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ABSTRACT
DOWNSTREAM TASK SELF-SUPERVISED

LEARNING FOR OBJECT RECOGNITION AND TRACKING

Abubakar Siddique

Marquette University, 2023

This dissertation addresses three limitations of deep learning methods in image
and video understanding-based machine vision applications. Firstly, although deep
convolutional neural networks (CNNs) are efficient for image recognition applications
such as object detection and segmentation, they perform poorly under perspective
distortions. In real-world applications, the camera perspective is a common problem
that we can address by annotating large amounts of data, thus limiting the applica-
bility of the deep learning models. Secondly, the typical approach for single-camera
tracking problems is to use separate motion and appearance models, which are expen-
sive in terms of computations and training data requirements. Finally, conventional
multi-camera video understanding techniques use supervised learning algorithms to
determine temporal relationships among objects. In large-scale applications, these
methods are also limited by the requirement of extensive manually annotated data
and computational resources.

To address these limitations, we develop an uncertainty-aware self-supervised
learning (SSL) technique that captures a model’s instance or semantic segmentation
uncertainty from overhead images and guides the model to learn the impact of the new
perspective on object appearance. The test-time data augmentation-based pseudo-
label refinement technique continuously trains a model until convergence on new
perspective images. The proposed method can be applied for both self-supervision
and semi-supervision, thus increasing the effectiveness of a deep pre-trained model
in new domains. Extensive experiments demonstrate the effectiveness of the SSL
technique in both object detection and semantic segmentation problems.

In video understanding applications, we introduce simultaneous segmentation
and tracking as an unsupervised spatio-temporal latent feature clustering problem.
The jointly learned multi-task features leverage the task-dependent uncertainty to
generate discriminative features in multi-object videos. Experiments have shown
that the proposed tracker outperforms several state-of-the-art supervised methods.
Finally, we proposed an unsupervised multi-camera tracklet association (MCTA) al-
gorithm to track multiple objects in real-time. MCTA leverages the self-supervised
detector model for single-camera tracking and solves the multi-camera tracking prob-
lem using multiple pair-wise camera associations modeled as a connected graph. The
graph optimization method generates a global solution for partially or fully overlap-
ping camera networks.
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1

CHAPTER 1

INTRODUCTION

Image and video understanding are fundamental problems in computer vision

applications that aim to enable machines to interpret and make sense of visual data

like humans. These problems involve recognizing objects, people, actions, events, and

scenes within images and videos. Image recognition tasks as shown in Fig. 1.1-(a)

include object detection [1], instance [7], semantic [8], or panoptic segmentation [9]

to localize an object, recognize its boundaries, and predict the pixel category for

everything in an image frame. Pose and depth estimation techniques [10] predict

the key points/poses and depth for objects in an image. The typical challenges

Figure 1.1: Examples of image/video recognition tasks in a multi-view WILDTRACK
[11] video datasets. (a) classification, detection, and instance segmentation, (b)-(c)
single-camera tracking and two-camera temporal association.

of image understanding tasks are the vast variability in object appearance, pose,

scale, and the presence of clutter and occlusions in the image. On the other hand,

the video understanding problem involves the temporal connection of predictions on

individual images. For example, the multiple-object tracking [12] establishes the
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temporal relationship among objects, and cross-view data association [11] connects

multi-view information in a video sequence. Fig. 1.1 (b)-(c) show an example of a

video understanding task where the temporal association across two cameras uses

individual image recognition results and maintains unique target identities across the

views.

Modern machine-learning techniques address these tasks using large amounts

of labeled data. However, image and video understanding techniques to solve com-

plex, real-world tasks without leveraging manual labels or using a few manual la-

bels are a challenging problem in modern computer vision applications. Popular ap-

proaches to tackle the necessity for large datasets include: i) self-supervised learning

(SSL) [13], semi-supervised learning (Semi-SL) for object detection [14] and instance

segmentation tasks [15] in challenging overhead perspectives, ii) SSL for generalizing

panoptic segmentation [16] tasks across challenging datasets, iii) uncertainty-aware

multi-task learning for spatio-temporal discriminative embeddings to solve multi-

object tracking and segmentation [17], and iv) unsupervised multi-view association

for video surveillance [18] and 3D pose estimation [11].

Using manual labels is one popular strategy for designing deep convolutional

neural network (CNN) models for specific tasks. However, this strategy is more

challenging when the data domain changes frequently over time and locations, as

is the case for computer vision applications, such as video surveillance, self-driving

vehicles, or agricultural automation. The limitations of existing fully supervised works

in these applications motivate us to develop self-supervised/unsupervised learning

approaches to solve image/video understanding problems. One of the most popular

techniques to address the domain change problem is SSL, which adapts a model to

make predictions in a new domain without accessing manually generated labels. In

image/video recognition problems, multi-task learning is another strategy where the

data or task-dependent uncertainties help a supervised [10] or unsupervised model
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[17] to converge better in comparison with a single-task strategy.

The ultimate goal of image/video understanding algorithms is to solve higher-

level problems (a.k.a. downstream tasks), such as multiple-object tracking using

multiple cameras [19]. Still, these algorithms may also require extensive manual

annotations. This dissertation aims to solve image understanding problems, such as

multi-object detection and segmentation, and video understanding problems, such as

multi-view tracking and association problems, in a self-supervised/unsupervised way.

A pre-trained model based on publicly available datasets must be sufficiently robust

to solve a similar situation in new challenging datasets. Domain adaptation methods

[20] have become popular in addressing this issue. SSL [21] and Semi-SL algorithms

[22] are widely used to transfer model knowledge to new data domains instead of

training the model from scratch using expensive manual annotations. These domain

adaptation methods are currently used to solve challenging downstream tasks and

backbone feature learning.

1.1 Problem Statements

The main contributions of this dissertation are novel learning techniques to

mitigate the need for extensive manual annotations. More specifically, it addresses

the following five problems.

1.1.1 Problem statement #1

For downstream tasks, dataset-specific pre-trained convolutional neu-

ral networks perform poorly in unfamiliar camera perspectives. In proposal-

based object detectors [1, 6], multi-scale features from a backbone network are used to

solve downstream tasks by leveraging supervised learning techniques. Hence, CNN-

based detectors struggle to predict previously learned target categories under unfa-

miliar camera perspectives. Accurate localization and precise shape prediction are
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essential for high-level decision-making problems in crowded surveillance applications.

For monocular [23] or multi-view tracking [11] applications, the challenges of over-

head perspectives, partial visibility, variations in camera angles in different camera

networks [18] degrade the consistency in the association of temporal information.

We propose a data augmentation technique where multiple inferences of the same

input frame generate a new augmented target distribution and estimate the unknown

locations of possible targets. Objectives 2 and 3 explain how these augmented de-

tection distributions address the problems introduced by unfamiliar overhead camera

perspectives using a new self-supervised technique.

Most deep learning-based detection [14] and segmentation models [7] perform

with high accuracy when trained using large manually annotated datasets [24]. Mod-

ern deep learning models leverage data augmentation to learn more examples during

training and perform transfer learning into unseen domains. However, most augmen-

tation techniques improve backbone feature learning, which only indirectly enhances

the performance of downstream tasks. Although simple geometric transformations

can improve downstream task predictions, a systematic approach to guide the deep

model from transformation-based augmentation is rare. Hence, in Objectives 2 and 3,

we explain how we can effectively transfer knowledge from deep CNN model learning

to solve the object detection problem in unfamiliar datasets.

1.1.2 Problem statement #2

In multi-view scene understanding, detection or segmentation mod-

els need a significant amount of human annotations to learn about different

perspectives or domains. Due to the change of perspective challenge, pre-trained

models [7] trained on publicly available large-scale datasets [24] have difficulty de-

tecting partially occluded or small objects. In most computer vision applications,

the typical approach is to use human-annotated labels to fine-tune the model for new
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data domains. However, this approach relies on the tedious and expensive human an-

notation procedure and deployment-specific training data. For example, the dramatic

variability in video surveillance systems and the dependency on camera-specific ad-

justments require deployment-specific fine-tuning of surveillance models using manual

labels. Obtaining these expensive manual labels is currently the main barrier to the

widespread adoption of models based on deep neural networks for such applications.

To overcome this challenge, we intend to use the algorithm proposed in Objective 1 to

devise a novel self-supervised algorithm that updates the model using automatically

generated pseudo-labels and the network prediction uncertainties on unseen data.

1.1.3 Problem statement #3

For semantic prediction, transfer learning is challenging when the

data domain is unknown to the pre-trained model. For semantic or instance

segmentation applications [7, 9], a common approach is to use manual labels to train

a deep CNN. To achieve high-quality predictions from supervised models, sometimes

computationally expensive post-processing algorithms [25] are necessary. However,

such models cannot generalize for substantially different datasets, especially in the

presence of varying illumination, camera perspective, or background clutter. We in-

tend to devise an SSL method using automatically generated augmented semantic

pseudo-labels, which increase the model’s sensitivity to objects of interest. The pro-

posed active learning strategy (Objective 3) reduces the semantic uncertainties for

challenging datasets and mitigates the semantic labeling cost. The proposed method

can either avoid the costly post-processing approach without degrading performance

or incorporate post-processing algorithms to further improve prediction accuracy.
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1.1.4 Problem statement #4

Conventional multi-object segmentation and tracking approaches lever-

age supervised learning and resort to separate motion and appearance

models to perform association, but unsupervised jointly learned multi-task

models can improve tracking consistency. Multi-object segmentation and track-

ing algorithms [26, 12] usually employ a supervised learning technique to generate

discriminative embedding features and then apply an association technique based

on sophisticated target motion models. The dependency on human annotations to

train such models limits the applicability of existing methods to real-world prob-

lems. Again, the supervised learning of individual motion and appearance models

fails to yield satisfactory tracking consistency [27]. However, for many real-world

applications, task-dependent uncertainty-aware learning of joint spatio-temporal em-

beddings makes it possible to use unsupervised clustering to perform data associ-

ation. Spatio-temporal embeddings increase the multiple-object tracking system’s

performance in challenging scenarios where target appearances and motions change

abruptly with time. To address these challenges, we propose a new task-dependent,

uncertainty-aware joint embedding learning technique that eliminates the need for

expensive manual labels. To perform temporal association, we propose a novel un-

supervised spatio-temporal clustering algorithm (Objective 4) that leverages domain

knowledge as a constraint graph. This algorithm can be easily applied with any pre-

trained multi-task feature extractor, especially in scenarios where multiple objects

have similar motion and appearance patterns.

1.1.5 Problem statement #5

For multi-camera networks, real-time multi-object tracking is chal-

lenging, as modern deep learning architectures have high computational
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requirements when performing detections in high-resolution complex vi-

sual data. For tracking multiple objects in a multi-camera network, a typical strat-

egy [28, 11] is to use a single camera tracker (SCT) and then perform multi-camera

association either in 2D or 3D space. Even though appearance features are widely

employed to perform association across cameras, in overhead camera views, cross-

camera matching becomes challenging, and computational complexity increases ac-

cordingly. To address these limitations in multi-camera tracking, we intend to devise

a framework (Objective 5) to perform real-time single-camera detection, tracking, and

multi-camera association. Optimizing memory resources and parallelizing the inter-

nal detection and tracking processes makes it possible to process the multi-camera

surveillance task in real time. Parallel computing strategies, optimized data, and

network weight representations make it possible to maintain the overall real-time

multi-camera tracking performance.

1.2 Objectives

In this dissertation, we address five key challenges: i) perspective variations in

multi-object detection and segmentation, ii) semi-supervised/self-supervised/unsupervised

learning for multiple object detection, segmentation, and tracking, iii) SSL for seman-

tic and panoptic segmentation, iv) unsupervised multi-view association, v) real-time

multi-camera multi-object tracking in image/video understanding problems. These

challenges are captured in the five research objectives described below.

