as observed for many 

other biomasses. It is also noted that even particles which appear externally non-porous 

can have significant internal porosity. For the 30 particles, the resolved (large pore) 

porosity, 𝜃𝑣𝑜𝑖𝑑, ranged from 6.3% to 27.5%. In Lester’s biomass char nomenclature 

[113], these chars would be classified as high-aspect ratio, porous (as opposed to cellular) 

structures. 

 

Fig. 3-12 Top row: 3-D geometries for a cylindrical effective continuum particle (column 

a) and five real, segmented biomass char particles (columns b, c, d, e, and f) showing 

microporous char in red and resolved pores in blue. Second row: cross-sections of the 

same particles. Third row: oxygen mole fraction distributions for the same particles 

cross-sections, calculated from the simulations. Fourth row: temperature distributions for 

the same particles, calculated from the simulations. 

Figure 3-12 also shows distributions of oxygen mole fraction, 𝑥𝑂2 (third row) and 

temperature (fourth row) for the same cross-sections, which pass through the center of the 
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biomass char particles. It is noted that the 𝑥𝑂2 distributions for the real biomass char 

particles are highly dependent on the morphology, as observed for coal chars undergoing 

zone II combustion. Local minima in 𝑥𝑂2 occur in the thick microporous char regions, 

irrespective of the distance from the particle surface. The large pores facilitate enhanced 

oxygen transport from the particle surface to its interior regions. This is somewhat similar 

to the impact of mm-scale cracks in larger biomass particles [134], but differs from the 

general observation that char oxidation is confined to the edges of mm-scale particles 

[135].  It is noted, however, that despite the significant porosity observed for “Particle B” 

(see Fig. 3-12, second row), 𝑥𝑂2 is only slightly elevated in this particle’s interior. This 

highlights the fact that large pores facilitate enhance gas transport only if the pores 

penetrate the particle’s external surface, which is only minimally the case for Particle B.    

For the effective-continuum cylindrical particle (Particle A), all porosity is 

modeled at the subgrid-scale, and it is uniformly distributed. In this frequently used 

model, large pores cannot facilitate oxygen diffusion into the particle interior, leading to 

a monotonic 𝑥𝑂2 distribution, with the highest oxygen mole fraction at the external 

surface and the lowest oxygen mole fraction on the particle’s central axis. It is noted that 

the total porosity of Particle A is identical to the total porosity (𝜃 + 𝜃𝑠𝑢𝑏𝑔𝑟𝑖𝑑−𝑠𝑐𝑙𝑒(1 −

𝜃) ) of Particle E, highlighting the importance of large pores in enhancing gas diffusion 

throughout the particle.  

In contrast to 𝑥𝑂2, temperature distributions within all particles (effective-

continuum and real biochar) are nearly spatially uniform throughout both the large pores 

and microporous char regions. Small temperature gradients are observed near the edges 

of the particles, but most of the gradients exist in the surrounding gas (the far-field 
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boundary is at 1373 K). This is similar to the situation for pulverized coal char and is due 

to the small particle sizes and high thermal conductivity resulting in small Biot numbers. 

Although temperature is relatively uniform within each particle, differences between 

particles are non-negligible. The effective-continuum particle has the lowest spatially 

averaged temperature (1609 K), whereas the particle with the highest oxygen penetration 

(Particle F) has the highest spatially averaged temperature (1680 K). Increasing levels of 

large porosity connected to the external surface led to higher oxygen penetration, higher 

char oxidation rates, more heat release, and higher temperatures.   

  To further examine the impacts of large pores and to compare oxygen penetration 

in real morphologies to effective-continuum predictions, Particles A and E, which have 

the same total porosity, were compared. Figure 3-12 shows the directionally averaged 

oxygen mole fraction as a function of effective radius, which is calculated for the 

approximately cylindrical Particle E in the following manner. A set of 3-D iso-surfaces 

were created between the particle center and edge such that each point on an iso-surface 

is the same normal distance from the particle’s edge. Then, the effective radius was 

defined in eq (3-19) using the relation between the surface area of a cylinder and its 

radius and length. First, the surface area of each irregular iso-surface layer, Slayer, is 

measured using surface integration. The aspect ratio of each layer, βlayer, is identical and 

is equal to 𝛽𝑏𝑖𝑜 measured by bounding box method. It should be noted that this method 

overestimates both length and radial directions. The effective radius, reff, for each iso-

surface is then calculated by rearranging the expression for the area of a cylinder  

𝑟𝑒𝑓𝑓 = √
𝑆𝑙𝑎𝑦𝑒𝑟

2𝜋(1 + 𝛽𝑏𝑖𝑜)
  (3 − 19) 
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The oxygen mole fraction was then area-averaged over each iso-surface in two 

different ways. In the first method, the averaging was performed only over the 

microporous char regions, while in the second method, averaging was performed over 

both the microporous char and resolved pores (all regions).  

 

Fig. 3-13 Oxygen mole fraction as a function of effective radius, for the pore-resolving 

simulation and the spatially resolved effective continuum simulation. 

When averaging over all regions, it is seen in Fig. 3-13 that the real biomass char 

particle has a higher 𝑥𝑂2 in the particle interior than the effective continuum particle, as 

expected from the enhanced oxygen penetration in the large resolve pores, seen in Fig. 3-

12. However, even in the microporous char, 𝑥𝑂2 is higher for the real particle than the 

effective continuum particle, despite the porosity of the microporous char being lower for 

the real particle (since the total porosity of the two particles is the same and the effective-

continuum particle lumps all porosity at the subgrid-scale). The reason is likely that the 

elevated 𝑥𝑂2 in real biomass char pores and the large interfacial area between those pores 

and the microporous char leads to enhanced penetration into the microporous char. The 

characteristic length-scale for diffusion is thus decreased for the real biomass char 
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particles. In contrast, for the effective continuum particle, oxygen must traverse the entire 

radius of the particle from its outer edge. Finally, it is noted that the higher 𝑥𝑂2 at the 

outer edge for the effective continuum particle is likely caused by its higher porosity in 

the microporous char regions, as mentioned above. In the edge regions of both particles, 

oxygen diffuses primarily from the particle surface and the higher subgrid-scale porosity 

in Particle A leads to higher oxygen concentrations. 

3.4 Conclusions 

High-resolution micro-CT imaging was performed for pulverized coal char 

particles and pine biomass char particles (sieved to 100 μm) to obtain the internal and 

external geometries in 3-D. The first pore-resolving, zone II combustion simulations for 

real char particles were then carried out for 150 coal char and 30 biomass char particles. 

The pore-resolving simulations respect the separation of length-scales required for 

effective-continuum treatments of porous media, by applying equations based on the first 

principles in the resolved pores and the surrounding boundary layer, and only using 

effective-continuum conservation equations in the microporous solid regions where the 

pore size is much smaller than the size of the particles.  

The reactant (oxygen) mole fraction distribution in real coal char particles was 

highly dependent on the morphology of large pores, was non-monotonic with distance 

from the particle’s surface, and attains local minima within thick microporous char 

regions irrespective of the distance from the external surface. The prevalence of complex 

interconnected large pore networks that extend to the external surface enhanced oxygen 

transport throughout the particle, even within microporous solid regions near the 
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particles’ centers. Conversely, particle temperatures were nearly spatially uniform 

throughout the particles, irrespective of the resolve pores morphology, for the zone II 

condition examined in this study. 

Similar observations apply to the anisotropic pine char particles imaged with 

high-resolution micro-CT. They exhibited non-monotonic oxygen mole fraction 

distributions facilitated by enhanced diffusion in large pores that were connected to the 

external surface. Effective-continuum simulations underpredicted reactant penetration 

into the particle, even in the microporous char regions that surround the large pores. 
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Chapter 4. Effectiveness Factor Models Evaluation and Development 

This chapter will assess the performance of common effectiveness factor models 

using the “true” effectiveness factors calculated from the 3-D pore-resolving simulation 

for each coal and biomass char particle.  

The first section explains how true 3-D effectiveness factor calculated using data 

from the 3-D pore-resolving simulation. In Section 4.2, detailed effectiveness factor 

models that are applied for either coal or biomass particles will be discussed. The 

comparison is presented in Section 4.3, with subsections devoted to coal and biomass. 

4.1 Introduction 

In the last chapter, it was observed that the reactant (oxygen) mole fraction 

distribution in real coal char particles is highly dependent on the morphology of resolved 

pores and facilitates enhanced diffusion in large pores that are connected to the external 

surface for both coal and biomass char particles. 

As indicated in Chapter 2, in order to account for the impact of diffusion on the 

volume-integrated reaction rate in porous particles, the effectiveness factor, 𝜂, is used. In 

reactor-scale CFD codes, particle-scale models calculate the actual reaction rate by 

solving a simple, analytical model for 𝜂 and multiplying by the ideal reaction rate which 

can be computed using Eulerian-phase data for the cell containing the particle. Because 

many Eulerian-phase source terms are proportional to the reaction rate, the accuracy of 

the particle-scale model can significantly affect the performance of reactor-scale CFD 

[96,136]. 
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In this case, the performance of existing effectiveness factor models based on 

assumptions of idealized shape and a variety of other simplifications is questionable. To 

increase the accuracy of the reactor-scale CFD simulation, it is first necessary to assess 

existing effectiveness factor models using actual (or “real”) effectiveness factors based 

on 3-D pore resolving simulation. To display representative data, particles with varied 

structures (50 of the coal chars and all 30 biomass chars) will be evaluated.  

To assess the accuracy of simple models for real char morphologies, pore-

resolving simulations can be used to calculate the “true” 3-D effectiveness factor using 

numerical integration,  

𝜂3𝐷 =
∭𝑅𝑎𝑐𝑡𝑢𝑎𝑙(𝑥𝑂2,𝑇)𝑑𝑉

∭𝑅𝑖𝑑𝑒𝑎𝑙(𝑥𝑂2,𝑠,𝑇)𝑑𝑉
 (4 − 1)

The actual reaction rate, Ractual, employs oxygen mole fraction, 𝑥𝑂2, data for each location 

in the microporous char, whereas the ideal rate, 𝑅𝑖𝑑𝑒𝑎𝑙, is calculated using a uniform 

reactant concentration throughout the particle equal to its boundary value, 𝑥𝑂2,𝑠, which 

would prevail in the absence of internal diffusion limitations. Both actual and ideal rates 

use temperatures, T, for each local position in the char. 

The formulation of the effectiveness factor models is presented for the case of a 

first order reaction, consistent with the rate expression for oxidation used in the pore-

resolving simulation, although effectiveness factors for nonlinear rate expressions are 

possible. To ensure a faithful comparison between the predictions of the 3-D pore 

resolving simulation and the effectiveness factor models for each of the coal char 

particles and biomass char particles, the latter employed geometric and morphological 

parameters (interfacial area, resolve pore porosity, etc.) obtained from micro-CT image 
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analysis of each particle. The predictions of the 3-D models are not used to tune the 

effectiveness factor models in any way. 

4.2 Effectiveness factor models  

4.2.1 Coal char 

4.2.1.1 Uniform sphere 

The uniform sphere model and flat plate model have been briefly discussed in 

Chapter 2, but will be explained in more detailed here for our specific case. The classical 

expression for the effectiveness factor of a uniformly porous, symmetrical sphere is given 

by 

𝜂𝑠𝑝ℎ𝑒𝑟𝑒 =
3

𝜙𝑠𝑝ℎ𝑒𝑟𝑒
(

1

tanh(𝜙𝑠𝑝ℎ𝑒𝑟𝑒)
−

1

𝜙𝑠𝑝ℎ𝑒𝑟𝑒
) (4 − 2)

where 𝜙𝑠𝑝ℎ𝑒𝑟𝑒, the Thiele modulus, represents the ratio of the reaction rate to the 

diffusion rate within the porous particle. For a first order reaction, it is given by [137] 

𝜙𝑠𝑝ℎ𝑒𝑟𝑒 = 𝑅√
𝑆(1−𝜃) 𝑘

𝐷𝑒𝑓𝑓
 (4 − 3)

where R is the particle radius, k is the intrinsic (per unit area) heterogeneous rate constant 

of the solid divided by its density (with resultant units of length per time) and S, 𝜃 and 

Deff  have been defined. For each particle, the radius, R can be calculated using the 3-D 

geometries obtained from micro-CT by averaging the distance from each node on the 

interface between the particle and the surrounding boundary layer to the particle’s center. 

However, due to the scaling represented by Eq. (3-1), R was exactly 50 µm for all 

particles in this study. This allows for a focus on the effects of morphology, while 

eliminating the effect of particle size.  
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The uniform sphere model is unique among the effectiveness factor models to be 

examined in that it does not account for the resolved porosity, 𝜃, in calculating the length 

scale of the particle. Therefore, to ensure that the mass of carbon and total internal 

surface area per particle is consistent with the corresponding 3-D simulation, the reactive 

surface area, S, of the uniform sphere model includes the factor (1 − 𝜃), which represents 

the volume fraction of microporous solid in each particle.  

Due to the uniform sphere model’s treatment of the resolved pore porosity at the 

sub-grid-scale, there is some ambiguity as to whether the total porosity 

 𝜃𝑇𝑜𝑡𝑎𝑙 = 𝜃 + 𝜃𝑚𝑝𝑠(1 − 𝜃)  (4 − 4)

or the porosity of the microporous solid regions, 𝜃𝑚𝑝𝑠, should be used when calculating 

the Knudsen diffusivity, DKnud, to achieve consistency with the 3-D pore-resolving 

simulation. Consistent with the approach of Hodge et al. [64,48] who compared 

effectiveness factor models to experimental data, the average pore diameter, dpore, and 

DKnud were calculated using 𝜃𝑚𝑝𝑠, which is based on the nanometer-scale micro- and 

meso-pores through which Knudsen diffusion is dominant, while the molecular diffusion 

coefficient, 𝐷𝑚, is evaluated using 𝜃𝑇𝑜𝑡𝑎𝑙.  

For each particle simulated, the porosity of the resolved pores, 𝜃, is obtained from 

the quotient of 𝑉𝑚𝑝𝑠 and (𝑉𝑚𝑝𝑠 + 𝑉𝑣𝑜𝑖𝑑𝑠), where the volume of each region was calculated 

using volume integration of the 3-D geometries obtained from micro-CT imaging (see 

Appendix for individual particle data).  
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4.2.1.2 Flat plate 

Based on experimental evidence, it has been suggested that cenospherical and 

network char particles may be more accurately modeled as flat plates rather than uniform 

spheres [64]. The classical solution for the effectiveness factor of an infinite flat plate of 

thickness, L, is given by  

𝜂𝑓𝑙𝑎𝑡 =
tanh𝜙𝑓𝑙𝑎𝑡

𝜙𝑓𝑙𝑎𝑡
 (4 − 5)

where the Thiele modulus is given by 

 𝜙𝑓𝑙𝑎𝑡 =
𝐿

2
√

𝑆 𝑘

𝐷𝑒𝑓𝑓
 (4 − 6)

Treating each particle as a symmetric hollow sphere, the cenosphere wall thickness, L, 

which corresponds to the plate thickness, was calculated using the particle radius, R, and 

the porosity of the resolved pores, 𝜃  

𝐿 = 𝑅 (1 − 𝜃
1
3) (4 − 7) 

It is seen in Eq. (4-7) that in the flat plate model (as well as in the other analytical 

models to follow) the presence of large pores and voids is considered when formulating 

the geometry of the particle. In other words, the plate thickness, L, is based solely on the 

volume of microporous solid, Vmps and the resolve pore porosity is not treated as sub-

grid-scale. Thus, the surface area, S, in Eq. (4-6) need not include the factor (1 − 𝜃), and 

the effective diffusivity, Deff , is unambiguously calculated using 𝜃𝑚𝑝𝑠.  
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4.2.1.3 Hollow sphere models (inaccessible and accessible) 

Buffham developed a lesser-known analytical solution for the effectiveness factor 

of a symmetric hollow sphere [64] based on [138], which may be more appropriate than 

the flat plate model for cenospheres, especially those with thicker walls. The 

effectiveness factor for a hollow sphere is given by 

𝜂𝑖𝑛𝑎𝑐𝑐−ℎ𝑠 =
3

𝜙𝑖𝑛𝑎𝑐𝑐−ℎ𝑠(1−
𝑅𝑖𝑛
𝑅𝑜𝑢𝑡

)
(

coth(𝜙𝑖𝑛𝑎𝑐𝑐−ℎ𝑠(1−
𝑅𝑖𝑛
𝑅𝑜𝑢𝑡

))+𝜙𝑖𝑛𝑎𝑐𝑐−ℎ𝑠
𝑅𝑖𝑛
𝑅𝑜𝑢𝑡

1+𝜙𝑖𝑛𝑎𝑐𝑐−ℎ𝑠
𝑅𝑖𝑛
𝑅𝑜𝑢𝑡

coth(𝜙𝑖𝑛𝑎𝑐𝑐−ℎ𝑠(1−
𝑅𝑖𝑛
𝑅𝑜𝑢𝑡

))

−
1

𝜙
) (4 − 8)  

where 𝑅𝑖𝑛 and 𝑅𝑜𝑢𝑡 are the inner and outer radii, and the Thiele modulus 𝜙 is 

𝜙𝑖𝑛𝑎𝑐𝑐−ℎ𝑠 = 𝑅𝑜𝑢𝑡 √
𝑆 𝑘

𝐷𝑒𝑓𝑓
 (4 − 9)

Rout is identical to R, as previously defined, while the inner radius was calculated using 

the geometry of a hollow sphere, with 𝜃 from volume integration of the 3-D 

particles

𝑅𝑖𝑛 = 𝑅𝑜𝑢𝑡𝜃
1

3 (4 − 10) 

The boundary conditions that were used to arrive at the analytical solution are a 

no flux condition at the center of the sphere and a fixed concentration at the external 

surface, which are identical to those used in deriving the effectiveness factor for a 

uniform sphere. 

However, because many highly porous particles have large holes connecting the 

internal pores to the external surface, the solution for the effectiveness factor of a hollow 

sphere with a single, accessible central resolved pore 𝜂𝑎𝑐𝑐−ℎ𝑠, is also relevant. This 

solution is obtained using a concentration boundary condition on the inner surface that is 
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identical to that imposed on the external surface. This model is termed the accessible 

hollow sphere model, and its effectiveness factor is given by [139]: 

𝜂𝑎𝑐𝑐−ℎ𝑠 =
3

𝜙(1−(
𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
)3)

(

 
 

(1 + (
𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
)2) coth(𝜙 (1 −

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
))

−2
𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝑐𝑜𝑠𝑒𝑐ℎ (𝜙 (1 −

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
)) −

1−
𝑅𝑖𝑛
𝑅𝑜𝑢𝑡

𝜙 )

 
 

 (4 − 11)

For each particle, Rout and Rin are identical to those used in the inaccessible hollow sphere 

model, and based on individual 3-D measurements, as explained above. It is also 

emphasized that kinetic and transport parameters for each particle were consistent 

between the 3-D CFD simulations and the analytical models. 

