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Patients with several incompletely diagnosed and understood chronic diseases suf-
fer from symptoms that limit their functional capacity. In particular, patients with chronic
fatigue syndrome/myalgic encephalomyelitis (CFS/ME) and long covid syndromes have
variable fatigue, malaise, poor and unrefreshing sleep, and delayed post-exertional ex-
acerbations of these symptoms. There are no specific tests for these patients to diagnose
their diseases properly. These patients must be aware of their daily activities and energy
expenditure. Even a little physical effort or socially extroverted behavior can make them
tired and incapable of continuing their daily routine. A comprehensive summary of the
measured activities at any particular time of the day will eventually help the patients
take precautions and prevent any unwanted physical or social burnout.

To address the current problems faced by these patients, we used a pair of smart
insoles and a wrist-worn sensor-integrated device to detect and measure eleven daily
living activities accurately. We developed a smartphone application and utilized the
smartphone’s microphone to analyze the recorded sound buffer and detect voice ac-
tivities and high-level noise exposures. We also explored the smartphone’s sensors to
compare with the smart insoles’ results.

This work presents a practical package for patients with limited functional capacities
due to illness. We describe the design and development of a smartphone application
that collects the data from the sensor device and microphone, sends them to a server for
machine learning calculation, and provides a comprehensive summary by objectively
measuring the activities. The application works as the core component of the package
that connects all the other components via BlueTooth and uses the network protocol to
send raw data to the server.



[i]

ACKNOWLEDGEMENTS

Arafat Mahmood, B.S.

I want to express my deep gratitude to my adviser, Dr. Sheikh Iqbal Ahamed, for his con-

tinuous support and feedback throughout my Ph.D. career. He always encouraged me

throughout my research journey and directed me with his valuable advice and expertise.

I would also like to thank Dr. Praveen Madiraju and Rumi Ahmed Khan, M.D., for

serving as members of my dissertation committee and for their time, comments, and

feedback. I especially thank Dr. Richard R. Love for providing the directions in the initial

stage of the research.

I also thank my current and previous colleagues from the Ubicomp Lab for their

cooperation over the years. I am thankful to the wonderful community in Milwaukee for

always helping me and being by my side. Last few years, I never felt the void of staying

far from family because of these extraordinary people.

Finally, and most importantly, I would like to thank my parents, Abdul Halim and

Rowshan Akter, who always dreamed big of me. I can never express how lucky I am to

be their son. I can never thank them enough for their love and sacrifice for me my whole

life. I am thankful to my sisters, Farjana Yesmin and Rejuana Yesmin, my brother Masud

Rana, and my wife, Tanjina Zaman Shuchi, for their continuous support and inspiration.

I am lucky to have them in my life.



[ii]

TABLE OF CONTENTS

ACKNOWLEDGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Dissertation Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Overview of Activity Detection Methods . . . . . . . . . . . . . . . . . . 6

2.2 Physical Activity Detection Methods . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Smartphone based solution . . . . . . . . . . . . . . . . . . . 8

2.2.2 Wearable sensor-based solution . . . . . . . . . . . . . . . . . 10

2.3 Choice of Sensors and Body Positions . . . . . . . . . . . . . . . . . . . 11

2.4 Social Activity Detection Methods . . . . . . . . . . . . . . . . . . . . . 14

2.5 Methods of Activity Measurement . . . . . . . . . . . . . . . . . . . . . 15

3 PROCESSING SENSOR DATA IN ACTIVITY DETECTION CONTEXT . . . . . . . 19

3.1 Sensors in Activity Detection . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.2 Gyroscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



[iii]

3.1.3 Magnetometer . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.4 IMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Multi-Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Data-level fusion . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Feature-level fusion . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.3 Decision-level fusion . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Steps in Activity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Preprocessing and Feature Extraction . . . . . . . . . . . . . . . . . . . 22

3.5 Segmentation into Windows . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.8 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.8.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.8.2 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.8.3 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.8.4 F-measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.8.5 Specificity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8.6 RMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 DETECTION OF LEG ACTIVITIES FROM SENSOR DATA . . . . . . . . . . . . . . 28

4.1 Insole as a solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.2 Data Representation . . . . . . . . . . . . . . . . . . . . . . . . 30



[iv]

4.2.3 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.4 Oversampling - SMOTE . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Tackling stair activities . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Comparison with Smartphone data . . . . . . . . . . . . . . . . . . . . 34

4.4.1 Smartphone Sensor . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.2 Data collection using a smartphone . . . . . . . . . . . . . . 36

4.4.3 Sample Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.4 Challenges in data collection using Android smartphone . . 37

4.4.5 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.6 Data Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.7 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.8 Smartphone Vs Insole . . . . . . . . . . . . . . . . . . . . . . . 42

5 DETECTION OF HAND ACTIVITIES USING METAMOTIONC . . . . . . . . . . 44

5.1 MetamotionC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.2 Data Representation . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 VOICE ACTIVITY DETECTION AND EXPOSURE TO HIGH NOISE LEVEL . . . . 50

6.1 Features of sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



[v]

6.1.1 Short-Time Energy . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.2 Zero-Crossing Rate . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.3 Short-Time Fourier Transforms . . . . . . . . . . . . . . . . . 53

6.1.4 Mel Frequency Cepstral Coefficients . . . . . . . . . . . . . . 53

6.2 The Mel Spectrogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Voice Activity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3.1 Google VAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3.2 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . 56

6.3.3 Audio Dataset Description . . . . . . . . . . . . . . . . . . . . 58

6.3.4 Voice and Noise Detection . . . . . . . . . . . . . . . . . . . . 59

6.4 Measuring Surrounding Noise Level . . . . . . . . . . . . . . . . . . . . 60

7 EMOTION ANALYSIS AND ENVIRONMENT CLASSIFICATION . . . . . . . . . . 62

7.1 Emotion Analysis from Speech . . . . . . . . . . . . . . . . . . . . . . . 62

7.1.1 RAVDESS Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.1.3 CNN architecture . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.1.4 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1.5 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 Environment detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2.1 Dataset: ESC-50 . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



[vi]

8 DESIGN AND DEVELOPMENT OF A SYSTEM PACKAGE WITH SMART INSOLES,
METAMOTION AND SMARTPHONE APPLICATION . . . . . . . . . . . . . . . . 75

8.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.2 Energy Expenditure Estimate . . . . . . . . . . . . . . . . . . . . . . . . 77

8.2.1 METs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.3 Improving smartphone resource usage by background services . . . . 80

8.4 Machine Learning Model and Communication with the server . . . . 80

8.4.1 Send the sensor data to the server at a regular interval . . . . 81

8.4.2 Pre-load the machine learning model in the application . . 82

8.4.3 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.5 Handling Large Concurrent Traffic . . . . . . . . . . . . . . . . . . . . . 83

8.6 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.7 On-Demand Comprehensive Summary . . . . . . . . . . . . . . . . . . 85

8.8 Maintaining and Updating Machine Learning Models . . . . . . . . . 86

8.9 Remote Monitoring Elderly Patient . . . . . . . . . . . . . . . . . . . . . 87

8.10 Six Minute Walk Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.10.1 Implementation of Six-Minute Walk Test Using Our System 91

8.11 HIPAA compliancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.12 Technologies Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.13 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



[vii]

9.3 Broader Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.4 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



[viii]

LIST OF TABLES

2.1 Position of different sensor devices used in literature . . . . . . . . . . . . 12

2.2 Literature on fatigue management and EE estimation . . . . . . . . . . . . 17

3.1 Popular classification techniques used in literature. . . . . . . . . . . . . . 25

4.1 Activity-wise accuracies for leg activity detection . . . . . . . . . . . . . . . 33

4.2 Activity-wise accuracies for leg activity detection with stair data combined 34

4.3 Sensor output for different activities . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Average number of sample per activities in 10 second . . . . . . . . . . . . 38

4.5 Leg activity detection with smartphone sensor (Accuracy 96.9%, RMSE 0.11) 41

5.1 Activity-wise accuracies for hand activity detection . . . . . . . . . . . . . 49

6.1 Standard dB values for different environments . . . . . . . . . . . . . . . . 61

7.1 Filtered categories from ESC-50. . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.1 MET value for activities with different intensities . . . . . . . . . . . . . . . 79

A.1 Smartphone accelerometer raw data for downstair activity . . . . . . . . . 102



[ix]

LIST OF FIGURES

2.1 Activity Detection Methods classification . . . . . . . . . . . . . . . . . . . 6

2.2 Different type of activity measurement methods . . . . . . . . . . . . . . . 16

2.3 Practicality Vs Accuracy in the context of physical activity measurement . 17

3.1 Tasks of Activity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Insole for leg activity detection . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Data representation of different types of leg activity . . . . . . . . . . . . . 31

4.3 Leg Activity Frequency Distribution . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Confusion matrix for SVM in detecting leg activity . . . . . . . . . . . . . . 35

4.5 Data collection using smartphone: Sit, Stand, Walk and Run . . . . . . . . 39

4.6 Comparison of Upstair and Downstair data from Insole and Smartphone 40

4.7 Confusion matrix for SVM in detecting leg activity using smartphone sen-
sors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 Metamotion for hand activity detection . . . . . . . . . . . . . . . . . . . . 44

5.2 Hand Activity Frequency Distribution . . . . . . . . . . . . . . . . . . . . . 47

5.3 Data representation of different types of hand activity . . . . . . . . . . . . 48

6.1 Speech wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Speech Energy Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Speech wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 STFT Spectrogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.5 Flow chart for obtaining MFCCs . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.6 Mel Spectrogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.7 Applying a digital filter on normalized sound buffer . . . . . . . . . . . . . 57



[x]

6.8 Sound wave visualization of noise, human speech, silence . . . . . . . . . 59

7.1 Frequency distribution of RAVDESS dataset . . . . . . . . . . . . . . . . . . 63

7.2 Approach to detect emotion from RAVDESS dataset . . . . . . . . . . . . . 64

7.3 CNN architecture for RAVDESS dataset . . . . . . . . . . . . . . . . . . . . . 66

7.4 Accuracy and Loss using MFCCs from RAVDESS dataset . . . . . . . . . . 68

7.5 Confusion Matrix with MFCCs features (0 = neutral, 1 = calm, 2 = happy, 3
= sad, 4 = angry, 5 = fearful, 6 = disgust, 7 = surprised) . . . . . . . . . . . . 69

7.6 Accuracy and Loss using Mel Spectrogram from RAVDESS dataset . . . . 70

7.7 Confusion Matrix with Mel Spectrogram on RAVDESS dataset (0 = neutral,
1 = calm, 2 = happy, 3 = sad, 4 = angry, 5 = fearful, 6 = disgust, 7 = surprised) 71

7.8 Accuracy and Loss using Mel Spectrogram from RAVDESS dataset . . . . 73

7.9 Confusion Matrix with MFCCs features for ESC data . . . . . . . . . . . . . 74

8.1 Diagram of developed system . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.2 Patient Reported Confirmation . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.3 Smartphone Application Demonstration . . . . . . . . . . . . . . . . . . . . 78

8.4 Flow of continuous prediction request to server . . . . . . . . . . . . . . . 81

8.5 Load models locally in application . . . . . . . . . . . . . . . . . . . . . . . 83

8.6 High level design of our approach to reduce system latency for on-demand
summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.7 High level design of our approach to reduce system latency for on-demand
summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.8 Comprehensive Summary of Performed Activities . . . . . . . . . . . . . . 86

8.9 Model Retrain Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.10 Alert for unusual activity sensing . . . . . . . . . . . . . . . . . . . . . . . . 89

8.11 Remote Monitoring Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



[xi]

8.12 Remote Monitoring Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.13 Six-minute walk test demonstration . . . . . . . . . . . . . . . . . . . . . . 93

A.1 Smartphone segmented data . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2 CNN structure for environment classification . . . . . . . . . . . . . . . . . 103



[1]

Chapter 1
Introduction

1.1 Problem Statement

Fatigue refers to a person’s reduced capability or willingness to perform. Almost

38% US workers have reported that they have experienced some sign of fatigue [1].

Chronic fatigue syndrome is a long-term disabling disease that causes many debilitat-

ing symptoms [2]. There are four million individuals in the United States diagnosed with

chronic fatigue syndrome / myalgic encephalomyelitis (CFS/ME), and 80% of them are

women [3]. Long Covid, a similar emerging syndrome, may affect 4 to 13 million out of

43 million new cases [4]. Multiple sclerosis (MS), the most widespread disabling neu-

rological disease among young adults, is estimated to affect almost 1 million people in

the United States [5]. The treatment of fatigue is challenging and complex as there is

no specific diagnostic test for patients suffering from fatigue. Moreover, patients with

CFS/ME often face suspicion from healthcare professionals, and they oppose the con-

ceptualization of their illness as psychologically treatable [6].

The major clinical manifestations of CFS/ME patients are severe chronic fatigue with

muscle weakness, which gets worse by exertion, resulting in post-exertional malaise and

non-restorative sleep [3]. Physical and social functioning with associated pain is the car-

dinal characteristics that distinguish CFS/ME patients from healthy control patients [7].

There are few objective and predictive measures for better understanding these symp-

toms. As daily variability in the symptom intensity is unpredictable, the cumulative ac-

tivities’ associated durations and intensity levels can provide insights into an individual’s

daily limit of functional activities. Any activity beyond a specific intensity or duration

can cause an individual to "crash" the following day and severely limit social and physi-

cal activity. Monitoring patient activity in detail and evaluating the responses to patient

interventions are essential to help the patients avoid next-day crashes.
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The specificity and frequency of chronic fatigue symptoms and syndromes follow-

ing Covid-19 infection is still unclear regarding specifics and their frequencies. How-

ever, it seems clear that at least 10% and as many as 30% of patients, regardless of the

seriousness of their initial illnesses, develop persistent symptoms lasting six months or

more [4]. Fatigue, pain, poor-non restorative sleep, and reduced physical activity are the

most common symptoms. Over-exertion clearly delays the recovery process. Patients

suffering from CFS are more likely to be depressed, unemployed, and distressed psy-

chologically compared to those who experience fatigue but do not meet the criteria of

being a CFS patient [8]. Excessive fatigue makes the symptoms worse. So patients need

to be able to objectively measure their daily exertion to know their limits for physical

and social activity.

1.2 Research Aims

We aim to build a software and hardware package measuring the duration of an in-

dividual’s daily physical and social exertion and total energy expenditure. We need to

collect physical and social activity data to measure duration and energy expenditure.

Questionnaire-based subjective approaches to measuring energy expenditure are un-

reliable because of possible participant bias in reporting exertion. A more objective

measurement of physical and social/cognitive activities is essential for patients. We ex-

tended and modified the system described in our previous work [9] for leg and hand ac-

tivity detection with reasonable accuracy. The system also detects socially extroverted

behavior and high noise level exposure. After conducting a comprehensive summary,

we summarised the following steps to build a package that detects and measures the

common leg, arm, hand, and low-level social exertional activities:

1) Detect leg activities with a pair of smart insoles by analyzing pressure sensor and

accelerometer data.

2) Recognize hand activities using a wrist motion sensor device by analyzing ac-

celerometer, gyroscope, and magnetometer data.



[3]

3) Observe social interaction from voice activity and surrounding noise captured us-

ing a smartphone microphone.

4) Develop a system with a smartphone, a pair of smart insoles, and a wrist motion

sensor device to objectively measure the detected activities and analyze energy expen-

diture.