Objective 1: Develop a test-time data augmentation algorithm for enhanc-
ing the performance of region proposal-based detectors.

This objective aims to improve the performance of state-of-the-art object de-

tection and segmentation algorithms by increasing their sensitivity to targets of in-

terest. Current detectors and post-processing algorithms cannot detect targets under
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substantial perspective distortions. Hence, our goal is to develop a multiple inference-

based clustering/voting algorithm to identify the targets in geometrically distorted

scenarios without resorting to additional training in a manner that applies to any

detector as a robust post-processing algorithm. This unsupervised clustering-based

data augmentation algorithm also reduces false detections. It motivates us to devise

a self-supervised algorithm that uses the outcome of Objective 1 as a high-quality

pseudo-label generation step during self-supervised training.

Objective 2: Devise a self-supervised learning technique to overcome the
dependency on human annotations in multi-view scene understanding.

Detectors based on deep CNNs are usually trained using labeled data to solve

the detection problem in specific applications. The model needs to be fine-tuned using

newly labeled data to be deployed in a new application or camera network. However,

the manual labeling task is expensive and tedious for large-scale applications. To

address the labeling cost and transfer learning challenges in a new domain or unseen

data distributions, we devise an SSL algorithm that uses automatically generated

pseudo-labels to update the model. The ultimate goal of SSL is to transfer the

learning from one domain to another in real-world applications simply by using the

unlabeled data and the initial model weights.

Objective 3: Devise a self-supervised learning strategy for semantic seg-
mentation.

We explore the effectiveness of our self-supervised approach in semantic seg-

mentation without relying on extensive labeled data and computationally expensive

post-processing approaches. Our goal is to robustly transfer knowledge from the

initial model to any challenging dataset without performing the tedious semantic

labeling work and generalizing the learning for any dataset.
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Objective 4: Design an unsupervised spatio-temporal feature learning
technique based on task-dependent uncertainty.

Unsupervised learning is another area of machine learning where a model

learns without leveraging labeled data. In multi-object tracking and segmentation

applications, labeled data generation for each track is costly and time-consuming. To

address these issues, we propose to devise a spatio-temporal clustering approach to

track and segment individual target instances in a video sequence. Since embedded

feature extraction and tracklet associations are independent of detector training, we

can easily employ this unsupervised track generation approach with any pre-trained

multi-task predictor without using manual track labels. Thus, our multiple-object

tracking and segmentation algorithm can be applied to any dataset as long as the

detector performs well in a new domain. Our SSL approach from Objective 2 can

enhance the detector performance in new scenarios.

Objective 5: Implement a real-time multi-camera multi-object tracking
system.

We apply our proposed SSL-based models in a multi-camera tracking algo-

rithm. We devise a real-time multi-camera tracklet association (MCTA) approach by

efficiently leveraging both central processing unit (CPU) and graphics processing unit

(GPU) computations. The objective of the real-time MCTA is to combine Objective

1 and Objective 2 for real multi-camera tracking systems where creating labeled data

for each facility can be challenging. Regarding the consistency of multiple object

identities across cameras and the computational complexity for large-scale camera

networks, our goal is to apply MCTA in other application domains such as unmanned

aerial vehicle (UAV) object tracking, self-driving vehicles, and video analytic-based

monitoring systems.
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1.3 Dissertation Contributions

So far, the outcomes from the research described in this dissertation have been

published in the form of the three following peer-reviewed papers:

1. A. Siddique, R. J. Mozhdehi, H. Medeiros, “Unsupervised Spatio-temporal

Latent Feature Clustering for Multiple-object Tracking and Segmentation", in

British Machine Vision Conference, 2021.

2. A. Siddique, H. Medeiros, “Tracking Passengers and Baggage Items using

Multiple Overhead Cameras at Security Checkpoints”, in IEEE Transactions

on Systems, Man, and Cybernetics: Systems, Dec. 2022.

3. A. Siddique, A. Tabb and H. Medeiros, “Self-Supervised Learning for Panoptic

Segmentation of Multiple Fruit Flower Species,” in IEEE Robotics and Automa-

tion Letters, vol. 7, no. 4, pp. 12387-12394, Oct. 2022.

Unsupervised Spatio-temporal Clustering for Multiple-object Track-

ing and Segmentation. In [17], we proposed an unsupervised spatio-temporal la-

tent feature clustering algorithm to improve tracking consistency without leveraging

manual annotations for multiple-object tracking and segmentation. We extended this

method to solve the occlusion problem by using uncertainty-aware latent features in a

robust Re-ID approach. We also exploited an SSL technique to enhance the multiple-

object detections for multiple object tracking and segmentation (MOTS) tasks. Our

end-to-end algorithm reduces tracking failures in a new domain for MOTS appli-

cations. Our research is based on self-supervised/unsupervised learning techniques,

and it works in unseen video datasets for which obtaining manual annotations is very

tedious and expensive.

Self-Supervised Learning for Detection. Another application of this work

is a computer vision-based video analytics approach to automate the screening process

and reduce the cognitive load of Transportation Security Officers (TSOs) at the air-
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port security checkpoint. The contribution was part of a multi-institutional project

called Correlating Luggage and Specific Passengers (CLASP). The passengers and

their corresponding items, such as handbags, suitcases, and backpacks, are tracked

and associated throughout airport security checkpoints equipped with multiple over-

head cameras. We employed a pre-trained multi-object detector model and proposed

an SSL technique [18] where we use test-time data augmentation, proposal regres-

sion, and unsupervised clustering-based pseudo-label generation to update the initial

detection model. Our learning technique reduces the instance uncertainty during the

transfer of knowledge from one security checkpoint to another without resorting to

significant amounts of human labels. Our method can be easily applied to fully self-

supervised or semi-supervised cases depending on the scenario complexity in terms

of perspective distortion, scale, and appearance variations.

Self-Supervised Learning for Multi-species Fruit Flower Segmenta-

tion. We developed another SSL technique to address the semantic uncertainty

prediction of a multi-task model [9] for multi-species fruit flower segmentation and

counting applications. This method is also helpful in estimating the blooming statis-

tics of an orchard to optimize fruit production. To transfer model knowledge from

one orchard to another, we proposed a rotation-based test-time data augmentation

strategy for pseudo-label generation and a similar augmentation approach for the

model update. We also employ a semantic refinement strategy [25] to enhance the

quality of the pseudo-labels and then update the model using the robust automat-

ically generated labels with rotation invariance property, i.e., prediction scores and

segmentation contours remain stable even though we rotate the original input frames.

We have found a significant improvement over this application’s recent baselines and

propose a simple strategy to count the flowers in multiple orchards. Our method only

uses labeled data to initialize the multi-task model on a single orchard dataset. Still,

our fully self-supervised approach reduces the dependency on tedious and expensive
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human labels for multi-species flower datasets.

Multi-Camera Tracklet Association. We devise a real-time unsupervised

multi-view data association technique to solve multiple object tracking and associ-

ation problems in overhead camera networks. The proposed tracking-by-detection

algorithm consists of a self-supervised detector and single-camera tracker, includ-

ing a robust Re-Identification (Re-ID) module. Cross-camera association is the core

component of multi-camera tracking. We use 2D projections of the single camera

tracks and solve the bipartite association problem for camera pairs with overlap-

ping fields of view. The one-to-one matching of trajectories over the camera pairs

in the entire network to determine the hand-off of the passengers’ identities across

cameras is obtained using a graph optimization method. Since our approach only

uses the trajectories of the targets and the image transformation-based homography

without relying on camera calibration and overhead target appearances, our cross-

camera association algorithm is scalable, i.e., we can increase the network size based

on the available computational resources. This approach is applicable to different

fully/partially overlapping networks without restrictions on the camera layout and

the need for expensive human labels.

Real-time Multi-Camera Tracking. Finally, to apply the core compo-

nents of this dissertation to a real-world application, we propose to develop a real-

time multi-camera tracking (MCT) algorithm. This work is also part of the CLASP

project, where multiple institutions are responsible for developing algorithms to ad-

dress different aspects of the problem. Along this direction, we developed online

versions of our semi-supervised detector, self-supervised SCT, and MCTA that pro-

cess input video frames as multi-camera batches using several GPUs. We assign a

GPU process to each camera to generate real-time multi-object detection and track-

ing. To combine the results from each GPU process, we transfer the processed data

into another parallel CPU process to perform multi-camera association in real-time.
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1.4 Dissertation Organization

This dissertation consists of seven chapters. In chapter 1, we introduce the

fields of computer vision in real-world applications and the four main problems ad-

dressed by the proposed methods in this dissertation. Chapter 2 contains the back-

ground related to some computer vision concepts, machine learning techniques to

process visual data, design methodologies for convolutional neural network models,

and the summary of the existing learning techniques in multi-object detection, seg-

mentation, single-camera, and multi-camera tracking applications. Chapter 3 de-

scribes the novel data augmentation-based pseudo-label generation technique and

the proposed uncertainty-aware self-supervised learning algorithm for multi-object

detection and instance segmentation tasks. Chapter 4 focuses on applying our self-

supervised learning technique for panoptic segmentation tasks in multi-species fruit

flower segmentation applications. Chapter 5 describes our proposed method to si-

multaneously segment and track multiple objects using an unsupervised multi-task

learning approach. Chapter 6 describes the proposed multi-camera tracklet associa-

tion algorithm for a real-time video analytic-based surveillance application. Finally,

Chapter 7 concludes this dissertation by providing a summary of the findings and

then discussing possible directions for future work.
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CHAPTER 2

BACKGROUND

2.1 Basic Concepts of Computer Vision for Real-World Applications

There are a number of intermediate steps involving the application of com-

puter vision algorithms for solving real-world problems. Machine vision algorithms

start with image acquisition by optical sensors and lead to the solution of real-world

decision-making tasks such as self-driving vehicles, robotic automation, and surveil-

lance. Designing modern computer vision algorithms involves sensor data encoding-

decoding, data augmentation and pre-processing, data splitting into train/val/test,

feature extraction, machine learning or deep learning algorithm design, and then in-

tuitively utilizing model features for predicting a task solution or combine a number

of task solutions to deliver the final outcome.

2.1.1 Image Acquisition

Image acquisition refers to the process of capturing visual data where cameras,

scanners, or even smartphones capture light using an imaging system and convert it

into a digital image. This process involves several steps: i) Light enters the camera

through the lens (illumination and reflectance). The lens focuses the light onto the

image sensor, which is a light-sensitive electronic component. ii) The image sensor

consists of millions of tiny light-sensitive cells, or pixels, that convert the incoming

light into electrical signals (sampling). iii) The electrical signals are then processed

by the camera’s electronics and transformed into a digital image file (quantization),

which can be stored as a single channel (gray scale) or multiple color channels (e.g.,

Red, Green, and Blue channels also called RGB) [29]. The quality of the image

depends on various factors, including the resolution of the image sensor, the aperture
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of the lens, and the exposure settings of the camera.

2.1.2 Image Data Augmentation

Figure 2.1: Different image augmentation techniques used in machine learning for
computer vision applications.

Image data augmentation is the process of manually or automatically [30] in-

creasing the size of a dataset by generating modified versions of existing images. Data

augmentation is useful when training machine learning models, as it can prevent over-

fitting and improve the generalization ability of a model. Image rotations augment

the images by rotating at different angles so that the model can learn to recognize

objects at different orientations. In flipping, the image transform into horizontally

or vertically so the model learns to recognize objects that are mirror images of each

other. The image cropping technique remove a portion of the image so that the model

learns to focus on the most important features of the image. Adding noise to the im-

age is popular to learn about the variations in the image, such as variations in lighting

or background clutter. The color jittering method adjust the color or contrast of the

image (Fig. 2.1), so that the model learns about different lighting conditions. In the
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Figure 2.2: Sample frames from the datasets used in this dissertation: (a) CLASP1,
(b) CLASP2, (c) MOTSChallenge, (d) AppleA, (e) Pear, (f) CRAID, (g) Peach, (h)
AppleB.

motion blur augmentation technique, we apply filters or blurring effects to the image

to include different scene conditions, such as when the image is blurry or distorted

due to rapid motions. A generative model can generate new images that are similar

to existing images in a dataset, thus allowing the model can generalize to new data.