4.2.1.4 Generalized Cylinder Model (1D–GC) and Variable Diffusivity Model (1D–VD) 

Another class of effectiveness factor models has been formulated to account for 

the complex three-dimensional structure of many catalyst particles in a one-dimensional 

framework [69,140], extending earlier approaches which use a particle’s volume to 

surface area ratio as the characteristic length-scale[68,141]. The generalized cylinder 

(1D–GC) and variable diffusivity (1D–VD) models, as outlined in [69,140], require a 

detailed characterization of the particle’s morphology, but have shown excellent accuracy 

in reproducing full 3-D calculations for catalyst applications (3% and 1% maximum 

error, respectively[140]). These models require assumptions of isotropic microporous 

regions, uniform reactivity in the microporous region, and uniform temperature and 

composition along the interface between the microporous solid and the surrounding fluid.  
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The 1D-GC model requires the solution of a 1-D reaction-diffusion equation for 

the (dimensionless) reactant concentration, Y, along the (dimensionless) coordinate, z, 

with dimensionless reaction rate r(Y) and variable cross-section with shape factor, 𝜎[69]: 

𝑧−𝜎 𝑑

𝑑𝑧
(𝑧𝜎 𝑑𝑌

𝑑𝑧
) = (1 + 𝜎)2𝜙1𝐷−𝐺𝐶

2  𝑟(𝑌) (4 − 12)

with boundary conditions 

𝑌 = 1 𝑎𝑡 𝑧 = 1 (4 − 12𝑎)             

𝑑𝑌

𝑑𝑧
= 0 𝑎𝑡 𝑧 = 0 (4 − 12𝑏)

The Thiele modulus, 𝜙, is given (for an irreversible reaction) by        

𝜙 = 𝐿√
𝑆 𝑘

𝐷𝑒𝑓𝑓
(4 − 13) 

where the characteristic length L, represents the ratio of the particle volume to its 

interfacial area. In the present context, the characteristic length, L, corresponds to 

𝐿 =
𝑉𝑚𝑝𝑠

𝑆𝑚𝑝𝑠,𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
(4 − 14) 

where 𝑆𝑚𝑝𝑠,𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 is the interfacial area between microporous solid and resolved pores 

or external boundary layer (the interface between red and blue regions, as well as red and 

green regions, in Fig. 3-3). For each of the 50 particles, 𝑉𝑚𝑝𝑠 was calculated by volume 

integration and 𝑆𝑚𝑝𝑠,𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 was calculated by surface integration over the interfaces in 

the 3-D structures obtained from micro-CT (see Appendix).  

For the 1D–GC𝛾 model (the variant of the model more appropriate at low Thiele 

modulus), the shape factor, σ, appearing in Eq. (4-12) requires the solution of Poisson’s 

equation on the particle’s surface[69]. The shape factor is given in terms of parameter 𝛾 
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𝜎 =
3𝛾 − 1

1 − 𝛾
 (4 − 15) 

where         

𝛾 =
∭𝐺𝑑𝑉𝑚𝑝𝑠

𝑉𝑚𝑝𝑠
(4 − 16)

and 𝐺 is obtained from solving (dimensionless) Poisson’s equation on the microporous 

solid domain  

∇∗2𝐺 = −1  in 𝑉𝑚𝑝𝑠   (4 − 17) 

subject to boundary condition 

𝐺 = 0   on 𝑆𝑚𝑝𝑠,𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 (4 − 18) 

In this study, Poisson’s equation for G was solved numerically using COMSOL 

for each real 3-D particle geometry obtained from micro-CT, followed by the calculation 

of 𝛾 and 𝜎. In a reactor-scale CFD context, it is envisioned that these geometrical 

calculations would be performed for a representative distribution of particles as a 

preprocessing step and would not need to be performed within the effectiveness factor 

routine. The governing 1-D equation (Eq. (4-12)) was then solved numerically for Y  ̧and 

the effectiveness factor calculated by numerical integration 

𝜂1𝐷−𝐺𝐶 = (1 + 𝜎) ∫ 𝑟(𝑌)𝑧𝜎𝑑𝑧
1

0
(4 − 19)

For the 1D–GCΓ model [69] (the variant of the model more appropriate at high Thiele 

modulus), the shape factor, σ, is obtained from  

𝜎 =
Γ

1−Γ
 (4 − 20)

where the geometric parameter, Γ, requires integration of the local principal radii of 
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curvature over the particle’s smooth interfacial area and its non-smooth edges, W, if 

present [142]  

Γ =
𝑙

𝑆𝑚𝑝𝑠,𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
(∬(

1

𝑅𝑎
+

1

𝑅𝑏
 ) 𝑑𝑆𝑚𝑝𝑠,𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 + ∫ ℋ𝑑𝑊

𝑊
) (4 − 21)

where 𝑅𝑎 and 𝑅𝑏 are the local principal radii of curvature on the particle’s interfacial area 

and the non-smooth edge term, ℋ, is zero for naturally occurring char particles. For each 

real three-dimensional particle, 𝑅𝑎 and 𝑅𝑏 were calculated using COMSOL. The 

governing 1-D equation (Eq. (4-12)) was again solved numerically for Y  ̧and the 

effectiveness factor calculated by numerical integration (Eq. (4-19)). The 1D–GC model 

parameters calculated for each particle are provided in the Appendix. 

The 1D–VD model [69] employs a variable diffusivity along a single coordinate 

direction, x. 

𝐷𝑒𝑓𝑓(𝑥) = 𝐷𝑒𝑓𝑓 Θ(𝑥) (4 − 22)

where  

Θ(𝑥) = exp(𝐶1𝑥 + 𝐶2𝑥
𝛼) (4 − 23) 

The model requires three parameters (C1, C2 and α) which are chosen such that 

the effectiveness factor matches the first three terms (including the zeroth order term) of 

the low modulus series expansion and the first two terms (including the zeroth order 

term) of the high modulus expansion [141]. In practice, the model’s three parameters 

require the solution of Poisson’s equation for G on the particle’s surface (Eq. (4-17)) to 

obtain 𝛾 from Eq. (4-16) and β from  
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𝛽 =
∭𝐺2𝑑𝑉𝑚𝑝𝑠

𝑉𝑚𝑝𝑠
(4 − 24)

as well as the integration of Ra and Rb over the particle’s smooth surface and non-smooth 

“edges” angles (to obtain Γ from Eq. (4-21)). Parameter 𝐶1 is obtained from 

𝐶1 = −2Γ (4 − 25)

while 𝐶2 and 𝛼 are obtained from simultaneously solving nonlinear equations  

𝛾 = ∫
(1 − 𝑥)2

Θ(𝑥)
𝑑𝑥

1

0

(4 − 26) 

𝛽 = ∫ 𝐹2(𝑥)𝑑𝑥
1

0
(4 − 27) 

where  

𝐹(𝑥) = ∫
(1 − 𝑥0)

Θ(𝑥0)
𝑑𝑥

𝑥

0

(4 − 28) 

Again, in the context of a reactor-scale CFD code, these calculations would be 

performed outside of the effectiveness factor routine. The effectiveness factor requires 

the numerical solution of a 1-D boundary value problem to obtain the concentration 

profile  

𝑑

𝑑𝑥
(Θ(𝑥)

𝑑𝑌

𝑑𝑥
) = 𝜙1𝐷−𝑉𝐷

2   𝑟(𝑌) (4 − 29)   

𝑌 = 1  at 𝑥 = 0 (4 − 29𝑎)     

𝑑𝑌

𝑑𝑥
= 0  at 𝑥 = 1 (4 − 29𝑏)

where the Thiele modulus is evaluated from Eq. (4-13).  The dimensionless Y was then 

used in integrating the dimensionless reaction rate to yield the effectiveness factor [69] 
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𝜂1𝐷−𝑉𝐷 = ∫ 𝑟(𝑌)𝑑𝑥
1

0

(4 − 30) 

4.2.2 Biomass char 

Analytical solutions for effectiveness factors of biomass particles have been 

developed for slabs, spheres (same as coal), and cylinders, and approximations are 

available for more complex geometries. Due to the fibrous nature of many biomass 

feedstocks, cylindrical models may be best suited to the shape of many biochars, such as 

the pine char analyzed here, and are outlined below.  

The uniform finite cylinder (UFC) and uniform infinite cylinder (UIC) models 

treat particles as porous solid cylinders with uniform properties and exclusively subgrid-

scale porosity. For the UFC, the geometry is 2-D and the analytical solution for the 

effectiveness factor, ηUFC, involves an infinite series and Bessel functions. the classical 

expression for the effectiveness factor is [143] based on[144], 

𝜂UFC =
2𝐼1(𝜙𝑈𝐹𝐶)

𝜙𝑈𝐹𝐶𝐼0(𝜙𝑈𝐹𝐶)
+ 4𝜙𝑈𝐹𝐶

2 ∑
1

𝛼𝑈𝐹𝐶,𝑛
2 (𝜙𝑈𝐹𝐶

2 + 𝛼𝑈𝐹𝐶,𝑛
2 )

tanh(𝜆𝑈𝐹𝐶,𝑛)

𝜆𝑈𝐹𝐶,𝑛

∞

𝑛=1

  (4 − 31) 

where 𝛼𝑈𝐹𝐶,𝑛 are the roots of 𝐽0(𝛼𝑈𝐹𝐶,𝑛) = 0, 𝜆𝑈𝐹𝐶,𝑛 equals to 𝛽𝑏𝑖𝑜
2(𝜙2 + 𝛼𝑈𝐹𝐶,𝑛

2 ). 

The Thiele modulus is similar to the uniform sphere model,  

𝜙𝑈𝐹𝐶 = 𝑅𝑏√
 𝑘(1 − 𝜃)

𝐷𝑒𝑓𝑓
 (4 − 32) 

and 𝐼𝑗(∙) is the jth order modified Bessel functions of the first kind, the cylinder’s aspect 

ratio, β. The effective diffusivity, 𝐷𝑒𝑓𝑓, and the intrinsic reaction rate constant, k, which 

incorporates the subgrid-scale surface area, were evaluated using identical submodels and 
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parameters as used in the pore-resolving simulations for each real particle. The 

temperature (used in calculating k and 𝐷𝑒𝑓𝑓) for a particle was obtained from a volume 

average over the microporous char region from that particle’s pore-resolving simulation. 

(It has been seen in Chapter 3 that temperatures were nearly spatially uniform.) To ensure 

that the mass, volume, and subgrid-scale surface area of carbon in each 2-D UFC particle 

with subgrid-scale porosity matches that of its respective 3-D particles with resolved 

porosity, θ, the term (1- θ) is included in Eq. (4-32), as discussed in[122]. 

To ensure a faithful comparison with the pore-resolving simulations, the radius, 

𝑅𝑏, used in the Thiele modulus for each particle was obtained from morphological 

measurements based on micro-CT for each specific particle. The particle’s total volume 

is known (from 3-D pore-resolving simulation) and a bounding box method was used to 

measure its aspect ratio, 𝛽𝑏𝑖𝑜, defined as the ratio of the bounded length, to the bounded 

radius. The bounded length is taken directly from the length of the bounding box, and the 

bounded radius is approximated as half the average of the box’s width and depth. Using 

the expression for the volume of a cylinder, the radius of the UFC particle is then: 

 𝑅𝑏𝑖𝑜 = (
𝑉𝑇𝑜𝑡

𝜋𝛽𝑏𝑖𝑜
⁄ )

1

3
 (4 − 33)

The length of the particle is then given by  

𝐿𝑏𝑖𝑜 = 𝛽𝑏𝑖𝑜𝑅𝑏𝑖𝑜   (4 − 34)

By using the bounding box method to obtain the dimensionless 𝛽𝑏𝑖𝑜, with its 

overestimation in both length and radial directions, and then calculating 𝑅𝑏𝑖𝑜 by matching 

the volume of the cylinder to that of the real 3-D particle, a more accurate 
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correspondence of geometric parameters is obtained than by taking 𝑅𝑏𝑖𝑜 directly from 

bounding box measurements.  

For the 1-D UIC model, which assumes a cylinder of infinite length, the classical 

expression for the effectiveness factor, ηUIC, involves Bessel functions of the first kind 

[50] and expresses as 

𝜂𝑈𝐼𝐶 =
2𝐼1(𝜙𝑈𝐼𝐶)

𝜙𝐼0(𝜙𝑈𝐼𝐶)
 (4 − 35) 

It depends on the Thiele modulus, 𝜙𝑈𝐼𝐶, which is given by the expression in Eq. 

(4-32). Again, to ensure a faithful comparison with the pore-resolving simulation for each 

biomass char particle, the radius, 𝑅𝑏𝑖𝑜, is obtained for each particle from Eq. (4-33) and 

all subgrid-scale parameters were identical to those used in the pore-resolving simulation. 

Analytical solutions for hollow cylinders have also been derived since these 

geometries are often relevant to catalysis. In contrast to the UFC and UIC, which treat all 

porosity at the subgrid-scale, hollow cylinder models resolve a large, central cylindrical 

pore. Based on the work of Gunn[144], Buffham formulated analytical solutions for 

hollow finite cylinders and hollow infinite cylinders[139]. For a 2-D hollow finite 

cylinder, an “accessible” inner surface model will be considered (AHFC), such that the 

interface between the annulus and inner pore is exposed to the same concentration of 

reactant as the external surface (the same Dirichlet boundary conditions). For the 1-D 

hollow infinite cylinders, solutions for both accessible (AHIC) and inaccessible (IHIC) 

inner surfaces are available. For the IHIC, a no-flux boundary condition is applied at the 

inner surface and a fixed concentration is applied at the outer surface. 
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For the 2-D AHFC, ηAHFC is given by a complex expression involving several 

Bessel functions [139], 

𝜂𝐴𝐻𝐹𝐶 =
8

𝜙𝐴𝐻𝐹𝐶
2 (1 −

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡

2

)

{∑[coth(𝜆𝑛𝐿𝜙𝐴𝐻𝐹𝐶) − cosech(𝜆𝑛𝐿𝜙𝐴𝐻𝐹𝐶)]

𝑁1

𝑛=0

 

 × (
𝜆𝑛

𝛽𝐴𝐹𝐻𝐶,𝑛
2 𝐿𝜙𝐴𝐻𝐹𝐶

−
1

𝜆𝑛𝐿𝜙𝐴𝐻𝐹𝐶
)

𝐽0 (𝛽𝐴𝐹𝐻𝐶,𝑛
𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜙𝐴𝐻𝐹𝐶) − 𝐽0(𝛽𝐴𝐹𝐻𝐶,𝑛𝜙𝐴𝐻𝐹𝐶)

𝐽0 (𝛽𝐴𝐹𝐻𝐶,𝑛
𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜙𝐴𝐻𝐹𝐶) + 𝐽0(𝛽𝐴𝐹𝐻𝐶,𝑛𝜙𝐴𝐻𝐹𝐶)

 + ∑ (
2

𝛾𝑛𝐿2𝜙𝐴𝐻𝐹𝐶
−

2𝛾𝑛𝜙𝐴𝐻𝐹𝐶

𝜋2(2𝑛 + 1)2
)

𝑁2

𝑛=0

 

 ×
(−

2
𝛾𝑛𝜙𝐴𝐻𝐹𝐶

) +
𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝐹 (𝛾𝑛𝜙𝐴𝐻𝐹𝐶 ; 𝛾𝑛

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜙𝐴𝐻𝐹𝐶) + 𝐹 (𝛾𝑛

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜙𝐴𝐻𝐹𝐶 ; 𝛾𝑛𝜙𝐴𝐻𝐹𝐶)

𝐼0 (𝛾𝑛
𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜙𝐴𝐻𝐹𝐶)𝐾0(𝛾𝑛𝜙𝐴𝐻𝐹𝐶) − 𝐼0(𝛾𝑛𝜙𝐴𝐻𝐹𝐶)𝐾0 (𝛾𝑛

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜙𝐴𝐻𝐹𝐶)

 + ∑  (
2

𝛾𝑛𝐿2𝜙𝐴𝐻𝐹𝐶
−

2𝛾𝑛𝜙𝐴𝐻𝐹𝐶

𝜋2(2𝑛 + 1)2
)

𝑁3

𝑛=𝑁2+1

× [𝐻 (𝛾𝑛𝜙𝐴𝐻𝐹𝐶 ,
𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
) − (

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
+ 1)]}                                                                    (4 − 36)

 

Where the 𝐹(𝜓1; 𝜓2) equals to 𝐾0(𝜓1)𝐼1(𝜓2) + 𝐼0(𝜓1)𝐾1(𝜓2), 𝐽j(∙) and 𝑌j(∙) are the jth 

order unmodified Bessel function of the first and second kinds. 

The 𝜆𝑛 and 𝛾𝑛 are expressed as 

𝜆𝑛 = √1 + 𝛽𝐴𝐻𝐹𝐶,𝑛
2  (4 − 37) 

𝛾𝑛 = √1 +
(2𝑛 + 1)2𝜋2

𝐿𝑏𝑖𝑜
2𝜙𝐴𝐻𝐹𝐶

2  (4 − 38) 

 

 



81 
 

 
 

The eigenvalues 𝛽𝑛 are the values of 𝛽 satisfying  

𝑌0 (𝛽𝐴𝐻𝐹𝐶

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜑) 𝐽0(𝛽𝐴𝐻𝐹𝐶𝜙𝐴𝐻𝐹𝐶) − 𝑌0(𝛽𝐴𝐻𝐹𝐶𝜙𝐴𝐻𝐹𝐶)𝐽0 (𝛽𝐴𝐻𝐹𝐶

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜙𝐴𝐻𝐹𝐶) = 0 (4 − 39) 

with the initial guess points starting from 

𝛽𝐴𝐻𝐹𝐶 =
(𝑛 + 1)𝜋

(1 −
𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
)𝜙𝐴𝐻𝐹𝐶

, 𝑛 = 0,1,2, … , 𝑁1 (4 − 40)
 

The solution requires specification of inner and outer radii (Rin and Rout), the 

cylinder length (𝐿𝑏𝑖𝑜), and depends on the nominal Thiele modulus,  

𝜙𝐴𝐻𝐹𝐶 = 𝑅𝑜𝑢𝑡 √
𝑘

𝐷𝑒𝑓𝑓
  (4 − 41)

To ensure a valid comparison between pore-resolving simulations and the hollow 

cylinder models, k, and 𝐷𝑒𝑓𝑓 were obtained using identical parameters and models, and 

the resolved porosity for each particle, 𝜃, was taken directly from volume integration of 

segmented particle data from micro-CT. The outer radius, 𝑅𝑜𝑢𝑡, equals 𝑅𝑏𝑖𝑜, which was 

obtained from measurements of each particle, as shown in Eq. (4-33), 𝐿𝑏𝑖𝑜 was obtained 

from Eq. (4-34), and Rin was calculated such that the core porosity equals the value of 𝜃 

measured for each biomass char particle, by using 

𝑅𝑖𝑛 = 𝑅𝑜𝑢𝑡𝜃
1
2 (4 − 42) 

Effectiveness factors for the 1-D AHIC and IHIC models are given in [139] and 

involve Bessel functions of the first and second kind, as well as the ratio of 𝑅𝑖𝑛 to 𝑅𝑜𝑢𝑡. 

The effectiveness factor solution for an infinite hollow cylinder with inaccessible inner 

surface is 
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𝜂𝐼𝐻𝐼𝐶 =
2

𝜙𝐼𝐻𝐼𝐶 (1 −
𝑅𝑖𝑛

𝑅𝑜𝑢𝑡

2

)

𝐾1 (
𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜙𝐼𝐻𝐼𝐶) 𝐼1(𝜙𝐼𝐻𝐼𝐶) − 𝐼1 (

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜙𝐼𝐻𝐼𝐶)𝐾1(𝜙𝐼𝐻𝐼𝐶)

𝐾1 (
𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜙𝐼𝐻𝐼𝐶) 𝐼0(𝜙𝐼𝐻𝐼𝐶) + 𝐼1 (

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜙𝐼𝐻𝐼𝐶)𝐾0(𝜙𝐼𝐻𝐼𝐶)

 (4 − 43) 

where 𝐾j(∙) is the jth order modified Bessel functions of the second kind. The 

effectiveness factor for an infinite hollow cylinder with accessible inner surface is  

𝜂𝐴𝐻𝐼𝐶 =
2 [𝐾0 (

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜙𝐴𝐻𝐼𝐶) − 𝐾0(𝜙𝐴𝐻𝐼𝐶)] [𝐼1(𝜙𝐴𝐻𝐼𝐶) −

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝐼1 (

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜙𝐴𝐻𝐼𝐶)]

𝜙𝐴𝐻𝐼𝐶 (1 −
𝑅𝑖𝑛

𝑅𝑜𝑢𝑡

2

) [𝐼0(𝜙𝐴𝐻𝐼𝐶)𝐾0 (
𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜙𝐴𝐻𝐼𝐶) − 𝐼0 (

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜙𝐴𝐻𝐼𝐶)𝐾0(𝜙𝐴𝐻𝐼𝐶)]

 

+
2 [𝐼0 (

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜙𝐴𝐻𝐼𝐶) − 𝐼0(𝜙𝐴𝐻𝐼𝐶)] [𝐾1(𝜙𝐴𝐻𝐼𝐶) − 𝜌𝐾1 (

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜙𝐴𝐻𝐼𝐶)]

𝜙𝐴𝐻𝐼𝐶 (1 −
𝑅𝑖𝑛

𝑅𝑜𝑢𝑡

2

) [𝐼0(𝜙𝐴𝐻𝐼𝐶)𝐾0 (
𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜙𝐴𝐻𝐼𝐶) − 𝐼0 (

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
𝜙𝐴𝐻𝐼𝐶)𝐾0(𝜙𝐴𝐻𝐼𝐶)]

(4 − 44)

 

The nominal Thiele moduli are identical for the AHIC and IHIC models and are 

given by the expression in Eq (4-41).  