1.3 Dissertation Focus

This dissertation discusses how we developed a physical activity detection tool us-

ing a pair of smart insoles, a wrist-attached sensor-integrated device, and a smartphone

application. We describe our analysis to detect voice activity and exposure to high noise

levels. We show our result from analyzing and detecting eight emotions from human

speech and seventeen environmental sounds to examine the effect of emotion and en-

vironment on human fatigue. Tackling different challenges in activity detection and

comparison of other methods are described briefly. We describe the development of

a package to detect and measure physical and social exertional activities, with the goal

of providing users with a comprehensive report of their daily exertion.

1.4 Dissertation Organization

Chapter 2 of this dissertation provides a detailed description and comparison of re-

cent wearable sensor-based activity detection research. This chapter also compares dif-

ferent sensors, sensor devices, and their position on the body. We describe two activ-

ity measurement techniques in this chapter. Chapter 3 describes the methods to pro-

cess sensor data, different data processing techniques, popular machine learning algo-

rithms, and their performance metrics. In chapter 4, we present the leg activity detection

methodology and the results. Chapter 5 describes the hand activity detection process.

Chapter 6 shows our analysis of the microphone sound buffer to detect voice and noise.

We also analyzed the human emotion dataset and environment classification dataset.

We deliver our result on the analysis in chapter 7. In chapter 8, we discuss the architec-
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ture of our system, the challenges we faced while developing the system, and how we

solved the challenges using technology. This section demonstrates the system, the flow

to activity detection, and a comprehensive sample summary.

1.5 Publications

• Arafat Mahmood, Parama Sridevi, Sheikh Iqbal Ahamed: Demo Paper: A Pack-

age Of Objective Measurement Tools For Physical And Social Exertional Activities

For Patients With Illness-limiting Capacities in ACM/IEEE International Confer-

ence on Connected Health: Applications, Systems and Engineering Technologies

(CHASE’ 22), November 17–19, 2022, Washington, DC, USA

• Md Hasanul Aziz, Md Kamrul Hasan, Arafat Mahmood, Richard Love, Sheikh Iqbal

Ahamed: Automated cardiac pulse cycle analysis from photoplethysmogram (PPG)

signals generated from fingertip videos captured using a smartphone to measure

blood hemoglobin levels (IEEE Journal of Biomedical and Health Informatics, 2021)

• Arafat Mahmood, Parama Sridevi, Sheikh Iqbal Ahamed: Sensor-Based Detection

and Objective Measurement of Physical and Social Exertional Activities: State of

the Art Review (JMIR Preprints. 10/24/2022:43793) (submitted)

• Arafat Mahmood, Parama Sridevi, Sheikh Iqbal Ahamed: Development of a Smart-

phone and Sensor-Based Detection and Objective Measurement Tools for Physical

and Social Exertional Activities(IEEE Systems Journal) (submitted)

• Arafat Mahmood, Parama Sridevi, Sheikh Iqbal Ahamed: Design and Implemen-

tation of a Sensor-Based Remote Exertion Monitoring System For Elderly Patients

(IEEE Access) (submitted)

• Arafat Mahmood, Parama Sridevi, Sheikh Iqbal Ahamed: Smartphone and Sensor-

based Objective Measurement Tools for Physical and Social Exertional Activities
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for Patients with Illness-limiting Capacities (Klingler College of Arts & Science Poster

Session, 2022)
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Chapter 2
Literature Review

2.1 Overview of Activity Detection Methods

Two main categories are found in the literature to approach physical activity detec-

tion: sensor-based and vision-based activity detection [10, 11]. Vision-based techniques

rely on sensing videos provided by CCTV and cameras. These techniques use a camera

that is attached to the environment. The camera records surrounding videos and applies

computer vision techniques to the captured images and videos. The accuracy of the de-

tection process depends on how well it works with noises, such as low image quality and

light issues. The major drawback of this approach is that users have severe privacy con-

cerns about maintaining a regular life in front of cameras [12].

Sensor-based techniques can be divided into three sub-categories as shown in Fig-

ure 2.1. These include i) Wearable Devices, ii) Object-tagged, and iii) Dense sensing.

Wearable device approaches have been widespread in recent years. This approach asks

users to wear or attach a sensor-based device to their bodies. Sensors are attached to

different locations on the body of a user, and return raw data for further analysis of the

activity. Accelerometer, gyroscope, and magnetometer are common sensors attached to

the dominant wrist, waist, dominant hip, or chest for data collection [13]. The main

problem of this approach is that users may forget to wear the sensor or device [14].

Figure 2.1: Activity Detection Methods classification
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Object-tagged approaches solve this issue by attaching the sensors to objects of daily use

instead of body locations. One of the most common object-tagged approaches is using

smartphone sensors for activity recognition techniques. Due to the recent advancement

in sensor technology, smartphones are equipped with a wide range of sensors. People

usually carry their smartphones all the time. Data collection process and detection are

much more manageable with smartphones using the integrated sensors [15, 16]. Smart

Insoles, equipped with an accelerometer, gyroscope, and pressure sensors, are used in

different health care research and sports industry research to detect sedentary activi-

ties, as well as different leg activities, and gait analysis in [17, 18, 19]. Object-tagged

approaches have also been used to track drinking behavior in [20] using accelerometer

and health care activity monitoring in [21] using RFID. The problem with the object-

tagged approach is that the user needs to carry or be around that object all the time,

which may not be feasible in some scenarios. Also, due to the setup cost and challenges,

object-tagged sensors are less used than wearable sensors [11].

The third sensor-based technique is called dense-sensing, a device-free approach to

solve the problems in wearable sensor and object-tagged approaches. In a device-free

approach, users are not required to carry a device or sensor. This technique deploys

different sensors such as sound, motion, radars, temperature, pressure, and proximity

sensors in the environment. The sensors capture the relative information when the user

performs any activity near the sensors. Several researchers have used dense sensing

methods to detect physical activities in a smart home environment [22, 23]. Deploy-

ment of dense-sense-based sensors in the environment is comparatively more complex

than the other approaches. Moreover, sensor data from the dense-sensing approach are

affected by environmental noise which requires mitigation to increase the algorithm ac-

curacy [13]. For this reason, dense-based sensors are yet to be ready to use in real-life

scenarios.
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2.2 Physical Activity Detection Methods

Physical Activity Detection Methods Detection of common activities related to the

leg, such as standing, running, and walking, are detected using a tri-axial accelerom-

eter. Subjects wear a device integrated with an accelerometer on their waist [24, 25],

hip [26], or pocket [27, 15]. Smartphones are widely used as data collection devices

[28, 29, 30, 16]. Use of smart-insoles [31, 18, 19] and smartwatches [32, 33, 34] are also

becoming popular as they feature a multi-sensor data collection environment. The hand

activities are independent of typical body activities like walking, standing, and running.

People can do something with their hands while continuing their regular body activi-

ties. A system should know the hand activities, too, to get proper activity recognition.

The smartphone or other wearable sensors placed on the waist, hip, or pocket cannot

detect the movement of hand or wrist activities. As a result, wrist-worn devices are used

widely to detect various hand activities and gestures such as eating, drinking, writing,

and typing [35, 36]. Hand-washing activity was detected using the wrist-worn device

in [37]. Ramos-Garcia et al. [38] used wrist-worn accelerometers and gyroscopes to de-

tect eating activity. As accelerometers are used to get an object’s linear movement, they

effectively detect human linear movements, but fail to capture circular hand motions. A

combination of accelerometer and gyroscopes works are used to capture both the lin-

ear and rotational movements [39]. After data collection with appropriate sensor setup,

machine learning algorithms are deployed to extract necessary features and develop a

prediction model from the sensor data.

2.2.1 Smartphone based solution

There is a growing number of smartphone applications available for human activity

detection. These applications take advantage of the in-built sensors to collect activ-

ity and context information and can detect activity in real-time. Smartphone sensors

can be configured at required sampling rate. The captured sensor data can be stored

in the local storage and pre-processed for further calculation and detection. Voicu et
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al. [15] detected users’ physical activity using the sensors of smartphones. They col-

lected data using an accelerometer, gyroscope, and gravity sensor, which are integrated

into most modern smartphones. They trained the classifier with a large dataset after

extracting necessary features from the data. They used two different datasets: internal

and external. The authors collected and created the internal dataset for their research

and collected the external dataset from the internet. With the internal dataset, they got

good accuracy for walking (93%), sitting (94%), and standing (93%), but low accuracy

for climbing upstairs (75%) and downstairs (71%). There was relatively low accuracy for

the external dataset because of noise in the data and the differences in the environment

while collecting the data.

The common problem with machine learning approaches is that they use too many

systems resources [15]. Running such costly algorithms on a mobile device is not feasi-

ble as it drains the battery. Morillo et al. [40] provided an innovative approach to detect

physical activity by extracting discrete variables from smartphone accelerometer data.

They addressed major drawbacks related to smartphone energy consumption and com-

putational cost and proposed a way to overcome these issues. The use of the Ameva

algorithm for discretization helps reduce the recognition process computational cost.

They achieved an average accuracy of 98% for recognizing eight types of activities. Filios

et al. [30] introduce a hierarchical detection algorithm with a two-layer system for daily

activity recognition. They used a smartphone accelerometer for motion detection and a

microphone for environment detection in the lower layer of the two-layer system. In the

second layer, they created the activity detection model by taking the previous layer’s mo-

tion detection model and environment detection model as input. Four machine learn-

ing algorithms were used to classify the data: Logistic Model Tree (LMT), J48, IBk, and

FT. They got the best accuracy of 92.13% from the J48 decision tree algorithm for the

motion detection model, 90.77% accuracy from the IBk classifier for the environment

detection model, and 94.57% accuracy from the FT classifier for the activity detection
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model. The hierarchical system can be extended to more levels to detect collaborative

activities.

2.2.2 Wearable sensor-based solution

Wearable sensor approaches use data from sensors that are worn on different body

parts resulting in efficient detection of human activity. Wearable sensors are small, so

they can easily be attached to a human body. With high sensitivity and strong anti-

interference ability, they are more suitable for practical situations [25]. Smart device

manufacturers like Apple, FitBit, and Nike+ have released some wearable sensor-based

products that are successful in activity recognition. However, the user must explicitly

select a new activity session for reliable functionality [36]. Pansiot et al. [41] integrated

an ear-worn activity recognition (e-AR) sensor with ambient blob-based vision sensors.

They preprocessed the sensor data for dimensionality reduction and then applied Gaus-

sian Mixture Model Bayes Classifier to the data. The fusion of the ambient sensor with

the e-AR sensor significantly improved the accuracy in detecting activities compared

to using only the e-AR sensor. For example, the walking detection had only 79% accu-

racy when they used the e-AR sensor alone, but it improved to 100% when they applied

the sensor fusion. One of the significant challenges of using sensor-based techniques

is that so many factors directly affect a person’s behavior in performing different ac-

tivities [42]. Also, the algorithms to detect the activities must be robust against noise

to filter out noisy sensor data. Yazdansepas et al. [42] addressed these challenges and

comprehensively studied different machine learning techniques for activity detection.

To collect the data, they used a single hip worn ActiGraph GT3X+ attached to partici-

pants’ non-dominant hip and asked them to complete a series of predefined activities.

The authors extracted 176 features from the time and frequency domains. They used

three feature selection methods to compare six machine learning algorithms: Random

Forest, K-Nearest Neighbor, Decision Tree, Multi-Layer Perceptron, Support Vector Ma-

chine, and Naive Bayes. Random Forest was the best classifier with an average accuracy
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of 83.7%.

Due to the noisy nature of accelerometer data, machine learning algorithms have

some performance issues. Moreover, the accelerometers cannot differentiate between

activities of similar patterns alone, such as climbing stairs up and down [43]. To solve

this, Nweke et al. [43] used a sensor-fusion of accelerometer and gyroscope and com-

pared the performance of seven different classification algorithms using a single sensor

and the sensor-fusion placed at a different body part. They found a positive impact of

sensor fusion in recognizing human activities. Zhu et al. [44] proposed a human activity

recognition system using the fusion data from two wearable sensors. They used neu-

ral networks and hidden markov models to reduce the computation load. The system

classified human activities into three types: zero displacement activities, transitional

activities, and strong displacement activities. Kawser et al. [18] integrated pressure sen-

sors in shoes and used smartphone accelerometers and gyroscope data to build a system

prototype for novel activity detection. Placing pressure sensors in shoes removes the re-

quirement to carry or wear any device. Their system worked in two phases: the Learning

Phase and the Recognition Phase. The data was collected and analyzed in the learning

phase to develop the algorithm. In the recognition phase, the algorithm was applied to

real-time incoming sensor data to detect activities. The authors applied a decision tree

algorithm to develop four different classifiers based on the value from the accelerome-

ter, gyroscope, left shoe, and right shoe. The final activity was decided using a majority

voting algorithm from the output of different classifiers.

2.3 Choice of Sensors and Body Positions

Table 2.1 shows different sensors used in the literature for human activity recogni-

tion. Accelerometers are the most common sensors used in human activity recognition

systems. They are common in all sensor-based activity detection systems. Gyroscopes

are often combined with accelerometers to detect rotational movements. Accelerom-

eter and gyroscopes are often combined to make a 6-axis (or 9-axis with magnetome-
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Reference Sensors Device Position Detected Activities

[24]
Accelerometer,

Gyroscope
Smartphone Waist

Sitting, Lying,
Standing, Stair up,
Stair down, Walk

[25]
Accelerometer,

Gyroscope
Smartphone Waist

Same as above,
sit to stand, sit to lie

[27] Accelerometer
3-axis

accelerometer
Pocket

Walking, Running,
Jumping

[15]
Accelerometer,

Gyroscope,
Gravity Sensor

Smartphone Pocket
Walking, Running,
Sitting, Standing,

Upstairs, Downstairs

[18]
Accelerometer,

Gyroscope,
Pressure Sensor

Smartphone,
Insole

Pocket,
Shoe

Running, Walking,
Standing, Sitting

[17]

Accelerometer,
Inertial Measurement

Unit, Force Sensing
Resistor

Insole Shoe Fall Detection

[45] Accelerometer Sport Watch Wrist
Walking, Running,
Sitting, Standing,

Lying

[46] Accelerometer Sport Watch Wrist
Walking, Sitting,
Standing, Lying,

Stairs

[35]
Accelerometer,

Gyroscope
Watch Wrist

Eating period from
hand gesture

[47]
Accelerometer,

Gyroscope
Two

smartphones
Pocket,

Wrist

Lying, Sitting,
Standing, Walking,

Stairs, Writing,
Typing, Eating etc.

[48] 9-axis IMU Wristband
Wrist,
Arm

Smoking Gesture

[49] Accelerometer Smartwatch Wrist
25 hand activities

and gestures

[50]
IMU with

Accelerometer,
Gyroscope

Ring,Bracelet
Wrist,

Fingers
Activity of

daily livings

Table 2.1. Position of different sensor devices used in literature
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ter) Inertial Measuring Unit (IMU) and placed on one or more body positions of the

users [50, 17].

In different studies, the accelerometer and other sensors were set at a predefined

sampling rate of 15Hz-60Hz [24, 35, 45]. Approximately 20 Hz is a standard sampling

rate for normal human activities, but it can be optimized for better performance [51].

However, according to [52], 99% of the power for walking activity contains below 15 Hz.