Fig. 2.1 shows some of the most popular image data augmentation techniques used

to generalize a model.

2.1.3 Probabilistic Representations of Vision Data

Data distribution analysis (see Fig. 2.2) is a useful technique to understand

the underlying structure of the data, i.e., how much variability there is among the

samples across the training, validation, and testing sets. Probabilistic representations

of vision data usually represent image information using probability distributions
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rather than fixed values. This can be useful in tasks such as image classification,

object detection, and segmentation, where there is often uncertainty or ambiguity in

the images. Gaussian Mixture Models (GMMs) are one of the popular probabilistic

representations of vision data. GMMs are a probabilistic model that can be used to

represent the probability distribution of a dataset. Each GMM is composed of a set

of uni-variate or multi-variate Gaussian distributions, each of which is defined by its

mean vector µ̂k and covariance matrix Σ̂ and can be defined as follows

N (µ̂k, Σ̂) =
1

(2π)m/2|Σ̂|1/2
exp

(
−
1

2
(vk − µ̂k)

T Σ̂−1(vk − µ̂k)

)
(2.1)

µ̂k =
1

Nk

Nk∑

i=1:yi=k

h(xi) (2.2)

Σ̂ =
1

N

∑

k

N∑

i=1:yi=k

(h(xi)− µ̂k)(h(xi)− µ̂k)
T , (2.3)

where Eq. 2.3 represents a GMM for a learned representation h(·) of a CNN-based

classification model trained for k classes, vk is the number of samples belonging to

class k, N is the number of samples for all classes, and xi represents an input image.

The parameters of these distributions can be learned from the data using Expectation

Maximization (EM) [31] algorithm or from the convolutional feature representations

of the data in a deep classifier model [32]. This can be useful in tasks such as object

recognition, where the GMM can be used to represent the probability distribution of

different object classes. For example, when we train a classification model using the

CLASP1 dataset ((a) in Fig. 2.2) or the multi-species flower datasets ((d) and (h)

in 2.2), we observe that a mixture of multiple Gaussian distributions represent the

classes of interest during training. Fig. 2.3-(a-b) show the comparisons of mixtures

of two Gaussian between training, validation, and open or test sets where a Wide-

ResNet-42 model is trained for two categories (AppleA and AppleB in Fig. 2.3). Fig.

2.3-(c-d) also show the training and validation/open distributions comparison where

the model is trained for two classes (camera 9 and 11 images, also called CL1) in
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Figure 2.3: Comparisons of free energy distribution between train set and val/open
sets: a) AppleA-AppleB train/val, b) AppleA-AppleB train and Peach-open, c)
CLASP1-train/val, e) CLASP1-train/val and CLASP2-open.

CLASP1. Fig. 2.3 shows how different the training data distributions are compared

to the validation data. Thus, the learned probabilistic representation can identify the

outliers in the test data.

Another probabilistic representation is based on variational autoencoders (VAEs)

[33], which is a generative model that can be used to learn a probabilistic represen-

tation of the data. VAEs consist of an encoder network that maps the input data to

a latent space, and a decoder network that maps the latent space back to the input

data. The encoder network is trained to learn a probabilistic representation of the

data, and the decoder network can be used to generate new samples from the learned
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distribution.

Common applications of the Gaussian distribution in machine learning and

computer vision include: i) density estimation where the Gaussian distribution can be

used to estimate the probability density function of a dataset (Fig. 2.3), which can be

useful for understanding the underlying structure of the data; ii) anomaly detection

where the Gaussian distribution can be used to identify outliers or anomalies in a

dataset (Fig. 2.3), by comparing the data to the expected distribution based on the

mean and standard deviation; iii) feature scaling, where the Gaussian distribution

can be used to scale and normalize features in a dataset, which can improve the

performance of machine learning algorithms.

2.1.4 Feature Extraction

Feature extraction is the process of identifying and extracting important cues

or characteristics from a dataset that can be used to represent the data in a more

compact and meaningful way. In computer vision, feature extraction is often used

to extract relevant features from images or videos for the purpose of analysis, clas-

sification, or other tasks. There are many different techniques for feature extraction

including i) edge detection, which involves identifying the edges or boundaries of

objects in an image; ii) feature extraction based on image filters such as Gabor fil-

ters extract features such as texture or shape; iii) automatic feature extraction using

deep learning models, such as convolutional neural networks (CNNs) (Fig. 2.4) or

recurrent neural networks (RNN).

2.1.5 Clustering

Clustering methods in machine learning partition a dataset into groups, or

clusters, based on the similarity of the data points within each cluster. The goal of

clustering is to identify patterns or relationships within the data and group similar
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Figure 2.4: visualization of the embeddings from a classification model (WRN-42)
using Uniform Manifold Approximation and Projection (UMAP).

data points together. There are many popular unsupervised clustering techniques

already developed to group the data points based on their similarities. In k-means

[34] clustering, the data points are partitioned into a pre-defined number of clus-

ters by iteratively reassigning each data point to the cluster with the nearest mean,

until convergence. Unlike the k-means, the constrained k-mean iteratively updates

the assignment based on the nearest mean and a connectivity graph of data do-

main knowledge. The hierarchical clustering uses a nested approach to form cluster

within one or more larger clusters. There are two main types of hierarchical cluster-

ing strategies: agglomerative, which starts with individual data points and merges

clusters together, and divisive, which starts with all the data in a single cluster and

splits it into smaller clusters. The density-based clustering uses the density of the

data points, rather than their distance from a central point and they are often used

to identify clusters with arbitrary shapes, and are robust to noise and outlier. In

spectral clustering technique, the eigenvectors of the similarity matrix of the data

are used to identify clusters in data that are not linearly separable, and can handle

large datasets efficiently. Clustering techniques are often used in computer vision for

tasks such as image segmentation, anomaly detection, and data visualization. For
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Figure 2.5: Projective transformation [2]: (a) between two image plane, (b) between
world and camera coordinate system.

example, Fig. 2.4 shows the 2D visualization of the 512D feature from a deep model

using UMAP [35].

2.1.6 Multi-view Geometry

Multi-view geometry is the study of the mathematical relationship among

multiple images of the same scene or object, taken from different viewpoints. It is a

fundamental topic in computer vision and has many practical applications, such as

structure from motion, 3D reconstruction [36, 37], and object recognition. Epipolar

geometry (Fig. 2.5) determines the geometric relationship between corresponding

points in multiple images of the same scene, as captured by cameras with overlapping

fields of view. It is characterized by the epipolar constraint, which states that the

projections of a point onto the image planes of the cameras must lie on a line called

the epipolar line (I
′

in Fig. 2.5). Based on the epipolar geometry, we can derive the

following relationship between a point projected onto two camera planes

x
′

= H2πxπ = H2πH
−1
1π x = Hx, (2.4)
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or equivalently,




x

y

1




= P




X

Y

Z

1




= K [R|T ]




X

Y

Z

1




=




fx α px

0 fy py

0 0 1







r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz







X

Y

Z

1




,

(2.5)

where X, Y , Z are the 3D world space coordinates, x, y are the 2D image plane

coordinates, P is for camera perspective projection matrix which consists of camera

intrinsics, rotation, and translation matrix K, R, and T respectively. The camera

intrinsics matrix consists of focal length in pixels, fx, fy, pixel coordinates of the

camera optical center, px, py, and the skew coefficient, α. The rotation matrix, R

consists of nine parameters (3× 3 matrix) and translation vector T consists of three

parameters tx, ty, tz. Thus R and T matrix determine the projective transformation

between world and image coordinates. Triangulation or stereo matching techniques

leverage the camera calibration to estimate the 3D structure of a scene (Fig. 2.5).

Here, the same object from multiple 2D images is projected onto a global map using

a transformation matrix (Eq. 2.5) to determine the 3D structure. A sequence of

2D images from a moving camera is used to estimate the 3D structure and motion

using multi-view geometry. Camera calibration is a prerequisite for using multi-view

geometry, where the intrinsic and extrinsic parameters of the cameras (Eq. 2.5),

such as the focal length, principal point, and camera pose, relate the images to a

common coordinate system. Multi-view geometry plays a key role in many practical

applications of computer vision, such as augmented reality, robotics, and autonomous

vehicles.
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2.2 Downstream Tasks in Computer Vision Applications

Downstream tasks in computer vision refer to the solution to a particular

problem after performing the initial processing and feature extraction of visual data.

These solutions may directly involve a specific task, or they may involve further

analysis or interpretation of the data. As shown in Fig. 2.6, common downstream

tasks in computer vision applications are: object recognition techniques to localize

[38, 39] and classify specific objects [40] within an image or video frame; object

tracking methods [12, 41, 23] to predict the movement of specific objects within a

sequence of images or video frames; image segmentation methods [15, 9] to partition

an image into different regions or segments based on the characteristics of the pixels

in the image; image captioning approaches [42] to transform image objects into words

based on the objects and context within the image; depth estimation methods [10, 43,

44] to understand and reconstruct the scene for tracking, navigation, and augmented

reality applications; pose estimation techniques [45] to locate key points in a scene

for human-object interaction and human activity recognition, or in a multi-view 6D

pose to recover the object shapes under severe occlusions and cluttered scenarios [46];

optical character recognition [47] and scene text detection [48] recognize characters

in images or videos.

In these downstream task algorithms, a core component is effective feature

extraction from the input visual data using some popular CNN backbone architectures

[49, 50, 51, 52] or vision transformers [52, 53]. After extracting the features, the task-

specific goal is to design a head architectures to backpropagate the task loss computed

from a loss function. Based on the type of task, these heads can be a single-stage

[54] or multi-stage [1] or have specialized architecture [52] to solve the task without

a number of pre-processing and post-processing steps.



24

Figure 2.6: Downstream tasks in computer vision applications.

Figure 2.7: Understanding discrete convolution and pooling operations in a CNN
[55]. (a) discrete convolution, (b) pooling, (C) dilated convolution, (d) transpose
convolution.

2.3 Convolutional Neural Networks

A convolutional neural network (CNN) is a type of artificial neural network

specifically designed for processing data with a grid-like topology, such as an image.

It is composed of multiple layers of interconnected neurons, and is trained using a

variant of the backpropagation algorithm. One of the key features of CNNs is the

use of convolutional layers, which are designed to automatically and adaptively learn

spatial hierarchies of features from the input data. These layers apply a convolution
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operation to the input data, which involves sliding a small kernel or filter over the

input and computing the dot product between the entries of the kernel and the input

at each position. Fig. 2.7 (a) shows a 3 × 3 filter convolved with the input data

matrix of size 5 resulting in the feature map of size 3 × 3 for a stride 1 × 1. The

resulting feature map is then transformed using non-linear activation functions, such

as the rectified linear unit (ReLU) function, to apply for different downstream task

predictions. Another key feature of CNNs is the use of pooling layers, which are used

to downsample the spatial dimensions of the input data. This can help to reduce

the computational complexity of the network, as well as the overfitting of the model

to the training data. Fig. 2.7 (b) shows a 3 × 3 average pooling operation on a

5 × 5 input feature map with stride 1 × 1, which down samples the input feature

map to 3 × 3. The pooling operation computes the average or maximum values of

the subregions in the input feature map. The other convolutional operations in deep

learning are: i) dilated convolution (Fig. 2.7 (c)) to increase receptive fields without

increasing the number of learnable weights; ii) transpose convolution (Fig. 2.7 (d))

to upsample the convolutional feature using learnable parameters instead of using

typical interpolation techniques.