To ensure a valid comparison between 3-D pore-resolving simulations and the 1-

D AHIC and IHIC models, the resolved core porosity for each particle was set equal to its 

measured 𝜃. Thus, 𝑅𝑜𝑢𝑡 equals 𝑅𝑏𝑖𝑜, which was obtained from particle-specific 

measurements and Eq. (4-33) and Rin was again calculated using particle-specific 𝜃𝑣𝑜𝑖𝑑 

and Eq. (4-42). Geometric parameters for all models are in Appendix. Convergence of all 

series solutions was verified. 

4.3 Evaluation of effectiveness factor models using pore-resolving simulations 

All parameters (reaction rates, diffusion coefficients, sub-grid scale surface area, 

etc.) were identical in the 3-D and analytical models for each char particle type (coal or 

biomass). Temperature-dependent parameters in the analytical model used the volume 
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averaged temperature for each particle calculated from the corresponding 3-D model. 

Nonetheless, effectiveness factor models solve a single, simplified reaction-diffusion 

equation, while the 3-D CFD simulation solves conservation equations for mass, 

momentum, n-1 species, and thermal energy conservation. Therefore, to ensure that the 3-

D simulation and the effectiveness factor models are comparable and that differences are 

primarily due to the impacts of real particle geometries, a 3-D pore resolving simulation 

was run for a uniformly porous sphere at steady state and compared to the analytical 

solution [137]. The effectiveness factor calculated from the CFD simulation was 0.475, 

which was in close agreement with the value of 0.486 calculated using the classical 

effectiveness factor model, indicating that any differences observed for the real char 

particles are primarily due to their geometrical complexities. The small difference is 

attributed to the additional physics captured in the CFD simulation, such as the impacts 

of Stefan flow, the presence of multiple product species, the somewhat spatially varying 

temperature, etc. 

 In comparing the pore-resolving simulations and the effectiveness factor models, 

the particles are arranged on the abscissa in increasing order of the external void fraction 

(EVF), an indicator which increases as particles transition from cenospheres with isolated 

resolved pores to more complex and connected pore structures (see Chapter 3 for details). 

4.3.1 Coal char 

It is first observed in Fig. 4-1 that the true, 3-D effectiveness factors (and thus the 

reaction rates, via Eq. (4-1)) exhibit a two- to three-fold particle-to-particle variation, 

despite all particles having the same effective diameter and reacting under the same 

conditions. This suggests that reactor-scale CFD codes, which often incorporate a 
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distribution of particle sizes, should also consider incorporating a distribution of porosity 

and/or morphology. It is noted, however, that a size distribution of particles of uniform 

porosity accounts for mass variations, contributing to the variability seen in Fig. 4-1. 

The commonly-used uniform sphere effectiveness factor model treats all porosity 

as sub-grid scale and overestimates the characteristic diffusion length. In this model, 

large pores do not act as reactant reservoirs or channels and gas only penetrates the 

particle by diffusing through uniformly porous solid. As it has been experimentally 

demonstrated that the uniform sphere method is not suitable for realistic particles with 

multiple large pores [64], it is not surprising to see, in Fig. 4-1, that the uniform sphere 

model using the same diffusion model (Section 4.2.1) predicts the lowest effectiveness 

factor and is the least accurate compared to the 3-D solution. It is noted, that if dpore is 

calculated using the total porosity, the agreement with the 3-D solution would improve, 

as the overestimation of the DKnud would offset the error in the characteristic length scale. 

Another option to reduce the error of the uniform sphere model would be to use a 

uniform sphere whose radius is smaller and based only on Vmps. 
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Fig. 4-1 Comparison of effectiveness factors predicted by classical models with 

effectiveness factor obtained by volume integration of the 3-D, pore-resolving simulation 

data. 

The analytical solutions for inaccessible hollow spheres and flat plates provide 

reasonable approximations to the exact effectiveness factors for censpherical particles, as 

seen in Fig. 4-1. These two models account for the presence of large (resolved) pores and 

incorporate a shorter length-scale for diffusion through the microporous solid (see Eqs. 

(4-7) and (4-10)). While the two models yield similar predictions, the inaccessible hollow 

sphere model is more accurate for cenospherical particles, which is the particle type for 

which these models provide a reasonable prediction (8.4% relative error vs. 21.7% 

relative error for particles 1-10). This is because a flat plate is a less realistic geometry 

than a hollow sphere, especially for thicker-walled cenospheres. For all 50 particles, the 

inaccessible hollow sphere model yields an average relative error of 20.7%, compared 

with 25.3% for the flat plate model. For the more complex structures on the right of the 
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abscissa, neither the flat plate nor the inaccessible hollow sphere model is accurate, with 

average errors of 31.3% and 30.0% for particles 30 to 50.  

Despite its accuracy for censpheres, the inaccessible hollow sphere model predicts 

lower effectiveness factors than the true 3-D effectiveness factors for all particle types. 

This is likely because the central pore in the hollow sphere model is inaccessible and 

oxygen must first penetrate through the microporous solid region. For most real char 

particles, however, large pores that extend to the particle surface allow oxygen to channel 

throughout the particle, as seen in Fig. 3-7(b) in Chapter 3, particularly for the network-

type particles. Furthermore, it has been shown previously in a study of a single resolved 

char particle that large macropores and voids also increase the penetration of reactant into 

the microporous solid regions to a larger extent than predictions of uniform porosity 

effective continuum models [44]. This is because the large pore networks present in real 

char particles act as reservoirs for reactant and decrease the effective length-scale for 

diffusion within the adjacent microporous solid, which would increase the effectiveness 

factor. This observation is also corroborated by Fig. 3-8 in Chapter 3. 

Due to these reasons, the accessible hollow sphere model with the consistent inner 

and outer boundary conditions, on the other hand, works well for particles with high EVF 

value on the right side in Fig. 4-1. Therefore, the accessible hollow sphere model is more 

accurate for particles with more complex structures, which is the particle type for this 

model provides a reasonable prediction (7.5% relative error for particles 40-50). For all 

50 particles, the accessible hollow sphere model yields an average relative error of 23.7% 
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Fig. 4-2 Comparison of effectiveness factors predicted by 1D–GC and 1D–VD models 

with the hollow sphere model and with effectiveness factor obtained by volume 

integration of the 3-D, pore-resolving simulation data. 

Effectiveness factors calculated using the more complex 1D–GCγ, 1D–GCΓ and 

1D–VD models are shown in Fig. 4-2, in which the 3-D, pore-resolving solution and the 

inaccessible hollow sphere effectiveness factor model are also shown. Several geometric 

parameters are incorporated in the 1D–GCγ, 1D–GCΓ and 1D–VD models, as described 

in Section 4.2.1, which led to very high accuracy in catalyst applications [69][140]. It is 

observed in Fig. 4-2 that the 1D–GCγ, 1D–GCΓ and 1D–VD models produce similar 

effectiveness factor predictions. Compared to the 1D–GCγ model, which predicts the 

lowest effectiveness factors, the 1D–VD and 1D–GCΓ models yield an average of 4.8% 

and 8.4% higher values, respectively. All three models predict higher effectiveness 

factors than the solutions obtained from the 3-D pore-resolving simulations, with an over-

prediction of 55.6% for the most cenospherical particles (particles 1 to 10) and 16.8% for 
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the more connected, network-type particles (particles 40 to 50). Effectiveness factors 

calculated for each particle are provided in the Appendix. 

Similar to accessible hollow sphere model, the 1D–GCγ, 1D–GCΓ and 1D–VD 

models incorporate several assumptions, noted in Section 4.2.1, which includes the 

restrictive assumption, for high temperature combustion and gasification applications, of 

uniform reactant concentration along the interface between the microporous solid and 

external surface/resolved pores (the red/blue and red/green interfaces in Fig. 3-3 in 

Chapter 3). However, oxygen concentration gradients exist within the resolved pore 

space, which reduces the interfacial oxygen mole fraction at locations toward the particle 

centers, as seen in Fig. 3-7(b). This reduction in interfacial oxygen mole fraction results 

in true (3-D) effectiveness factors which are lower than the predictions of the 1D–GC and 

1D–VD models.  

Particles with macropores extending to the surface (particles toward the right of 

the abscissa in Fig. 4-2) have a more uniform oxygen mole fraction on the microporous 

solid/resolved pore interface than cenospheres, whose inner wall is largely disconnected 

from the surface. The connected voids and pore networks facilitate the transport of 

oxygen to the entire pore network, whereas oxygen reaches the inner wall of the most 

cenospherical particles predominantly by transport through the microporous solid. This 

leads to better accuracy (smaller overprediction of effectiveness factors) for the hollow 

sphere model (accessible), 1D–GC and 1D–VD for the more complex, connected void 

structures than the more cenospherical structures, as seen in Fig. 4-2.  
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4.3.2 Biomass char 

 

Fig. 4-3 Effectiveness factors for 30 particles calculated by 3-D pore resolving simulation 

and five analytical models.  

 Effectiveness factors from 3-D pore-resolving simulations (Eq. (4-1)) for all 30 

pine char particles are compared to analytical models (Section 4.2.2) in Fig. 4-4. It is 

recalled that for each particle, the analytical solutions employed the particle’s specific 

morphological parameters obtained from micro-CT imaging. Particles are arranged on the 

abscissa by particle number (one to 30) in order of increasing external void fraction, 

EVF, which is the fraction of the particle’s external surface that is penetrated by large 

pores (or “voids”). EVF was well-correlated with η3-D for coal char particles [122], but 

neither EVF nor any single measured morphological parameter (e.g., porosity, aspect 

ratio, surface area, etc.) correlated particularly well with η3-D for these biomass chars. It is 

noted that although each particle had identical size (total volume), η3-D ranged between 

35.4% to 51.5%. 
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 As seen in Fig. 4-3, the UFC and UIC models predict similar effectiveness 

factors, which is due to the high aspect ratio of the pine char particles. Both models 

significantly underpredict the “true” effectiveness factors, due to their neglect of the 

impact of large, connected pores serving as reactant conduits. The uniform models thus 

overestimate the characteristic diffusion length and the level of diffusion limitations. The 

relative errors averaged for all particles for the UFC and UIC are 38.6% and 39.0%, 

respectively.  

  Based on Fig. 3-10 in Chapter 3, hollow cylinders appear to approximate the 

morphology of the pine char particles with greater accuracy than uniform cylinders. 

While the IHIC model severely underpredicts η3-D (average relative error 33.1%) since 

the inaccessible inner surface forces oxygen to be transported across the entire annular 

thickness, the AHIC and AHFC models, with accessible inner surfaces, reproduce the 

effectiveness factors for the pine char particles with better accuracy. These models 

capture the reduced length-scale for oxygen diffusion, which is now approximately equal 

to half the annular thickness. Although “fully accessible” models overestimate the level 

of xO2 on the interface between large pores and microporous char based on Fig. 3-10 

(which leads to overestimations of η), they also underestimate the interfacial area and 

overestimate the local thickness of microporous char regions. These two factors would 

lead to underestimations of η, counteracting the impact of the fully accessible 

assumption. The average relative errors for the AHIC and AHFC are 9.0% and 6.0%, 

respectively. In contrast to mm-scale particles with many parallel pores that experience 

diffusion primarily in the axial direction (i.e., slab behavior)[115], these smaller, µm-

scale char particles contain fewer, more irregular large pores, experience significant 
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radial diffusion (Fig. 3-10), and are more accurately modeled as hollow cylinders (Fig. 4-

3).  

4.4 Conclusions 

Because reactor-scale CFD simulations require analytical models that are accurate 

as well as computationally efficient for the thousands of tracked char particles, 

predictions of effectiveness factor models have been compared with the effectiveness 

factors calculated from the 3-D pore-resolving simulations. For coal char particles, 

effectiveness factors predicted from the classical uniform sphere model, a classical flat 

plate model, hollow sphere models (inaccessible and accessible inner surfaces), and the 

1D–GC and 1D–VD models were assessed. The commonly used uniform sphere model 

treats all pores as sub-grid-scale and results in effectiveness factors which are too low for 

all particle types. The hollow sphere model (inaccessible) produced good agreement 

(better than the flat plate model) with the pore-resolving simulation for char particles 

which were cenospherical, but was inaccurate for particles with more connected pore 

structures. Conversely, the hollow sphere model (accessible) can provide accurate 

prediction for coal char particles which the resolved pores connect to outer surface with 

enhanced capability. Although the 1D–GC and 1D–VD models account for the three-

dimensional morphology of real particles, they overpredicted the effectiveness factors for 

all particle types due to their assumption of uniform reactant concentration along the 

entire solid/resolved pore interface. This assumption is particularly inaccurate for 

cenospheres with minimal connection between the central resolved pore and external 

surface.  
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Zone II combustion of cenospherical coal char can be adequately modeled in a 

one-dimensional context using the inaccessible hollow sphere effectiveness factor 

approach. Char particles with higher connectivity are adequately-modeled by the 

accessible hollow sphere model. However, transitional particles require either a new 

effectiveness factor approach, a modification of the 1D–GC or 1D–VD models to account 

for non-uniform interface concentration, or perhaps a modification of bimodal (“macro-

micropore”) effectiveness factor models [70] to account for “macropores” that cannot be 

treated at the sub-grid-scale.  

For biomass char particles, uniform cylindrical effectiveness factor models, which 

are often used as particle-scale models in reactor-scale codes, significantly 

underpredicted the effectiveness factors compared to results from the geometrically 

faithful simulations. Hollow cylinder effectiveness factor models with fully accessible 

inner surfaces exhibited better agreement with results for the real particles, although these 

models incorporate assumptions with counterbalancing inaccuracies. 

In conclusion, commonly used uniform sphere and cylinder models significantly 

underpredict effectiveness factors, which will likely reduce the accuracy of reactor-scale 

CFD simulations. Reactor-scale CFD codes, which often employ a distribution of particle 

sizes, should also include a distribution of morphologies and a corresponding distribution 

of effectiveness factor models, given the variation of reaction rates between particles of 

the same size reacting under the same conditions and the demonstrated impacts of 

morphology on analytical effectiveness factor predictions. 
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Chapter 5. Particle Classification Based on Real 3-D Char Particle and Machine 

Learning Algorithms for Effectiveness Factor Selection 

To facilitate reactor-scale CFD codes employing a distribution of char particles 

with corresponding distribution of effectiveness factor models, a rapid and accurate 

classification system is needed. Therefore, in this chapter, machine learning (ML) 

approaches are introduced (Section 5.1) and later applied to classify every particle in a 

distribution of bituminous char according to its expected combustion behaviors, using its 

3-D morphology as input. In Section 5.2, the procedure of measuring morphological 

parameters (porosity, volume, etc.) for each particle from its 3-D structure are discussed, 

as well the data acquisition for classifier training. Basic principles of the machine 

learning algorithms are explained in Section 5.3, followed by results and discussion 

(Section 5.4) and conclusions (Section 5.5).  

5.1 Introduction 

Whereas previous approaches have classified particles solely according to their 

morphology, with an assumed correspondence to combustion behavior [145,73,102], the 

first novelty of the present approach is that it uses ML to classify bituminous char 

particles according to their combustion behaviors, using morphology as input. 

Furthermore, while previous approaches have employed 2-D morphological 

measurements (Section 2.4) based on particle cross-sections (discussed in Chapter 6), the 

second novelty of the present approach is that the morphological parameters used for 

classification are obtained in 3-D, using a single high-resolution micro-CT scan of a char 

particle distribution. 
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At the reactor scale, boilers, furnaces, and gasifiers always contain a distribution 

of char particles with a distribution of morphologies. It has been shown experimentally 

that real char particles cannot be treated as homogeneous, porous spheres and that 

variations in char particle morphology affect conversion under zone II conditions 

[64,43,97]. As seen in Chapter 4,  reactor-scale CFD codes should incorporate a 

distribution of particle morphologies, with a corresponding distribution of 

combustion/gasification models, to improve their predictive capabilities. 

To facilitate the use of realistic morphology distributions and associated 

distributions of particle-scale combustion/gasification models and parameters in reactor-

scale CFD codes, char particles formed under relevant conditions must be analyzed and 

classified. A classification system that is based on the real combustion behaviors should 

be developed to assign related effectiveness factor models to certain particle groups for 

reactor-scale CFD, based on the findings from Chapters 3 and 4. 

Machine learning (ML) refers to a system that can understand and acquire 

knowledge from observed data by using computational algorithms to perform a set of 

tasks [146,147]. This approach has received more attention recently in the solid fuel 

industry using classification, for prediction of gasification, combustion, and pyrolysis 

behaviors due to its efficiency to reduce the complexity of CFD simulation that usually 

describes complex processes. Solely from a biomass perspective, the number of academic 

publications increases from around ten (2000 - 2002) to over 350 (2018 - 2020) [148].  
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5.1.1 Support vector machines 

Support vector machines (SVM) [149] are commonly used to solve binary 

classification problems, by transforming a dataset to a higher dimension with a selected 

kernel function to find the maximum distance to the surrounding data points on a 

hyperplane for data separation. This transformation can be approached by a calculation 

using the kernel function [150]. Fig. 5-1 illustrates an SVM classification of two 

nonlinear separable classes. The solid blue line indicates the hyperplane with the 

maximum-margin between two dashed lines that is found by the algorithm. They are 

trained  to divide the data into different groups (classes) such that the distance between 

the hyperplane and the nearest data point from each of the two classes is maximized. The 

data points are “support vectors.” 

Depending on the selected kernel, SVMs are capable of dealing with both linear 

and nonlinear problems by finding the maximum margin on the hyperplane. The form of 

general nonlinear support vector machine function with kernel function is, 

𝑓(𝒙) = 𝛽𝑆𝑉𝑀 + ∑𝛼𝑆𝑉𝑀,𝑖𝐾(𝒙, 𝑥𝑖)

𝑖∈𝐴

(5 − 1) 

where 𝒙 is the input vector, 𝛽𝑆𝑉𝑀 and 𝛼𝑆𝑉𝑀,𝑖 are the constant parameters, 𝐴 is the 

collection of indices of all support data points and 𝐾(𝒙, 𝑥𝑖) is the kernel function. Due to 

its ability to capture nonlinear relationships, the Radial Based Function (RBF) kernel 

function is usually employed while involving nonlinear data [151]. The RBF function has 

the form 
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𝐾(𝑥𝑖, 𝑥𝑖′) = exp(−𝛾𝑆𝑉𝑀 ∑ 

𝑝

𝑗=1

(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)
2
) (5 − 2) 

where 𝛾 is the width parameter.  

 

Fig. 5-1 SVM classification using two nonlinear classes. 

5.1.2 Random forest 

Random Forest (RF) classifiers [152] are based on a number of decision trees to 

form an ensemble learning network, which differs from other machine learning 

algorithms. Unlike traditional decision tree methods that faces high variance and 

overfitting issues, RF employs bootstrap aggregation (bagging method). The basic idea of 

the RF method is 1) resampling the training data set multiple times to form bootstrapped 

sample sets each time, 2) for each bootstrapped sample set, a decision tree is trained, and 

3) based on the result from all decision trees, the final output is decided by majority 

voting for classification. Since the original data set has been resampled, data imbalance is 

no longer an issue in constructing the decision tree. In majority voting, the final 
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prediction is the most frequent class among the trained decision trees with different 

bootstrapped sample sets. Figure 5-2 shows the structure of the RF algorithm. 

 

Fig. 5-2 The structure of the RF algorithm. 