So, the sampling rate must be at least 20 Hz to avoid under-sampling. The most feasible

position to keep the smartphone is the pocket, as pockets are the most common place

people carry their smartphones in. For some studies, researchers attached the smart-

phone to the waist or kept it in hand, but this is not always feasible as a real-life solution.

Instead of a smartphone, a smartwatch or wristband can be more practical where the re-

quirements are to get information from hand movement, as they can be easily attached

to the wrist. The authors in [38] used a Hidden Markov Model and recognized eating

activities. They also divided the activity into sub-activities like resting, eating, drinking,

and others, with an accuracy of 84.3%. In [47], Shoaib et al. used an accelerometer, gy-

roscope, and linear acceleration sensor at two different positions (wrist and pocket) and

concluded that the combination of these two positions shows better results than using

only the wrist position. In [48], the authors set up an arm trajectory-based method using

a combination of an accelerometer, gyroscope, and magnetometer at the wrist position

to extract the subject’s hand-to-mouth gestures to detect smoking sessions with high ac-

curacy of 95.7%.

In [50], Moschetti et al. placed wearable inertial sensors on the dominant hand’s fin-

gers, the back of the hand, and the wrist. They collected data from different sensors for

nine different gestures, such as eating with the hand, drinking from a glass, answering

the telephone, and brushing with a toothbrush. They used six different combinations

of sensors and applied two different machine-learning algorithms for the classification.

The authors in [49] noted some distinctions between hand actions and hand activities.
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They defined activities as a series of hand actions lasting seconds or minutes. They de-

cided to detect hand activities instead of hand actions for better classification. They

modified the kernel of a smartwatch [49] and configured the frequency of the accelerom-

eter. The authors classified 25 hand activities with 95.2% accuracy.

Maurer et al. [53] designed a system to recognize and monitor activities using an

eWatch and multiple sensors attached to different body positions. They studied the ef-

fectiveness of different activity classifiers by varying the wearing positions of the sen-

sors. The sensors were placed on the shirt, pocket, bag, necklace, and wrist. The authors

calculated the classification accuracy for every activity in these six positions. They got

the highest accuracy when data from all sensors were used to extract the features. How-

ever, there is a trade-off related to performance. The number of sensors increases the

data processing time and system resource use. Hanai et al. [54] claimed that increasing

the number of sensors reduces the system’s efficiency. So, they proposed a new feature

selection technique for 3D acceleration signals. They proposed 1D Haar-like and 1D

Haar-like biaxial filtering for efficient feature selection and activity recognition. They

achieved the highest accuracy of 93.91% and reduced the calculation cost to 21.22%.

2.4 Social Activity Detection Methods

Social behaviors and interactions play essential roles in a person’s fatigue. The de-

tection of a person being in a conversation and measuring the involvement level can

provide valuable insights into that person’s social activity. There is evidence that ex-

troverted behaviors positively affect an individual’s current mode and lower fatigue but

leads to higher fatigue in a 3-hour delay [55]. Human behaviors and interaction with

other persons are vital in the health sector. A person’s surrounding audio data provides

valuable information about the context. To detect the type of interaction, we can ana-

lyze surrounding audio, phone calls, text messages, emails, and other communication

methods [56]. Microphones integrated into smartphones are a great way to analyze the

surrounding of a user and detect the type of social situation the user is in. Several re-
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searchers have detected the type of context by analyzing surrounding sound. Lu et

al. [57] developed the first voice-based stress detection system by using microphones

in the smartphone. Abdullah et al. [58] used smartphone sensors to collect behavioral

data like speech, SMS, call logs, and contextual data like location. They applied machine

learning to the data that distinguished between the stable and unstable states in Bipolar

Disorder patient’s daily life to reduce the risk of relapse.

Smartwatches and smart wristbands can also collect audio data from surrounding.

Smartwatches were used to diagnose Parkinson’s disease [59], Dysarthria [60], and ex-

tract clinical features from speech [61]. A smartwatch-based conversation and noise

classification system was developed in [62], which continuously monitored and mea-

sured conversational events. Additionally, there has been research on detecting and

measuring conversational speech and segmenting each speaker in [62, 56].

2.5 Methods of Activity Measurement

Measurements of physical activity are done using two methods: Subjective and Ob-

jective. Subjective methods are based on user perception (recalling or remembering),

so there is a chance of having reporting bias in the measurement. Subjective meth-

ods include self-report questionnaires and maintaining an activity diary/log. According

to [63], participants in subject studies sometimes over-report the quantity of their activ-

ity. Objective methods depend on data from devices or observations, which makes the

method more accurate than subjective methods. Subjective methods are mainly ques-

tionnaires or based on participants’ recall ability. On the other hand, objective measures

make the observation and quantification using devices that return reliable data. Using

different sensors and getting a defined measurement is an example of an objective mea-

sure. Heart rate monitors and pedometers are also used for objective activity measure-

ment. Figure 2.2 shows different activity measurement methods.

Objective methods are now regarded as the better method for measuring physical

activity level and intensity [63]. Accelerometers provide reliable data that can be used
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Figure 2.2: Different type of activity measurement methods

to quantify performed activities. Objective methods were developed to reduce the issue

caused by subjective methods, and they can avoid reporting bias from the participant

while presenting the relationship between activity level and health. There have been

discrepancies when comparing the result of subjective and objective methods [64]. The

self-reported subjective measure reports a higher amount of physical activity than what

was reported by the accelerometers in [65, 66]. Based on these facts, it is evident that to

get an accurate measurement of physical activity, an objective method is necessary.

Table 2.2 shows previous literature on managing fatigue and estimating energy ex-

penditure. The recent systems are sensor-based and thus objective and more accurate

than the subjective methods to assess fatigue and calculate energy expenditure. The

objective systems use wearable sensors, IMU, and accelerometers to detect the sever-

ity of CFS/ME patients [67] or to assess their symptoms of fatigue [68]. Using multiple

wearable sensors in different body positions may lead to accurate results, but it reduces

the comfortability of elderly patients. Also, they did not consider social exertion’s ef-

fect on assessing the patients’ fatigue. Subjective studies have used standard question-

naires to get the perceived exertion of the patients, which leads to bias in the reporting.

Most objective and sensor-based MET estimations used regression and approximation-

based techniques on predefined activities without any activity detection system. In [69],

thirteen activities were detected using multiple wearable sensors on the hip, waist, and

chest to calculate energy expenditure. But the use of numerous wearable sensors made

the system complex and uncomfortable for the patients.
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Reference Method Tool
Activity

Detection
Social

Exertion
Remarks

[67] Objective IMU No No
CFS/ME
severity

determination

[68]
Subjective,
Objective

Questionnaire,
Accelerometer

No No
Assessment

of fatigue

[70] Objective Multiple IMU No No
Reduces

comfortability

[71] Objective Multiple IMU No No
Fall risk

assessment

[72] Subjective Questionnaire No No
Self-reported

assessment, bias
in reporting

[73] Objective Sensor No No
Regression-based
MET estimation

[74] Objective Sensor No No
MET calculations
from predefined

activities

[69] Objective Wearable sensor Yes No
Multiple body

location

Table 2.2. Literature on fatigue management and EE estimation

Figure 2.3: Practicality Vs Accuracy in the context of physical activity measurement
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There is a trade-off between feasibility and accuracy in the context of the subject

and object measurement of physical activity, as depicted in Figure 2.3. Pedometers and

Recall surveys are more practical measures of physical activity, but they are less accurate

than using an accelerometer or maintaining a physical log or diary [75].
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Chapter 3
Processing Sensor Data in Activity Detection Context

Sensors are an essential part of an activity detection system. The system’s accuracy de-

pends on how well the data is processed and the extraction of appropriate features. Data

from the sensors need to be segmented into windows to match the sampling rate with

human activity movement patterns. This chapter describes standard sensors, prepro-

cessing techniques, and the performance metrics used in activity detection systems.

3.1 Sensors in Activity Detection

Accelerometers and Gyroscopes are the two most common sensors used to learn the

movement patterns during physical activities. Sensor fusion algorithms are applied to

the raw output from sensor data for better performance. This section will briefly de-

scribe the essential sensors we need to build an activity detection system.

3.1.1 Accelerometer

A tri-axial accelerometer can sense the movement of the object or body it is attached

to and return the linear acceleration along the x, y, and z axes, which results in valuable

information about movement patterns. Accelerometers are good at measuring linear ac-

celeration but cannot measure rotational movement. Accelerometers perform very well

in recognizing running, walking, standing, and sitting but poorly detect stair-climbing

activities.

3.1.2 Gyroscope

A tri-axial gyroscope can measure angular velocity and sense the change in orien-

tation of an object along the x(roll), y(pitch), and z(yaw) axes. Gyroscopes can provide

essential insights into the movement of an object that rotates around some particular

axes. Though gyroscopes detect immediate orientation change, they are subject to a
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drift in orientation values that causes gradual divergence of calculated values from orig-

inal values over time [76]. Accelerometers can correct the drift of roll and pitch, while a

3-axis magnetometer can compensate for the drift in yaw by reading geomagnetic flux

density [76].

3.1.3 Magnetometer

Magnetometers detect and measure the fluctuations in the earth’s magnetic fields.

The data from magnetometers are fused with other inertial sensors to calculate absolute

heading. A 3-axis magnetometer can detect the changes in the magnetic field caused by

human movement and can be helpful in activity detection research.

3.1.4 IMU

An individual sensor can only return linear measurements or rotational measure-

ments along some axes, which may need to be sufficient for complex activity detection.

A combination of different inertial sensors might help in this scenario. A 6-axis com-

bination of accelerometer and gyroscope and a 9-axis combination of accelerometer,

gyroscope, and magnetometer is used as an Inertial Measurement Unit (IMU) to com-

pensate for the issues of different sensors [77]. IMUs can measure acceleration, angu-

lar velocity, and magnetic fields from the sensor package. Sensor-fusion algorithms are

used to combine data from different sensors of IMU by fusing the data to create a new

high-dimensional feature set [78].

3.2 Multi-Sensor Fusion

The fusion of sensors can be done by combining the output of different sensors to

extract new features. Multi-sensor fusion can achieve better accuracy and performance

in an activity recognition system than a single sensor [53]. The data from a single sensor

might be unreliable, so using multiple sensors can benefit human activity recognition

research. Data from multiple sensors can be fused in three levels of the recognition

system.
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3.2.1 Data-level fusion

In the most common sensor fusion technique, raw data from multiple sensors is

fused to generate new feature data. Fusing data from various sensors generates huge

feature space that may increase the accuracy of the classifier but will reduce the perfor-

mance in terms of resource usage and time. Data level fusions are done at the early stage

of a recognition system.

3.2.2 Feature-level fusion

In feature-level fusion, feature sets from multiple sources are combined into a single

feature set by applying appropriate schemes. Different feature transformation and re-

duction techniques can be used to detect correlated features and generate a compact set

of features to improve the performance of the trained classifiers. However, large training

sets are usually required to generate the most crucial feature set.

3.2.3 Decision-level fusion

Decision-level fusions are done at the classification stage of a recognition system.

It combines the decisions of multiple classifiers from multiple modalities and helps to

reach a final decision. Multi-modal sensor data are typically analyzed using multiple

classifiers, especially when applying a feature-level fusion on the data is difficult. Each

sensor modality first decides on the data, and a decision fusion algorithm combines all

the decisions.

3.3 Steps in Activity Detection

The activity detection process consists of four essential components found in the

previous research [10] as shown in Figure 3.1. The first task is selecting a proper ap-

proach depending on the needs and target users. The appropriate sensors or devices

are deployed in environments or tagged with objects for data collection. After collection

in the second step, the data is pre-processed to remove noise, and then proper feature

extraction techniques are applied. Machine learning approaches are the most common
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Figure 3.1: Tasks of Activity Recognition

method to recognize activities from processed data. Using machine learning algorithms

is the last step in the activity detection process.

3.4 Preprocessing and Feature Extraction

Sensor data typically contains high-frequency noise. They are usually preprocessed

before the actual classification. High-frequency noise can be removed using a low-

pass filter [79], normal filter [80], and median filter [81]. Features of sensor data can

be divided into two domains: time domain and frequency domain. Time domain fea-

tures include mean, median, standard deviation, variance, the time between peaks [82],

RMS [83], range between maximum and minimum values [84], angular velocity, etc.

These time domain features are prone to measurement and calibration errors [42]. As

noise in accelerometer signals cause the signals to jump from high frequencies to low,

analyzing the signals from a frequency domain perspective allows filtering that noise to

make cleaner signals. Frequency domain features include coefficients sum calculated

using wavelet analysis and Fourier transformations, DC component analysis [82, 85] and

dominant frequency analysis [86] using Fourier transformations. A combination of both

domains was also used in [87, 42] to achieve maximum performance.

The accelerometer and other sensors are set at a predefined sampling rate in differ-

ent studies. Approximately 20 Hz is a standard sampling rate for normal human activ-

ities, but it can be optimized for better performance [88]. However, according to [52],

99% of the power for walking activity contains below 15 Hz. So the sampling rate must

be at least 20 Hz to avoid undersampling.



[23]

3.5 Segmentation into Windows

As activities are performed over a long period compared to their sampling rate, it is

essential to segment the samples into data windows or smaller data segments for fur-

ther processing. When people walk, their bodies follow a specific movement pattern,

which cannot be expressed in a single row of raw sensor data. So data from multiple

rows are combined in a ’window’ to represent a small portion of the activity pattern.

The segmentation process usually depends on the requirements and end goals of the

activity recognition system. Some standard segmentation techniques used in literature

are activity-defined window segmentation [89, 27, 51], event-defined window segmen-

tation [90, 91], and sliding windows [92, 82, 93].

Activity-defined windowing procedure partitions the data stream based on activity

change. It detects the start and end points of each activity. The changes can be iden-

tified through the frequency analysis of the sensor data stream. User feedback is also a

great way to detect the start and end points of the activity. The event-defined windowing

procedure uses specific events to segment the data. This approach has no defined seg-

ment size, as the events are not uniformly distributed. The activity and event-defined

windowing techniques segment data using defined conditions but require complex pre-

processing steps [94].

The Sliding Window Technique is the most popular data segmentation technique for

its simplicity and intuitiveness. The technique segments the data into small fixed-size

windows using overlapping and non-overlapping methods. Though the non-overlapping

windows method follows a more straightforward approach, a relatively complex over-

lapping algorithm is used in practice. The overlapping approach overlaps two consecu-

tive segments’ data by a defined percentage to avoid potential information loss between

adjacent windows. Literature suggests using 25% to 50% overlap in this approach [29].

Besides deciding on the percentage, determining the best window size is also essential.

Windows may have information on multiple windows if the window is too large. On the
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other hand, if the window is too small, some activities may be split into multiple win-

dows. Wang et al. [95] analyzed different sizes of timed windows based on the F1 Score

and concluded that a window size of 2.5s-3.5s can provide the best result for motion

recognition.

3.6 Feature Selection

In machine learning studies, some extracted features may be irrelevant and do not

contain useful information. Training and computation get slower if there are too many

features. So it is essential to reduce and select necessary features using the dimension-

ality reduction technique before running the actual classification techniques. There are

two types of reduction process [96]: feature selection and feature transform.

The feature selection method creates a subset of the original features. The selected

features contain the most relevant information contributing to the classifier’s perfor-

mance. There are three different feature selection techniques depending on the feature

evaluation process [97]: filter, wrapper, and embedded methods. Filter methods per-

form the selection task by analyzing the characteristics of the features without commu-

nicating with the classifier. Unlike filter methods, wrapper methods use the classifier

to evaluate different subsets of features to select the best possible subsets. Embedded

methods calculate the optimal weights from a feature subset and choose the best one.