2.3.1 Convolutional Neural Network Architectures

There are many different CNN architectures that have been developed for var-

ious computer vision tasks. Some of the most well-known architectures are described

in this section.

LeNet: This is an early CNN architecture developed by Yann LeCun et al.

[56] in the late 1980s and early 1990s. It was originally designed for handwritten

digit recognition, and consists of a series of convolutional and pooling layers, followed

by fully connected layers. Fig. 2.8 (a) shows LeNet-5 [56], where the inputs are the

32 × 32 handwritten images and the output is a fully connected layer with 10 units
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Figure 2.8: CNN architectures.

for 10 categories of the digits. This network uses gradient-based learning to extract

2D shape features from the hand written texts.

AlexNet: To tackle the challenges of high-resolution input images and extract

more contextual information-based CNN features for computer vision downstream

tasks, Alex Krizhevsky et al. [50] developed a modern CNN architecture that won

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012. It is the

first successful deep neural network that employs max-pooling for downsampling the

features and ReLU activation as the non-linearity. It also explores the importance of

data augmentation in neural network training for computer vision problems and the

drop-out approach for additional regularization. The network comprises two parallel

branches of 8-trainable layers for input size 224× 224× 3 and three fully-connected

layers for 1000 output categories, followed by a series of convolutional and max-

pooling layers, as shown in Fig. 2.8 (c). AlexNet has been widely used as a robust

CNN architecture for most downstream tasks in computer vision applications.

VGG: In 2014, the Visual Geometry Group (VGG) at Oxford University

introduced a successful deep ImageNet classification model called VGG network [51].

The main feature of this network is the decomposition of large convolutions, which
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allows for the use of only 3 × 3 convolutions rather than 7 × 7 or 5 × 5 filters for

very deep models (16 to 19 layers). This approach helps in the design of very deep

networks with fewer weights.

Inception and GoogleNet: This is a CNN architecture developed by Google

that was introduced in 2014 [57]. It consists of a series of modules called Inception

modules, which use a combination of 1 × 1, 3 × 3, and 5 × 5 convolutional filters to

capture different scales and aspects of the input data. Fig. 2.8 (d) shows an Inception

module architecture where a 1× 1 convolution is used to reduce data dimensionality

without hurting the training. Even though the 1× 1 convolution does not collect any

new features from the neighboring pixels, it is useful to change the dimensionality of

the feature vector without computationally expensive transformations.

ResNet: To address the problem of error propagation in deep neural networks

after the saturation of the top layers, Kaiming He et al. [49] developed a Residual

Network (ResNet) architecture in 2015. This architecture won the ILSVRC 2015

in both ImageNet classification and object detection (using the Faster-RCNN [1]

detection architecture) tasks. The basic residual unit shown in Fig. 2.9 computes a

function F (x) through a layer for an input x, and then the output of the residual

unit becomes y = F (x) + x, which is then used as input for the next unit. This

approach provides a direct way of flowing gradients around F (x) without vanishing

gradients for deep architectures. The first version of ResNet contains 152 layers,

which are commonly used as a feature extraction backbone. Other variants, such as

ResNet-101 and ResNet-50, are also popular for solving computer vision tasks.

Mobile-Net, Efficient-Net, and Squeeze-Net: To overcome the memory

and runtime limitations of large Inception ResNet families in edge devices, a num-

ber of light-weight networks with excellent performance have been proposed. In the

SqueezeNet [58] architecture, the 1 × 1 convolution-based Fire module replaces the

Inception unit to reduce the number of channels and then expands back to gener-
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Figure 2.9: Resnet and ViT architecture.

ate the concatenated outputs. The idea of depth-wise separable convolutions [59] is

the key component of the memory-efficient MobileNet family of networks. To au-

tomate the typical deep learning issues of designing building blocks (convolutional

layer, max-pooling layer) and task-specific loss functions (classification, detection,

and segmentation), neural architecture search techniques motivated the development

of EfficientNet [60], which successfully addresses the performance/efficiency trade-off

in deep learning algorithms.

Vision Transformer: Transformer networks were originally developed for

natural language processing tasks to capture the long-range relationships among a

sequence of words in natural language sentences. It has also been explored in com-

puter vision tasks by combining the benefits of CNN features [38] or without lever-

aging CNN [52, 53]. These models operate by first encoding an input image into

a feature representation (see Fig. 2.9), which is then processed by the Transformer

architecture. In the encoding step, an image is divided into a grid of non-overlapping

patches, and each patch is passed through a CNN to produce a feature map. The

feature maps from all patches are then combined and flattened into a feature vector,

which is the input to the Transformer. Then the feature vector passes through sev-

eral self-attention layers, allowing the model to learn relationships between different

parts of the image. The attention mechanism allows the model to focus on important
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regions of the image, dynamically adjusting its focus as needed. Finally, the output

of the Transformer is fed into a downstream task layer, which makes the final predic-

tion about the image. Thus, a Vision Transformer combines the strengths of CNNs

for feature extraction with the Transformer architecture for modeling long-range re-

lationships between image elements. This allows for better handling of the spatial

dependencies in images, compared to traditional CNN-based models.

2.4 Distance Metrics in Computer Vision

In deep learning and computer vision, distance metrics are often used to com-

pare features or embeddings of images, videos, or other data. Different types of

distance metrics can be used depending on the specific task and the properties of the

data. Some common types of distance metrics used in deep learning and computer

vision are introduced below.

Cosine Similarity Distance: The cosine similarity measures the distance

between two vectors in the vector space model (VSM). The cosine similarity Sc(τa, τp)

and the corresponding cosine distance Dc(τa, τp) between two vectors τa and τp can

be defined as follows

Sc(τa, τp) = cos θ =
~τa · ~τp
‖~τa‖ ‖~τp‖

, Dc(τa, τp) = 1− cos θ. (2.6)

The soft-cosine similarity distance is a modified version of the traditional co-

sine distance [61] proposed in natural language processing that considers the similarity

between two feature vectors in cosine distance.

sdc = 1−

∑∑N
i,j sijτaiτpj√∑∑N

i,j sijτaiτaj

√∑∑N
i,j sijτpiτpj

, (2.7)

If there is no similarity between τai and τpj , sij = 0 for i 6= j and sii = 1, which

reduces to the traditional cosine similarity distance Dc (Eq. 2.6).

Mahalanobis Distance: The Mahalanobis distance measures the distance

between a point and a distribution. Unlike the Euclidean distance, the Mahalanobis
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distance takes into account the correlation between variables. In this metric, each

variable contributes to the distance based on its correlation. The Mahalanobis dis-

tance D(x, µ) between x ∈ Rp and the mean µ = E(X) of the p-variate distribution

fx(.) can be defined as

D(X,µ) =
√
(X − µ)TΣ−1(X − µ). (2.8)

For the identity covariance matrix, the Mahalanobis distance becomes the Euclidean

distance.

Hausdorff Distance: The Hausdorff distance metric measures the similarity

between two sets of points and is defined as the highest distance between any point

in one set and the closest point in the other set. The directed Hausdorff distance

[62] between two sets of points τa and τp can be defined as the maximum distance

between each point x ∈ τa and its nearest neighbor y ∈ τp

H̃(τa, τp) = max
x∈τa
{min
y∈τp
‖x, y‖}, (2.9)

where ||˙|| is the Euclidean distance function. Since H̃(τa, τp) 6= H̃(τp, τa), the Haus-

dorff distance is also defined as the maximum of the directed Hausdorff distances in

both directions, i.e.,

H(τa, τp) = max(H̃(τa, τp), H̃(τp, τa), (2.10)

Frechet Distance: The Fréchet distance [63, 64] measures the similarity

between two curves. It is defined as the minimum over all possible alignments of the

two curves of the maximum distance between corresponding points on the two curves.

F (τa, τp) = inf
(α,β)∈X

max
t∈[0,1]

{‖τa(αt), τp(βt)‖}, (2.11)

where the Fréchet distance F (τa, τp) between two 2D polygonal curves τa and τp is

the infimum (greatest lower bound) for all α, β of the maximum of all the Euclidean
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distances between τa(αt) and τp(βt). Here, t ∈ [0, 1] indicates the time instances

when we compute the distance between two curve points. To tackle the computational

complexity of O(n2 log(n2)), the discrete Frèchet distance is proposed in [65], for which

the computational complexity is O(n2). The discrete Frèchet distance is often used

as a similarity measure in image registration, object recognition, and computational

geometry.

2.5 Cost Functions

A cost function is a measure of the error or loss in a machine learning model

that is used to optimize the model during training. In deep learning and computer

vision, the goal is often to minimize the cost function in order to improve the perfor-

mance of the model on a given task. There are many different cost functions that can

be used in deep learning and computer vision, depending on the specific task and the

characteristics of the data. A few of the most common cost functions are presented

below.

Mean Squared Error (MSE): This is a common cost function for regression

tasks that measures the average squared difference between the predicted output and

the true output. This loss is also called the L2 norm, which measures the mean

squared error between each input element xi and target yi, which represent the true

value and the predicted value, respectively, i.e.,

Lmse =
1

n

n∑

i=1

(xi − yi)
2, (2.12)

where n is the total number of input elements. Cross-entropy Loss: The Cross-

entropy loss is a common cost function for binary classification tasks, which measures

the difference between the predicted probability of the positive class and the true

label. For logistic regression, the cost function corresponds to the maximum likelihood
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estimatie (MLE). The likelihood for the given data D = {(yc, x)} is defined as

P (D|W ) =
C∏

c=1

[p̂(yc|x)]
p(yc|x)[1− p̂(yc|x)]

1−p(yc|x), (2.13)

where p(yc|x) is the probability distribution of the training set, p̂(yc|x) is the predicted

distribution from a deep neural network, C is the total number of target classes, x is

the input feature vector, and W are the model parameters. The MLE is defined as

the set of parameters which maximizes the log-likelihood [66]

Ŵ = argmax
θ

C∑

c=1

p(yc|x) log p̂(yc|x). (2.14)

Thus, the negative log-likelihood for logistic regression is also called the cross entropy

and is defined as [67]

Lce(W, y) = −
C∑

c=1

p(yc|x) log p̂(yc|x). (2.15)

For binary classification tasks where yc ∈ {0, 1}, the negative log-likelihood is

defined as

Lbce(W, y) = −p(yc|x) log p̂(yc|x)− [1− p(yc|x)] log[1− p̂(yc|x)]. (2.16)

Thus this loss function measures the negative log probability of the true label p(yc|x)

given the predicted probability distribution p̂(yc|x).

Hinge Loss: The hinge embedding loss measures the similarity between input

and predicted values. For the n-th sample, the hinge loss Lhinge is defined as

Lhinge(xn, yn) =





xn if yn = 1

max(0,∆− xn) if yn = −1,
(2.17)

where the given input tensor is x and the corresponding label tensor y contains 1 or

−1. The total loss will be the average of the losses for n-th samples. This loss is

mostly useful for classification problems, learning non-linear embeddings, and semi-

supervised tasks.
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Kullback-Leibler Divergence Loss (KLD): The KLD loss compares the

distance between two probability distributions. It is defined as

KLD(x, y) = y(log(y)− log(x)), (2.18)

where y is the predicted probability and x is the probability of the input sample. This

loss is similar to the cross-entropy loss (Eq. 2.15), but KLD compares the predicted

probability distributions (mean and variance) instead of the predicted confidence.

Triplet Margin Loss: For learning image patch descriptors in computer

vision models, the most popular technique is triplets-based feature learning. This

loss requires three inputs: {a,p, and n}, where a is the anchor, p is the positive

sample which comes from the same class as a, and n is the negative sample which

comes from a different class. By optimizing the model parameters, the triplet loss

brings the representations of a and p closer together in feature space and pushes the

representation of n further away from a [68].