For purposes of classification, standard support vector machine (SVM) and 

random forest (RF) classifiers were implemented using MATLAB in the present study. 

SVM and RF algorithms for classification are attractive for use with limited data 

compared to the data set size required in neural network modeling [153,154]. The 

classification algorithms employ 3-D morphology data obtained from micro-CT imaging 

as input and 3-D pore-resolving combustion simulations to assign class labels during the 

training procedure.  

5.2 Data acquisition and classifier training  

5.2.1 Morphological parameters 

Eight morphological parameters were measured in 3-D from the micro-CT data 

for each particle: the internal surface area (red/blue interfacial area in Fig. 3-3), external 
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surface area (red/green interfacial area in Fig. 3-3), the contour ratio (discussed below), 

the resolved porosity, the solid volume, and three “void position indices” (𝑉𝑃𝐿, 𝑉𝑃𝑊, 

𝑉𝑃𝐻).  

The internal and external surface areas are calculated by surface integration over 

the interfacial areas illustrated in Fig. 3-3 (red/blue interface and red/green interface, 

respectively). The solid volume is calculated by volume integration over all red regions in 

Fig. 3-3, and the resolved porosity is the ratio of resolved pores volume (blue region) to 

the total volume (red and blue region). 

During the segmentation process, the contour ratio is measured by contouring the 

solid particle (finding its boundaries) as shown in Fig. 5-3 and calculating the ratio of the 

number of voxels associated with the contoured (surface) region to the number of voxels 

in the solid particle’s volume. This surface-to-volume ratio provides a measure of the 

particle’s average “thickness” [105], with thicker particles associated with lower contour 

ratios.  

 

Fig. 5-3 Illustration of the contour ratio in two dimensions. 

The void position indices are defined as ratios of particle length to the resolved 

pore (“void”) length (𝑉𝑃𝐿), and the analogous ratios for the width (𝑉𝑃𝑊) and height 

(𝑉𝑃𝐻). These ratios are measured by creating a bounding box - the smallest rectangular 



99 
 

 
 

cuboid that can contain the volumes of the particle and the resolved pore regions, 

individually. The length dimension is the longest dimension of the bounding box. Larger 

VP values imply that the resolved pores extend closer to the particle’s external surface.    

5.2.2 Classification and feature selection 

As discussed in Chapter 4, cenospherical coal char can be adequately modeled in 

a one-dimensional context using the inaccessible hollow sphere effectiveness factor 

approach. More complex network-type char particles with higher connectivity are 

satisfied by the accessible hollow sphere model. However, in the context of reactor-sale 

CFD codes, effectiveness factor models are integrated with boundary layer diffusion 

models to account the effect of diffusion limitations outside of the particle in addition to 

internal diffusion limitations. This is because char particles in a CFD cell have known 

boundary conditions for the far-field oxygen concentration, not the particle surface 

oxygen concentration.  In this case, an “overall effectiveness factor” is employed.  

The overall effectiveness factor, ηoverall, represents the ratio of the actual, zone II, 

diffusion-limited reaction rate integrated over a particle’s microporous solid volume, V, 

to the ideal reaction rate in the absence of any diffusion limitations in the particle’s 

microporous solid or in the surrounding gas boundary layer [155]. The true (3-D) overall 

effectiveness factor is calculated for each particle using volume integration of data from 

the pore-resolving CFD simulations 

𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
∭𝑅𝑎𝑐𝑡𝑢𝑎𝑙𝑑𝑉

∭𝑅𝑖𝑑𝑒𝑎𝑙,∞𝑑𝑉
 (5 − 3) 
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The actual reaction rate (𝑅𝑎𝑐𝑡𝑢𝑎𝑙) is calculated using the local values of reactant partial 

pressure, which varies due to intraparticle diffusion limitations, while the ideal reaction 

rate (𝑅𝑖𝑑𝑒𝑎𝑙,∞) employs a spatially uniform reactant partial pressure equal to that at the 

far-field boundary.  

As discussed, the classically defined effectiveness factor, η, represents the ratio of 

the actual, zone II, diffusion-limited reaction rate integrated over a particle’s solid 

volume, to the ideal reaction rate in the absence of any diffusion limitations within the 

particle [50]. Thus, in calculating the ideal reaction rate, the (classical) effectiveness 

factor employs a spatially uniform reactant partial pressure equal to the (assumed 

uniform) partial pressure at the particle’s surface  

𝜂 =
∭𝑅𝑎𝑐𝑡𝑢𝑎𝑙𝑑𝑉

∭𝑅𝑖𝑑𝑒𝑎𝑙,𝑠𝑑𝑉
 (5 − 4) 

The effectiveness factor, 𝜂, has been shown to be sensitive to particle morphology 

[64][122]. Combining Eqs. (5-3) and (5-4), the overall effectiveness factor, ηoverall, is 

related to the (classically defined) effectiveness factor, η, by  

𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−3𝐷 = 𝜂 
∭𝑅𝑖𝑑𝑒𝑎𝑙,𝑠𝑑𝑉

∭𝑅𝑖𝑑𝑒𝑎𝑙,∞𝑑𝑉
 (5 − 5A) 

By eliminating common terms in 𝑅𝑖𝑑𝑒𝑎𝑙,𝑠 and 𝑅𝑖𝑑𝑒𝑎𝑙,∞, the expression for the overall 

effectiveness factor can also be written (for a first-order oxidation reaction) as 

 

𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−3𝐷 = 𝜂 

1
𝑆 ∬𝑃𝑂2,𝑠𝑑𝑆

𝑃𝑂2,∞
 (5 − 5B) 
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where the numerator represents the surface weighted average oxygen pressure on the 

particle external surface and 𝑃𝑂2,∞ is the oxygen pressure at the far field boundary. 

To calculate an overall effectiveness factor using a analytical combustion model, 

𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−1𝐷, a simple diffusion model is typically used [36,156] to calculate the partial 

pressure of reactant at the particle surface, 𝑃𝑂2,𝑠, which differs from its partial pressure at 

the outer edge of the boundary layer, 𝑃𝑂2,∞. Using Eq. (5-5B) and the ideal gas relation 

for partial pressure to mole fraction, the analytical overall effectiveness factor can be 

expressed in term of partial pressures (for a first-order reaction) as 

𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−1𝐷 = 𝜂1𝐷

𝑃𝑂2,𝑠

𝑃𝑂2,∞
  (5 − 6) 

where 𝜂1𝐷 is the effectiveness factor calculated from the analytical models outlined in 

Chapter 4. The partial pressure on the particle surface is found by equating the reaction 

rate and the diffusion rate at the particle surface (the subscript “ext” indicates that this 

calculation is typically done on a per unit external surface area basis) [34]  

𝑅𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛,𝑒𝑥𝑡 = 𝑅𝑑𝑖𝑓𝑓,𝑒𝑥𝑡 (5 − 7) 

𝑅𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛,𝑒𝑥𝑡 of Eq. (5-7) represents the actual, diffusion-limited reaction rate in the 

particle per unit interfacial area, given by [36]  

𝑅𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛,𝑒𝑥𝑡 = 𝜂1𝐷  
𝐿𝑆𝑘𝑀𝑐𝑃𝑠

𝜈𝑅𝑢𝑇𝑝

(5 − 8) 

where 𝑀𝑐 is the molar mass of carbon, L is the particle’s characteristic length, defined as 

the particle’s microporous volume to its interfacial area (red/blue and red/green interface 

in Fig. 3), 𝜈 is the stoichiometric coefficient, 𝑅𝑢 is the gas constant, and 𝑇𝑝 is the particle 
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temperature. As in Chapter 4, S and k represent the particle’s sub-grid-scale surface area, 

and the associated intrinsic reaction rate coefficient.  

For right hand side of Eq. (5-7), classical 1-D boundary layer diffusion models are 

typically applied [36], and the rate of diffusion to the particle’s external surface is given 

by   

𝑅𝑑𝑖𝑓𝑓,𝑒𝑥𝑡 =
2𝐷𝑚𝑀𝑐

𝑑𝑝𝑅𝑢𝑇𝑚𝜈
(𝑃∞ − 𝑃𝑠) (5 − 9) 

where,  𝑑𝑝 is particle diameter which equals to 2𝑅𝑜𝑢𝑡, 𝐷𝑚 is the (mixture averaged) 

reactant diffusion coefficient in the gas boundary layer, 𝑇𝑚 is the film temperature 

defined as 𝑇𝑚 = 
𝑇𝑝+𝑇𝑏

2
 [157]and 𝑇𝑏 is the bulk temperature.  

For a particle of a given size and porosity, 𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−𝑎𝑐𝑐−ℎ𝑠 will exceed 

𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−𝑖𝑛𝑎𝑐𝑐−ℎ𝑠 because of the enhanced gas penetration represented in the boundary 

conditions used in deriving 𝜂𝑎𝑐𝑐−ℎ𝑠. To distinguish between accessible and inaccessible 

hollow sphere behavior for real 3-D char particles, an accessibility indicator, AI, is 

defined as 

𝐴𝐼 =
𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−3𝐷 − 𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−𝑖𝑛𝑎𝑐𝑐−ℎ𝑠

𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−𝑎𝑐𝑐−ℎ𝑠 − 𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−𝑖𝑛𝑎𝑐𝑐−ℎ𝑠
 (5 − 10) 

The particles behave as increasingly accessible cenospheres as AI approaches (or in rare 

cases, exceeds) unity and behave as increasingly inaccessible cenospheres as AI 

approaches zero.  

To train the SVM and RF classifiers, morphological parameters were calculated 

using manual segmentation and image analysis, as described in Chapter 6. In total, 150 
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particles and their corresponding independent variables (the eight morphological 

parameters) were used to train and test the SVM and RF classifiers. The ratio of the 

training set to the test set was 4:1.  

Prior to the ML training, it is noted that each morphological parameter has a 

different scale of numerical values. The porosity, for example, is around 0.3 but the solid 

volume of particle is around 4-13 m. It has been noted [158] that the value of the 

independent features can result in a larger weight for some features during regression and 

classification. Therefore, it is necessary to scale the values of each feature into a 

comparable range, to find the real impact of various features. One common method is to 

calculate the means and standard deviations of each variable and transform each input 

using a linear transformation,  

𝑋𝑖 =
(𝑥𝑖 − 𝜇𝑚𝑒𝑎𝑛)

𝜎𝑚𝑒𝑎𝑛
 (5 − 11) 

where the 𝑥𝑖 is the original input value for each feature along with corresponding means, 

𝜇, and standard deviations, 𝜎. All morphological parameters were standardized using this 

approach. 

The char particles were separated into two morphological classes based on their 

combustion behavior. Class labels were assigned using the calculation of AI for each 

particle from the 3-D pore-resolving simulations. Particles with AI<0.5 were labeled 

inaccessible cenospheres, while particles with AI ≥ 0.5 were labeled accessible 

cenospheres. The classifiers were then trained to predict the combustion behavior class of 

the particles using 3-D morphological features. 
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The accuracy (𝐴𝐶𝐶𝑡𝑟𝑎𝑖𝑛) of the classifiers was evaluated by 10-fold cross-

validation during the training, which represents the fraction of candidate particles in the 

training set that were correctly classified. The basic ideal of 10-fold cross-validation is 

that the training data set is first randomly divided into 10 sub data sets with the same size, 

of which nine sub datasets are used to train the model and the rest one dataset is used as 

“test” dataset to evaluate the performance of model. This process is repeated ten times 

(10-fold). The model among those 10-time repeating with the highest accuracy is 

exported as the final trained model. 

The confusion matrix was then used to assess the performance of classifier for the 

test set using true positive (TP), false negative (FN), false positive (FP), and true negative 

(TN) predictions. The test set prediction accuracy for each classifier was calculated as  

𝐴𝐶𝐶𝑡𝑒𝑠𝑡 = 1 −
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5 − 12) 

To test the stability of the classifiers, the data set was randomly resampled ten 

times (repeated cross-validation) and separated into training and test sets. Each time, the 

classifiers were trained and evaluated. The final performance of the classifiers was 

assessed using the averaged confusion matrix (containing averaged TP, FN, FP, and TN 

obtained from each repetition). The 𝐴𝐶𝐶𝑡𝑟𝑎𝑖𝑛 and 𝐴𝐶𝐶𝑡𝑒𝑠𝑡 presented in next section have 

been averaged.  

Feature selection was used to eliminate unnecessary input features, to simplify the 

classifier, to reduce training time, and to reduce potential biases caused by morphological 

parameter quantification.  Since a backward feature selection algorithm can capture 

interacting features, the backward wrapper method [159] was used to remove irrelevant 
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and redundant features which have negative contributions to the classification 

performance. During the procedure, the algorithm was started with all features, and 

subsets of features were created by eliminating those which decrease the accuracy at each 

iteration. Ten-fold cross-validation was also employed for feature selection.  

5.3 Results and discussions 

Overall effectiveness factors were obtained from the 3-D pore-resolving 

simulation and compared to analytical overall effectiveness factor for 150 coal char 

particles to evaluate the inaccessible and accessible hollow sphere models. As shown in 

Fig. 5-4. Particles are arranged on the abscissa in order of increasing ratio of the averaged 

oxygen mole fraction on the internal surface to the averaged oxygen mole fraction on the 

external surface (“O2 ratio"), which serves as a proxy for the level of enhanced diffusion 

elicited by the surface-accessible pores. The average relative error for the inaccessible 

hollow sphere model applied to all particles with AI < 0.5 is 11.6%, and the average 

relative error for the accessible hollow sphere model applied to all particles with AI ≥ 0.5 

is 8.8%. It is noted that the average relative error using the inaccessible hollow sphere 

model increases to 34.0% for the 30 particles with the highest O2 ratio and the average 

relative error using the accessible hollow sphere model increases to 23.2% for the 30 

particles with the lowest O2 ratio, indicating the importance of morphological 

classification for accurate combustion modeling. Furthermore, the inaccessible and 

accessible hollow sphere models generally bound the behavior of the highly porous 

bituminous char particles, making them appropriate choices for binary classification. 

However, a third effectiveness factor model could potentially be developed to increase 
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the accuracy for the transitional cenospherical particles, in which case a multi-class 

classification scheme would be necessary.  

 

Fig. 5-4 Comparison of overall effectiveness factors predicted by accessible and 

inaccessible hollow sphere models with the overall effectiveness factors obtained by 

volume integration of the 3-D, pore-resolving simulation. 

Following feature selection, five morphological parameters remained: the external 

surface area, contour ratio, resolved porosity, solid volume, and 𝑉𝑃𝐿. To first focus on the 

performance of the classifiers without the confounding effects of the performance the 

automated image analysis routine, results are presented in Tables 5-1 and 5-2 for the 

SVM and RF classifiers, respectively, using manually measured morphological 

parameters. After 10-fold repeated cross-validation to train the SVM and RF classifiers 

using 80% of total particles, the average training accuracy, 𝐴𝐶𝐶𝑡𝑟𝑎𝑖𝑛, for the SVM and 

RF classifier were 0.735 ± 0.019 and 0.740 ± 0.027, respectively. The remaining 20% of 
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particles were used as a test set to examine classifier performance and robustness. It is 

observed that both classifiers have a test accuracy greater than 70%, although the RF 

classifier has a slightly higher averaged accuracy in both training and testing sets. Both 

classifiers have higher uncertainty in 𝐴𝐶𝐶𝑡𝑒𝑠𝑡 than 𝐴𝐶𝐶𝑡𝑟𝑎𝑖𝑛, which may be caused by an 

unbalanced sample, due to the samples being selected randomly and divided into test and 

training sets each time, or by the sample size.  

The averaged confusion matrices are also shown in Tables 1 and 2. Because the 

particle distribution contains more accessible particles than inaccessible particles, as seen 

in the Tables 5-1 and 5-2, the Matthews correlation coefficient (MCC) which is used to 

evaluate the quality of binary classification system [160] is also calculated. Both true and 

false positives and negatives are considered in MCC as a balanced measurement for the 

classes with very different sizes. A coefficient near 1 indicates a perfect classification, 0 

means no better than random prediction, and -1 represents that the prediction is against 

the observation. The MCC for the SVM and RF classifier were 0.320 and 0.345, 

respectively, indicating that although the sample is unbalanced and the classifiers have 

been trained to identify more particles as accessible by default, the RF and SVM 

classifiers still improve classification performance compared to random predictions 

(MCC of zero). This is particularly the case for the RF classifier, which performs better 

than the SVM for inaccessible particles. 

It is observed that the accessible and inaccessible effectiveness factor models 

provide similar accuracy for transitional particles, which have AI near 0.5. This stems 

from the fact that the classification employed for char particles is based on a continuous 

quantitative metric rather than qualitative differences that can be unambiguously 



108 
 

 
 

classified. It is therefore not unexpected that transitional particles would cause difficulty 

for the classifiers. The mean AI of misclassified particles in the test group for the SVM 

and RF classifiers is 0.44 ± 0.26 and 0.48 ± 0.25, respectively. This indicates that 

classification errors occur primarily for transitional particles, with an AI range of 0.3 to 

0.7. 

Table 5-1 Averaged confusion matrix for SVM classifier. 

 Predicted classes 

 Accessible-type 

particle 

Inaccessible-type 

particle 

Measured  

classes 

Accessible-

type particle 

TP: 17.9 FN: 2.6 

Inaccessible-

type particle 

FP: 5.6 TN: 3.9 

𝐴𝐶𝐶𝑡𝑒𝑠𝑡 0.727 ± 0.048 

𝐴𝐶𝐶𝑡𝑟𝑎𝑖𝑛 0.735 ± 0.019 

MCC 0.320 

Table 5-2 Averaged confusion matrix for RF classifier. 

 Predicted classes 

 Accessible-type 

particle 

Inaccessible-type 

particle 

Measured 

classes 

Accessible-

type particle 

TP: 17.6 FN: 3.1 

Inaccessible-

type particle 

FP: 4.9 TN: 4.4 

𝐴𝐶𝐶𝑡𝑒𝑠𝑡 0.733 ± 0.068 

𝐴𝐶𝐶𝑡𝑟𝑎𝑖𝑛 0.740 ± 0.027 

MCC 0.345 

 

Figure 5-5(a) shows the accuracy of the classifiers with transitional particles 

eliminated from the input data set, using definitions of transitional based on AI ranges of 

0.40-0.60, 0.35-0.65, and 0.3-0.7. The classifiers were re-trained with each new data set 
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under the same conditions described above. With increasing numbers of transitional 

particles removed, the average 𝐴𝐶𝐶𝑡𝑒𝑠𝑡 for the RF classifier increases from 0.733 to 

0.853 and the average 𝐴𝐶𝐶𝑡𝑒𝑠𝑡 for the SVM classifier increases from 0.727 to 0.847. It is 

noted that even when the AI drop-off range is 0.3-0.7, there are still 104 particles 

remaining in the distribution. This indicates that the classifiers reliably predict 

combustion behavior for most of the highly porous bituminous coal char particles based 

on morphology, but that a multi-class classification approach could improve the accuracy 

for transitional particles.  

    

Fig. 5-5 Average accuracy with (a) transitional data removed (left) and (b) as a function 

of sample size for the RF algorithm. 

Unlike deep learning algorithms, machine learning exhibits a peak in performance 

with increasing data size [161]. Figure 5-5(b) shows the sample size sensitivity for RF 

and SVM average accuracy, 𝐴𝐶𝐶𝑡𝑒𝑠𝑡. Ideally, the training error and cross validation error 

should be identical with increased samples size and remain the same no matter how much 

data is added thereafter. This means the “variance” (the gap between “train error” line 

and “cross validation” line) should be small, eventually. However, the variances here for 

both SVM and RF algorithms are still high between their validation error and training 
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error. This indicates that the performance of the classifiers could be further improved 

with a larger sample size.  

5.4 Conclusions 

 To facilitate modeling distributions of porous char particles in reactor-scale CFD 

codes, machine learning algorithms have been developed to classify bituminous char 

particles according to their expected zone II combustion behaviors. In contrast to existing 

approaches that classify particles based only on their morphology and employ 2-D 

quantification methods, the approach outlined here uses machine learning to classify 

particles according to their combustion behaviors, using 3-D morphology from micro-CT 

as input and 3-D pore-resolving CFD simulations to assign the class labels during the 

training. 