Filter methods are the most used in high-dimensional feature space because of their

high computational efficiency, but some hybrid strategies are also combined for better

selection methods [98].

The feature transformation technique combines original features to make a smaller

dimensional space. It works well where multiple features collectively can provide better

performance of the classifier. Some widely used feature transformation techniques are

Principal Component Analysis (PCA) [99, 29], Independent Component Analysis (ICA)

[100], and Local Discriminant Analysis (LDA) [101, 102].
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Group Algorithm Reference

Generative Model
Bayesian Network [40, 99, 93]

Hidden Markov Model [85, 44, 38, 37]
Naive Bayes [53, 40, 42, 35]

Gaussian Mixture Model [19, 41, 18]

Discriminative Model
Random Forest [42, 50, 48]

J48 [99, 30]
C 4.5 [53, 85, 50, 45]

Logistic regression [104, 56, 58, 15]
Support vector machine (SVM) [50, 17, 16, 42, 40]

K-nearest neighbors (KNN) [93, 53, 40, 16, 46]
Convolutional neural network [25, 36]

Multilayer perceptron [42, 45, 46]

Table 3.1. Popular classification techniques used in literature.

3.7 Classification

Sensor-based data classification techniques can be grouped into generative and dis-

criminative models. The dataset is fed into different ML algorithms to analyze the sen-

sor data and then recognize a pattern from the data. Table 5.1 shows a list of popular ML

techniques used in literature.

Nam et al. [93] compared different ML techniques on their dataset and found K-

nearest neighbor (96.2%) and Decision Trees (94.7%) techniques to be highly accurate

with good computation complexity. They also got 95% accuracy with SVM and 96.3%

accuracy using MLP, but they took high computational time, suggesting that these algo-

rithms are unsuitable for real-time recognition. In recent years, decision trees (98.4%)

and deep learning-based algorithms(95.2%) have been popular among researchers [103].

3.8 Performance Metrics

Accuracy, precision, recall, F-measure, and specificity are the most used performance

metrics of machine learning classifiers in activity recognition systems [50, 78]. These

measures depend on the count of:

• True Positives(TP): the number of data correctly classified as positive
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• True Negatives(TN): the number of data correctly classified as negative

• False Positives(FP): the number of data incorrectly classified as positive

• False Negatives(FN): the number of data incorrectly classified as negative

3.8.1 Accuracy

Accuracy is used to provide a summary of the performance of the classifiers for all

classes. Accuracy can be calculated as the total number of true positives and negatives

ratio to all prediction counts.

Accur ac y = T P +T N

T P +T N +F P +F N
(3.1)

3.8.2 Precision

Precision quantifies the number of correct positive predictions and measures how

well a classifier predicts a specific class. The precision of a class can be calculated with

the following formula:

Pr eci si on = T P

T P +F P
(3.2)

3.8.3 Recall

The recall measures the classifier’s ability to identify true positives correctly. The dif-

ference between precision and recall is that precision measures the rate of detecting true

positives out of all positive predictions. In contrast, recall measures the rate of detecting

true positives out of all possible positive predictions. Recall can be measured with the

following formula:

Recal l = T P

T P +F N
(3.3)

3.8.4 F-measure

F-measure combines both precision and recall into a single measure to explain both

properties by taking the harmonic mean of them using the following formula:
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F −measur e = 2.
Pr eci si on.Recal l

Pr eci si on +Recal l
(3.4)

3.8.5 Specificity

Specificity measures the ratio of correct negatives out of all possible negative predic-

tions.

Speci f i ci t y = T N

T N +F P
(3.5)

3.8.6 RMSE

Root mean squared error (RMSE) is used widely to evaluate the quality of predictions

by machine learning systems. RMSE calculates the euclidean distances of the predicted

values and the original values. RMSE can be calculated from the following formula:

RMSE =
√

n∑
i=1

(pr edi ct i on −or i g i nal )2

n
(3.6)
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Chapter 4
Detection of Leg Activities from sensor data

Machine learning algorithms play a vital role in detecting human physical activities.

Researchers have collected data from different activities to develop machine-learning

models. Recent research on activity detection are mostly sensor-based. With the ad-

vancement in sensor technology, manufacturers have integrated modern sensors into

smartphones, insoles, smartwatches, and many other objects of daily use. The necessity

of the smartphone has made it one of the most used devices to collect physical activ-

ity data used to train machine learning models [28, 40, 16, 15]. Researchers have used

insoles to detect the pattern of different foot activity in gait analysis and fall detection

research [18, 19]. Accelerometers and gyroscopes are the most crucial sensors in any ac-

tivity detection research that respectively returns the change in speed and orientation of

an object along the x,y, and z-axis. The data can be further analyzed to extract essential

features in activity detection.

4.1 Insole as a solution

Using different body sensors on different locations on the body might increase the

accuracy of activity detection, but can create discomfort for patients. Patients may for-

get to wear the sensor device, leading to incorrect energy expenditure measurement. Pa-

tients dependent on such measurement systems may need a different estimate of their

daily exertion and mark their daily limit for activities. Researchers tried to address these

issues [18, 17] and used sensor-integrated smart insoles to put inside the shoe to remove

the complexities of multi-sensor systems. An insole setup as a data collection tool en-

sures that patients are less likely to forget to wear the sensor devices and therefore be

able to avoid the discomfort of wearing multiple sensors on the body.
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4.2 Methodology

Sensor-based approaches detect activities by utilizing machine learning algorithms

on the data returned by sensors. Machine learning algorithms use raw data from sensors

as features. Sensor data are segmented using a fixed window size, then basic statistical

features like mean, median, and mode are extracted from each window. Segmentation

is a fundamental and standard technique in activity detection. A sensor with a sampling

frequency of 20Hz will have 200 rows for an activity(let X) performed for 10 seconds.

So for activity X, these 200 rows are segmented and treated as a single row in a format-

ted dataset. The segmented dataset is used to train and validate the machine learning

algorithms. We developed our leg activity detection algorithm by following the above

techniques.

4.2.1 Data Collection

We used a pair of smart insoles to collect the data (Figure 4.1). The insoles had four

pressure sensors and an accelerometer. We put smart insoles into the shoes instead

of regular insoles. The accelerometer returns raw data along the three axes, and each

pressure sensor returns 1 or 0 depending on the pressure on that sensor. Data from 6

different activities were collected using the foot insoles. The target activities are Walk-

ing, Running, Sitting, Standing, Upstairs, and Downstairs. We collected the data at a

sampling rate of 20 Hz from both insoles. Participants performed each activity for 30

seconds in five different sessions.

We developed an android application to perform the data collection. The applica-

tion connects to the insoles via BlueTooth. After establishing the device connection,

the application asks the user to perform certain activities for calibration purposes. The

insoles are ready to send raw sensor data to the smartphone once the application estab-

lishes a connection. For the data collection, the application asks the user to perform

each target activity, and a timer of 30 seconds starts when the user presses the start

button for each activity. After completing each 30-second data collection activity, the
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application stores the data for each activity in a comma-separated value format with

timestamps and labels in the smartphone storage. After the user completes the data

collection process, we move all the data files from the smartphone storage for analysis.

4.2.2 Data Representation

Figure 4.2 shows the accelerometer values along the x,y, and z axis for different leg

activities. There is no movement along all three axes in a "sitting" activity (Figure 4.2(a))

and a little movement in the event of "standing" (Figure 4.2(c)). There is some expected

movement for "running" (Figure 4.2(c)) and "walking" (Figure 4.2(d)) because of the

high frequency of movement of the leg while performing the activities. One important

difference we found is that the z-axis values were higher in "running" than in "walking".

Figure 4.3 shows our study’s frequency distribution of different leg activities. We see

that the counts of "sitting" and "standing" were relatively lower than the others. As "sit-

Figure 4.1: Insole for leg activity detection
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(a) Sit

(b) Stand

(c) Run

(d) Walk

Figure 4.2: Data representation of different types of leg activity
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ting" and "standing" are low-movement activities, there was less movement along the

accelerometer’s axis, resulting in a low count.

4.2.3 Data preprocessing

As activities are performed over a long period compared to the frequency (20Hz in

our case), we segmented the data using the sliding window technique. We segmented

every 2 seconds with a 50% overlap between adjacent windows. Each window had 40

rows of data with a sampling rate of 20Hz. We combined all the data in a single CSV file

to start the preprocessing. Each row contained the pressure sensor values, accelerom-

eter x,y,z values, timestamps, and labels. From each window(for every 2 seconds), we

extracted the mean, standard deviation, and average absolute difference of the sensor

data in both the time and frequency domains. We set the mode value of each window’s

activity label as a label for each row in the extracted feature set. We partitioned the fea-

ture data using a 70-30 train-test split method. So we trained the classifiers with 70% of

the data and validated the performance using 30% of the data.

Figure 4.3: Leg Activity Frequency Distribution
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Classifier Sit Stand Walk Run Upstairs Downstairs Average
SVM 96% 92% 91% 96% 76% 78% 84.8%

Decision Tree 95% 100% 98% 98% 75% 69% 84.1%

Table 4.1. Activity-wise accuracies for leg activity detection

4.2.4 Oversampling - SMOTE

The leg activity data set has a higher count for stair activities but a lower count for

sedentary activities such as sitting and standing. The imbalance in frequency distri-

bution can bias the machine learning algorithms and might lead to minority class igno-

rance. Randomly resampling the dataset can balance the dataset. There are two primary

approaches to random resampling: over-sample and under-sample. Oversampling can

be implemented by creating duplicate data from the minority class. The undersampling

approach deletes data from the majority classes. We used SMOTE (Synthetic minor-

ity oversampling techniques) to oversample the lower count activities and balance the

dataset to tackle the imbalance in the count of some activities. SMOTE randomly selects

a row of the minority class and computes its K nearest neighbors to generate synthetic

samples of the minority class. We applied this method only to the training dataset to fit

the models. The resampling was not applied to the test dataset we used to evaluate the

performance of the classifiers.

4.3 Result

We trained two classifiers: Support Vector Machine(SVM) and Decision Tree(DT).

With 10-fold cross-validation, we achieved an average accuracy of 86%( +/- 5%) using

SVM and 84%( +/- 3%) using DT. The accuracies are acceptable but need to be higher.

So we looked at the activity-wise accuracy for one fold from both classifiers. We show

the comparison in Table 4.1.

As we see lower accuracies for upstairs and downstairs, we looked at the confu-

sion matrix for SVM, which is shown in Figure 4.4. The confusion matrix shows that
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Classifier Sit Stand Walk Run Stairs Average
SVM 92% 88% 97% 98% 97% 96%

Decision Tree 84% 92% 90% 96% 98% 94.8%

Table 4.2. Activity-wise accuracies for leg activity detection with stair data combined

the upstairs and downstairs activities are often confused. The upstairs data was some-

times confused with walking too. As people go upstairs or downstairs with different

patterns(one step, two steps, or more at a time), it is difficult to differentiate these two

activities. Also, our insole had an accelerometer only. A gyroscope and magnetometer

may give us better insights into these two activities.

4.3.1 Tackling stair activities

Because of the confusion and low accuracy with upstairs and downstairs, we trained

the models without these activities. We achieved an improved average accuracy of 95%(

+/- 3%) using SVM and 96%( +/- 2%) using DT.

As we saw that our classifiers were confused about upstairs and downstairs data, we

combined both upstairs and downstairs data and created a new class named ‘stairs’. The

objective of this approach is to detect the activities that involve stairs, irrespective of the

direction. We present the result in Table 4.2. The overall accuracy has increased with

both classifiers. We achieved an average accuracy of 96% (+/- 2%) using SVM and 94.8%

(+/- 2%) using DT.

4.4 Comparison with Smartphone data

The insoles we used to collect leg activity data consisted of one accelerometer and

four pressure sensors. Smartphone operating systems provide a sensor framework to

access and acquire raw sensor data. These frameworks provide methods to check the

availability of a sensor, register the sensor to return data, acquire the data and then un-

register the sensor. To compare the result, we used our system application to collect data

from the accelerometer, gyroscope, gravity sensor, and magnetometer for six activities.
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Figure 4.4: Confusion matrix for SVM in detecting leg activity

4.4.1 Smartphone Sensor

Modern smartphones have built-in sensors to measure motion, orientation, tem-

perature, proximity, and environmental properties. There are three categories of smart-

phone sensors.

Motion Sensors

Motion sensors such as accelerometers, gravity sensors, gyroscopes, and rotational

vector sensors measure the acceleration and rotation of the smartphone device along

three axes. We depended on the data from the accelerometer and gyroscope to detect

leg activities. However, we also collected data from gravity sensors.

Environmental Sensors

Different environmental parameters such as temperature, pressure, light, and hu-

midity can be measured via a smartphone device using integrated thermometers, barom-

eters, and photometers. Illumination (ambient light level) can be measured using a
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hardware light sensor to control screen brightness automatically. Dew point and relative

humidity can be measured using humidity sensors. For our research, we did not use any

environmental sensors to detect physical activities. However, we will take advantage of

built-in environmental sensors to detect the surrounding context in the future.

Position Sensors

Position sensors can measure the physical position and orientation of a device. An

orientation sensor can measure the degrees of rotation of a device around the x,y, and

z axes. Orientation sensors are not physical sensors. Instead, they are software-based

sensors that calculate their output from one or more of the hardware-based sensors.

4.4.2 Data collection using a smartphone

We developed a separate data collection module in the application that was used

to acquire sensor data from six activities: sitting, standing, walking, running, upstairs,

and downstairs. These are the same activities that we analyzed using the smart insoles.

We collected data from each activity for five sessions that were 10 seconds long. The

smartphone was put in the right pocket while performing the activities. The app asked

users to select the name of the activity first, then wait for 5 seconds before registering

the sensors to start a 10-second timer. As there may have been some delay for the user

to select the activity, place the phone in the right pocket, and then perform the activities,

the 5-second delay was needed for accurate data collection.

4.4.3 Sample Rate

Android devices can output sensor data at four different predefined sampling rates.

Instead of defining a sampling rate, the android sensor manager takes a data delay value

while registering the sensors. The data delay specifies the interval at which sensor events

are delivered to the application. The four predefined interval values are:

• Normal: 200000 microseconds
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• Game: 20000 microseconds

• UI: 60000 microseconds

• Fastest : 0 microsecond

Android also provides the option to define an absolute value in milliseconds as data

delay. The specified delay is a suggested value defined according to the system require-

ments. However, the system usually alters the value and uses a smaller delay. It is ad-

vised to specify the largest value possible that meets the system requirement, as larger

data delay can improve smartphone system resource usage and results in consuming

less power. For our case, we used the SENSOR_DELAY_UI (= 60000 microseconds) as

data delay. The equivalent sampling rate was approximately 17Hz, but for some high-

frequency events, we got data at a sampling rate of up to 50Hz.

4.4.4 Challenges in data collection using Android smartphone

The smart insole returned all sensor data at the same timestamp, so we did not have

to worry about merging or combining the outputs. However, the android sensor man-

ager returns the output from only one sensor simultaneously. Whenever a change is

detected in the value of any sensor, the sensor manager returns the sensor output along

the three axes, the sensor type, and the timestamp of the change. We saved output from

different sensors in different CSV files and later merged them by timestamps. As at a

specific timestamp, we had values from only one sensor. We set a tolerance of 500 mil-

liseconds as a merge rule. Suppose the merge algorithm did not find a value from a

sensor at a specific timestamp while merging two CSV files from different sensors. In

that case, it took the last value from the last 500 milliseconds and used the value to re-

place the null value.