Lt(a, p, n) = max(0, µ, ‖fW (a)− fW (p)‖2 , ‖fW (a)− fW (n)‖2), (2.19)

where µ is the margin parameter. The triplet margin loss is a convex approximation

and lower bounds to 0. Another version of triplet loss is proposed in [68] and is called

hard negative mining with anchor swap, where the anchor is swapped with positive-

based min(‖fW (p)− fW (n)‖2 , ‖fW (a)− fW (p)‖2) = ‖fW (p)− fW (n)‖2. As a re-

sult, the hardest negative within the triplet is used to update the weights.

Contrastive Loss: The contrastive loss in deep learning trains the model

with a pair of contrastive examples. There are several ways of generating contrastive

samples, such as geometric transformations and multi-view samples of the same tar-

gets. The training pairs can be positive or negative based on the target similarity.
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The contrastive loss is defined as [68]

Lcont =





‖fW (x1)− fW (x2)‖ if l = 1

max(0, µ− ‖fW (x1)− fW (x2)‖) if l = −1
, (2.20)

where µ is an arbitrary margin and the pairs of training samples {x1, x2} with their

corresponding labels (l = −1 for negative pairs and l = 1 for positive pairs).

The choice of cost function depends on the specific task and the characteristics

of the data, and it is often necessary to experiment with different cost functions in

order to find the one that works best for a given problem.

2.6 Datasets

In the design of modern computer vision algorithms, the training, validation,

and testing phases usually rely on large-scale benchmark datasets. The type of an-

notation label depends upon the task being solved by the model we plan to design.

One can generate large amounts of training data synthetically or by applying aug-

mentations to simulate the proposed methods, not only for machine vision algorithms

but also for text, audio, and time-series recognition models. This section describes

relevant benchmark datasets commonly used in several computer vision tasks.

2.6.1 Multi-Object Tracking and Segmentation

In 2018, the Multi-object Tracking and Segmentation (MOTS) [12] datasets

have been introduced to integrate detection, segmentation, and tracking tasks into

a single model. The goal is to use MOTS datasets to overcome the limitations of

bounding boxes in multiple object tracking, especially when they overlap signifi-

cantly due to occlusions or camera perspectives. In the MOTS datasets, the existing

bounding box-based MOTChallenge [69], and KITTI [70] labels were extended using

manual or semi-automated techniques [6] to generate pixel-wise labels. The MOTS

datasets are split into two sets: the MOTSChallenge and MOTS KITTI datasets.
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Figure 2.10: Annotation examples from KITTI MOTS (car and pedestrian) datasets.

Figure 2.11: Annotation examples from MOTSChallenge (pedestrian) datasets.

In MOTS KITTI, 12 training video sequences are annotated for 99 pedestrian and

431 car tracks. There are 9 validation sequences which consist of 68 pedestrian and

151 car tracks. On the other hand, the 4 crowded MOTSChallenge scenarios contain

228 pedestrian tracks. Fig. 2.10 and Fig. 2.11 show sample annotations for pedes-

trian and car tracks. An updated MOTS dataset version has also been presented in

[71, 72], which is denser in comparison with MOTS [12].
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Figure 2.12: Examples of multi-camera CLASP datasets: a) CLASP1, b) CLASP2.

2.6.2 Correlated Luggage and Specific Passengers

Inspired by the Department of Homeland Security (DHS) goal of enhancing

security at airport checkpoint screening and assist Transportation Security Officers

(TSOs) in terms of cognitive load reduction and detection of theft or abandoned

items, a mock airport checkpoint was constructed at the Kostas Research Institute

(KRI) video analytics laboratory at Northeastern University. Two overhead video

datasets were collected at the KRI laboratory in 2017 (CLASP1) and 2019 (CLASP2),

where multiple human subjects participated in activities that emulate actual airport

checkpoints. These datasets aim to model passenger activities as a part of the Corre-

lated Luggage and Specific Passengers (CLASP) project. The CLASP1 and CLASP2

datasets contain 4 overhead camera scenarios observed by 14 standard IP surveil-
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Figure 2.13: Panoramic overview of the camera views at the Kostas Research Institute
simulated airport checkpoint.

lance cameras with 1920 × 1080 resolution and focal length between 3 mm and 9

mm. In these datasets, the passengers interact primarily with their belongings and

sometimes with one another. Fig. 2.12 shows the dense camera scenarios where the

passengers divest their items onto the roller conveyor (top row) and retrieve their

belongings from the belt (bottom row). Additional cameras extend the fields of view

(FOV) (Fig. 2.13) of the camera network so that we can track the passengers as they

traverse the checkpoint. In terms of perspective and target density, CLASP2 is more

challenging than CLASP1. In the CLASP datasets (see Table 3.1), a total of 146

passengers carrying 126 baggage items (backpack, handbag, and suitcase) leave and

re-enter the FOV several times. The total number of annotated frames for classes

person and bag is 5, 237, and the number of manually annotated bounding boxes is

15, 482.

2.6.3 Synthetic MNIST-MOT and Sprites-MOT

The synthetic MNIST-MOT and Sprites-MOT datasets, which include most of

the common challenges observed in the multi-object tracking (MOT) task, have been
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proposed in [41]. In [17], we reproduce both datasets containing 20 video sequences

for each set. Each video sequence consists of 500 frames of size 128 × 128 (pixels)

containing 28×28 (pixels) objects (8 digits or 4 sprites) having variable object density

and target birth probability of 0.5. Since we choose the object’s velocity and direction,

the ground truth information is readily available and these datasets can be easily used

for training MOT algorithms. The main benefit of using synthetic data is that we can

control the target density, the total number of tracks (977 in MNIST-MOT and 983

in Sprites-MOT), occlusions, motions, and appearance, to model and train new MOT

algorithms. Fig. 2.14 shows the sequence of the modified version [17] of MNIST-MOT

(top row) and Sprites-MOT with an object density of 5.

Figure 2.14: Examples of synthetic multiple object tracking datasets: a) MNIST-
MOT b) Sprites-MOT.

2.6.4 Multi-species Fruit Flowers

The multiple-species flower datasets first proposed in [25] include various chal-

lenges such as variations in illumination, camera angles, brightness, and the presence

of substantial occlusions (mostly by tree branches) and background clutter. These

datasets aim to encourage the development of generalized models for diverse un-
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Figure 2.15: Examples of the segmentation labels and model predictions for a fruit
flower datasets.

controlled environments. The publicly available flower datasets were collected in a

United States Department of Agriculture (USDA) orchard and contain four sub-sets:

AppleA, AppleB, Peach, and Pear. AppleA and AppleB are composed of apple trees

and flowers under sunny conditions. AppleA is a collection of 147 images of size

5184 × 3456 (pixels) where 100 randomly selected frames are used for training and

the remaining 30 images out of 47 for testing the models. The AppleB, Peach, and

Pear datasets contain 18, 48, and 36 images of size 2704 × 1520 (pixels), primarily

for testing the models. Even though these datasets are promising for testing models,

the training set had pixel label inaccuracies that we address in [16]. Fig. 2.15 shows

the sample manual pixel labels (red) and the corresponding model predictions (blue),

which indicate several incorrect pixel labels in the original version of the training set.

The techniques proposed in [16] also augment the training frames to train deep CNN

models. The SSL method in [16] generates accurate panoptic pseudo-labels shown

in Fig. 2.16 for unlabeled datasets. The training set is considered unlabeled images

to train the previously initialized CNN models. Thus, we apply these datasets for

learning both supervised/semi-supervised and self-supervised techniques.
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Figure 2.16: Examples of SSL pseudo-labels for multi-species unlabeled fruit flower
datasets: a) AppleA test, b) AppleB, c) Peach, and d) Pear.

2.7 Evaluation Measures

Evaluation measures for different downstream computer vision tasks usually

assess the quality of the model on validation or unseen test sets. The design of the

evaluation measures depends on the type of downstream task model.

2.7.1 Multiple Object Tracking and Multiple Object Detection Measures

MOT and Multiple Object Detection (MOD) evaluation measures were first

proposed in 2006 (CLEAR Workshop [73]) to measure the precision in determin-

ing the location of objects and the 2D or 3D tracker consistency over time. For

MOT, Multiple Object Tracking Precision (MOTP) measures the tracker’s ability

to estimate the correct locations, and Multiple Object Tracking Accuracy (MOTA)

quantifies the tracking performance on counting the number of accurate objects and

the corresponding consistent trajectories, i.e.,

MOTP =

∑
i,t di,t∑
t ct

,

MOTA = 1−

∑
t(mt + fpt +mmet)∑

t gt
,

(2.21)

where ct is the number of matches found at time t and di,t is the distance between

a visible object oi and its corresponding tracking hypothesis. The number of missed

detections, false positives, mismatches, and total visible objects at time t are rep-

resented by mt, fpt, mmet, and gt, respectively. The mismatch errors at t indicate

wrong associations at t based on the correct mapping at t − 1. Similarly, Multiple
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Object Detection Precision (MODP) computes the spatial overlap between ground

truth detections and model outputs, i.e.,

MODP (t) =

∑Nt
mapped

i=1
|Gt

i

⋂
Dt

i|
|Gt

i

⋃
Dt

i|

N t
mapped

, (2.22)

where Gt
i, D

t
i , and N t

mapped represent the sets of ground truth and detected object

bounding boxes, and the total number of associated objects at t, respectively. Again,

Multiple Object Detection Accuracy (MODA) estimates system accuracy using the

number of missed detections mt and false positives fpt, without considering the tem-

poral identifiers of the targets, i.e.,

MODA(t) = 1−
mt + fpt

N t
G

. (2.23)

2.7.2 Semantic Segmentation Measures

Unlike bounding box-based association, which measures detection performance,

or Region of Interest (ROI) mask-based matching, which estimates instance segmen-

tation performance, semantic segmentation measures use pixel level matching [74] to

quantify the semantic model accuracy. Like classification or detection tasks, preci-

sion (Prcn) and recall (Rcll) in semantic segmentation indicate how many returned

results are relevant and how much existing relevant information is returned. The

F-measure (F1), which is given by the geometric mean of precision and recall, com-

putes the overall performance of the method. The most widely used measure to

assess the correct pixel-level prediction accuracy is the mean Intersection over Union

(mIoU). In multi-class prediction problems, the intersection between predictions M

and ground truth G is divided by the corresponding union and averaged over all the

classes C = {1, . . . , nc},

mIoU =
1

nc

∑

C

|M
⋂

G|

|M
⋃

G|
=

1

nc

∑

C

TP

TP + FP + FN
(2.24)
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where true positives (TP) is the total number of matching pixels between M and G,

false positives (FP) is the total number of incorrectly detected pixels in M, and false

negatives (FN) is the total number of pixels which are missed by the detector in G.

2.7.3 Multi-Object Tracking and Segmentation Measures

Inspired by the CLEAR MOT [73] measures for multiple objects tracking

problems, the popular MOTS evaluation measures assume that each pixel should be

assigned to one object of interest. Evaluation measures TP, TN, FP, and FN are

popular in multiple object tracking problems and hence for MOTS problems as well

[12], which bounding box or instance mask IoU and defined as

TP = {h ∈ H|c(h) 6= ∅},

FP = {h ∈ H|c(h) = ∅},

FN = {m ∈M |c−1(m) = ∅},

(2.25)

where M = {m1, . . .mN} with mi ∈ {0, 1}
h×w is the set of N non-empty ground truth

pixel masks which are also assigned to ground truth track id idm ∈ N. Similarly for

the predicted hypothesis masks, H = {h1, . . . hK} with hi ∈ {0, 1}
h×w and track id

idh ∈ N. Here, c(h) is the mapping from hypothesis mask to ground truth mask and

is defined as

c(h) =





argmax
m∈M

IoU(h,m), if max
m∈M

IoU(h,m) > 0.5

∅, otherwise.