For the highly porous coal char particles examined here, both inaccessible and 

accessible hollow sphere effectiveness factor models accurately represent (and bound) the 

behavior of most particles in the distribution. However, a more complex model could 

improve the representation of transitional particles. Each of the 150 char particles in the 

distribution was classified as behaving either as an accessible or inaccessible hollow 

sphere based on its zone II combustion behaviors simulated with the geometrically-

faithful pore-resolving simulation.   

Support vector machine and RF classifiers for the highly porous char particles 

were then trained using data from the 3-D pore-resolving simulations to classify particles 

according to their combustion behavior using 3-D morphological parameters obtained 

from micro-CT as input. The accuracy of the pre-trained classifiers was 0.740 ± 0.027 for 
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the RF algorithm and 0.734 ± 0.019 for the SVM, using manually measured 

morphological parameters, and the MCC was 0.320 and 0.345, respectively. The 

misclassified particles were generally transitional particles which exhibited intermediate 

zone II combustion behavior between that of accessible and inaccessible hollow spheres, 

indicating that a multi-class classifier could improve performance. 
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Chapter 6. Particle Morphological Parameters Quantification based on 3-D 

Automated Image Analysis for Effectiveness Factor Model Calculation and Particle 

Classification 

In Chapter 5, a classification system to choose an appropriate effectiveness factor 

model for every particle in a distribution was developed using 3-D morphological 

parameters as input, and for which the classifiers were trained with labels from the 3-D 

pore-resolving simulations. To allow others to use the pre-trained classifiers without 

having to do the tedious work of manual 3-D morphology measurements, an automated 

image analysis routine is developed in this chapter. It is noted that the measured 

morphological parameters (e.g., particle porosity) would not only be used in 

classification, but would also serve as parameters in the effectiveness factor models.  

Conventional methods to measure particle morphological parameters are briefly 

summarized in Section 6.1 along with their limitations, which were discussed in the 

Chapter 2. Some basic image process techniques that are typically used to segment 

objects from obtained images are also introduced in Section 6.1. The workflow for a 3-D 

automated image analysis system integrated with a classification process and used to 

predict effectiveness factor models for use in reactor-scale codes is described at the end 

of Section 6.1. In Section 6.2, the detailed steps of automated 3-D structure construction 

and parameters measurement are explained. The accuracy of the 3-D automated image 

analysis system is assessed by comparing the morphological parameters obtained from 

the manual process and automated process in Section 6.3. The advantages of proposed 

automated images analysis system to measure the parameters and its future works are 

highlighted in the Section 6.4. 
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6.1 Introduction  

From Chapter 2, it is known that char morphology distributions are currently 

quantified by embedding a distribution of particles in resin, slicing it to obtain 2-D cross-

sections, and examining the cross-section using microscopy [99]. The resolved porosity is 

estimated for each particle in the distribution by calculating the fraction of the cross-

sectional area occupied by visible pores to its total cross-sectional area. Wall thickness 

and other properties are similarly measured from 2-D cross-sections [104]. Automated 

techniques have been developed to efficiently quantify morphological properties for a 

large distribution of particles based on 2-D cross sections [104,106,145]. 

However, morphology measurements 

based upon 2-D cross-sections can produce 

results that are quite different compared to 3-

D techniques, as illustrated by two cross-

sections of the same particle shown in Fig. 6-

1, which imply very different resolved 

porosities. More importantly, in a statistical 

sense (for a distribution of particles), 2-D quantification methods produce biased results, 

as shown by a comparison of 2-D and 3-D porosity measurements for a distribution of 

coal char particles (Ref. [100], see Fig. 12 therein). This implies that 2-D quantification 

methods will not be able to accurately classify distributions of particle-scale combustion 

behavior. 

Fig. 6-1 Two orthogonal cross-sections 

of the same char particle imaged with 

micro-CT.  
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X-ray CT has been used to examine the internal and external structure of coal and 

biomass particles in 3-D (e.g., [116,124,162,163]), including the spatial distribution of 

porosity and its directionality [115,164]. A single two- to-three-hour micro-CT scan can 

image the internal and external structure of hundreds of pulverized char particles 

simultaneously and at high resolution (µm-scale voxels), enabling morphology 

measurement for every particle in the distribution [122]. However, only a single study 

[100] has quantified the morphology of a pulverized char particle distribution in three 

dimensions. 

To overcome the disadvantages of the 2-D parameters quantification, Figure 6-2 

shows an outline of the automated image analysis procedure in green box proposed in the 

present study for quantifying char particle morphological parameters in 3-D, which has 

been implemented using MATLAB. Pre-processing, filtering, and thresholding are used 

to segment the particles from the background. Segmentation of each particle is then 

performed in 3-D to distinguish between the carbonaceous microporous solid and the 

resolved pores. Morphological features are then quantified and can be imported into pre-

trained classifiers to select appropriate distributions of particle-scale combustion models 

and the effectiveness factor models calculation in reactor-scale CFD codes. Details of 

each step are provided in the next section. 
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Fig. 6-2 Workflow for automated 3-D image analysis (green box) and classification. 

Image segmentation, which plays a key role in this workflow, converts the 

scanned image into analyzable objects. The non-overlapping objects of interest are 

partitioned from an image by the image segmentation algorithms using image intensity, 

texture, contrast, and/or color [165]. Many segmentation algorithms have been developed 

and can be generally separated into histogram-based thresholding (global, local, entropy, 

etc.)[166], region-based (clustering [167], graph cut [168]), edge-based [169]. The latter 

two are also known as level set image segmentation.  

Similar to the level-set image segmentation, the classification of the different 

algorithms based on their properties is shown in Table 6-1 adjusted from [170]. Many of 
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recent developed algorithms are not explained here since it is not the main objective for 

the current study. 

Table 6-1 The classification of level set image technologies. 

Level set image segmentation 

Edge-based Region-based 

Distance Clustering Watershed 

Reaction diffusion K-means Markov random field 

local region fitting 

information 

Fuzzy c-means graph cut 

Virtual magnetic 

interaction 

local intensity clustering Region merging prior 

L-distribution Mean shift Gaussian mixture 

model 

Weighting energy 

function 

Bayesian risk and Bayesian 

analysis 

Region growing 

  

To facilitate application of the workflow to other highly porous char particle 

distributions, the present chapter will develop an automated 3-D workflow to improve the 

predictive capability of the reactor-scale CFD simulations by using the correct proportion 

of effectiveness factor models for particle distributions based on their morphology.  

6.2 Automated image analysis procedure 

6.2.1 Image pre-processing and filtering 

Individual particles were manually separated from the micro-CT scan of the char 

particle distribution, although this initial step will be automated in the future. One 

hundred and thirty particles were used to test the automated image analysis procedure, 

since 20 particles were not able to be segmented from the support material. After a stack 

of images representing an individual particle is imported, the routine automatically 
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improves image quality by introducing the Gaussian filter window moving through the 

image matrix to reduce noise, and the contrast-limited adaptive histogram equalization 

algorithm [171] to enhance contrast.  

6.2.2 Automated mask image segmentation  

 As discussed in the previous section, the level set method is capable to combine 

with thresholding methods to find accurate initial mask region for further iteration. 

Therefore, the performance of various histogram-based thresholding technology was 

tested by ImageJ [172] which has integrated multiple thresholding methods. The original 

test image and its manual segmentation is shown in Fig 6-3. 

 

Fig. 6-3 The original test image (left) and the manual segmented image (right). 

The same original image imported into the ImageJ and the segmented results were 

shown in Fig 6-4. The methods applied in the ImageJ here are all classical methods used 

for image segmentation for a decade. Since there are numbers of developed algorithms, it 

is a good and quick start to compare multiple methods for the people to determine 

specific method to focus on. The detailed information about each thresholding methods 

can be found in the ImageJ reference, the plug-in function is called “Auto Threshold”. 

Newly developed methods can be used in future work. 
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Fig. 6-4 The segmented test images with different thresholding methods. 

 It is clear that Otsu method performed the best segmentation. Otsu’s method 

determines the minimal variance between the foreground and background by using an 

image’s grayscale histogram. Otsu’s method is popular due to its computational 

efficiency and its accuracy in finding object boundaries [173], but the global thresholding 

employed in 1-D Otsu’s method has limited ability to handle images with low contrast, 

high noise, and small size compared to the background. 2-D Otsu’s method utilizes gray 

value distributions and grayscale information from neighboring pixels to generate two-

dimensional histograms, improving the segmentation performance [174]. Following 

image preparation and pre-processing, the size of the 3-D image matrix that contains the 

particle was calculated. Based on that, three 2-D images located at the center of each 

orientation were found automatically. Those 2-D images, or mask images, from 

orthogonal planes were extracted from the 3-D images matrix and used for further 

binarization.  The mask images were then automatically binarized by introducing the 
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grayscale images into 2-D Otsu’s function. During the automated procedure, the 

threshold was calculated based on the greyscale histogram to distinguish the particle from 

the background. The pixels with grayscale value higher than the threshold were identified 

as particles while the remaining pixels were labeled as background.  

6.2.3 Automated 3-D segmentation  

With binarized central mask images, an image matrix was automatically 

reconstructed by employing the “active contour without edges” function (The 

“activecontour” function in MATLAB), which is based on the Mumford–Shah 

minimization and the level set method [175]. The “activecontour” function is employed 

to segment images into background and foreground due to the following reason: (1) The 

micro-CT images of char particle are only grey-level images with relatively simple 

structures. The algorithm uses classic edge-based level set model that is good at handing 

complex topologies and capturing boundary for images with intensity homogeneity and 

noises problem (see next section for details). (2) It can combine with thresholds methods 

to improve the accuracy of the segmentation by generating correct initial mask images. 

(3) It is user-friendly for people to customize for their own case because it has fewer 

parameters compared to newly developed algorisms (Such as Level Set Evolution method 

with Distance Regularized (DRLSE) [176], Level set method based on local 

approximation of Taylor expansion (LATE) [177], etc.). 

Starting from a binarized mask image, the “activecontour” function finds the 

boundaries of objects and is used to extend segmentation to the entire particle. This 

method is robust to noise [175], but requires an accurate mask image. Following this 

segmentation step, a 3-D binary image matrix was produced. Figure 6-5 shows an 
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original micro-CT image, the 2-D binary image from one perspective, and the 3-D 

structure generated by the automated procedure for image processing, filtering, and 

segmentation. 

 

Fig. 6-5 Original image cross section (left), and automatically generated 2-D binary 

image (middle), and 3-D structure (right). 

6.2.4 Automated morphological parameter measurement  

Resolved porosity, solid volume, internal surface area, external surface area, 

contour ratio, and void position indices (𝑉𝑃𝐿, 𝑉𝑃𝑊, 𝑉𝑃𝐻) were measured using pixel and 

voxel information obtained from the automatically-generated 3-D structure. The 

workflow for automated measurement of each parameter is illustrated in Fig. 6-6. All 

functions employed in the workflow are available in the MATLAB image processing 

toolbox.  
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Fig. 6-6 Workflow for automated measurement of morphological parameters. 

A loop employing a close and fill operation is first applied to the segmented 

particle volume. The close function is used to close gaps on the particle surface and a 

filling function is used to fill isolated resolved pores within the particle. In this step, any 

pores inside the particle are filled. By using a subtraction function, the pore-space can be 

extracted from the filled particle. The resolved porosity, 𝜃, is then calculated as the ratio 

of the pore volume to the volume of the filled particle, in which the volume accounts for 

the number of voxels in the 3-D volumetric binary image and the voxel size. The surface 

area calculation is based on the method described in [178] by accounting for distance 

around the boundary of the region using the Crofton formula. As in the manual 
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measurement (see Chapter 5), the void position indices are obtained in the automated 

procedure by constructing separate bounding boxes for the particles and their resolved 

pores. All measurements for surface area, volume, and void position indices are 

implemented using the MATLAB functions ‘regionprops3’ directly. The erode function 

is used to find the boundary of the original segmented particle, which is known as a 

contoured particle. The boundary can be found by subtracting the eroded particle volume 

from the original particle volume. Therefore, the contour ratio is the number of voxels on 

the contoured surface divided by the number of voxels in the original segmented particle.  

6.3 Results and discussions 

To facilitate a fully automated morphology quantification and combustion-model 

classification scheme for highly porous char particles from other bituminous coal 

feedstocks, the automated image analysis routine described in Section 6.1 has been 

tested. The morphological parameters obtained from the automated image analysis 

routine are compared with the manually-segmented and measured values, which were 

used to train the classifiers described in the Chapter 5 and analytical effectiveness factor 

calculations in Chapter 4. The morphology of 130 particles has been quantified with the 

automated image analysis procedure, since 20 particles could not be auto-segmented due 

to similarity in the attenuation coefficient between the particles and the support material.   
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Fig. 6-7 Comparison of automated segmented and measurement with manual 

segmentation and measurement for (a) resolved porosity, (b) solid volume, (c) external 

surface area, (d) internal surface area, (e) contour ratio, and (f) 𝑉𝑃𝐿. 

The comparisons between automated measurement of resolved porosity, particle 

solid volume, internal surface area, external surface area, contour ratio, and 𝑉𝑃𝐿 and their 
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respective manually measured values are shown in the parity plots of Fig. 6-7, in which 

the particle classification is also indicated. The average relative errors for automated 

measurement of resolved porosity, solid volume, external surface, internal surface, 

contour ratio and 𝑉𝑃𝐿compared to their “true” manual measurements are 11.1%, 11.6%, 

9.7%, 11.8%, 11.3%, 11.1%, respectively. It is noted that manual segmentation by a 

skilled operator typically takes at least 30 minutes per particle, while the computational 

time of automated image analysis is typically between 0.5 and two minutes on a 28-core 

workstation, depending on the structural complexity and size of the particle and requires 

no special training. 

6.3.1 Assessment of pretrained classifiers using automated parameter measurement 

In the proposed workflow, true class labels are assigned using data from the 3-D 

pore-resolving simulations and classifiers are trained with manually measured 

morphological data. The pretrained classifiers could then be used for other highly porous 

char particles with morphological data obtained from automated image analysis. To test 

the entire proposed workflow, for 10-fold repeated cross-validation, 120 particles with 

manually measured data are randomly selected and used to train classifiers and the 

remaining 30 particles, with automated morphological data measurement, are used to test 

the classifiers’ performance.  After the same repeated cross-validation procedure, the 

performances of each algorithm are evaluated as shown in Table 6-2 and Table 6-3 

respectively.  
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Table 6-2 Averaged confusion matrix for the SVM classifier using automated data. 

 Predicted classes 

 Accessible-type 

particle 

Inaccessible-type 

particle 

Measured  

classes 

Accessible-

type particle 

TP: 20.1 FN: 0.6 

Inaccessible-

type particle 

FP: 8.1 TN: 1.2 

𝐴𝐶𝐶𝑡𝑒𝑠𝑡 0.710 ± 0.047 

MCC 0.195 

Table 6-3 Averaged confusion matrix for the RF classifier using automated data. 

 Predicted classes 

 Accessible-type 

particle 

Inaccessible-type 

particle 

Measured 

classes 

Accessible-

type particle 

TP: 17.7 FN: 3 

Inaccessible-

type particle 

FP: 5.5 TN: 3.8 

𝐴𝐶𝐶𝑡𝑒𝑠𝑡 0.716 ± 0.058 

MCC 0.291 

 

The average 𝐴𝐶𝐶𝑡𝑒𝑠𝑡 for the SVM and RF classifier are 0.710 ± 0.047 and 0.716 ± 

0.058, which are slightly lower than the results obtained using manual data. While on the 

surface it appears that the particles’ combustion behavior can be acceptably predicted 

using automated image analysis data, it is observed from the confusion matrix that the 

SVM classifier is simply assigning nearly all particles to the larger set (the accessible 

particle class), leading to a high proportion of correct predictions. The MCC accounts for 

this behavior in the presence of an unbalanced sample, and the MCC for the SVM with 

automated morphological data is below 0.2, indicating poorer performance compared to 

the RF classifier, which has MCC of 0.291 using automated morphological data. 
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To assess the impact of transitional particles, the MCC of classifiers using both 

manual and automated morphological measurements as input are calculated with 

transitional particles eliminated for AI ranges of 0.40-0.60, 0.35-0.65, and 0.3-0.7 and 

shown in Fig.6-8. 

  

Fig. 6-8 MCC with transitional data removed of (a) manual data (Left) and (b) 

Automated data (Right). 

With increasing numbers of transitional particles removed, the MCC for RF and SVM 

classifiers increase from 0.34 to 0.552 and 0.32 to 0.529 when using manually measured 

morphological data as input. For automated morphological data, however, the MCC for 

RF increases slightly from 0.291 to 0.323 and the MCC for the SVM decreases from 

0.195 to 0.150. It thus appears that the transitional particles are not the primary reason for 

the low classification quality when automated data is employed. Rather, as mentioned 

above, due to the similarity in attenuation coefficient between the particles and the 

support material used in the micro-CT imaging, inaccuracies were more likely to occur 

during the automated image processing than in the manual image processing.  
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6.3.2 Assessment of proposed workflow for predicting combustion behavior 

Based on the data shown in Fig. 5-4 and on Eq. (5-6), 𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−3𝐷 and AI are 

known for every particle. Knowing the "true” class label for every particle, the "true" 

analytical model for every particle can be applied to calculate its “true” 𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−1𝐷−𝑡𝑟𝑢𝑒. 

The “true” relative error in effectiveness factor when using the most appropriate 

analytical combustion model (accessible or inaccessible hollow spheres) can then be 

calculated using  

                                    

𝜀𝑡𝑟𝑢𝑒 1𝐷 = |
(𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−1𝐷−𝑡𝑟𝑢𝑒 – 𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−3𝐷)

𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−3𝐷
| (6 − 1) 

This error measures the physical (1-D) model's ability to mimic reality (after averaging 

over all particles tested).  

Similarly, for each image analysis/classification combination (manual/SVM, 

manual/RF, automated/SVM, automated/RF), the “predicted” 1-D model’s overall 

effectiveness factor, 𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−1𝐷−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, can be compared to 𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−3𝐷 to calculate 

the “predicted” relative error 

                        

𝜀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 1𝐷 = |
(𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−1𝐷−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 – 𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−3𝐷)

𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙−3𝐷
| (6 − 2) 

This error measures the workflow’s ability to mimic reality when constrained by 

the choice of physical model (when averaged over all particles tested). 

Finally, the ultimate metric for characterizing the proposed workflow's ability to 

select the most appropriate of the hollow sphere 1-D combustion models is the 
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“performance ratio” 𝜀𝑡𝑟𝑢𝑒 1𝐷 𝜀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 1𝐷 .⁄  A performance ratio of unity indicates that 

the proposed workflow is doing the best possible implementing the computationally 

efficient 1-D model, while lower ratios indicate poorer performance.  

 

Fig. 6-9 Performance ratio for machine learning algorithms based on the manual and 

automated data. 

The error evaluation procedure was repeated 10 times with 30 randomly selected 

particles used as test set. Averaging over all particles tested, 𝜀𝑡𝑟𝑢𝑒 1𝐷 was 0.099. For SVM 

and RF with manual measured parameters, 𝜀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 1𝐷 was 0.129 and 0.121, 

respectively. For SVM and RF with automated image analysis and measurement, 

𝜀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 1𝐷 was 0.147 and 0.137, respectively. Therefore, the performance ratio for 

SVM and RF with manual measured parameters are 0.767 and 0.818, while the ratio for 

SVM and RF with automated measured parameters are 0.673 and 0.723. These 

performance ratios are shown in Fig. 6-9 for the four combinations of image 

analysis/classification approaches. The latter value indicates that the entire proposed 

workflow, with fully automated image analysis and pretrained RF classification based on 
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3-D pore resolving simulations, can reasonably implement a computationally efficient 

particle combustion model amenable for incorporation in reactor-scale CFD codes. 