4.4.5 Data Description

For an activity performed over a 10-second duration, we were supposed to have ap-

proximately 160-170 data points per sensor with a sampling rate of 17Hz. For sitting



[38]

Accelerometer Magnetometer Gyroscope Gravity Sensors
Sit 150 149 124 123

Other Activities 498 149 125 123

Table 4.3. Sensor output for different activities

Sit Stand Run Walk Upstairs Downstairs
148 488 490 488 489 491

Table 4.4. Average number of sample per activities in 10 second

activities, we got less movement in the sensor values. As the android sensor manager

returns sensor values only when some changes are detected, the sampling rate of the sit-

ting activity was lower than the other activities. The application detected more change

in the accelerometer than other sensors for other activities. Table 4.3 shows the output

size from different sensors for activities performed in 10 seconds. Table 4.4 shows the

average number of samples per activity after merging the outputs from different sensors

with a 500-millisecond tolerance.

4.4.6 Data Visualization

Figure 4.5 and 4.6 visualizes the accelerometer data from different activities col-

lected using a smartphone. The data from sitting (Figure 4.5(a)) and standing (Figure

4.5(b)) show less movement along all axes and match the visualization of data from in-

soles (Figure 4.2(a) and 4.2(b)). The data from running (Fig 4.5(d)), walking (Fig 4.5(c)),

upstairs(Fig 4.6(b)), and downstairs(Fig 4.6(d)) show a periodic pattern for each of the

sensors and generate a large amount of information. The shape and pattern of the move-

ments from these activities are significantly different than we saw from insoles. The val-

ues from smartphone sensors are relatively higher too. Running and walking motions

are similar, but running is executed faster than walking, with a shorter time difference

between periods.
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(a) Sit

(b) Stand

(c) Walk

(d) Run

Figure 4.5: Data collection using smartphone: Sit, Stand, Walk and Run
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(a) Insole Upstair

(b) Smartphone Upstair

(c) Insole Downstair

(d) Smartphone Downstair

Figure 4.6: Comparison of Upstair and Downstair data from Insole and Smartphone
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Precision Recall F-Score
Sit 1.00 1.00 1.00

Stand 1.00 1.00 1.00
Walk 0.94 1.00 0.97
Run 1.00 1.00 1.00
Up 1.00 0.91 0.95

Down 0.89 0.94 0.92

Table 4.5. Leg activity detection with smartphone sensor (Accuracy 96.9%, RMSE 0.11)

4.4.7 Result

The objective of using smartphone sensors to detect leg activities was to compare

the result with insoles and see if we improved the detection of upstairs and downstairs

data by taking advantage of gyroscopes and magnetometers. In this section, we present

our comparative result.

We achieved the best result with the support vector machine algorithm on features

from the accelerometer and gyroscope (both time and frequency domains). The 10-fold

cross-validation score is 98% (+/- 2%). The activity-wise performance is shown in table

4.5, and the confusion matrix is shown in figure 4.7. If we use the accelerometer feature

only, the overall accuracy goes down to 92.3% with a higher RMSE value (0.26) than using

the accelerometer and gyroscope together (0.11). Also, the accuracy of predicting up-

stairs (83%) and downstairs (83%) activity goes down too. Thus, we need gyroscope data

combined with accelerometer data for better leg activity prediction. Frequency domain

features are also important, as well as time domain features. With only time domain fea-

tures of the accelerometer and gyroscope values, we got an overall accuracy of 87% with

comparatively lower accuracy for the run (84%), upstairs (82%), and downstairs (64%)

activity. We collected data from gravity sensors and magnetometers too. However, we

did not get any significant improvement in adding these features to the training dataset.
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Figure 4.7: Confusion matrix for SVM in detecting leg activity using smartphone sensors

4.4.8 Smartphone Vs Insole

After performing leg activity detection using the smartphone, we have some key

points to mention:

• We got a better result from smartphone sensors than using an insole in detecting

leg activities. Moreover, smartphone sensors can successfully distinguish upstairs

and downstairs activities. Using a smartphone to detect leg activities makes better

sense than using an insole.

• The main difference between the smartphone and smart insoles is the gyroscope.

We used the gyroscope values as features to train the classifiers using the smart-

phone. The insoles do not have any gyroscope integrated. We also experimented

by building a classifier without taking the features from gyroscopes but ended up

with lower performance.

• The position of the sensors on the body can make a difference too. The movement

and change in smartphone orientation during different activities provide informa-
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tion about the performed activities. We put the smartphone in the pocket during

data collection and the smart insoles inside the shoes. Smartphones are one of the

most used objects by humans and can be carried anywhere. However, in a home

setup, an individual usually only sometimes carries smartphones in their pocket.

On the other hand, insoles are a great option as they increase users’ comfort and

remove the condition of carrying a sensor-integrated device all the time.

• The visualizations from Figure 4.2 and Figure 4.5 suggest that accelerometer data

from the insoles may not provide accurate information. The main reason behind

inaccurate information is the insoles were manufactured in 2015 and did not con-

tain updated and improvised accelerometers. On the other hand, smartphone

sensors are continuously improved. Using an updated insole as a data collection

device may provide better accuracy.
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Chapter 5
Detection of Hand Activities using MetamotionC

5.1 MetamotionC

To collect accurate information from performed hand activity, we used Metamo-

tionC [105], a wearable device that can be attached to the wrist (Figure 5.1). The device

comes in a small rectangular board and includes a sensor fusion of a 3-axis accelerom-

eter, a 3-axis gyroscope, and a 3-axis magnetometer. With the combination of the three

types of sensors, the device uses a sensor fusion algorithm to calculate a robust absolute

orientation vector in the form of Quaternion or Euler angles. MetamotionC can record

and stream raw sensor data with a sampling rate of up to 100Hz. The sensor fusion al-

gorithm fuses the raw data from different sensors to improve the sensor output.

Figure 5.1: Metamotion for hand activity detection
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5.2 Quaternions

A quaternion can be expressed with a scalar component and a vector component

with the following equations:

q = (r, v⃗) = (qr , qx î , qy ĵ , qz k̂) (5.1)

Here qr is the real components, and the remaining terms are imaginary components.

qx , qy , qz are real numbers along three axes and î , ĵ , k̂ are mutually orthogonal imagi-

nary unit vectors.

Euler angles are the most common method to represent the orientation of an ob-

ject with the help of three successive rotations about the z-axis, then the new x-axis,

and finally again about the new z-axis. Euler angles calculation can be affected by Gym-

bal Lock that prevents a rotation from properly executing. Gimbal lock cannot affect

quaternion representation, and successive rotation can be applied easily with quater-

nions. Quaternions can efficiently represent the rotational and orientational informa-

tion of a rotating object. Quaternion value of a rotation of θ about a unit axes n⃗ can be

represented as following:

q = cos
θ

2
+ n⃗si n

θ

2
n⃗ (5.2)

To get a new orientation q2 by rotating the current orientation q0 by a specified

amount q1, we can multiply q0 with q1. The new quaternion q2 represents a rotating

object with a rotation described by q1. A series of rotations can be expressed efficiently

with quaternion multiplication. MetamotionC fuses the accelerometer, gyroscope, and

magnetometer data and applies the sensor fusion algorithm to calculate rotation vector

and quaternion values. We have used quaternion values (qr , qx , qy , qz) as features for

our hand activity recognition.
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5.3 Methodology

Hand activities such as chopping, brushing hair, typing, and eating with a fork differ

from leg activities. Smartphones or sensors kept in the pocket or attached to the ankle

or hip cannot collect hand gesture data. Devices attached to the wrist provide accurate

information about hand movement. Smartwatches like FitBit and Apple Watches are

now equipped with accelerometers, gyroscopes, and magnetometers and can be used

to detect hand activities. Smart wrist-worn devices were used in [106, 107, 108, 109] for

activity recognition and analyzing important human characteristics from the activities

like falls and stress detection. Like leg activity detection, hand activity detections are also

mostly sensor-based. So the fundamental methodologies of both hand and leg activities

are almost the same in the literature. Machine learning techniques can explore sensor

data well and extract essential features from the data.

5.3.1 Data Collection

We detected five hand activities: Resting, Chopping, Exercise, Scratching Hair, and

Typing. We developed an android application that connects to the metamotion device

via BlueTooth. The manufacturer of the device provides an SDK to collect the sensor

data. We integrated the SDK into our application and set the sampling frequency at

20Hz for all the sensors. The application asked the user to perform the predefined target

activities for 20 seconds. Figure 5.2 shows the frequency distribution of our collected

data.

5.3.2 Data Representation

Figure 5.3 shows the quaternion values along the x,y, and z axis for different activities.

There is no movement along all three axes when the hand is at rest (Figure 5.3(a)). There

is little movement when typing on a keyboard (Figure 5.3(b). The movement is very

little compared to chopping and exercise because when a person types, the wrist does

not move much, only the fingers move. The movements along all the axes increase as
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Figure 5.2: Hand Activity Frequency Distribution

expected in the event of chopping and exercise (Figure 5.3(c) and 5.3(d)), as there is a lot

of hand movement involved in these two activities.

5.3.3 Data Preprocessing

We segmented the sensor data into a 2-second window with a window size of 40

and 50% overlap between adjacent windows. We used the accelerometer x,y,z values,

gyroscopes x,y,z values, and the quaternion w,x,y,z values to generate the features. For

each window, we calculated the mean and standard deviation of the sensor data in both

the time and frequency domains. The mode value of the activity labels of each window

was set as the label for the training features. We experimented with other features such

as median, max values, min values, and the time between peaks, but it did not change

the accuracy of the classifiers.



[48]

(a) Resting

(b) Typing on keyboard

(c) Chopping with a knife

(d) Exercise

Figure 5.3: Data representation of different types of hand activity
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Classifier Exercise Resting Chopping Typing Scratching Average
SVM 100% 91% 96% 87% 80% 91%

Decision Tree 100% 91% 93% 90% 100% 94%

Table 5.1. Activity-wise accuracies for hand activity detection

5.4 Result

After doing a 70-30 split on the feature data, we trained an SVM and a DT classifier

with the training data. We achieved an average accuracy of 93% (+/- 2%) for the SVM

classifier and 95% (+/- 1%) for the DT classifier using all the features with 10-fold cross-

validation. Table 5.1 shows the comparative metrics of both the classifier for different

activities. We can see that both the classifiers perform very well in classifying exercise

data. DT has good accuracy with "typing" but gets relatively low with chopping and

scratching. On the other hand, SVM performs well in detecting "chopping" compared

to DT but performs poorly in detecting "scratching".
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Chapter 6
Voice Activity Detection and Exposure to High Noise Level

Besides physical activity, social interaction also plays a vital role in a person’s fatigue

level. Though it is evident from the literature that social behavior positively affects cur-

rent mood and lower fatigue, there are reports of increased fatigue 3 hours after high

social engagement [55]. Exposure to a high level of surrounding noise can lead to se-

vere fatigue. Older adults exposed to a sound level of 85 dB or more are fatigued more

often and physically and mentally less active. [110]. We want to detect a person’s social

engagement and exposure to high noise levels, which may lead to higher fatigue. We

utilized a smartphone application to connect the insoles and metamotion. We used the

same application and developed a separate module using the smartphone’s microphone

sensor to detect voice activity and surrounding noise levels.

6.1 Features of sound

This section describes various properties that we can extract from the sound wave.

Sounds can be represented in a wave with time to the x-axis and the intensity of the

sound to the y-axis. The intensity represents the pressure sound creates while traveling

through the air. A louder sound generates louder pressure. Sound waves are split into

smaller frames or windows for analysis purposes, and the features are extracted from the

individual frames. The length of the frames may vary depending on analysis techniques.

Figure 6.1 shows the wave formed by a woman speaking, "Kids are talking by the door".

6.1.1 Short-Time Energy

The energy of a signal can be expressed as the total magnitude of the signal. In the

context of the sound wave, it represents the loudness of a signal. The energy associated

with speech usually varies with respect to time. So short time analysis is done to esti-

mate the energy in different parts of the speech signal. There are different regions in a
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Figure 6.1: Speech wave

speech signal, such as voiced, unvoiced, silent, and noise. The regions containing voice

have higher short-time energy, and unvoiced regions have lower short-time energy. We

can visualize speech wave energy from Figure 6.2. In Figure 6.2(a), we can see the cor-

responding varying short-time energy in the orange line. In figure 6.2(b), we plotted

the energy of a person speaking the same sentence with two different emotions: neutral

and anger. The energy from angry speech is higher than that from neutral speech. Also,

From figure 6.2(b), the lower energy areas are unvoiced, silent, or noisy regions. In figure

6.2(c), we show the comparison of energy between sound sources from human speech

and a truck engine. It also visualizes the fact that louder sounds have higher short-time

energy.

6.1.2 Zero-Crossing Rate

A zero crossing occurs when a sound waveform passes through the axis and changes

sign. A zero crossing can be measured by comparing the signs of two successive samples.

Zero crossing is said to occur if two successive samples have different algebraic signs.

A zero-crossing rate can be measured by the rate at which the amplitude of a signal

passes through zero. Figure 6.3 shows the zero-crossing rates of the sound wave from

human speech and a truck engine. Human speech has a relatively high zero-crossing
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(a) Energy of a speech

(b) Comparison of speech wave energy for two different emotion: Neutral and An-
gry

(c) Comparison of speech wave energy for two different source: Human Speech
and Truck Engine

Figure 6.2: Speech Energy Visualization
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Figure 6.3: Speech wave

value because of the oscillating nature around zero. The unvoiced regions of a speech

wave have a higher zero-crossing rate than the voiced region.

6.1.3 Short-Time Fourier Transforms

Fourier Transform on a signal can convert the signal from the time domain to the

frequency domain and helps to visualize how time interacts with frequency. We can look

at signal features at some particular time if we ’window’ the signal into shorter frames.

The segmented windows can be transformed into Fourier series to obtain Short Time

Fourier Transform (STFT), to visualize different windows or frames of signals. The STFT

provides a visual representation named Spectrogram to provide essential insights into

the signals. Figure 6.4 shows the Spectrogram of a speech signal. Spectrograms are a

way to provide a visual representation of a signal’s loudness as it varies over time and

frequencies. As humans can hear sound with a small range of frequencies, the y-axis

in a spectrogram is converted to a log scale, and the color dimension is converted to

decibels.