(2.26)

Another mask-based evaluation measure is called soft TP and is defined as

T̃P =
∑

h∈TP

IoU(h, c(h)). (2.27)

Thus, the mask-based multi-object tracking and segmentation accuracy (MOTSA)

and multi-object tracking and segmentation precision (MOTSP) mimic the box-based
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MOTA and MOTP metric,

MOTSA = 1−
|FP |+ |FN |+ |IDS|

|M |
=
|TP | − |FP | − |IDS|

|M |
,

MOTSP =
T̃P

|TP |
.

(2.28)

where the set of id switches (IDS) is equal to the set of ground truth masks whose

predecessor was tracked with a different identifier, i.e,

IDS = {m ∈M |c−1(m) 6= ∅ ∧ pred(m) 6= ∅∧

idc−1(m) 6= idc−1pred(m)}.
(2.29)

Again, to measure segmentation performance as well as detection and tracking

quality, the sMOTSA measure considers the soft true positive numbers T̃P instead

of account only for IoU, i.e.,

sMOTSA =
T̃P − |FP | − |IDS|

|M |
. (2.30)

2.8 Machine Learning Techniques for Computer Vision

Modern computer vision techniques mostly address real world problems by

leveraging machine learning methods as a core component. Machine learning models

for computer vision tasks are training using a variety of techniques, including su-

pervised learning [7], self-supervised learning [75], reinforcement learning [76], semi-

supervised learning [77], and unsupervised learning [3]. Since machine vision algo-

rithms are data driven, data preparation before starting the training is also crucial

and modern vision systems employ sophisticated techniques, such as representative

sampling [78, 79, 80], formation of foundation datasets [81, 82], and effective mecha-

nisms for using data augmentation during training [83].
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2.8.1 Data Augmentation for Training/Testing

Most deep learning algorithms use data augmentation for model training. Data

augmentation techniques address the typical challenges in training deep learning mod-

els, such as class imbalance [84], limited data availability [85], overfitting [86], manual

labeling cost [87, 88], transfer learning challenges [89], domain adaptation [89], and

generalization ability of CNN models [18, 90]. Different types of data augmentation

(see Fig. 2.1) based on image operations, such as geometric transformations, image

flipping, color space transformation, image cropping, rotation, translation, and noise

injection are used in modern CNN model training.

2.8.1.1 Test-time Data Augmentation

In addition to the above applications of data augmentation approaches dur-

ing training, test-time data augmentation has also been explored to generate more

robust predictions. In [91], a knowledge distillation approach was proposed where

predictions from multiple transformations of unlabeled data are used to generate

new training annotations for self-training the model. Test-time data augmentation is

particularly popular in challenging real-world data, as ensembles of the multiple pre-

dictions can be used as pseudo-labels to update the model without any modification

to the optimization problem or model structure. Data distillation as a test-time data

augmentation is also popular in student-teacher [14] (Semi-SL) learning strategies.

Again cross-modal distillation addresses the problem of limited labels of a particular

modality using data distillation [91], which generates pseudo-label annotations from

a light-weight ensemble prediction of multiple data transformations. This strategy

is widely used in semi-supervised methods as a self-training mechanism for object

detection tasks [14, 91, 77]. It consists of four steps: i) train an initial model using

labeled data, ii) apply the trained model on multiple transformations of unlabeled
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data, iii) generate pseudo-labels from the ensemble predictions, and iv) update the

model using both labeled and pseudo-labeled data.

2.8.1.2 Data Augmentation for Downstream Task Improvement

Multiple views from overlapping multi-camera networks or multiple geometric

transformations of the same image sometimes provide adequate data for Semi-SL

or SSL, as we can aggregate the same ROI predictions into a common coordinate

frame. In [92], two unique learning algorithms use different views of data, and the

supervised signals of each algorithm come from the other algorithm’s predictions on

the new unlabeled data. In [93], predictions of randomly transformed inputs and

the original inputs are compared in terms of the transformation’s stability loss to

learn the consistency between the outputs from the transformed inputs. Multi-view

geometry is also employed in [19] to generate keypoints pseudo-labels from multiple

cameras and update the detector iteratively. The main goal of using information

from multiple views is to reduce the impact of occlusions and appearance changes

caused by out-of-plane rotations of the target objects on noisy detections generated

by a single camera.

Test-time data augmentation can incrementally increase the prediction confi-

dence and reduce the prediction uncertainty of a model. In [94], test-time rotation

augmentation, remapping, and majority voting reduce the semantic uncertainty of

geometrically distorted objects in a multi-camera network and improve the semantic

prediction quality. In [20], the model retraining approach uses an ensemble of predic-

tions from the original and flipped inputs to identify uncertain image regions as train-

ing signals. In [88], a framework for medical image segmentation uses test-time data

augmentation to estimate the prediction uncertainty using spatially transformed (flip-

ping, scaling, rotation) prediction distributions. The estimated uncertainty reduces

the impact of highly confident wrong predictions, outperforming a single-prediction
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Person and Baggage Detection Clustering, Tracking and Association
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Figure 2.17: Example of test-time data augmentation-based tracking-by-detection
framework. The detection stage uses multiple rotated versions of the region of interest
to increase the probability of detection. The clustering, tracking, and association
stage maps the rotations back to the original coordinate system, clusters nearby
detections using the mean shift algorithm, and performs temporal association using
MHT. The association between objects is then performed using a simple distance-
based approach.

baseline model. In [18], as shown in Fig. 2.17, the detections from multiple rotated in-

puts are combined to improve inference performance during test-time. This test-time

augmentation approach is then used to enhance the performance of the corresponding

downstream tasks such as clustering, tracking, and association.

2.8.1.3 Data Augmentation for Backbone Feature Improvement

Other data augmentation methods [3, 95] use spatial properties of images to

enhance the pre-trained backbone features of the input images, indirectly improving

the downstream task performance. In [95], a CNN model uses visual similarity across

object parts and images to identify the position of a randomly selected patch within

one image from another. The representation learning method proposed in [3, 96]

trains a CNN model to predict 2D rotation transformations that must be applied

to an image (Fig. 2.18) for correct classification. Contrastive embeddings learning

techniques [97, 98, 99] have become popular for feature learning in downstream image

recognition tasks. The main goal of using contrastive predictive coding in feature
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Figure 2.18: Visualization of data augmentation learning technique [3] to improve
the backbone representation.

learning is to maximize the mutual information across features at different spatial

locations [98] and across different views [99] of the same input image. In [40], the

classification of images in the ImageNet dataset employs test-time augmentation. In

that method, the final output is the average prediction on ten randomly cropped

patches.

Based on the downstream vision tasks, test-time augmentation approaches

need to consider some sophisticated method to aggregate predictions from trans-

formed images. It is easy to aggregate warped image predictions for the classification

task since the inverse geometric transformation is readily available. However, for seg-

mentation and detection tasks, the aggregation of geometrically transformed image

predictions is challenging since the inverse transform may distort the spatial [18, 100]

(Fig. 2.17) and semantic relations [16]. For example, in [14], the test-time augmented

predictions include scaling, flipping, color transformation, and bounding box jittering

and regression to generate pseudo-labels for retraining.
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2.8.2 Self-Supervised Learning

SSL techniques usually employ a pre-trained teacher model to automatically

generate training samples from unlabeled data during test time in a multi-stage

approach [18] or during training in a single-stage strategy [14]. The idea of self-

supervision has been widely employed in recent works to use extensive unlabeled

vision data for deep learning with the help of existing training samples [101]. Several

strategies exist to train a deep CNN model using automatically generated pseudo-

labels. The most common approach is representation learning for classification tasks

[21] and then transferring the model to other downstream tasks [39, 13]. Contrastive

Predictive Coding [102, 90] is another SSL technique where training uses multiple

augmented copies (spatially or geometrically) to predict another transformed ver-

sion of the same input. Overall, effective data augmentation strategies [87, 88] are

essential for SSL.

2.8.2.1 Self-supervision for Detection and Segmentation

There are several ways to apply the SSL strategy for downstream tasks on un-

labeled datasets. In pretext task learning methods [75], self-supervised image features

are transferred to the downstream task predictions. In other methods, [14, 103, 43],

the downstream task models are fine-tuned using automatically generated pseudo-

labels. For the detection task [14], Mengde et al. proposed a data-dependent self-

supervision technique where a student-teacher interactive learning strategy employs

classification as a pretext task, and also refines pseudo-labels using box-jittering as a

data augmentation method. The main limitation of applying these methods to unla-

beled datasets is that the pseudo-labels may become noisy, which requires sophisti-

cated filtering/refining mechanisms. SSL is also used to estimate instance uncertainty
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and fine-tune the model using an uncertainty-aware rotation invariance learning tech-

nique [18].

In semantic segmentation applications [15, 103, 13, 43, 22], SSL approaches

usually estimate the uncertain regions of the image and use them to produce pseudo-

labels to update the model. In [15], a weakly supervised classification model is used

in an active learning framework to generate pseudo-pixel labels for self-training. The

uncertainty-aware semantic pseudo-label refinement technique proposed in [104] fo-

cuses on the low-confidence uncertain classes using a feature alignment method be-

tween a source and a target domain and an uncertainty-aware pseudo-label assign-

ment strategy. The self-consistency method based on equivariant transformations

proposed in [103] uses multiple inference uncertainties to select the most uncertain

image patches for additional training. In panoptic segmentation [9], the weakly su-

pervised technique proposed in [105] uses image-level tags and bounding boxes as

weak supervision signals during training. A self-supervised approach is presented in

[16] to estimate panoptic pseudo-labels with accurate contours and then update the

model iteratively using unlabeled frames.

2.8.2.2 Self-supervision for Multi-Object Tracking

Recently, multi-object tracking applications employ self-supervision methods

where pseudo identities are used to update the tracker embeddings or ReID model

[106] as well as the detector [18] in a tracking-by-detection paradigm. Recent multi-

view feature learning [4, 107, 108, 109] and data association methods [110] use SSL

techniques to better address the challenges of occlusion, perspective distortion, cam-

era synchronization, as well as scale, appearance, and viewpoint variations in camera

networks. SSL is used in [4] to increase multi-view association accuracy using multi-

view appearance learning by leveraging motion tracking and camera geometry. For

example, Fig. 2.19 shows the sub-spaces corresponding to the same person across
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Figure 2.19: Sub-spaces from self-supervised appearance learning [4] represent the
target similarity across views.

multiple views where the clusters are constructed using the embeddings from the SSL

appearance model. The temporal identifiers of all the clusters represent the pseudo-

labels used to train an MOT algorithm. In these methods, self-supervision auto-

matically mines single-view and multi-view triplets to update the appearance model

iteratively. In [110], a self-supervised spatio-temporal association model iteratively

learns the spatial association similarity across views and the temporal association sim-

ilarity in a single view. Other approaches resort to object invariant representation

learning [108] across views where an instance classification model recognizes objects in

one perspective by using the corresponding image embeddings as prototypes from an-

other perspective. In [107], self-supervised latent subspace learning uses classification

tasks for single-view representations and self-expressive layer-based spectral cluster-

ing for cross-view relations. In robotics applications, self-supervision is employed for

6D pose estimation [111], where a self-supervised segmentation model segments ob-
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jects from multiple perspectives and merges the multi-view results into a 3D object

model. Self-supervised multi-view representation learning uses temporal alignment

[112] between video frames to generate temporal correspondence-aware multi-view

embeddings, which improves downstream recognition.

2.8.2.3 Self-supervision for Reinforcement Learning

Reinforcement learning (RL) simultaneously solves the representation learning

[113], task optimization, and reward estimation problems. Typical RL techniques

[114] directly use the reward information or ground truth state to learn a successful

policy. However, Shelhamer et al. [76] introduced a self-supervised technique to

improve representation and policy optimization where the RL procedure is augmented

using auxiliary multi-task losses. Sermanet et al. [109] proposed an SSL technique for

feature learning from unlabeled videos (Fig. 2.20), where the anchors, positive, and

negative targets represent the multi-camera scenarios. Dwibedi et al. [115] proposed

a multi-frame representation learning where the reward function compares the learned

representation with human demonstrations in a vision-based robotic system.