Nonetheless, as indicated by the confusion matrices and MCC values in Tables 6-2 and 6-

3, optimization of the particle mounting in the micro-CT imaging procedure to increase 

contrast in the attenuation coefficients between the particles and substrate, improvements 

to the image analysis routine, optimization of the classifiers, and a larger, more balanced 

sample would likely improve the workflow’s performance.   

6.4 Conclusions 

 To facilitate application of pretrained classifiers to other porous char particles, an 

automated image analysis routine was developed to process and segment individual 

particles and to measure their 3-D morphological parameters required by the classifier.  

 The functions from MATLAB’s image processing toolbox that can be easily 

customized for specific problems are employed in this automated image analysis routine. 

The routine segments individual particles and measures their 3-D morphological 

parameters required by the classifier and effectiveness factor models calculation. For the 

six key morphological parameters that were used in the machine learning classification 

algorithm and analytical effectiveness factor models calculation, the highest average 

relative error for automated measurement of the key morphological parameters compared 

to the manual measurements was 11.8%.  

The ability of the entire proposed workflow to select a computationally efficient 

1-D model using fully automated image analysis and pretrained classifiers was assessed. 

It is noted that the classification employed for char particles is based on a continuous 
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quantitative metric (AI) rather than qualitative differences that can be unambiguously 

classified. Furthermore, the ultimate metric for assessing the workflow is its accuracy in 

the selected combustion model. When using the most appropriate analytical model for 

each particle, as determined by the true AI values from 3-D CFD, the average relative 

error in analytical effectiveness factors compared to the effectiveness factor from the 3-D 

simulations was 0.099, whereas the average relative error in analytical effectiveness 

factors predicted by the full workflow was 0.137 for the RF classifier with automated 

image analysis and measurement. Further work could improve the workflow’s accuracy 

and efficiency, such as automated particles separation, advanced segmentation 

technology, and larger sample sizes, as discussed in the final chapter. 
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Chapter 7. Conclusions and Future Work 

7.1 Conclusions 

Reactor-scale CFD simulation is a useful method for understanding solid fuel 

combustion and gasification and to enhance its efficiency and reduce its cost. Reactor-

scale CFD requires accurate and predictive sub-models describing the behavior of single 

char particles that are tracked in reactor-scale codes.  

Combustion and gasification of pulverized char often occur under zone II 

conditions, in which the rate of conversion depends on both heterogeneous reaction and 

gas transport within the particle’s porous structure. The morphology of porous char has a 

strong influence on intra-particle diffusion, and thus, on the overall conversion rate. 

Because pulverized coal and biomass char particles are often irregularly shaped and 

contain pores and voids which can approach the size of the particles themselves, 

conventional models based on spherical and cylindrical symmetry and coarse-grained, 

upscaled, effective continuum conservation equations are not applicable or appropriate.  

A 3-D, pore-resolving CFD simulation approach based on real char particle 

geometries obtained from X-ray micro-computed tomography (micro-CT) obviates the 

need to upscale over large heterogeneities and to make oversimplifying geometric 

assumptions. Using pore-resolving CFD simulation for real 3-D char particles, the 

impacts of particle morphology on reactant profiles and the “true” effectiveness factor 

has been studied. Fundamental insights from this model have been used to evaluate the 

fidelity of existing effectiveness factor approaches by comparison with the results from 3-

D simulation, to determine when existing models can be accurately applied. 
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For coal char particles, the micro-CT-based pore-resolving approach is employed 

to study zone II combustion for porous bituminous coal char particles produced at a high 

heating rate. The large pores often present in char particles enhance reactant transport 

throughout the particles, even within the micro- and meso-porous carbon surrounding the 

large pores. This is particularly the case for network-type particle structures, due to the 

prominence of channels that extend from the particle surface. Cenospherical particles can 

be reasonably modeled using an effectiveness factor solution for inaccessible hollow 

spheres. The effectiveness factor of particles with higher connectivity to the outer surface 

can be predicted well by the accessible hollow sphere model.  

Biomass char particle morphology affects combustion behaviors at the particle 

scale as well. It is also typical for most biomass char particle combustion models to 

employ coarse-grained, effective-continuum approaches, which treat all porosity at the 

subgrid-scale. Effective-continuum approaches are not valid or accurate in the presence 

of large, irregular pores which can approach the size of the particle. The 3-D, pore-

resolving CFD simulation approach using real biomass char particle geometries obtained 

from X-ray micro-computed tomography (micro-CT) is therefore used to examine the 

impact of morphology on zone II combustion for 30 pulverized, high aspect ratio, pine 

char particles. These sub-millimeter biomass char particles exhibited significant, 

localized reactant penetration into the innermost regions of the particles, facilitated by the 

presence of large pores connected to the external surface as what have been found in coal 

char particle morphology study. The oxygen mole fraction distributions were governed 

by the large pore morphology, were non-monotonic with distance from the surface, and 

achieved minima in thick microporous char regions surrounding the large pores. A 
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comparison between the pore-resolving simulation and an equivalent, spatially resolved, 

effective-continuum simulation revealed that even in the microporous char, the effective-

continuum model underpredicted reactant penetration. A careful comparison was then 

performed between the 30 pore-resolving particle simulations and several effectiveness 

factor models that employed particle-specific parameters. Commonly used uniform 

cylinder models significantly underpredicted effectiveness factors for these real 

pulverized pine char particles, while accessible hollow cylinder models achieved less 

than 10% relative error when averaged over all 30 particles.  

While reactor-scale CFD codes often employ a distribution of particle sizes, they 

should also consider a distribution of particle morphologies with a corresponding 

distribution of effectiveness factor models to improve their predictive capabilities. To 

facilitate the use of realistic particle morphology distributions in reactor-scale CFD 

codes, a distribution of char particles formed under realistic heating conditions must be 

analyzed and classified. An automated workflow is proposed for 3-D morphological 

parameter quantification and classification to assign appropriate effectiveness factor 

models for as distribution of coal char particles.  

Two different ML algorithms (Support Vector Machine and Random Forest) are 

employed to classify char particles according to 1-D combustion model (inaccessible or 

accessible hollow spheres) using 3-D morphology as input and 3-D pore-resolving 

simulation data for training. The misclassified particles are generally transitional particles 

which exhibited intermediate zone II combustion behaviors between that of accessible 

and inaccessible hollow spheres, indicating that a multi-class classifier could improve 

performance.  
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To complete the workflow, morphological parameters used as input to the 

classifiers and required by the 1-D combustion models are automatically measured using 

a routine developed in MATLAB. The average relative errors for automated 

measurement of the key morphological parameters compared to the manual 

measurements are all under 11.8%. The general computation time is between 0.5 and two 

minutes on a 28-core workstation while the manual measurement typically takes over 30 

minutes. 

The performance of the entire proposed workflow using automated image analysis 

and pretrained classifiers was assessed. When using the most appropriate analytical 

model for each particle, as determined by the true AI values from 3-D CFD, the average 

relative error in analytical effectiveness factors compared to the effectiveness factor from 

the 3-D simulations was 0.099, whereas the average relative error in analytical 

effectiveness factors predicted by the full workflow was 0.137 for the RF classifier with 

automated image analysis and measurement.  

7.2 Future work 

7.2.1 New analytical effectiveness factor model 

Even though accuracy would increase if the inaccessible/accessible hollow sphere 

models could be perfectly assigned, it is noted that existing effectiveness factor models 

cannot deal well with the particles that exhibit transitional behavior. Thus, a new 

effectiveness factor model should be further investigated to capture transitional particle 

behavior or even all types of particles, regardless of their pore connectivity to the outer 
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surface. In recent work, we have found that the 1D–GC/VD models (mentioned in 

Chapter 4) are a possible solution. 

 In Chapter 4, the accuracy of 1D–GC/VD models, which use entire morphological 

information (G function), is limited by the restrictive assumption, for high temperature 

combustion and gasification applications, of uniform reactant concentration along the 

interface between the microporous solid and external surface/resolved pores. This causes 

a higher predicted effectiveness factor than the “true” effectiveness factor. However, 

based on our recent findings, if the uniform interface boundary condition employs the 

averaged reactant concentration measured at the interface between the microporous solid 

and external surface/resolved pores (the red/blue and red/green interfaces in Fig. 3-4 in 

Chapter 3), the 1D–GC/VD model agrees quite well with the 3-D effectiveness factor for 

both coal and biomass char particles, as shown in Fig. 7-1. 

  

Fig. 7-1 Comparison of effectiveness factors predicted by 1D–GC and 1D–VD models 

effectiveness factor obtained by volume integration of the 3-D, pore-resolving simulation 

data for coal (left) and biomass (right). 

Therefore, if the correct reactant concentration can be calculated at the interfacial 

boundary (inside and outside), the 1D–GC/VD model would be suitable for all particles 
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irrespective of their structure. The spherical boundary diffusion model [36] that is 

normally used to calculate reactant partial pressure on the particle surface (see Chapter 5) 

is a decent starting point for future work but is not sufficiently complex to account for the 

reduction in reactant concentration that occurs within the resolved pores en route to the 

red/blue interface of Fig. 3-4. 

7.2.2 Automated particle separation 

The automated image analysis routine is currently based on manual particle separation as 

a first step. In future work, this step can be automated using the edge detecting filters 

(Sobel, Prewitt, etc.) or watershed transformation. A stack of scanned micro-CT images 

that contain multiple char particle on the support material would first be automatically 

binarized and flood-filled (if the watershed algorithm is applied). The individual particles 

would then be masked and separated. The procedure is shown in Fig 7-2. 

Fig. 7-2 Automated particle separation procedure using watershed transformation. 

Beyond that, more advanced methods for segmentation and increased image 

quality (via a new support material that can be better distinguished from the char 

particles) would likely improve the accuracy of 3-D structure construction. 

Original image Binarized image Region detection Separated particles 
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7.2.3 Classifier improvement  

As already mentioned in Chapter 5, using machine learning method to classify particles 

based on current measured parameters provides acceptable accuracy with standard 

hyperparameters applied. Better performance may be achievable by optimizing the 

hyperparameters, as well as expanding the data set and introducing a multi-level 

classification system. Machine learning algorithms such as ANNs could also be tested if 

the data set became large enough.  
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effectiveness factor for arbitrary particle shape and non-linear kinetics, Ind Eng 

Chem Res. 48 (2009) 1172–1177. 

[50] C.N. Satterfield, Mass transfer in heterogeneous catalysis, MIT press, 1970. 

[51] S. Dutta, C.Y. Wen, R.J. Belt, Reactivity of Coal and Char. 1. In Carbon Dioxide 

Atmosphere, Industrial & Engineering Chemistry Process Design and 

Development. 16 (1977) 20–30. https://doi.org/10.1021/i260061a004. 

[52] J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.M. Haynes, N. Pernicone, 

J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Recommendations for the 

characterization of porous solids (Technical Report), Pure and Applied Chemistry. 

66 (1994) 1739–1758. 

[53] J. Hong, Modeling char oxidation as a function of pressure using an intrinsic 

Langmuir rate equation, Brigham Young University, 2000. 

[54] R. Jackson, Transport in porous catalysts, Elsevier Science & Technology, 1977. 

[55] C. Georgakis, C.W. Chang, J. Szekely, A changing grain size model for gas—solid 

reactions, Chem Eng Sci. 34 (1979) 1072–1075. 

https://doi.org/https://doi.org/10.1016/0009-2509(79)80012-3. 

[56] S.K. Bhatia, D.D. Perlmutter, A random pore model for fluid-solid reactions: I. 

Isothermal, kinetic control, AIChE Journal. 26 (1980) 379–386. 

https://doi.org/https://doi.org/10.1002/aic.690260308. 

[57] I.W. SMITH, R.J. TYLER, The Reactivity of a Porous Brown Coal Char to 

Oxygen between 630 and 1812° K, Combustion Science and Technology. 9 (1974) 

87–94. https://doi.org/10.1080/00102207408960342. 

[58] E.W. Thiele, Relation between catalytic activity and size of particle, Ind Eng 

Chem. 31 (1939) 916–920. 

[59] C.B. Nguyen, J. Scherer, Q. Guo, S. Kriebitzsch, A. Richter, The shape 

development of spherical and non-spherical char particles in the flame zone of an 

entrained-flow gasifier – A numerical study, Int J Heat Mass Transf. 149 (2020) 

119220. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119220. 



143 
 

 
 

[60] A. Phounglamcheik, M. Bäckebo, R. Robinson, K. Umeki, The significance of 

intraparticle and interparticle diffusion during CO2 gasification of biomass char in 

a packed bed, Fuel. 310 (2022). https://doi.org/10.1016/j.fuel.2021.122302. 

[61] A.M. Lattanzi, M.B. Pecha, V.S. Bharadwaj, P.N. Ciesielski, Beyond the 

effectiveness factor: Multi-step reactions with intraparticle diffusion limitations, 

Chemical Engineering Journal. 380 (2020). 

https://doi.org/10.1016/j.cej.2019.122507. 

[62] A.N. Hayhurst, The mass transfer coefficient for oxygen reacting with a carbon 

particle in a fluidized or packed bed, Combust Flame. 121 (2000) 679–688. 

https://doi.org/10.1016/S0010-2180(99)00178-9. 

[63] K. Malek, M.O. Coppens, Knudsen self- and Fickian diffusion in rough 

nanoporous media, Journal of Chemical Physics. 119 (2003) 2801–2811. 

https://doi.org/10.1063/1.1584652. 

[64] E.M. Hodge, D.G. Roberts, D.J. Harris, J.F. Stubington, The significance of char 

morphology to the analysis of high-temperature char-CO2 reaction rates, Energy 

and Fuels. 24 (2010) 100–107. https://doi.org/10.1021/ef900503x. 

[65] S.S. Hla, D.G. Roberts, D.J. Harris, A numerical model for understanding the 

behaviour of coals in an entrained-flow gasifier, Fuel Processing Technology. 134 

(2015) 424–440. https://doi.org/10.1016/j.fuproc.2014.12.053. 

[66] H. Fatehi, X.S. Bai, Effect of Pore Size on the Gasification of Biomass Char, 

Energy Procedia. 75 (2015) 779–785. 

https://doi.org/10.1016/j.egypro.2015.07.514. 

[67] H. Fatehi, X.S. Bai, Structural evolution of biomass char and its effect on the 

gasification rate, Appl Energy. 185 (2017) 998–1006. 

https://doi.org/10.1016/j.apenergy.2015.12.093. 

[68] R. Datta, S.W.K. Leung, Shape Generalized Isothermal Effectiveness Factor for 

First-Order Kinetics, Chem Eng Commun. 39 (1985) 155–173. 

https://doi.org/10.1080/00986448508911668. 

[69] N.J. Mariani, M.J. Taulamet, S.D. Keegan, O.M. Martínez, G.F. Barreto, 

Prediction of effectiveness factor using one-dimensional approximations for 

complex pellet shapes and abnormal kinetics expressions, Ind Eng Chem Res. 52 

(2013) 15321–15329. https://doi.org/10.1021/ie4005805. 

[70] T. Doǧfu, Diffusion and reaction in catalyst pellets with bidisperse pore size 

distribution, Ind Eng Chem Res. 37 (1998) 2158–2171. 

https://doi.org/10.1021/ie970613t. 

[71] S. Whitaker, Diffusion and dispersion in porous media, AIChE Journal. 13 (1967) 

420–427. https://doi.org/https://doi.org/10.1002/aic.690130308. 



144 
 

 
 

[72] S. Wu, Surface reaction rates of coarse bituminous char particles in the 

temperature range 600 to 1340 K, 72 (1993) 1429–1433. 

[73] L. Ma, R. Mitchell, Modeling char oxidation behavior under Zone II burning 

conditions at elevated pressures, Combust Flame. 156 (2009) 37–50. 

https://doi.org/https://doi.org/10.1016/j.combustflame.2008.06.015. 

[74] S. Schulze, P. Nikrityuk, Z. Abosteif, S. Guhl, A. Richter, B. Meyer, Heat and 

mass transfer within thermogravimetric analyser: From simulation to improved 

estimation of kinetic data for char gasification, Fuel. 187 (2017) 338–348. 

https://doi.org/https://doi.org/10.1016/j.fuel.2016.09.048. 

[75] Y. Bachmat, J. Bear, Macroscopic modelling of transport phenomena in porous 

media. 1: The continuum approach, Transp Porous Media. 1 (1986) 213–240. 

https://doi.org/10.1007/BF00238181. 

[76] R. Sahu, R.C. Flagan, G.R. Gavalas, Discrete simulation of cenospheric coal-char 

combustion, Combust Flame. 77 (1989) 337–346. 

https://doi.org/https://doi.org/10.1016/0010-2180(89)90139-9. 

[77] S. Whitaker, The method of volume averaging, Springer Science & Business 

Media, 2013. 

[78] M. Sahimi, G.R. Gavalas, T.T. Tsotsis, Statistical and continuum models of fluid-

solid reactions in porous media, Chem Eng Sci. 45 (1990) 1443–1502. 

https://doi.org/https://doi.org/10.1016/0009-2509(90)80001-U. 

[79] A.M. Beckmann, J. Bibrzycki, M. Mancini, A. Szlęk, R. Weber, Mathematical 

modeling of reactants’ transport and chemistry during oxidation of a millimeter-

sized coal-char particle in a hot air stream, Combust Flame. 180 (2017) 2–9. 

https://doi.org/https://doi.org/10.1016/j.combustflame.2017.02.026. 

[80] C.B. Nguyen, J. Scherer, M. Hartwich, A. Richter, The morphology evolution of 

char particles during conversion processes, Combust Flame. 226 (2021) 117–128. 

https://doi.org/10.1016/j.combustflame.2020.11.038. 

[81] Y. Cai, K. Zygourakis, A multiscale transient model for combustion of highly 

porous chars, Ind Eng Chem Res. 42 (2003) 2746–2755. 

https://doi.org/10.1021/ie0205391. 

[82] F. Boso, I. Battiato, Homogenizability conditions for multicomponent reactive 

transport, Adv Water Resour. 62 (2013) 254–265. 

https://doi.org/https://doi.org/10.1016/j.advwatres.2013.07.014. 

[83] E.M. Ryan, A.M. Tartakovsky, C. Amon, Pore-scale modeling of competitive 

adsorption in porous media., J Contam Hydrol. 120–121 (2011) 56–78. 

https://doi.org/10.1016/j.jconhyd.2010.06.008. 



145 
 

 
 

[84] M. Sahraoui, M. Kaviany, Direct simulation vs volume-averaged treatment of 

adiabatic, premixed flame in a porous medium, Int J Heat Mass Transf. 37 (1994) 

2817–2834. https://doi.org/https://doi.org/10.1016/0017-9310(94)90338-7. 

[85] Y. Du, C. Wang, D. Che, J.P. Mathews, The influence of char particle morphology 

on char burnout behavior by atomistic simulation, Fuel. 314 (2022) 123129. 

https://doi.org/10.1016/j.fuel.2022.123129. 

[86] R. Jovanović, E. Marek, S. Maletić, D. Cvetinović, Z. Marković, Lattice Monte 

Carlo simulation of single coal char particle combustion under oxy–fuel 

conditions, Fuel. 151 (2015) 172–181. 

https://doi.org/https://doi.org/10.1016/j.fuel.2015.02.104. 

[87] H. Xin, C. Wang, E. Louw, D. Wang, J.P. Mathews, Atomistic simulation of coal 

char isothermal oxy-fuel combustion: Char reactivity and behavior, Fuel. 182 

(2016) 935–943. https://doi.org/https://doi.org/10.1016/j.fuel.2016.05.103. 

[88] C. Wang, J.K. Watson, E. Louw, J.P. Mathews, Construction Strategy for 

Atomistic Models of Coal Chars Capturing Stacking Diversity and Pore Size 

Distribution, Energy and Fuels. 29 (2015) 4814–4826. 

https://doi.org/10.1021/acs.energyfuels.5b00816. 

[89] A. Richter, P.A. Nikrityuk, B. Meyer, Three-dimensional calculation of a 

chemically reacting porous particle moving in a hot O2/CO2 atmosphere, Int J 

Heat Mass Transf. 83 (2015) 244–258. 

https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.090. 