6.1.4 Mel Frequency Cepstral Coefficients

The Mel Scale is a way to measure the perceived frequency of a sound and relate

the value to the actual frequency. Human ears can differentiate small changes in lower
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Figure 6.4: STFT Spectrogram

frequencies but fail to do that in higher frequencies. The Mel Scale converts the sound

feature to match the frequency range of the human ear. The following formula can be

used to convert an actual frequency to the Mel Scale:

M( f ) = 1125ln(1+ f

700
) (6.1)

Human-generated sound can be determined by the shape of their vocal tracts, such

as their tongue and teeth. The envelope of the time series power spectrum of speech

wave represents the vocal tract. The envelope can be calculated using the Mel-Frequency

Cepstrum Coefficients (MFCC). MFCCs are one of the most popular ways of represent-

ing and analyzing sounds. We can extract 26 MFCCs from the audio signal by following

the steps shown in Figure 6.5. First, the audio signals are split into frames with specified

frame lengths. A short fast fourier transform (STFT) can extract the power spectrum en-

velopes on the frames. The mel filter banks are triangular waveforms that can be applied

to the STFT signals to extract the mel scale-based values using logarithm. A discrete co-

sine transformation on mel values can output the MFCC values for further analysis.
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Figure 6.5: Flow chart for obtaining MFCCs

6.2 The Mel Spectrogram

A Mel Spectrogram shows the sound wave frequencies in mel scale values. The mel

scale values are beneficial as it is specially developed keeping human frequency range in

mind. The mel spectrogram maps the frequency values in hertz to the mel scale, which

are essential in applications that work on human hearing perception. Figure 6.6 shows

the mel spectrogram of a human speech.

6.3 Voice Activity Detection

Detecting voice or being in the presence of a conversation will be helpful for us to

find a user’s social and behavioral patterns. Detecting voice in a sound buffer will lead us

to analyze the voiced part further to detect stress, emotion, and social exhaustion from

it and find a pattern of social fatigue. This section describes our approach to detecting

voice in a sound buffer.

6.3.1 Google VAD

As a first approach, we used Google’s Voice Activity Detection tool. We integrated a

wrapper of Google VAD, built to be used in the Android platform [111]. This algorithm

applies Gaussian Mixture Model to the microphone’s voice buffer and detects if a voice

is heard in real-time. Any sound other than a voice is classified as noise. However, the

limitation of this approach is that we found many false positives, where a high-intensity
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Figure 6.6: Mel Spectrogram

sound but not a voice was classified as a voice.

6.3.2 Experimental Analysis

We wanted to analyze raw sounds to extract features from the sound buffer. We

extracted the sound buffer from the recording with the microphone. We used the Au-

dioRecorder class of the Android platform. We initialized an instance of the class with

a sampling rate of 48kHz and started the recorder in different environments. The envi-

ronments included silence, a person speaking, and loud engine noise. Android recorder

returns the real-time sound buffer amplitude values in a stream of arrays. We processed

the buffer and normalized the values to be in the range of -1.0 to 1.0. We know that

human voice frequency can range from 80 Hz to 3000 Hz [112]. So we applied a digital

filter to filter out all the other sounds that were unnecessary in our case, as shown in

Figure 6.7. Figure 6.7(a) shows the buffer of a person speaking with some background

noise. After filtering out the unnecessary noise, we found the denoised sound, shown in

orange in Figure 6.7(b).
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(a) Normalized sound buffer

(b) Filtered sound buffer

Figure 6.7: Applying a digital filter on normalized sound buffer
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As there may be silence between spoken sentences, or background noise that falls in

the range of human voice frequency, we segmented the filtered buffer with a window of

2 seconds. For every 2 seconds of data, we analyzed various features. We found excit-

ing values when we calculated the range (difference between maximum and minimum)

of each 2-second window. As human voices have a wide range, we found the range of

speech buffers to be relatively high (0.7-1.3) compared to the range of silence (0.001-0.1)

and engine noise (0.4-0.7).

Calculating the zero-crossing rate and energy of the sound waves can detect the

voiced part from a buffer. Zero-crossing value in a wave is defined by the count of a wave

that crosses the horizontal axis. Short-time energy is calculated by finding the energy

variation in a small speech frame. A voiced part has a low zero-crossing rate and high

short-time energy in a sound buffer with both voiced and unvoiced parts. On the other

hand, an unvoiced part has a high zero-crossing rate and low short-time energy [113].

6.3.3 Audio Dataset Description

Our purpose is to detect the presence of voice, silence, and any other noise in an au-

dio stream. We collected 30 audio files containing 2 seconds of speech for training from

the Noizeus [114] dataset. The clean speech in each file was corrupted using different

real-world noises. To train the classifier with additional environment noise, we used the

data from [115], which was created for environmental sound classification. The dataset

had 50 labeled classes, but for our purpose, we marked them as ‘noise’ that does not in-

clude any human speech. We recorded 30-minute audio of a silent room and split the

files into 2-second streams to make the silence data. We denoised the audio dataset for

each class using a noise reducer library available in python [116]. Then we analyzed the

clean sound buffer to extract mel-frequency cepstral coefficients (MFCCs), mel spectro-

grams, energy, and zero crossing rates as features.

Figure 6.8 shows the visualization of different audio streams we analyzed. The blue

wave represents a high-amplitude noise from a washing machine. The orange waves
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Figure 6.8: Sound wave visualization of noise, human speech, silence

are from human speech, where the low frequency is silence between spoken words. The

green straight line represents quiet environments.

6.3.4 Voice and Noise Detection

From the combined audio dataset of speech, environment noise, and silence, we had

19 classes, including sounds from an airplane, rain, brushing teeth, voice, silence, and

engine. As we wanted to detect the presence of voice and noise in an audio stream, we

kept the voice and silence label unchanged and renamed all other classes “noise”. As

we had only 30 human speech samples, we randomly picked the same number of noisy

and silent data from the other two types and trained a Support Vector Machine classifier

with 70% of the data. We got an average accuracy of 98% (+/- 2%) to distinguish the

sound of the voice, silence, and any other noise. Though we trained with a small dataset

for speech, the result is promising, and we hope to add more environment noise and

speech data to our dataset.



[60]

6.4 Measuring Surrounding Noise Level

Sounds can be expressed as the pressure change in the air when it travels. The sound

level is measured in decibels(dB) and can be obtained from the following formula:

E = 20log10
P

P0

Here P is the perceived pressure, and P0 is a pressure reference value. The measure-

ment of sound level depends on this reference point. 0 dB is the softest sound a person

can hear. Normal human voice levels can range from 50-60 dB [112]. In Table 6.1, we

list the standard decibel values for different kinds of environments [117, 118]. We used

the formula to calculate the decibel value of surrounding noise. As amplitudes are di-

rectly related to pressure, we calculated the perceived pressure for every stream of the

amplitude array. Using our algorithm, we experimented with a different reference point

and concluded that a reference pressure 20µPa could approximate the best possible

sound level. For comparison and experimenting, we downloaded a SoundMeter appli-

cation [119] from Google Playstore, which measures the surrounding noise level. We

ran our algorithm and the application simultaneously and found near-identical values

with the set reference pressure point. The user is notified when the application detects

a long-time high noise exposure. We are also saving the duration of different exposure

levels to show in the comprehensive report.
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Environment Sound Level(dB)
Softest sound that can be heard 0

Average Home, Refrigerator hum 40
Normal conversation, air conditioner 40

Noisy office, City traffic (inside the car) 80-85
Approaching subway train, sporting events

(such as hockey playoffs and football games)
100

Loud rock concert, Standing beside or near sirens 120

Table 6.1. Standard dB values for different environments
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Chapter 7
Emotion Analysis and Environment Classification

7.1 Emotion Analysis from Speech

Human speech audio can express emotional information through its features. It is

possible to detect the intensity of a conversation and the speaker’s emotional state by

analyzing the speech features. This section describes our approach to analyzing the

RAVDESS dataset to build a Convolutional Neural Network and detect emotion from

human speech.

7.1.1 RAVDESS Dataset

The Ryerson Audio-Visual Database Of Emotional Speech and Song (RAVDESS) [120]

contains speech and song recordings by 24 professional actors( 12 male and 12 female)

expressing various emotions. The original database has 7356 files, from which we ex-

tracted the speech-only files. The extracted part has 1440 files. For each actor, 60 speech

recordings expressed eight emotions: neutral, calm, happy, sad, angry, fearful, surprised,

and disgusted. Figure 7.1 shows the frequency distribution per emotion in the dataset.

The audio files were saved in WAV format with a 16-bit bitrate and a sampling rate of 48

kHz.

7.1.2 Methodology

In the RAVDESS dataset, the audio files are in WAV format. We used the librosa [121]

package available in python to read the audio files, generate a waveform, visualize and

extract necessary features such as Fast Fourier Transform, Mel Frequency Cepstral Coef-

ficients, and Mel Spectrogram. We trained a Convolutional Neural Network on the clean

dataset to detect the eight emotions from speech. Figure 7.2 shows different steps in de-

tecting emotions from the RAVDESS dataset. The mel spectrogram and MFCCs features
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Figure 7.1: Frequency distribution of RAVDESS dataset

can be expressed as a two-dimensional image. So popular image processing techniques

using deep learning can be applied to these features.

7.1.3 CNN architecture

The convolutional neural network consists of several building layers such as the con-

volutional layers, pooling layers, and fully connected layers [122]. A typical architecture

consists of several repetitions of convolution layers and pooling layers on a stack, fol-

lowed by some other fully connected layers. The convolutional layer is the principal

component in the architecture that does all necessary feature extraction. The outputs

from this layer are passed through some activation functions to decide if these layers’

inputs are essential in the prediction process. A pooling layer provides a downsampling

operation for dimensionality reduction. The CNN architecture we used on the RAVDESS

dataset is shown in figure 7.3. We used ReLu as an activation function and added Batch

Normalization to normalize the data in the batches to speed up the training. We added

one Batch Normalization at the initial convolutional layer and another in the middle. In

the end, there is a dense layer as the output layer with Softmax as an activation function
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Figure 7.2: Approach to detect emotion from RAVDESS dataset

to provide a probability for each class. A Flatten layer is used as a connection between

the convolution layers and the dense layer. The building block is done sequentially as a

stack using the Keras library available in Python.

7.1.4 Loss Function

The performance of a CNN can be measured using prediction accuracy and loss

value. Loss can be expressed as the penalty for a bad prediction. The aggregate value

of loss indicates how bad the model is at predicting target values. A model predicting

perfect values has a loss value of zero. Otherwise, the loss value is greater than zero. A

simple and standard loss function is squared loss that can be calculated by taking the

square of the difference between actual value and prediction. The average loss for the

whole dataset can be expressed as Mean Square Error (MSE) and calculated from the

following equation:
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MSE = 1

N

∑
(y −pr edi ct i on(x))2 (7.1)

Here N is the number of samples in the dataset, x is the feature set, y is the actual

label, and pr edi ct i on(y) is the predicted value.

MSE is not always the best or most practical loss function for all classification prob-

lems. As our problem is a multi-class problem, we used a more complex loss function

named Categorical Cross-Entropy Loss Function. This function compares each pre-

dicted class probability to the actual value and assigns a logarithmic penalty based on

the difference between the actual and predicted value. The logarithmic nature assures

a more significant penalty for larger differences. The cross-entropy function can be de-

fined as

LC E =−
n∑

i=1
ti l og (pi ) (7.2)

where ti is the truth label and pi is the probability for the i th class.

7.1.5 Result

We separately extracted the mel scale-based spectrogram and MFCCs from the dataset

to build two CNN models and compared the result using these features. After experi-

menting with different architectures, we built the sequential CNN model following the

architecture shown in figure 7.3 with the best accuracy and loss value. To measure the

performance, we show the accuracy and loss of the model for each epoch. We tested our

dataset with 20% test data. We also describe the confusion matrix for each class using

both features separately.

MFCCs

The CNN model executes with 100 epochs with a batch size of 64. After the exe-

cution, we achieved a 94.44% accuracy and an average loss value of 0.3342 on the test
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Figure 7.3: CNN architecture for RAVDESS dataset
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dataset with the MFCCs feature. Figure 7.4(b) shows the accuracy in each epoch, and

figure 7.4(a) shows the loss value change per epoch. The graphs show significant per-

formance improvement until epoch 30, after which the learning rate did not increase.

Figure 7.7 shows the confusion matrix of the CNN model prediction with MFCCs fea-

tures. The overall predictions for all the classes are satisfactory, but we see some confu-

sion around some emotions. "Sad" emotions are confused with "fearful" for a significant

time. "Surprised" is sometimes confused with "disgust" and "happy".

MEL Spectrogram

We achieved relatively lower accuracy (64.86%) and higher average loss value (0.9548)

with mel spectrogram features. Figure 7.6(b) and 7.6(a) show each epoch’s accuracy and

loss, respectively. The difference between training and test accuracies suggests that the

model may overfit and, thus, is not practical for real-life emotion detection. The MFCCs,

on the other hand, show better results and thus can be deployed as a practical model.

7.2 Environment detection

The presence of a person in a high-noise environment not only results in hearing

loss but can cause cardiovascular disease, low-quality sleep, stress, and mental health

problems. Exposure to sound from railway or aircraft traffic significantly affects blood

pressure, hypertension, and stress [123]. So, it is essential to control exposure to a noisy

environment. We aim to detect different environmental sounds to understand the effect

of the environment on the user’s stress and fatigue levels.

7.2.1 Dataset: ESC-50

The ESC-50 (Environmental Sound Classification) [115] is a dataset containing en-

vironmental audio recordings from 50 different sources. The dataset contains 5-second

recordings from each class and 40 examples per class, aggregating a sample size of 2000.

Out of the 50 classes, we selected 17 categories of environmental sounds. The categories

are shown in Table 7.1.
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(a) Training and Testing Loss

(b) Training and Testing Accuracy

Figure 7.4: Accuracy and Loss using MFCCs from RAVDESS dataset

Airplane Brushing Teeth Car Horn
Chainsaw Chirping Birds Clock Alarm
Coughing Dog Engine
Helicopter Laughing Rain

Siren Thunderstorm Train
Vacuum Cleaner Washing Machine

Table 7.1. Filtered categories from ESC-50.
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Figure 7.5: Confusion Matrix with MFCCs features (0 = neutral, 1 = calm, 2 = happy, 3 =
sad, 4 = angry, 5 = fearful, 6 = disgust, 7 = surprised)
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(a) Training and Testing Loss

(b) Training and Testing Accuracy

Figure 7.6: Accuracy and Loss using Mel Spectrogram from RAVDESS dataset
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Figure 7.7: Confusion Matrix with Mel Spectrogram on RAVDESS dataset (0 = neutral, 1
= calm, 2 = happy, 3 = sad, 4 = angry, 5 = fearful, 6 = disgust, 7 = surprised)
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7.2.2 Analysis

We extracted 40 mel frequency cepstral coefficients (MFCCs) from the environmen-

tal dataset and trained a CNN model with four hidden convolutional layers with batch

normalization. Figure 7.8(a) shows the loss value on different epochs. The model pre-

dicts the 17 classes with 91.18% accuracy and 0.3294 average loss. The confusion matrix

is shown in figure 7.9.

7.3 Discussion

In this chapter, we presented our findings from the experiments with eight human

emotions and seventeen important environmental sounds. We extracted the mel fre-

quency cepstral coefficients (MFCCs) and mel spectrograms from the human speech

audios with various emotions and got the best result with MFCCs features. The accuracy

significantly dropped when we used the mel spectrogram features. We also classified dif-

ferent environment sounds with reasonable accuracy. The patients need to limit their

presence around environments that negatively affect their physical and mental health.

An intelligent system that can track the presence of an individual in risky environments

and detect an emotional change from human speech can warn the user and prevent an

unexpected situation.
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(a) Training and Testing Loss

(b) Training and Testing Accuracy

Figure 7.8: Accuracy and Loss using Mel Spectrogram from RAVDESS dataset
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Figure 7.9: Confusion Matrix with MFCCs features for ESC data
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Chapter 8
Design and Development of a System Package with Smart Insoles,

Metamotion and Smartphone Application

8.1 System Architecture

Figure 8.1: Diagram of developed system

All the activities we detected can lead to severe fatigue for Chronic Fatigue Syndrome

patients or Long Covid patients. A high amount of low-level physical activity can limit

the patient’s ability to perform their daily physical activities. So, they need to be able

to measure and increase their awareness of their daily amount of performed activities.