2.8.2.4 Self-supervision in Contrastive Learning

SSL is widely employed in different domains, such as natural language process-

ing (NLP) [116], time-series prediction [117], and speech recognition [118]. In these

contexts, self-supervised pre-training has masked words or time series segments which

can be easily predicted from the remaining data points. Typical SSL algorithms use

labeled and unlabeled data, similar to knowledge distillation approaches [91] or un-

supervised model adaptation techniques [20], which fall into the category of semi-SL

strategies. We propose an SSL framework [18] inspired by [39, 103, 20, 104, 119] which

uses only unlabeled datasets. In this learning technique, the pre-trained model must

be aware of the classes of interest in the new domain. Fully self-supervised methods
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Figure 2.20: Self-supervision for robotics imitation [109] using triplet-loss where the
positive and negative anchors are collected from the simultaneous viewpoints.

have no manual supervisory signals in iterative learning, so there is a chance that

the resulting model is heavily biased. In these methods, the most challenging step

is carefully selecting and refining the pseudo-labels to update the models. However,

unlike [39], instead of resorting to multi-task strategies to guide the learning process,

we employ a multi-inference approach similar to the self-consistency method based

on equivariant transformations proposed in [103]. Differently from [103], rather than

using multiple inference uncertainties to select image patches for additional train-

ing, our method aggregates these multiple inferences into accurate pseudo-labels to

refine the model (Fig. 3.2). Our approach differs significantly from unsupervised

model adaptation techniques [20], and knowledge distillation approaches, [91] in that

we only use automatically generated labels and avoid human annotations altogether

during model update.
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2.8.3 Multi-task Learning

Multi-task learning usually improves model performance by learning shared

representations across different tasks [5]. As long as the tasks are similar, the model

tends to generalize better to unseen data [120]. For example, the recently introduced

panoptic segmentation approach [9] jointly learns the closely related tasks of instance

and semantic segmentation. Currently, it represents the state of the art in instance

and semantic segmentation [121, 122, 105, 9]. Multi-task uncertainty-aware learning

[120] automatically assigns low weights to a task that does not contribute to the

desired representation. In Fig. 2.21, a multi-task loss function using maximum

Figure 2.21: Uncertainty-aware multi-task learning for single input multiple output
training [5].

log-likelihoods with task-dependent uncertainties guides a single input encoder to

predict multiple tasks. In general, epistemic uncertainty captures what is unknown

to the model due to lack of sufficient training data. Using data augmentation or

large training datasets, the epistemic uncertainty can be reduced but the uncertainty

related to the contribution of individual tasks necessitates a different type of learning

strategy, which is called task-dependent uncertainty learning. Typically, the weights

for multiple tasks are assigned arbitrarily based on the anticipated importance of the
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task which is not optimal, i.e.,

Ltotal =
n∑

i=0

wili, (2.31)

where li is the loss corresponding to the i-th task, and wi is its corresponding arbi-

trarily assigned weight. In [5], the issue of determining optimal weights for multiple

tasks has been addressed for single-input multiple-output models where the output

tasks y1 and y2 are modelled as Gaussian distributions, according to

p(y1, y2|f
W(x)) = p(y1|f

W(x)) · p(y2|f
W(x))

= N (y1; f
W(x), σ2

1) · N (y2; f
W(x), σ2

2),

(2.32)

where fW (x) is the model output for input x, and W , σ1, σ1 are trainable parameters.

Unlike traditional multi-task learning approaches [120, 10], which focus on weighing

the contributions of several homogeneous outputs, In [17], we weighs the contribution

of multiple heterogeneous input features. Thus, we learn the relative weights of each

loss function term based on the uncertainty of distinct features. Our clustering-based

MOTS approach [17] applies an instance segmentation model to extract multi-task

features for uncertainty-aware embeddings learning. Thus, our proposed unsupervised

technique optimizes multiple tasks from sequential data so that similar data points

become closer and different points are further separated.

2.9 Multiple Object Tracking and Segmentation

Tracking-by-detection approaches for MOT rely on robust detection and data

association techniques. Recent MOT approaches employ probabilistic algorithms,

such as Kalman filters [123] or particle filters [124, 125], to predict the position of

new observations and associate the detections using a bipartite graph matching algo-

rithm [126]. The multiple hypothesis tracking method [123] also considers the deep

appearance feature of the detections for MOT. However, tracking methods based

on local data association struggle to handle occlusions and noisy detections. Some
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Figure 2.22: Qualitative results from MOTChallenge validation dataset.

global or delayed optimization approaches [127, 128] have been proposed to tackle

these challenges. The global optimization-based tracker introduced in [127] estimates

the temporal identifiers after all the detections have been obtained. Even for delayed

optimization techniques, association failures in approaches based on bounding box

matching may be severe due to target localization errors. Multiple Object Tracking

and Segmentation (MOTS) algorithms localize objects precisely and establish tempo-

rally consistent associations among segmentation masks of multiple objects observed

in different video sequence frames (Fig. 2.22). Most state-of-the-art MOTS methods

[26, 12] employ supervised learning approaches to generate discriminative embeddings

of the objects and then apply feature association algorithms based on sophisticated

target behavior models [41, 27, 129, 130].

2.10 Clustering-based Data Association

Subspace clustering is an unsupervised learning technique where data points

are mapped to lower dimensionality subspaces and clustered based on feature sim-

ilarity. Existing clustering methods employ two common strategies: i) extract low-

dimensional discriminative features, ii) apply a robust clustering approach to parti-

tion the subspaces. Earlier approaches used methods based on factorization strategies

[131, 132, 133] or kernels [134, 135, 136, 137] to separate data points into their re-



56

Figure 2.23: Sequence of frames for (a) MNIST-MOT with |O| = 5 targets per frame
and (c) DAVIS (cropped for two pedestrians and one car) sequences. (b) and (d)
show the corresponding subspaces generated by constrained k-means [145] in DHAE
[17].

spective subspaces. More recent methods employ CNNs [138, 139, 140], or generative

adversarial networks [141, 142], oftentimes in conjunction with self-expressive layers

[139, 142, 143]. The autoencoder-based DSC-Net [139] uses fully connected layers to

learn an affinity matrix that enhances the discriminative property of the embeddings.

Some autoencoder-based techniques consider subspace reconstruction and cluster as-

signment errors for better sample distribution [144, 138].

Although existing approaches may produce discriminative features to cluster

static data, these features must be sufficiently distinctive to identify the subspaces

corresponding to multiple objects in sequential data due to significant location and

appearance variations across frames. Clustering multiple objects in sequential data

is an under-explored problem, particularly in real-world applications. While exist-

ing temporal clustering methods, such as ordered subspace clustering (OSC) [146]

consider sequential data, they focus on clustering entire video frames without taking

into consideration the spatial aspect, which must be addressed when multiple ob-

jects are present in a video segment. Few methods [147, 148] address the problem

of clustering objects over video sequences, which must consider that object features

may change over time [124, 125, 149]. In [17], we proposed a Deep Heterogeneous
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Autoencoder (DHAE) model that generates more effective latent representations of

sequential multi-object data. Since the dimensionality of our embedded feature does

not depend on the number of clusters, our method does not suffer the scalability is-

sues present in most clustering methods based on self-expressive layers [143]. We also

use prior knowledge regarding the sequential data in the form of a constraints graph

[145] to improve clustering robustness in sequential data. As shown in Fig. 2.23,

the subspaces contain similar shapes for both synthetic (second row from top) and

real (bottom row) data. Thus, our unsupervised learning approach does not require

explicit cluster assignment learning [138].

2.11 Multi-View Data Association

Multi-camera tracking (MCT) systems require sophisticated trajectory associ-

ation mechanisms to maintain the temporal identifiers of targets across camera views

[28, 150, 151]. Even within a single camera view, temporary occlusions must be ad-

dressed using similar strategies [152, 153]. Most trajectory association approaches

compute trajectory similarity scores based on a combination of dataset-specific ap-

pearance, and motion features [28, 150, 151, 152, 153]. Some methods use camera

calibration information to project tracks from cameras with significantly overlapping

fields of view onto a common plane and perform association using occlusion model-

ing [11, 37] or Re-ID techniques [154, 155, 106, 156, 157]. Learning these features

requires the availability of a large number of long, continuous trajectories [11], which

are difficult to obtain with typical ceiling-height overhead cameras due to their lim-

ited fields of view. Multi-camera methods may also need to project trajectories onto

a global 3D coordinate frame, which requires camera calibration information. The

dependency on camera calibration further limits the applicability of these methods to

security systems. Obtaining such information would introduce additional barriers to

adoption since calibrating multiple cameras with partially overlapping fields of view
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Figure 2.24: Distributed multi-camera tracking system.

is a complex task [158, 159, 160, 161].

2.12 Real-Time Multi-Camera Tracking

Tracking multiple objects either in a single camera or multi-camera networks

[100, 18] is a computationally expensive task since a tracking system needs to process a

significant number of high-resolution RGB frames simultaneously – e.g., a distributed

multi-camera tracking system can handle multiple streams using a load balancer to

distribute the incoming data frames to multiple servers. The servers process the data

and perform detection and tracking. The load balancer can also collect the multi-

camera tracking results to send back to the clients. This approach is scalable as we can
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add or remove servers based on the network size and multi-camera streams. Real-

time tracking is a challenging problem when the multiple camera views are highly

dense [11]. Existing deep neural network-based multi-camera tracking approaches

use the tracking-by-detection method [36, 109] where the computed 2D detections

are used to generate single camera track hypotheses, and the tracklets are matched

across cameras using camera geometry and deep object features (i.e., embeddings) to

identify the same targets across views. Some deep learning methods also proposed

mapping the 2D locations to 3D representations [11, 162] to tackle the challenges of

occlusions, high target density, and background clutter. In these methods, the 2D

occupancy map or the 3D occupancy volume are key features to find the matching

across multiple views.

In terms of computational complexity, several methods [162, 163] address

tracking performance and execution time, which is a crucial requirement for a real-

time system. To achieve real-time performance in scalable camera networks, the

system proposed in [163] uses low-resolution vehicle surveillance video feeds with an

off-the-shelf real-time single camera detector [164, 54] and tracker [165], with each

camera initialized as a GPU process to handle the computation. Since the cameras

rarely have fully overlapping fields of view, they mainly focus on appearance mod-

els across views by proposing self-supervised attention-based Re-ID modules where

frame-level deep features of the tracks are temporally weighted and averaged to com-

pute a single appearance descriptor. Finally, these methods employ a hierarchical

clustering approach on the computed similarity matrix to identify the tracks repre-

senting the same identity across the views. In [162], the ground points of the targets

(i.e., the points where the bounding boxes of the targets touch the ground plane)

are predicted using a supervised perspective-aware deep ground point network. Point

detection methods, such as [166] and [167], estimate the 2D corners of the target’s

bounding box or its centroid. Location heat maps of the targets are projected onto a
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common plane using homographies. Then a simple target classifier model is designed

to detect persons in real-time assuming a fixed scale from an overhead view. These

real-time multi-camera tracking methods depend on camera calibration and manual

labels to train lightweight overhead detectors in camera networks with overlapping

fields of view or on low video resolution to speed up the computations while main-

taining tracking robustness. However, in some scenarios real-time MCT algorithms

may also need to process high-resolution video feeds [18, 163]. These methods lever-

age real-time single camera 2D detectors [23, 54], which serve the dual purpose of

detection and appearance modeling for both single camera tracker (SCT) and Re-ID

using models based on homographies [100] or matching feature [168] across views.