[90] Z. Xue, Q. Guo, Y. Gong, J. Xu, G. Yu, Numerical study of a reacting single coal 

char particle with different pore structures moving in a hot O2/CO2 atmosphere, 

Fuel. 206 (2017) 381–389. 

https://doi.org/https://doi.org/10.1016/j.fuel.2017.06.035. 

[91] K. Wittig, P.A. Nikrityuk, S. Schulze, A. Richter, Three-dimensional modeling of 

porosity development during the gasification of a char particle, AIChE Journal. 63 

(2017) 1638–1647. https://doi.org/10.1002/aic.15526. 

[92] K. Wittig, P.A. Nikrityuk, A. Richter, B. Meyer, Modelling of pore growth in char 

particles by an octree-based 3D PLIC method, AIP Conf Proc. 1648 (2015) 1–5. 

https://doi.org/10.1063/1.4912353. 

[93] A.G. Dixon, M.E. Taskin, M. Nijemeisland, E.H. Stitt, CFD Method To Couple 

Three-Dimensional Transport and Reaction inside Catalyst Particles to the Fixed 

Bed Flow Field, Ind Eng Chem Res. 49 (2010) 9012–9025. 

https://doi.org/10.1021/ie100298q. 

[94] M. Behnam, A.G. Dixon, M. Nijemeisland, E.H. Stitt, Catalyst deactivation in 3D 

CFD resolved particle simulations of propane dehydrogenation, Ind Eng Chem 

Res. 49 (2010) 10641–10650. 



146 
 

 
 

[95] P.N. Ciesielski, M.F. Crowley, M.R. Nimlos, A.W. Sanders, G.M. Wiggins, D. 

Robichaud, B.S. Donohoe, T.D. Foust, Biomass particle models with realistic 

morphology and resolved microstructure for simulations of intraparticle transport 

phenomena, Energy and Fuels. 29 (2015) 242–254. 

https://doi.org/10.1021/ef502204v. 

[96] P.N. Ciesielski, M.B. Pecha, N.E. Thornburg, M.F. Crowley, X. Gao, O. Oyedeji, 

H. Sitaraman, N. Brunhart-Lupo, Bridging Scales in Bioenergy and Catalysis: A 

Review of Mesoscale Modeling Applications, Methods, and Future Directions, 

Energy and Fuels. 35 (2021) 14382–14440. 

https://doi.org/10.1021/acs.energyfuels.1c02163. 

[97] M. Cloke, E. Lester, W. Gibb, Characterization of coal with respect to carbon 

burnout in p.f.-fired boilers, Fuel. 76 (1997) 1257–1267. 

https://doi.org/https://doi.org/10.1016/S0016-2361(97)00016-1. 

[98] R. Gupta, Advanced coal characterization: A review, Energy and Fuels. 21 (2007) 

451–460. https://doi.org/10.1021/ef060411m. 

[99] D. Alvarez, A.G. Borrego, R. Menéndez, Unbiased methods for the morphological 

description of char structures, Fuel. 76 (1997) 1241–1248. 

https://doi.org/https://doi.org/10.1016/S0016-2361(97)00065-3. 

[100] S. Jorgensen, S. Singer, Micro-CT-Based Approaches for Quantifying the 

Morphology of Pulverized Char Particles, Energy and Fuels. 33 (2019) 4826–

4834. https://doi.org/10.1021/acs.energyfuels.9b00437. 

[101] M. Cloke, T. Wu, R. Barranco, E. Lester, Char characterisation and its application 

in a coal burnout model☆, Fuel. 82 (2003) 1989–2000. 

https://doi.org/https://doi.org/10.1016/S0016-2361(03)00155-8. 

[102] T. Wu, E. Lester, M. Cloke, A burnout prediction model based around char 

morphology, Energy and Fuels. 20 (2006) 1175–1183. 

https://doi.org/10.1021/ef050101o. 

[103] L. Ma, R. Mitchell, Modeling char oxidation behavior under Zone II burning 

conditions at elevated pressures, Combust Flame. 156 (2009) 37–50. 

https://doi.org/10.1016/j.combustflame.2008.06.015. 

[104] T. Wu, E. Lester, M. Cloke, Advanced Automated Char Image Analysis 

Techniques, Energy & Fuels. 20 (2006) 1211–1219. 

https://doi.org/10.1021/ef050360d. 

[105] E. Lester, M. Cloke, M. Allen, Char characterization using image analysis 

techniques, Energy and Fuels. 10 (1996) 696–703. 

https://doi.org/10.1021/ef9501713. 



147 
 

 
 

[106] J. Perkins, O. Williams, T. Wu, E. Lester, Automated image analysis techniques to 

characterise pulverised coal particles and predict combustion char morphology, 

Fuel. 259 (2020) 116022. https://doi.org/10.1016/j.fuel.2019.116022. 

[107] D. Chaves, E. Trucco, J. Barraza, M. Trujillo, An image processing system for 

char combustion reactivity characterisation, Comput Ind. 106 (2019) 60–70. 

https://doi.org/10.1016/j.compind.2018.12.014. 

[108] J.G. Bailey, A. Tate, C.F.K. Diessel, T.F. Wall, A char morphology system with 

applications to coal combustion, Fuel. 69 (1990) 225–239. 

https://doi.org/10.1016/0016-2361(90)90179-T. 

[109] E. Lester, D. Alvarez, A.G. Borrego, B. Valentim, D. Flores, D.A. Clift, P. 

Rosenberg, B. Kwiecinska, R. Barranco, H.I. Petersen, M. Mastalerz, K.S. 

Milenkova, C. Panaitescu, M.M. Marques, A. Thompson, D. Watts, S. Hanson, G. 

Predeanu, M. Misz, T. Wu, The procedure used to develop a coal char 

classification-Commission III Combustion Working Group of the International 

Committee for Coal and Organic Petrology, Int J Coal Geol. 81 (2010) 333–342. 

https://doi.org/10.1016/j.coal.2009.10.015. 

[110] K.E. Benfell, G.S. Liu, D.G. Roberts, D.J. Harris, J.A. Lucas, J.G. Bailey, T.F. 

Wall, Modeling char combustion: The influence of parent coal petrography and 

pyrolysis pressure on the structure and intrinsic reactivity of its char, Proceedings 

of the Combustion Institute. 28 (2000) 2233–2241. https://doi.org/10.1016/s0082-

0784(00)80633-5. 

[111] A.G. Borrego, L. Garavaglia, W.D. Kalkreuth, Characteristics of high heating rate 

biomass chars prepared under N2 and CO2 atmospheres, Int J Coal Geol. 77 

(2009) 409–415. https://doi.org/10.1016/j.coal.2008.06.004. 

[112] C.H. Pang, E. Lester, T. Wu, Influence of lignocellulose and plant cell walls on 

biomass char morphology and combustion reactivity, Biomass Bioenergy. 119 

(2018) 480–491. https://doi.org/10.1016/j.biombioe.2018.10.011. 

[113] E. Lester, C. Avila, C.H. Pang, O. Williams, J. Perkins, S. Gaddipatti, G. Tucker, 

J.M. Barraza, M.P. Trujillo-Uribe, T. Wu, A proposed biomass char classification 

system, Fuel. 232 (2018) 845–854. https://doi.org/10.1016/j.fuel.2018.05.153. 

[114] A. Panahi, N. Vorobiev, M. Schiemann, M. Tarakcioglu, M. Delichatsios, Y.A. 

Levendis, Combustion details of raw and torrefied biomass fuel particles with 

individually-observed size, shape and mass, Combust Flame. 207 (2019) 327–341. 

https://doi.org/10.1016/j.combustflame.2019.06.009. 

[115] H. Watanabe, X-ray Computed Tomography Visualization of the Woody Char 

Intraparticle Pore Structure and Its Role on Anisotropic Evolution during Char 

Gasification, Energy and Fuels. 32 (2018) 4248–4254. 

https://doi.org/10.1021/acs.energyfuels.7b03227. 



148 
 

 
 

[116] J.P. Mathews, Q.P. Campbell, H. Xu, P. Halleck, A review of the application of X-

ray computed tomography to the study of coal, Fuel. 209 (2017) 10–24. 

https://doi.org/10.1016/j.fuel.2017.07.079. 

[117] J. Han, W. Liu, S. Wang, D. Du, F. Xu, W. Li, G. de Schutter, Effects of crack and 

ITZ and aggregate on carbonation penetration based on 3D micro X-ray CT 

microstructure evolution, Constr Build Mater. 128 (2016) 256–271. 

https://doi.org/10.1016/j.conbuildmat.2016.10.062. 

[118] A. Golab, C.R. Ward, A. Permana, P. Lennox, P. Botha, High-resolution three-

dimensional imaging of coal using microfocus X-ray computed tomography, with 

special reference to modes of mineral occurrence, Int J Coal Geol. 113 (2013) 97–

108. https://doi.org/10.1016/j.coal.2012.04.011. 

[119] N. Sarunac, E.K. Levy, M. Ness, C.W. Bullinger, J.P. Mathews, P.M. Halleck, A 

novel fluidized bed drying and density segregation process for upgrading low-rank 

coals, International Journal of Coal Preparation and Utilization. 29 (2009) 317–

332. https://doi.org/10.1080/19392691003666387. 

[120] S. Coetzee, H.W.J.P. Neomagus, J.R. Bunt, C.A. Strydom, H.H. Schobert, The 

transient swelling behaviour of large (-20 + 16 mm) South African coal particles 

during low-temperature devolatilisation, Fuel. 136 (2014) 79–88. 

https://doi.org/10.1016/j.fuel.2014.07.021. 

[121] C.Ö. Karacan, G.D. Mitchell, Behavior and effect of different coal microlithotypes 

during gas transport for carbon dioxide sequestration into coal seams, Int J Coal 

Geol. 53 (2003) 201–217. https://doi.org/10.1016/S0166-5162(03)00030-2. 

[122] D. Liang, S. Singer, Pore-resolving simulations to study the impacts of char 

morphology on zone II combustion and effectiveness factor models, Combust 

Flame. 229 (2021) 111405. 

https://doi.org/https://doi.org/10.1016/j.combustflame.2021.111405. 

[123] E. Boigné, N.R. Bennett, A. Wang, K. Mohri, M. Ihme, Simultaneous in-situ 

measurements of gas temperature and pyrolysis of biomass smoldering via X-ray 

computed tomography, Proceedings of the Combustion Institute. 38 (2021) 3899–

3907. https://doi.org/10.1016/j.proci.2020.06.070. 

[124] E. Boigné, N.R. Bennett, A. Wang, M. Ihme, Structural analysis of biomass 

pyrolysis and oxidation using in-situ X-ray computed tomography, Combust 

Flame. 235 (2022). https://doi.org/10.1016/j.combustflame.2021.111737. 

[125] X. Ni, J. Miao, R. Lv, X. Lin, Quantitative 3D spatial characterization and flow 

simulation of coal macropores based on ΜCT technology, Fuel. 200 (2017) 199–

207. https://doi.org/10.1016/j.fuel.2017.03.068. 



149 
 

 
 

[126] S. Hjärtstam, K. Andersson, F. Johnsson, B. Leckner, Combustion characteristics 

of lignite-fired oxy-fuel flames, Fuel. 88 (2009) 2216–2224. 

https://doi.org/https://doi.org/10.1016/j.fuel.2009.05.011. 

[127] A. Fluent, Ansys Fluent 12.0 Theory Guide, ANSYS Inc., Canonsburg, PA. 

(2009). 

[128] S. Singer, L. Chen, A.F. Ghoniem, The influence of gasification reactions on char 

consumption under oxy-combustion conditions: Effects of particle trajectory and 

conversion, Proceedings of the Combustion Institute. 34 (2013) 3471–3478. 

https://doi.org/10.1016/j.proci.2012.07.042. 

[129] D.J. Harris, I.W. Smith, Intrinsic reactivity of petroleum coke and brown coal char 

to carbon dioxide, steam and oxygen, Symposium (International) on Combustion. 

23 (1991) 1185–1190. https://doi.org/https://doi.org/10.1016/S0082-

0784(06)80379-6. 

[130] C. di Blasi, Combustion and gasification rates of lignocellulosic chars, Prog 

Energy Combust Sci. 35 (2009) 121–140. 

https://doi.org/10.1016/j.pecs.2008.08.001. 

[131] R.C. Reid, J.M. Prausnitz, B.E. Poling, The properties of gases and liquids, (1987). 

[132] K.B. Bischoff, Accuracy of the pseudo steady state approximation for moving 

boundary diffusion problems, Chem Eng Sci. 18 (1963) 711–713. 

[133] D. Luss, On the pseudo steady state approximation for gas solid reactions, Can J 

Chem Eng. 46 (1968) 154–156. 

[134] E. Boigné, N.R. Bennett, A. Wang, K. Mohri, M. Ihme, Simultaneous in-situ 

measurements of gas temperature and pyrolysis of biomass smoldering via X-ray 

computed tomography, Proceedings of the Combustion Institute. 38 (2021) 3899–

3907. https://doi.org/10.1016/j.proci.2020.06.070. 

[135] E. Boigné, N.R. Bennett, A. Wang, M. Ihme, Structural analysis of biomass 

pyrolysis and oxidation using in-situ X-ray computed tomography, Combust 

Flame. 235 (2022) 111737. https://doi.org/10.1016/j.combustflame.2021.111737. 

[136] P.N. Ciesielski, M.B. Pecha, A.M. Lattanzi, V.S. Bharadwaj, M.F. Crowley, L. Bu, 

J. v. Vermaas, K.X. Steirer, M.F. Crowley, Advances in Multiscale Modeling of 

Lignocellulosic Biomass, ACS Sustain Chem Eng. 8 (2020) 3512–3531. 

https://doi.org/10.1021/acssuschemeng.9b07415. 

[137] E.W. Thiele, Relation between Catalytic Activity and Size of Particle, Ind Eng 

Chem. 31 (1939) 916–920. https://doi.org/10.1021/ie50355a027. 

[138] J.B. Wang, A. Varma, Effectiveness factors for pellet with step-distribution of 

catalyst, Chem Eng Sci. 33 (1978) 1549–1552. 

https://doi.org/https://doi.org/10.1016/0009-2509(78)85207-5. 



150 
 

 
 

[139] B.A. Buffham, Design relations for hollow catalyst pellets, Chemical Engineering 

Research and Design. 78 (2000) 269–282. 

https://doi.org/10.1205/026387600527130. 

[140] C. Mocciaro, N.J. Mariani, O.M. Martínez, G.F. Barreto, A three-parameter one-

dimensional model to predict the effectiveness factor for an arbitrary pellet shape, 

Ind Eng Chem Res. 50 (2011) 2746–2754. https://doi.org/10.1021/ie101296d. 

[141] R. Aris, Communication. Normalization for the Thiele Modulus, Industrial & 

Engineering Chemistry Fundamentals. 4 (1965) 227–229. 

https://doi.org/10.1021/i160014a024. 

[142] S.D. Keegan, N.J. Mariani, O.M. Martínez, G.F. Barreto, Behavior of catalytic 

pellets at high reaction rates. The effect of edges, Ind Eng Chem Res. 45 (2006) 

85–97. https://doi.org/10.1021/ie050740m. 

[143] M. Asif, Efficient expressions for effectiveness factor for a finite cylinder, 

Chemical Engineering Research and Design. 82 (2004) 605–610. 

https://doi.org/10.1205/026387604323142658. 

[144] D.J. Gunn, Diffusion and chemical reaction in catalysis and absorption, Chem Eng 

Sci. 22 (1967) 1439–1455. 

[145] D. Chaves, E. Trucco, J. Barraza, M. Trujillo, An image processing system for 

char combustion reactivity characterisation, Comput Ind. 106 (2019) 60–70. 

https://doi.org/https://doi.org/10.1016/j.compind.2018.12.014. 

[146] T.M. Mitchell, Machine learning, (1997). 

[147] B.P. Woolf, Building intelligent interactive tutors: Student-centered strategies for 

revolutionizing e-learning, Morgan Kaufmann, 2010. 

[148] S. Ascher, I. Watson, S. You, Machine learning methods for modelling the 

gasification and pyrolysis of biomass and waste, Renewable and Sustainable 

Energy Reviews. 155 (2022). https://doi.org/10.1016/j.rser.2021.111902. 

[149] V. Vapnik, The nature of statistical learning theory, Springer science & business 

media, 1999. 

[150] T. Hastie, R. Tibshirani, G. James, D. Witten, An Introduction to Statistical 

Learning, Springer Texts, 2006. 

[151] H. Sun, G. Lv, J. Mo, X. Lv, G. Du, Y. Liu, Application of KPCA combined with 

SVM in Raman spectral discrimination, Optik (Stuttg). 184 (2019) 214–219. 

https://doi.org/10.1016/j.ijleo.2019.02.126. 

[152] L. Breiman, Random forests, Mach Learn. 45 (2001) 5–32. 



151 
 

 
 

[153] J. Luan, C. Zhang, B. Xu, Y. Xue, Y. Ren, The predictive performances of random 

forest models with limited sample size and different species traits, Fish Res. 227 

(2020) 105534. https://doi.org/10.1016/j.fishres.2020.105534. 

[154] M. Meng, C. Zhao, Application of Support Vector Machines to a Small-Sample 

Prediction, Advances in Petroleum Exploration and Development. 10 (2015) 72–

75. https://doi.org/10.3968/7830. 

[155] A. Calvelo, R.E. Cunningham, Overall effectiveness factor for gas-solid reactions, 

J Catal. 16 (1970) 397–403. https://doi.org/https://doi.org/10.1016/0021-

9517(70)90238-1. 

[156] G.S. Liu, S. Niksa, Coal conversion submodels for design applications at elevated 

pressures. Part II. Char gasification, Prog Energy Combust Sci. 30 (2004) 679–

717. https://doi.org/10.1016/j.pecs.2004.08.001. 

[157] U. Kleinhans, S. Halama, H. Spliethoff, The role of gasification reactions during 

pulverized solid fuel combustion: A detailed char combustion model based on 

measurements of char structure and kinetics for coal and pre-treated biomass, 

Combust Flame. 184 (2017) 117–135. 

https://doi.org/https://doi.org/10.1016/j.combustflame.2017.05.033. 

[158] S. Samarasinghe, Neural networks for applied sciences and engineering: from 

fundamentals to complex pattern recognition, Auerbach publications, 2016. 

[159] R. Kohavi, G.H. John, Wrappers for feature subset selection, Artif Intell. 97 (1997) 

273–324. https://doi.org/https://doi.org/10.1016/S0004-3702(97)00043-X. 

[160] B.W. Matthews, Comparison of the predicted and observed secondary structure of 

T4 phage lysozyme, Biochimica et Biophysica Acta (BBA) - Protein Structure. 

405 (1975) 442–451. https://doi.org/https://doi.org/10.1016/0005-2795(75)90109-

9. 

[161] X. Zhu, C. Vondrick, C.C. Fowlkes, D. Ramanan, Do We Need More Training 

Data?, Int J Comput Vis. 119 (2016) 76–92. https://doi.org/10.1007/s11263-015-

0812-2. 

[162] G. Wang, J. Shen, S. Liu, C. Jiang, X. Qin, Three-dimensional modeling and 

analysis of macro-pore structure of coal using combined X-ray CT imaging and 

fractal theory, International Journal of Rock Mechanics and Mining Sciences. 123 

(2019) 104082. https://doi.org/10.1016/j.ijrmms.2019.104082. 

[163] X. Wang, J. Pan, K. Wang, T. Ge, J. Wei, W. Wu, Characterizing the shape, size, 

and distribution heterogeneity of pore-fractures in high rank coal based on X-ray 

CT image analysis and mercury intrusion porosimetry, Fuel. 282 (2020) 118754. 

https://doi.org/10.1016/j.fuel.2020.118754. 



152 
 

 
 

[164] Q. Sun, Y. Xia, J. Klinger, R. Seifert, J. Kane, V. Thompson, Q. Chen, X-ray 

computed tomography-based porosity analysis: Algorithms and application for 

porous woody biomass, Powder Technol. 388 (2021) 496–504. 

https://doi.org/10.1016/j.powtec.2021.05.006. 