There are many subjective techniques available, but they may contain self-reported bias

and thus need to be more accurate [63]. An objective measurement is necessary. We

built a system combining the smartphone, the smart insoles, and the wrist motion sen-

sor device to detect and objectively measure activities to reduce the possibility of a next-

day crash.

Figure 8.1 shows our developed system diagram. The patients are the users of our

system who will wear the smart insoles and wrist motion sensor device and connect the

devices with the proposed smartphone application via BlueTooth. Figure 8.3(a) shows
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(a) Confirmation of activities (b) Confirmation of fatigue

(c) Perceived Exertion

Figure 8.2: Patient Reported Confirmation
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the device connection module. The application is the main component of our system,

with various responsibilities. It collects the sensors’ raw data and predicts the performed

activities with pre-loaded machine-learning models in real-time. The application uti-

lizes the built-in smartphone microphone to detect voice activity and exposure to high

noise levels. It has a calibration module activated when the user connects to the device

for the first time and asks the user to perform certain activities. After the calibration

process is completed, the app sends the sensor data to the backend server. The backend

server generates a model for that individual, which is loaded into the application. Figure

8.3(b) shows the calibration process developed in the smartphone.

There is a patient-reported confirmation feature developed in the smartphone appli-

cation. When the application predicts an activity performed for a significant duration, it

sends an activity confirmation notification to the user. This feature has two objectives.

The first one is to improve the machine learning model’s performance by getting confir-

mation from the user. The second objective is to get a measure of exertion. The app asks

the user to fill up a subjective questionnaire as shown in Figure 8.2(a). It gets the con-

firmation of fatigue and breathlessness from the user (Figure 8.2(b)) and asks the user

to scale their exertion on a scale of 0 to 5, 0 being "No Exertion" and 5 being "maximum

possible exertion that can be perceived" (Figure 8.2(c)). The app saves the duration of

the detected activities in its local database to calculate the energy expenditure.

8.2 Energy Expenditure Estimate

We aim to follow the related works to detect physical and social activity and measure

the users’ exertion and energy expenditure. We found several subjective measures in

the literature using questionnaire-based measurement, but they are prone to bias. We

were interested in objective measurement using sensors to get an accurate result. Re-

gression analysis-based techniques were used in [73, 74] to estimate energy expenditure

on a specific set of activities without any detection algorithm involved. As humans can

perform a wide range of activities, energy expenditure measurement techniques with
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(a) Device Connection (b) Calibration

Figure 8.3: Smartphone Application Demonstration
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Activity Type METs
Sitting 1.0−2.0

Standing 1.2−2.3
Walking 0.0272∗w alki ng speed(m/mi n)+1.2
Running 0.093∗ r unni ng speed(m/mi n)−4.7

Table 8.1. MET value for activities with different intensities .

limited activities may need to be revised. So, it is essential to get the movement of dif-

ferent body parts to detect complex activities involving both hands and legs. We found a

few systems that use wearable sensors to detect activities and then measure the energy

expenditure [69, 124]. However, they did not consider the effect of social exertion on

fatigue.

8.2.1 METs

Sensor-based energy expenditure (EE) estimate techniques are based on approxima-

tion. The Metabolic Equivalent of Task (MET) is a standard intensity measurement unit.

An established range of MET [124] set for different categories of activities is shown in

Table 8.1. The MET value can range from 1.6 to 2.9 for light physical activities, and 3.0

to 5.9 for moderate physical activities [125]. With the duration of detected activities and

the approximate values of METs, we can objectively estimate EE from Equation 8.1.

Ener g y(kcal ) = 1.05×METs ×W ei g ht (kg )

×Dur ati on(hour s) (8.1)

Also, our application’s patient-reported confirmation module (Figure 8.2) provides a

subjective measurement of perceived exertion. The Likert scale from Figure 8.2(c) mea-

sures the perceived exertion on a scale from No Exertion to Maximum Exertion, as per-

ceived by the user. The energy expenditure estimate and perceived exertion of activities

will be shown in a comprehensive report in the application.
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8.3 Improving smartphone resource usage by background services

As the smartphone application has many responsibilities to maintain, we need to

find an efficient way to handle its tasks. The application need to communicate with

the server regularly and read data from the sensor in real-time. If the devices are set

at a 20Hz sampling frequency, there will be 20 readings from each of the insoles and

20 additional readings from the wrist device sensor. All the heavy tasks may cause the

smartphone’s battery to drain faster. So, we explored some performance improvements

to handle the responsibilities of the application efficiently. The application runs two dif-

ferent background services with the insoles and the metamotion to collect the data from

the sensors. We have another background service recording surrounding noise to detect

voice activity and measure the sound level. When the users lock the smartphone and

put it in their pocket, a foreground service cannot run and perform any task. In this sce-

nario, a background service is used to perform a task without showing any UI response

to the user. The background services in our application continuously collect data from

the insoles and the metamotion until the devices are disconnected, or the user manually

stops the sensors. The microphone can record surrounding sound in the background for

a long time. These operations take many system resources. So, users will have the op-

tion to disconnect and reconnect the devices at any time. We have implemented this

feature in the device connection module in the application. The application performs

all the activity detection and sound listening with the user’s consent.

8.4 Machine Learning Model and Communication with the server

Our system relies heavily on machine learning algorithms. The machine learning

models continuously learn from new data in the server, and with each update, are in-

cluded as pre-loaded models in the application. To get real-time activity detection using

machine learning models, we had the following options:
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8.4.1 Send the sensor data to the server at a regular interval

The application must communicate with the server regularly to get real-time detec-

tion. The server predicts the activities with the pre-trained model and sends the result

back to the application. An application-server communication can take some time to

complete, thus increasing the system’s latency. The application may have created a new

prediction request and added it to the request queue before the previous request was

completed. All these operations will consume more device resources and drain the bat-

tery faster. Sending raw data to the server also causes high data bandwidth usage. Figure

8.4 shows the communication flow of a batch prediction request between the client ap-

plication and the backend. With a 2-second segmentation of data, the application sends

at least three prediction requests with a large number of raw data to the server. We have

three prediction services running in the backend, which process the raw data and send

the data to ML models for prediction. The ML models send the result back to the appli-

cation and save the result in the database. All operations need efficient handling of data

and requests to optimize the system’s performance, maintaining lower resource usage.

Figure 8.4: Flow of continuous prediction request to server
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8.4.2 Pre-load the machine learning model in the application

Modern smartphones can run machine learning algorithms on the phone. We can

pre-load our activity detection models when the app is installed. Instead of sending the

data to the server, the application can communicate with the pre-loaded models to get

a prediction. Also, we run a calibration module on the smartphone when a user installs

the application and connects the devices. The calibration module trains a new model for

the user, which can be pre-loaded into the device and used to detect activities. This so-

lution can reduce the latency caused by application-server communication but increase

the computing complexities of the application. Figure 8.5 shows the system flow for the

pre-loaded model. The feature extractor module in the flow receives raw data from the

sensor and preprocesses them to extract features. The extracted features are sent to the

pre-loaded models in the phone depending on the source and the requirement. The pre-

loaded models generate and send the predictions back to the application UI, where the

result is displayed. The results are also saved in the application’s local database and a re-

mote HIPAA-compliant database. The feature extraction module can cause a significant

problem in real-time detection. Though the module can perform complex computa-

tions on raw data, it creates a heavy load on system resources for all the computational

activities. Performing complex operations every 2 seconds can create system latency if

data are not handled well.

8.4.3 Our approach

In our research, our main objective is to provide an on-demand comprehensive sum-

mary of performed activities. To provide an on-demand summary, we can be flexible

around real-time activity detection to save computational resources. So as an alterna-

tive to real-time activity detection, we decided to keep the sensor data in the smart-

phone memory. The app will contact the server with the necessary data whenever the

user asks for a summary. The server will perform necessary computations, return a sum-

mary of detected activities with the duration, and estimate the energy expenditure. The
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Figure 8.5: Load models locally in application

server communication can also be done in the background when the application detects

less movement in the sensor data or during device disconnect. Figure 8.6 shows our ap-

proach to reduce system latency while maintaining the requirements. The predictors’

output is always saved in a secured database on the server and shown in the application

UI. After the result of a batch-prediction request is saved, we remove the raw sensor data

from smartphone storage. As a practical solution, we have implemented the on-demand

detection feature in our application as the default option, as users are less likely to in-

teract with the application when performing any activity. However, we will also allow

real-time detection, but users must select this option if they want it.

8.5 Handling Large Concurrent Traffic

While engineering the backend, we had to remember that the system is expected

to handle thousands of concurrent user requests per second. We have to make sure

the system is reliable and always available. We added more servers in the backend and

made a server pool to scale the system. To use the server pool efficiently, we added a
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Figure 8.6: High level design of our approach to reduce system latency for on-demand
summary

load balancer in front of the server pool. A load balancer distributes incoming requests

to a pool of servers and ensures that no server is overloaded. This approach also ensures

that other servers will take charge to make the system highly available if any server goes

down. Figure 8.7 shows the scaled diagram of the backend. The request from the users

first goes through the load balancer, which distributes traffic to the available servers. The

distribution algorithm depends on the system’s needs. In our case, our load balancer

sends a request to a server with the least network connections.

8.6 Calibration

The application starts with a welcome screen, then asks the user to provide basic de-

mographic information. Then it takes the user though the steps to connect the devices.

The devices include the left and right insoles and the metamotionC. The application

checks if Bluetooth is enabled. If not, then it asks the user to turn the Bluetooth on. Af-

ter enabling Bluetooth, the application searches for available devices to pair.

In the calibration module, the user is asked to perform 2 minutes of walking, 2 min-

utes of running, 2 minutes of hand exercise, and 2 minutes of chopping. This helps the

application to learn the movement of the user. The calibration progress can be saved
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Figure 8.7: High level design of our approach to reduce system latency for on-demand
summary

and resumed later. Also, this is an optional feature, as an elderly patient might not be

able to complete all the steps. After the calibration step is done, the application sends

the data to the server. The data will be used as retraining data for the machine learning

models.

8.7 On-Demand Comprehensive Summary

The comprehensive summary in the application shows the time and duration of each

performed activity the app can predict. From the duration, users’ weight, and activity

type, the application estimates energy expenditure and displays that information in the

UI. In Figure 8.8(a), we show the daily summary and duration of performed activity for

a particular day. The "Show details" button appears when the user taps on a particu-

lar activity. Tapping on the button will move the user to another UI, shown in Figure

8.8(b), that shows some additional information and estimated energy expenditure for

that particular activity. We also provide an option to get a report from any previous day.

The ’unknown activity’ in Figure 8.8(a) represents an activity that our machine learning

models could not predict. We ask the user to add details for that activity, such as activity
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(a) Overall Summary (b) Activity Details

Figure 8.8: Comprehensive Summary of Performed Activities

name and level of fatigue, and feed the information to our machine learning model for

future prediction.

8.8 Maintaining and Updating Machine Learning Models

The advantage of using different sensor devices as data sources is that we can extend

our system to support a wide range of physical activities. Users will continuously add

new data to the system, which we can use to retrain our models. We can get new data
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on already-known activities from the calibration module. We will get data on new activ-

ity from the ’unknown activity’ from the comprehensive summary and patient-reported

confirmation module. We will regularly feed the new data to the machine learning mod-

els to keep them updated and increase their performance.

Model update or retraining should be done in one of the following scenarios:

• The accuracy of a model decreases significantly or below a threshold

• On arrival of a large amount of new data

As sensors continuously send raw data to the server, we expect to have a large amount

of data daily. So we set up an automatic model retraining job in the server at midnight

to check the data quality and retrain specific models. The updated models are saved in

the model storage if they show better validation accuracy. The model train and retrain-

ing flow is shown in figure 8.9. Whenever there is new data, it goes through the model

retrain strategy to decide if the model needs to be retrained. We are scheduled to manu-

ally retrain the models if we get low validation accuracy on retraining. If we get low test

accuracy on the new data, the model is retrained too.

8.9 Remote Monitoring Elderly Patient

Remote monitoring technology for managing elderly patients can benefit them by

preventing symptoms related to chronic diseases. Elderly patients may find it difficult

to visit a healthcare provider for consultation whenever they have fatigue or malaise

symptoms. Some older adults also face the barrier of communication and understand-

ing technology to self-diagnose their current health situation, even with a proper diag-

nostic tool. Our proposed system tracks the patients’ activity patterns and estimates

energy expenditure to let them know their daily activity summary. However, some older

patients may find it hard to track and self-diagnose their condition using technology. So

a remote monitoring system is needed to manage these patients who need the support
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Figure 8.9: Model Retrain Strategy

of caregivers and family members in difficult situations. Using our sensor-based activ-

ity detection and measurement setup, we developed a remote monitoring tool that can

alert caregivers and family members of any abnormal findings about the patient. We ex-

tended our object measurement system described in section 8.1 and implemented the

following features to develop the remote monitoring tool:

• Login as Caregiver or Family member: Caregivers are paid or non-paid members

of a person’s network who can help a person perform daily activities. A family

member can also play the role and help patients manage their chronic diseases.

In the remote monitoring system, the caregiver, on behalf of the patient, can log

in and view the patient’s current condition. Figure 8.11(a) shows the login screen
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Figure 8.10: Alert for unusual activity sensing

of the remote monitoring tool where an individual can sign in as a patient or care-

giver. After logging in, the caregiver can see a list of assigned patients and check

their statistics, reports, and current health conditions. As the application is con-

nected to the server and can send real-time information about the patient, it can

also report any irregularity found in the patient’s daily activities. Elderly patients

living alone with limited physical capability can benefit from this use case when

they need help but do not have enough self-care ability.

• Notify caregivers of unusual activity: The remote monitoring tool notifies the

caregivers and family members in case of over-exertion or unusual activity. In the

event of any emergency or abnormal sensing, the application sends an alert to the

application of the caregiver via the notification system if the caregiver and the pa-

tient are not in close proximity. Figure 8.10 shows a sample alert notification sent

to the caregiver about the cared patient’s probable condition.

• View current condition: Family members or any other authorized person can

view the current condition of the patient from their application. The comprehen-

sive report from the patient application is sent to the authorized person if they

request it. Figure 8.11(b) shows the patient report on the caregiver application. It

shows similar information as the patient’s application and comments about the

patient’s current status. In the future, we will implement an auto-generated rec-

ommendation system based on the patient’s current condition and health history.

Figure 8.12 shows the high-level system diagram of the remote monitoring tool to
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(a) Login (b) Patient report in caregiver app

Figure 8.11: Remote Monitoring Tool

manage the patient’s chronic conditions. There are two main modules: Patient

and Caregiver. These two modules communicate with the cloud server to share

patient information. In the backend, the server is HIPAA compliant, and the nec-

essary authentication protocol has been followed to secure the patient informa-

tion and ensure no unauthorized third party can access patient information saved

in the cloud.
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Figure 8.12: Remote Monitoring Tool

8.10 Six Minute Walk Test

The six-minute walk test (6MWT) is a standard test to assess physical capacity, es-

pecially for older adults. The American Thoracic Society first introduced it in 2002 [126]

with a practical guideline to objectively evaluate a person’s functional capacity. This test

aims to assess a patient’s capability to walk as far as possible in six minutes. Patients

might be breathless or exhausted during a six-minute walk, so they can slow down or

stop. The distance covered in six minutes can be interpreted to describe a person’s ca-

pacity to perform daily activities of living.

The distance covered in the six-minute walking test varies with health status and age.

Significant differences were found in the 6MWT-distances for elderly persons [127]. So,

the six-minute walk test is a good representation of a person’s health status and can be

used to set an initial limit for their daily exertion. As our system already has an integrated

leg activity detection module, we could extend this system to implement a smartphone-

based six-minute walk test and use the result to assess an individual’s physical condition

and health status.

8.10.1 Implementation of Six-Minute Walk Test Using Our System

We implemented the following components to run a 6MWT test properly:

• Instructions: On the first screen of the test, we briefly inform the users about the



[92]

test and instruct them on how to start the test. We advise them to take a rest if

they feel breathless or exhausted. We put a start button on this page. We instruct

the user to press the button when ready to start the test. Figure 8.13(a) shows the

instruction screen of the six-minute walk test.

• Stopwatch: We implemented a stopwatch to measure the time of the test and let

the user know after six minutes from the start of the test. We put a start button,

tapping on which will start the stopwatch, and the user will be asked to start walk-

ing. After six minutes, an alarm will go off to let the user know the test is complete.

• Encouragement during the test: The American Thoracic Society (ATS) instructed

to encourage the patient at each minute of the test with standard phrases of en-

couragement in even tones [126]. When patients walk, we show the encourage-

ment phrases on the screen and notification bar. Figure 8.13(b) shows the encour-

agement phrases after three minutes of the test have passed. The patients can

hold the phone in their hands or put it in their pockets. In the case of holding the

phone in hand, they can read the encouragement text every minute. The following

encouragement phrases are shown at different points of the test with the recom-

mendation from the ATS:

– After the first minute: "You are doing well. You have five minutes to go".

– At the end of the second minute: "Keep up the good work. You have four

minutes to go".

– When 3 minutes remain: "You are doing well. You are halfway done".

– At the end of the fourth minute: "Keep up the good work. You have only two

minutes left".

– One minute remaining at stopwatch: "You are doing well. You have only one

minute to go".
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– After six minutes is completed: "Well Done. Stop walking and take some

rest".

Additionally, as our system can detect different leg activities, we check whether

the patient is walking or resting (sitting or standing), then show some encourage-

ment phrases to keep them going. In the event of rest, we record the timestamp

for future research. The resting event indicates that the patient is exhausted and

(a) Instructions for six-minute walk test (b) Test in progress - Encouragement Phrase at
halfway

Figure 8.13: Six-minute walk test demonstration
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might feel breathless. So we show an intermediate questionnaire to the patient at

the time of rest to better understand their health status at that particular time.

• Distance Measurement System: The main objective of the 6MWT is to calculate

the distance covered in six minutes. Our system can detect if a person is walking or

resting. As a smartphone-based setup, we took advantage of the GPS to measure

the distance walked every second. Android location manager provides an API that

returns the updated location every n seconds or if it detects a change of d meter

in the distance traveled from the last location update. We set the value n as 1

second and d as 1 meter. So we can receive the location update every second, or

if the patient walks for 1 meter. Finally, at each location update, we measure the

distance between the current and previous location and add it to the cumulative

distance. At the end of the test, we show a report of the six-minute walk test and

display the distance covered. We also show the patient a subjective questionnaire

to understand their exertion during the test. We save the report and the patient-

reported answer on the server for further analysis.

8.11 HIPAA compliancy

The Health Insurance Portability and Accountability Act (HIPAA) is an act to protect

sensitive patient health information from being disclosed. Under this act, any database

with protected health information must implement access control for security purposes.

The engineers must implement backup strategies in case of system unavailability. The

data and the data communication must be encrypted for security purposes.

As a healthcare system, which tracks and records patients’ information and their

daily performed activities with energy expenditure estimation, our system’s backend

must be HIPAA compliant. We have implemented necessary authentication protocols

with encryption to secure our database. We are using Amazon Relational Database Ser-

vice (Amazon RDS), which is HIPAA eligible, to store and transmit patients’ protected
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health information. We have also created multiple backups to the database to ensure

high availability. All of these approaches make our software system compliant with

HIPAA.

8.12 Technologies Used

We used the following technologies to build our system:

• To develop the smartphone application, we used the android platform and Java as

the programming language. Android platforms come with in-build SQLite data to

save data locally. We used a wrapper of the database: Room. The Room persis-

tence library enables efficient handling of large numbers of structured data with

less code. We store segmented sensor data with duration in multiple CSV files and

save the location of the files in a structured model using Room. Whenever the user

requests a summary, we query the database to fetch the saved data and send them

to the server.

• We used Django REST Framework (DRF) to build the web services in python. DRF

is a powerful tool for building web APIs for application-server communication.

Through DRF, we exposed several RESTful Application Programming Interfaces

(APIs) that can accept raw data and return the result to the application in JSON

format.

• For machine learning development, initially, we used Jupyter Notebook for data

visualization, feature extraction, and training and testing ML models. We used

scikit-learn for machine learning and keras for deep learning approaches. After

developing the models, we used TensorFlow to create production-grade ML mod-

els. We chose this platform because it provides the functionality to build and de-

ploy the android compatible models in production.

• We deployed our backend system in Amazon Web Service (AWS). AWS provides a
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reliable and scalable solution with Amazon SageMaker to build and deploy ma-

chine learning systems. We used Amazon RDS to store encrypted user data.

8.13 Discussion

This section describes the development of a system that can handle large and real-

time sensor data to predict human activity. We developed the system to be easily scaled

and extended for new unseen data. In the backend, we took precautions to make the sys-

tem highly reliable and available by creating a server pool and multiple database repli-

cas. The database replicas will be synced at regular intervals so that they can take over in

case of any unexpected situation. We described how we plan to maintain the machine

learning models to make them efficient and accurate. We developed features and data

pipelines to use new data and retrain the models automatically using a scheduler. The

calibration module, patient-reported confirmation, and ’unknown activity’ from the re-

port provide new data to the machine learning retrain algorithm. We have described the

on-demand comprehensive summary module, which can be extended to support a wide

range of reports. We made the system HIPAA compliant to protect sensitive user data.

While developing the application and the backend, we always intended to use the latest

technologies and practice recommended strategies. As we expect a tremendous amount

of traffic in the backend, we applied necessary load-balancing techniques to prevent the

servers from being overworked and shut down. With all the pipelines being set, we plan

to extend the scope of the system for real-life usage and monitor the performance of dif-

ferent components to improve the system’s efficiency and accuracy.
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Chapter 9
Conclusion

9.1 Summary

This dissertation presents the development of different components of a practical

tool with wearable sensor-based devices and a smartphone application to help patients

avoid over-exertion. We used a pair of sensor-based insoles and a wristband to signifi-

cantly decrease patient discomfort and remove existing challenges in this area. As both

hand and leg movements are tracked, the system is highly extensible to include more

activities in the future. We developed a smartphone application as the core component

of the system with the capabilities of detecting voice activity and high noise exposure.

We also developed two CNN models to detect human emotions from speech and detect

surrounding environments. Every system component contributes to generating a com-

prehensive daily summary of performed exertion and energy expenditure. Users can

access their personalized comprehensive daily summary report any time they want and

track their energy expenditure history.

9.2 Contributions

This dissertation contributes to the design and development of a system to solve

the current problems faced by patients with illness-limiting capacities. These patients

need to be aware of their daily limit of functional activities. They need to know when

they should stop before over-exerting themselves. Our comprehensive literature survey

revealed much literature on activity recognition using sensors. Also, there is research

where energy expenditure is calculated using commercial accelerometers. However, we

found very few patient-oriented systems that use wearable sensors to detect activities

and measure energy expenditure from those activities. We developed a system that can

detect changes in exertion and alert the patients and their caregivers through the smart-
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phone’s notification system about their exertion level.

9.3 Broader Impact

Monitoring elderly patients’ daily activities is an emerging topic with the recent de-

velopment of sensor-based tools. Patient-reported survey tools are not practical for el-

derly patients because of the reporting bias in subjective methods. Older adults may

have difficulties subjectively reporting their exertion level, resulting in inaccurate in-

formation. They need to be physically active to maintain a healthy lifestyle. However,

they should also be concerned about over-exerting themselves. An objective and direct

monitoring method using a sensor-based setup is essential in providing accurate infor-

mation about performed physical activity. Such tools can warn the patients before they

reach the limit of their exertion level.

Severe and very severe ME/CFS patients with limited functional capacities face many

challenges, both physical and mental, from getting out of bed, leaving the house, and

getting to medical appointments. Treatment can be frustrating when medical providers

fail to properly consider their symptoms. Medical providers may lack enough informa-

tion to diagnose and manage these patients, especially in the case of very severe CFS

patients. These patients need proper care and direction on managing their disease to

control or avoid the symptoms and maintain a regular life. Our system tracks physical

and social activity patterns and corresponding user-reported breathlessness and fatigue

level. The system will help medical providers assess patients based on objective and

accurate data. Caregivers can also suggest necessary precautions to avoid severe symp-

toms.

Besides the real-time exertion monitoring and energy expenditure measurement,

our system can play a long-term impact in the research of diagnosis and management

of various diseases that directly affect the patient’s functional capacity. Much research

has been done on this topic. However, before sensor improvement, most research fo-

cused on subjectively diagnosing the issue. The recent improvement in motion sensor
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technology and their integration into the smartphone and other wearable devices have

encouraged researchers to work on physical activity detection and measurement to con-

tribute to health care. The six-minute walk test integrated into our system will provide

motion sensor data of patients’ activity with their health status. The data can be further

used in studies to assess the improvement in the health status of the patients and advise

on daily physical activity requirements. The patient’s daily activity and pattern history

can be further studied to identify the possible risk of fatigue, malaise, and other severe

symptoms that lead to chronic fatigue.

9.4 Future Works

Though we had excellent accuracy in detecting the presence of the voice in an audio

stream with a relatively small dataset, we want to explore more speech and contextual

data in our future work. Detecting the conversational event and the intensity of the

conversation will help us assess the mental state of the patients. With the detection

of voice and silence in audio, we want to calculate the duration of the conversation a

user participates in. Conversational events and discussion participation also indicate

how extroverted a person is, which is essential in detecting social fatigue. Our end goal

is calculating energy expenditure and make patients aware of their daily physical and

social exertion. We developed the application to get patient-reported confirmation of

fatigue and breathlessness on a scale from 0 to 5. We plan to combine the objective

measurements and subjective responses and introduce a dedicated threshold variable

of daily exertion. This value will define the limit of the daily effort of an individual. Any

step above the limit may be harmful to the patient. In future work, we aim to establish

this threshold level of low-level detected activities and use the application’s notification

system to warn the patients if they are close to the threshold level and help them avoid

chronic conditions.
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Appendix A
Appendix

Algorithm 1 shows the segmentation algorithm for accelerometer data from the smart-

phone. Using the same technique, we segmented data from all other sensors.

Figure A.1 shows the mean and standard deviation from segmented windows from

smartphone accelerometer and gyroscope.

Table A.1 shows the accelerometer data from smartphone for downstair activity.

We show the CNN structure of environment classification in Figure A.2. The data,

analysis, and smartphone application code are uploaded to a private repository in bit-

bucket.

Algorithm 1 Segmentation of accelerometer data using Sliding Windows Technique

Require: x, y, z data from accelerometer
1: Initialize acc_x_l i st ← []
2: Initialize acc_y_l i st ← []
3: Initialize acc_z_l i st ← []
4: Initialize wi ndow_si ze ← 40, step_si ze ← 20
5: Initialize f eatur es ← []
6: repeat
7: wi ndow_d at a ← d at a[i : i +wi ndow_si ze]
8: acc_x_l i st .append(wi ndow_d at a[′acc_x ′])
9: acc_y_l i st .append(wi ndow_d at a[′acc_y ′])

10: acc_z_l i st .append(wi ndow_d at a[′acc_z ′])
11: i ← i + step_si ze
12: until i > d at a_leng th −wi ndow_si ze
13: f eatur es[′acc_x_mean′] ← mean(acc_x_l i st )
14: f eatur es[′acc_y_mean′] ← mean(acc_y_l i st )
15: f eatur es[′acc_z_mean′] ← mean(acc_z_l i st )
16: f eatur es[′acc_x_std ′] ← std(acc_x_l i st )
17: f eatur es[′acc_y_std ′] ← std(acc_y_l i st )
18: f eatur es[′acc_z_std ′] ← std(acc_z_l i st )
19: return f eatur es
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Figure A.1: Smartphone segmented data
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Timestamp X Y Z Label
1667627219715 1.96740615 -7.67044258 -2.3683691 down
1667627219746 1.56496572 -7.19134665 -5.05849171 down
1667627219770 -0.77781218 -7.54108667 -2.2749455 down
1667627219770 -0.28194812 -7.89322186 1.30389929 down
1667627219806 1.96021974 -9.03347015 -3.74337387 down
1667627219806 3.17472744 -11.66849613 -8.68524647 down
1667627219837 0.3600401 -15.6928997 -9.0805006 down
1667627219864 -1.27367628 -19.90894318 -3.46070743 down
1667627219864 0.64749753 -21.92832947 -1.78147697 down
1667627219902 1.29906774 -23.40634155 -0.36095825 down
1667627219904 -3.02477098 -18.92919159 -0.51666439 down
1667627219926 -4.55548191 -7.95789957 -0.75621223 down
1667627219965 -6.13410187 -2.84115744 -3.83200669 down
1667627219966 -4.7854476 -3.81851268 -2.68457246 down
1667627220016 -1.82224095 -5.85466957 -0.18608832 down
1667627220016 -1.08682895 -5.80675983 0.0103409 down
1667627220036 -1.4988513 -4.58506584 -0.74663031 down
1667627220046 -1.94441032 -3.79934907 -0.70590723 down
1667627220066 -2.57921195 -3.37295365 -0.36335373 down
1667627220102 -2.9073925 -2.79564357 0.00315447 down
1667627220106 -2.59118938 -2.21114683 0.69544774 down
1667627220149 -1.8102634 -2.51297688 1.34462249 down
1667627220165 -0.90716803 -5.33245516 2.83221459 down
1667627220166 1.12659323 -12.76083374 3.87903881 down
1667627220217 3.93409395 -17.77457047 0.72898442 down
1667627220217 5.26358461 -15.55156708 -8.94874954 down
1667627220235 4.35809422 -13.5705061 -24.38042068 down
1667627220267 -0.852072 -9.50058842 -10.69744778 down
1667627220287 -5.14237404 -8.2118206 -3.36488819 down
1667627220288 -7.62408972 -11.6253767 -1.67368042 down
1667627220349 -6.39281368 -15.08923912 4.95460844 down
1667627220350 -3.06549406 -15.83183765 6.12120628 down
1667627220351 5.52948332 -18.26085281 -3.56610847 down
1667627220369 8.55497169 -18.74473953 -8.70201397 down
1667627220408 -0.44723615 -13.34533119 -5.02974606 down
1667627220409 -6.41437292 -9.72576332 5.02168179 down
1667627220436 -3.36013794 -9.80002308 7.9561429 down

Table A.1. Smartphone accelerometer raw data for downstair activity
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Figure A.2: CNN structure for environment classification
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