[165] L. Tlig, M. Sayadi, F. Fnaiech, A new fuzzy segmentation approach based on S-

FCM type 2 using LBP-GCO features, Signal Process Image Commun. 27 (2012) 

694–708. https://doi.org/https://doi.org/10.1016/j.image.2012.03.001. 

[166] D. Mart, ANALYSIS OF IMAGE THRESHOLDING METHODS FOR THEIR 

APPLICATION TO AUGMENTED REALITY ENVIRONMENTS Autorización 

de difusión, (2012) 1–63. 

https://eprints.ucm.es/16932/1/Tesis_Master_Daniel_Martin_Carabias.pdf. 

[167] D. Gómez, J. Yáñez, C. Guada, J.T. Rodríguez, J. Montero, E. Zarrazola, Fuzzy 

image segmentation based upon hierarchical clustering, Knowl Based Syst. 87 

(2015) 26–37. 

[168] S. Dai, K. Lu, J. Dong, Y. Zhang, Y. Chen, A novel approach of lung 

segmentation on chest CT images using graph cuts, Neurocomputing. 168 (2015) 

799–807. 

[169] R. Jin, J. Yin, W. Zhou, J. Yang, Level set segmentation algorithm for high-

resolution polarimetric SAR images based on a heterogeneous clutter model, IEEE 

J Sel Top Appl Earth Obs Remote Sens. 10 (2017) 4565–4579. 

[170] Z. Wang, B. Ma, Y. Zhu, Review of Level Set in Image Segmentation, Archives of 

Computational Methods in Engineering. 28 (2021) 2429–2446. 

https://doi.org/10.1007/s11831-020-09463-9. 

[171] K. Zuiderveld, Contrast Limited Adaptive Histogram Equalization, Graphics 

Gems. IV (1994) 474–485. 

[172] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of 

image analysis, Nat Methods. 9 (2012) 671–675. 

[173] P. Sthitpattanapongsa, T. Srinark, An equivalent 3d otsu’s thresholding method, in: 

Pacific-Rim Symposium on Image and Video Technology, Springer, 2011: pp. 

358–369. 

[174] N. Zhu, G. Wang, G. Yang, W. Dai, A fast 2D otsu thresholding algorithm based 

on improved histogram, Proceedings of the 2009 Chinese Conference on Pattern 

Recognition, CCPR 2009, and the 1st CJK Joint Workshop on Pattern 

Recognition, CJKPR. (2009) 319–323. 

https://doi.org/10.1109/CCPR.2009.5344078. 

[175] T.F. Chan, L.A. Vese, Active contours without edges, IEEE Transactions on Image 

Processing. 10 (2001) 266–277. https://doi.org/10.1109/83.902291. 



153 
 

 
 

[176] C. Li, C. Xu, C. Gui, M.D. Fox, Distance regularized level set evolution and its 

application to image segmentation, IEEE Transactions on Image Processing. 19 

(2010) 3243–3254. 

[177] H. Min, W. Jia, Y. Zhao, W. Zuo, H. Ling, Y. Luo, LATE: A level-set method 

based on local approximation of Taylor expansion for segmenting intensity 

inhomogeneous images, IEEE Transactions on Image Processing. 27 (2018) 5016–

5031. 

[178] G. Lehmann, D. Legland, Efficient N-dimensional surface estimation using 

Crofton formula and run-length encoding, Efficient N-Dimensional Surface 

Estimation Using Crofton Formula and Run-Length Encoding. (2012). 

  

 

 

 

 

 

 

 

 

 

 

 



154 
 

 
 

Appendix: Supplementary Material 

Coal char particles: 

Table S1 Measured morphological parameters from volume and surface integration of 3-

D geometries obtained from micro-CT imaging. 

Particle Vmps (m
3) Smps,interface (m

2) Sext,void (m
2) Sext,total (m

2) EVF 

1 4.25E-13 4.93E-08 0.00E+00 3.77E-08 0.0000 

2 4.28E-13 5.19E-08 0.00E+00 3.98E-08 0.0000 

3 4.01E-13 5.53E-08 0.00E+00 3.85E-08 0.0000 

4 4.09E-13 5.05E-08 0.00E+00 3.94E-08 0.0000 

5 2.59E-13 5.33E-08 0.00E+00 3.31E-08 0.0000 

6 4.03E-13 5.27E-08 8.61E-12 3.56E-08 0.0002 

7 4.40E-13 5.77E-08 7.66E-11 3.51E-08 0.0022 

8 4.03E-13 5.73E-08 1.42E-10 3.67E-08 0.0039 

9 4.72E-13 4.74E-08 2.52E-10 3.96E-08 0.0064 

10 3.00E-13 5.64E-08 2.55E-10 3.73E-08 0.0068 

11 2.27E-13 6.07E-08 2.65E-10 3.50E-08 0.0076 

12 2.67E-13 5.96E-08 2.74E-10 3.37E-08 0.0081 

13 3.42E-13 5.13E-08 3.36E-10 3.62E-08 0.0093 

14 2.74E-13 5.65E-08 3.40E-10 3.59E-08 0.0095 

15 3.34E-13 5.41E-08 3.74E-10 3.70E-08 0.0101 

16 3.89E-13 4.82E-08 3.90E-10 3.48E-08 0.0112 

17 4.03E-13 5.06E-08 4.68E-10 3.83E-08 0.0122 

18 2.58E-13 5.96E-08 4.68E-10 3.65E-08 0.0128 

19 2.86E-13 5.60E-08 5.26E-10 3.68E-08 0.0143 

20 3.87E-13 5.30E-08 6.11E-10 4.06E-08 0.0151 

21 2.06E-13 5.59E-08 5.39E-10 3.31E-08 0.0163 

22 4.55E-13 5.19E-08 6.85E-10 4.00E-08 0.0171 

23 2.26E-13 5.59E-08 5.97E-10 3.33E-08 0.0179 

24 3.43E-13 4.98E-08 6.31E-10 3.50E-08 0.0180 

25 3.08E-13 5.34E-08 6.54E-10 3.61E-08 0.0181 

26 2.62E-13 5.50E-08 7.34E-10 3.43E-08 0.0214 

27 2.79E-13 5.44E-08 8.47E-10 3.77E-08 0.0225 

28 3.09E-13 5.57E-08 8.92E-10 3.84E-08 0.0233 

29 4.61E-13 4.90E-08 1.07E-09 3.81E-08 0.0280 

30 3.12E-13 6.32E-08 1.06E-09 3.70E-08 0.0286 

31 2.85E-13 5.52E-08 1.08E-09 3.54E-08 0.0304 

32 3.55E-13 6.07E-08 1.23E-09 4.02E-08 0.0306 

33 3.07E-13 5.92E-08 1.07E-09 3.44E-08 0.0311 
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34 3.15E-13 5.80E-08 1.30E-09 3.76E-08 0.0345 

35 2.18E-13 5.65E-08 1.23E-09 3.56E-08 0.0346 

36 2.43E-13 5.82E-08 1.76E-09 3.91E-08 0.0450 

37 3.48E-13 6.95E-08 1.81E-09 3.61E-08 0.0502 

38 2.94E-13 5.22E-08 1.75E-09 3.45E-08 0.0507 

39 3.35E-13 5.71E-08 2.01E-09 3.74E-08 0.0539 

40 3.21E-13 5.60E-08 1.87E-09 3.47E-08 0.0540 

41 2.68E-13 6.71E-08 2.08E-09 3.80E-08 0.0546 

42 3.62E-13 5.98E-08 2.13E-09 3.91E-08 0.0546 

43 2.49E-13 6.31E-08 2.72E-09 3.74E-08 0.0727 

44 2.14E-13 5.74E-08 2.92E-09 3.31E-08 0.0881 

45 2.88E-13 5.84E-08 3.47E-09 3.74E-08 0.0929 

46 3.39E-13 5.61E-08 3.76E-09 3.72E-08 0.1010 

47 2.80E-13 6.05E-08 3.59E-09 3.54E-08 0.1016 

48 3.24E-13 6.55E-08 4.09E-09 3.55E-08 0.1153 

49 3.63E-13 6.50E-08 4.87E-09 3.76E-08 0.1294 

50 2.94E-13 6.60E-08 5.41E-09 4.04E-08 0.1340 

 

Table S2 Derived morphological parameters used in the flat plate, hollow sphere, 1D-GC 

and 1D-VD effectiveness factor models. 

No

. 

L 

(μm) 

 

  

Rin 

(μm) 

l 

(μm) 

 

 (low φ)  (low thiele) 
 

 

  
 

 

 (high φ) 
 

 

  

 

  

1 21.37 0.187

7 

28.63 8.61 0.306

6 

0.395

1 

0.1229 0.1094 0.208

7 

2 21.32 0.188

7 

28.68 8.25 0.423

4 

0.415

8 

0.1176 0.1052 0.240

3 

3 19.18 0.234

1 

30.82 7.25 0.597

5 

0.444

1 

0.0040 0.0039 0.293

6 

4 19.16 0.234

7 

30.84 8.09 1.656

3 

0.570

5 

0.1137 0.1021 0.588

8 

5 10.16 0.506

0 

39.84 4.86 0.458

1 

0.421

6 

0.0278 0.0270 0.280

4 

6 19.34 0.230

6 

30.66 7.65 0.458

3 

0.421

7 

0.0196 0.0192 0.250

2 

7 21.85 0.178

5 

28.15 7.62 0.207

9 

0.376

5 

-0.1801 -0.2197 0.199

6 

8 18.63 0.246

9 

31.37 7.04 0.921

2 

0.489

9 

-0.0538 -0.0569 0.413

6 

9 25.40 0.119

1 

24.60 9.97 2.166

0 

0.612

9 

0.1425 0.1247 0.643

8 
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10 12.50 0.422

0 

37.50 5.32 1.300

5 

0.534

9 

0.0499 0.0475 0.522

2 

11 8.72 0.562

9 

41.28 3.73 0.392

5 

0.410

5 

0.0586 0.0553 0.263

3 

12 10.68 0.486

3 

39.32 4.48 0.581

3 

0.441

5 

-0.0003 -0.0003 0.302

4 

13 14.91 0.345

5 

35.09 6.66 0.377

8 

0.407

9 

0.0870 0.0800 0.236

3 

14 11.19 0.467

8 

38.81 4.86 0.474

5 

0.424

4 

0.0362 0.0349 0.262

9 

15 14.43 0.360

0 

35.57 6.17 0.202

7 

0.375

5 

0.0739 0.0688 0.182

4 

16 18.30 0.254

8 

31.70 8.06 0.262

6 

0.387

0 

0.1104 0.0994 0.197

9 

17 19.54 0.226

0 

30.46 7.96 0.254

2 

0.385

4 

0.1032 0.0936 0.194

7 

18 10.35 0.498

5 

39.65 4.33 0.839

5 

0.479

1 

0.0090 0.0089 0.393

1 

19 12.41 0.424

8 

37.59 5.11 1.086

5 

0.510

6 

0.0889 0.0816 0.443

0 

20 18.19 0.257

6 

31.81 7.31 0.604

9 

0.445

2 

0.0940 0.0859 0.299

5 

21 7.76 0.603

0 

42.24 3.69 0.344

2 

0.402

0 

0.0335 0.0324 0.238

8 

22 24.55 0.131

8 

25.45 8.76 0.716

3 

0.461

8 

0.0667 0.0625 0.311

0 

23 8.67 0.565

0 

41.33 4.04 1.092

5 

0.511

3 

0.0353 0.0341 0.547

9 

24 15.05 0.341

5 

34.95 6.88 0.326

9 

0.398

8 

0.1118 0.1006 0.218

8 

25 13.59 0.386

2 

36.41 5.78 0.774

7 

0.470

2 

0.1384 0.1215 0.338

4 

26 10.30 0.500

6 

39.70 4.76 0.506

0 

0.429

5 

0.0343 0.0332 0.288

7 

27 11.62 0.452

4 

38.38 5.12 1.147

4 

0.517

8 

0.0801 0.0741 0.517

7 

28 13.18 0.399

2 

36.82 5.54 0.748

5 

0.466

5 

0.0504 0.0480 0.344

3 

29 25.07 0.124

0 

24.93 9.41 0.562

4 

0.438

6 

0.0865 0.0796 0.274

2 

30 13.08 0.402

5 

36.92 4.93 0.627

9 

0.448

7 

0.0233 0.0227 0.323

7 

31 11.88 0.443

0 

38.12 5.17 0.685

0 

0.457

3 

0.0409 0.0393 0.330

5 

32 15.58 0.326

1 

34.42 5.85 1.206

1 

0.524

5 

0.0337 0.0326 0.456

2 



157 
 

 
 

33 14.51 0.357

6 

35.49 5.19 1.984

6 

0.598

8 

0.0388 0.0374 0.598

8 

34 13.35 0.393

7 

36.65 5.43 0.638

4 

0.450

3 

0.0381 0.0367 0.310

8 

35 8.62 0.566

9 

41.38 3.86 0.760

9 

0.468

2 

0.0731 0.0681 0.372

7 

36 9.58 0.528

2 

40.42 4.18 0.713

8 

0.461

5 

0.0436 0.0417 0.376

1 

37 15.58 0.326

3 

34.42 5.01 3.046

4 

0.669

2 

0.0259 0.0252 0.685

1 

38 12.38 0.425

8 

37.62 5.63 0.713

4 

0.461

4 

0.1036 0.0939 0.328

7 

39 14.77 0.349

8 

35.23 5.87 0.990

9 

0.498

9 

0.0549 0.0521 0.397

0 

40 14.00 0.373

2 

36.00 5.74 0.877

7 

0.484

2 

0.0598 0.0564 0.371

6 

41 11.25 0.465

5 

38.75 3.99 1.067

8 

0.508

3 

0.0890 0.0817 0.430

2 

42 16.43 0.302

7 

33.57 6.05 0.657

6 

0.453

2 

0.0190 0.0187 0.314

5 

43 10.34 0.499

2 

39.66 3.95 1.050

4 

0.506

2 

0.0939 0.0858 0.442

2 

44 8.41 0.575

4 

41.59 3.72 2.131

3 

0.610

2 

0.1213 0.1082 0.784

1 

45 11.83 0.445

0 

38.17 4.93 1.014

5 

0.501

8 

0.0534 0.0507 0.444

5 

46 14.97 0.343

7 

35.03 6.05 1.071

1 

0.508

7 

0.1677 0.1436 0.408

2 

47 11.69 0.449

9 

38.31 4.62 1.237

1 

0.528

0 

0.0892 0.0819 0.473

3 

48 13.87 0.377

2 

36.13 4.94 1.155

9 

0.518

8 

0.0907 0.0832 0.450

4 

49 16.34 0.305

1 

33.66 5.58 3.115

7 

0.673

0 

0.0498 0.0474 0.874

3 

50 12.82 0.411

1 

37.18 4.45 1.588

7 

0.564

1 

0.0600 0.0566 0.495

8 

 

Biomass char particles 

Table S3 Measured morphological parameters from volume and surface integration of 3-

D geometries obtained from micro-CT imaging and from bounding box measurements. 

No

. 

Vmps (m
3)   

  

Smps,interface 

(m2) 

Sext,void 

(m2) 

Sext,total 

(m2) 

EVF β 
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1 4.74E-13 0.094

5 

1.26E-08 2.25E-10 5.16E-08 0.0044 7.3755 

2 4.35E-13 0.169

8 

2.07E-08 5.00E-10 5.38E-08 0.0093 13.614

4 

3 4.91E-13 0.063

1 

9.32E-09 5.31E-10 5.01E-08 0.0106 3.1631 

4 4.82E-13 0.080

1 

9.00E-09 1.37E-09 4.85E-08 0.0283 5.9731 

5 4.51E-13 0.138

9 

1.37E-08 1.52E-09 5.21E-08 0.0292 8.2942 

6 4.73E-13 0.097

6 

1.04E-08 1.69E-09 5.42E-08 0.0313 6.3648 

7 4.76E-13 0.091

5 

1.39E-08 2.04E-09 5.67E-08 0.0360 8.9806 

8 4.64E-13 0.114

1 

1.41E-08 2.00E-09 4.99E-08 0.0402 8.2517 

9 4.46E-13 0.148

8 

1.50E-08 2.17E-09 5.26E-08 0.0413 6.6916 

10 4.36E-13 0.167

2 

1.85E-08 2.10E-09 4.78E-08 0.0440 5.6761 

11 4.84E-13 0.075

1 

1.26E-08 2.21E-09 4.95E-08 0.0446 4.5565 

12 4.07E-13 0.223

0 

1.87E-08 1.95E-09 4.22E-08 0.0461 4.4279 

13 4.69E-13 0.104

2 

1.39E-08 3.19E-09 5.96E-08 0.0535 5.9491 

14 4.28E-13 0.182

9 

1.74E-08 3.13E-09 5.73E-08 0.0546 7.1461 

15 4.43E-13 0.153

4 

1.48E-08 2.74E-09 4.98E-08 0.0550 4.8395 

16 4.19E-13 0.200

3 

2.34E-08 2.65E-09 4.64E-08 0.0571 5.3428 

17 4.43E-13 0.153

0 

1.66E-08 3.38E-09 5.53E-08 0.0611 6.8096 

18 4.74E-13 0.095

1 

1.16E-08 3.07E-09 4.90E-08 0.0627 5.0458 

19 4.56E-13 0.129

0 

1.74E-08 3.56E-09 5.65E-08 0.0631 7.1052 

20 4.46E-13 0.149

0 

1.45E-08 3.20E-09 4.97E-08 0.0643 4.9269 

21 4.34E-13 0.170

3 

1.61E-08 4.10E-09 5.93E-08 0.0691 5.9109 

22 4.45E-13 0.150

0 

2.07E-08 4.01E-09 5.21E-08 0.0769 6.0298 

23 3.97E-13 0.242

4 

1.79E-08 3.64E-09 4.48E-08 0.0814 5.6105 
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24 4.36E-13 0.166

7 

1.74E-08 4.24E-09 4.71E-08 0.0899 5.5613 

25 4.16E-13 0.206

2 

2.23E-08 5.52E-09 5.09E-08 0.1086 4.2939 

26 4.02E-13 0.231

8 

2.32E-08 7.61E-09 6.86E-08 0.1109 6.8528 

27 4.23E-13 0.192

6 

1.99E-08 6.44E-09 5.69E-08 0.1132 6.8855 

28 4.01E-13 0.233

7 

1.92E-08 7.17E-09 5.63E-08 0.1273 5.8814 

29 4.16E-13 0.204

6 

1.93E-08 9.19E-09 6.13E-08 0.1500 5.1509 

30 3.79E-13 0.275

2 

2.84E-08 8.52E-09 5.20E-08 0.1639 4.6730 

 

Table S4 Derived geometrical parameters used in the UFC, UIC, AHFC, AHIC, and 

IHIC effectiveness factor models. 

Particl

e  

L (μm) Rin 

(μm) 

R, Rout 

(μm) 

1 208.57 8.69 28.28 

2 313.85 9.50 23.05 

3 118.61 9.42 37.50 

4 181.21 8.59 30.34 

5 225.55 10.14 27.19 

6 189.05 9.28 29.70 

7 237.83 8.01 26.48 

8 224.78 9.20 27.24 

9 195.47 11.27 29.21 

10 175.16 12.62 30.86 

11 151.29 9.10 33.20 

12 148.43 15.83 33.52 

13 180.73 9.81 30.38 

14 204.22 12.22 28.58 

15 157.49 12.74 32.54 

16 168.23 14.09 31.49 

17 197.76 11.36 29.04 

18 161.94 9.90 32.09 

19 203.44 10.28 28.63 

20 159.38 12.49 32.35 

21 179.95 12.56 30.44 

22 182.36 11.71 30.24 

23 173.80 15.25 30.98 
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24 172.79 12.69 31.07 

25 145.42 15.38 33.87 

26 198.60 13.95 28.98 

27 199.23 12.70 28.93 

28 179.36 14.74 30.50 

29 164.18 14.42 31.87 

30 153.86 17.27 32.93 
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