Some works [18] also extend bounding box IoU-based ReID in SCT using temporal

distances and local ReID search areas around candidate target locations.
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CHAPTER 3

SELF-SUPERVISED LEARNING FOR MULTIPLE OBJECT
DETECTION

In this chapter, we propose a novel Self-Supervised Learning (SSL) technique

to provide the model information about instance segmentation uncertainty from over-

head images. Our SSL approach improves object detection by employing a test-time

data augmentation and a regression-based, rotation-invariant pseudo-label refinement

technique. Our pseudo-label generation method provides multiple geometrically-

transformed images as inputs to a Convolutional Neural Network (CNN), regresses

the augmented detections generated by the network to reduce localization errors,

and then clusters them using the mean-shift algorithm. The self-supervised detec-

tor model can be used in a single-camera tracking algorithm to generate temporal

identifiers for the targets.

3.1 Introduction

Automated video surveillance requires the detection, tracking, and recognition

of objects of interest in a scene. Accurate and precise surveillance in crowded scenes

is one of the most challenging computer vision applications. To address the problem

of visual surveillance in the domain of airport checkpoint security, the Department

of Homeland Security (DHS) ALERT (Awareness and Localization of Explosives-

Related Threats) center of excellence at Northeastern University initiated the CLASP

(Correlating Luggage and Specific Passengers) project. This initiative aims to help

the Transportation Security Administration (TSA) detect security incidents, such as

theft of items and abandoned bags.

Current approaches for detecting and tracking passengers and luggage in air-

port checkpoints divide the image area within each camera’s field of view into regions

of interest where certain passenger behaviors are expected (e.g., passengers divest
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their items near the roller conveyor) [169, 170]. While these approaches are effective

within individual regions of interest, they cannot detect and track passengers and

their belongings throughout an entire checkpoint. Moreover, most recent detection

algorithms [6, 171, 7, 172] are unable to detect multiple objects in realistic over-

head camera scenarios due to the unavailability of large-scale datasets obtained using

unconventional camera perspectives.

Fine-tuning pre-trained models using human annotated labels is a common

approach in computer vision methods. However, this strategy hinders the appli-

cability of state-of-the-art algorithms in scenarios where images are obtained from

perspectives that are not commonly observed in existing publicly available datasets.

The dramatic variability of video surveillance systems used in airport checkpoints

would require deployment-specific fine-tuning of models, and in some scenarios, even

camera-specific adjustments. To overcome this challenge, we leverage the fact that

models pre-trained on large-scale datasets can build upon their initial predictions to

adapt to new scenarios using SSL strategies. Our proposed SSL framework obviates

the tedious and expensive human annotation procedure by automatically generating

pseudo-labels to update the model.

To generate pseudo-labels, we cluster multiple detections obtained from ge-

ometrically transformed images using the mean-shift algorithm [173]. Each cluster

corresponds to the detection of one object observed at different orientations on sev-

eral augmented input images. The cluster modes with the corresponding bounding

boxes, segmentation masks, and confidence scores are used to update the model.

Thus, our model learns from rotation-invariant pseudo-labels and can be integrated

with a tracking-by-detection algorithm [23] to generate accurate target tracklets from

overhead perspectives.

Our SSL algorithm is inspired by the methods described in [39, 103, 20, 104,

119]. However, unlike [39], instead of resorting to multi-task strategies to guide the
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learning process, we employ a multi-inference approach similar in spirit to the self-

consistency method based on equivariant transformations proposed in [103]. Our

method differs from [103] in that, rather than using the uncertainties from multiple

model predictions to select image patches for additional training, it aggregates mul-

tiple inferences into accurate pseudo-labels that are used to refine the model. Our

method departs significantly from unsupervised model adaptation [20] and knowledge

distillation approaches [91] in that we only use automatically generated labels and

avoid human annotations altogether during model update.

Contributions. The key contributions of this chapter are:

• A novel self-supervised object detection algorithm that generates pseudo-labels

based on instance segmentation uncertainties.

• A new data augmentation and regression-based clustering mechanism that sub-

stantially improves the quality of pseudo-labels for self-supervised training.

• We provide an extensive evaluation of our methods on a dataset collected using

multiple overhead cameras in a realistic airport checkpoint scenario.

• Our SSL models and the corresponding source code are available at https:

//github.com/siddiquemu/SCT_MCTA.

3.2 Related Work

Multiple target tracking using camera networks is an active research topic with

several potential applications [174, 175, 176, 177]. Most works on camera networks

focus on the multi-camera aspect of the problem and do not consider the challenges

associated with camera perspectives. Although generic object tracking algorithms

could be used in surveillance systems (e.g. [178, 124, 179]), when object categories

are known, trackers based on specialized detectors are more accurate and less prone

to model drift [180, 181]. This observation has led to the development of a variety

of multiple target tracking algorithms that specialize in tracking humans [182, 183,

https://github.com/siddiquemu/SCT_MCTA
https://github.com/siddiquemu/SCT_MCTA
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Figure 3.1: Proposed SSL framework. The augmented proposal generation stage uses
multiple rotated versions of the unlabeled input images to generate augmented detec-
tions from an instance segmentation model and then remaps these predictions into
their original coordinates. The clustering algorithm leverages the model’s regression
ability to reduce localization errors using the augmented predictions as region propos-
als. The regressed cluster modes are then used to generate augmented pseudo-labels
to update the model.

184, 185, 186, 187, 36, 11, 37, 157, 155] or vehicles [156, 154, 106, 188]. However,

in many scenarios, it is desirable to track additional objects of known categories. In

these cases, more flexible detection algorithms are needed, but the effectiveness of

modern object detection models is highly dependent upon the characteristics of the

training datasets [171, 6, 7].

Previous works have used SSL techniques to improve visual feature learn-

ing [13, 21, 90], reducing dependency on human annotations for training backbone

models. However, transferring knowledge from pre-trained backbones to downstream

tasks is a far less explored topic. Unlike our proposed approach, SSL techniques for

detection [39, 20] and semantic segmentation [103] rely on annotations to initialize

the model before iterative learning can take place.

Data augmentation is an effective mechanism to improve the robustness of

CNNs in scenarios not available during training [91, 189], but little attention has

been given so far to approaches for combining the response of the network to aug-

mented samples. In multi-target tracking applications, multiple detections mapped
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to a common coordinate system can be interpreted as the probability of occupancy of

the area observed by the cameras [100]. Although it is possible to use clustering tech-

niques to map the modes of this distribution to unique target detections, bounding

box alignment errors pose a challenge to the generation of high-quality pseudo-labels

for SSL. Hence, we propose a test-time regression technique that leverages instance

segmentation information for pseudo-label generation.

3.3 Proposed Model

Our system consists of two main components: i) a detection algorithm trained

using SSL and ii) a multi-camera tracking-by-detection mechanism. A single-camera

tracking algorithm uses SSL detections to generate tracklets for passengers and bag-

gage items. We then employ a novel multi-camera target trajectory association algo-

rithm to uniquely identify passengers throughout the checkpoint.

3.3.1 Self-Supervised Learning

We use the PANet model [7] with a ResNet-50 backbone [190, 191] as the base-

line detector. Since the categories of interest are persons and their belongings, we use

a model pre-trained on the COCO dataset [24], which includes object classes related to

these categories (i.e., person, handbag, backpack, and suitcase). Because the COCO

dataset consists mostly of images captured at roughly eye-level, detectors trained

using that dataset do not perform well on overhead perspectives. To address this

limitation, our SSL framework updates the baseline model using rotation-invariant

pseudo-labels. As Fig. 3.1 shows, our SSL framework consists of three main steps:

i) augmented region proposals generation, ii) pseudo-label generation and refinement

through cluster regression, and iii) iterative model update.
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Algorithm 1 Augmented Proposals Generation

1: function AugmentedProposals(I(t), r)
2: SC(t) = ∅, Θ = {i ·∆θ}ri=1

3: for θi ∈ Θ do
4: Ψθi(t) = Rθi(I(t))
5: DC

θi
(t) = DPANet(Ψθi(t))

6: SC
θi
(t) = R−θi(D

C
θi
(t))

7: SC(t) = SC(t) ∪ SC
θi
(t)

8: end for
9: return SC(t)

10: end function

3.3.1.1 Augmented Proposals Generation

Our data augmentation method, summarized in Alg. 1, uses the PANet model

to detect and segment multiple instances of objects of interest. During the first

iteration of SSL training, we retain only the outputs of the pre-trained model for

the person, handbag, backpack, and suitcase classes. The person class corresponds

to passengers and detections of handbag, backpack, and suitcase items are treated

as baggage items. In subsequent iterations of SSL training, we modify the model

to generate only the object categories C ∈ {pax, bag}, where pax corresponds to

passengers and bag to baggage items. Let DC(t) be the set of detections on image

I(t) at time t. That is, DC(t) = {d1, . . . , dnC
t
}, where dj ∈ R

5 is the detection of the

j-th object and nC
t is the number of objects of class C in frame I(t). Each detection

dj consists of the coordinates and dimensions of the target’s bounding box, bCj ∈ R
4,

as well as its detection confidence score sj ∈ [0, 1].

We noticed that the detector performs better when objects are observed at

more commonly occurring angles (e.g., upright). Therefore, to reduce the negative

effect of the overhead perspective, we generate multiple rotated copies of the input

image Ψθi(t) = Rθi(I(t)) (line 4 in Alg. 1), where Rθi(·) is the rotation operator,

which rotates the image by an angle θi. The angle of rotation θi varies between 0 and
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Figure 3.2: Visualization of our data augmentation approach. The first and second
columns show the segmentation masks and detections at θ = 0◦ and θ = 186◦,
respectively. The third column shows the remapped detections in the set SC on the
original image (using Alg. 1) with the best detections (blue) from Alg. 2.

2π at intervals of ∆θ =
⌊
2π
r

⌋
, i.e., θi = ∆θ, . . . , 2π, where r determines the rotation

resolution. At each rotation step, we compute the detection set DC
θi
(t) for both classes

C ∈ {pax, bag} using a single call to the function DPANet(·) (line 5). We then remap

the resulting detections to the coordinate frame of the original image by applying

the inverse rotation to each of the detections in DC
θi
(t) (line 6). To avoid localization

errors introduced by rotating axis-aligned bounding boxes, we apply the rotation

operation to the binary segmentation masks produced by PANet and compute the

corresponding bounding boxes using the rotated masks. At the end of Alg. 1, the

set SC(t) = ∪ri=1S
C
θi
(t) contains the detections at all the rotation angles θi. Fig. 3.2

illustrates the detections at two rotation angles and the result of mapping detections

at 20 different orientations back to the original coordinate system.
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Algorithm 2 Cluster Regression

1: function ClusterRegression(SC(t))
2: DC(t) = ∅
3: Refine the augmented detections using SC(t) as region proposals for the DPANet

model
4: OC(t) = mean− shift(SC(t))
5: for Q ∈ OC(t) do
6: Compute the cluster score η̄Q using Eq. 3.2
7: if η̄Q ≥ λ then
8: d = argmax

di∈Q
(si)

9: DC(t) = DC(t) ∪ {d}
10: end if
11: end for
12: return DC(t)
13: end function

without regression with regression regressed pseudo-labels

Figure 3.3: Regression on test-time augmented bounding boxes (middle) and cluster
modes (right) to generate pseudo-labels for SSL training.

3.3.1.2 Cluster Regression

Alg. 2 summarizes our approach to combine the set of augmented detections

SC(t) into a set of refined target detections DC(t). To reduce discrepancies among

bounding boxes caused by segmentation errors, we leverage the pre-trained model
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Figure 3.4: Probability of occupancy of passengers (left) and baggage (right) at one
frame of our evaluation datasets. The corresponding detections are also shown in Fig.
3.2 (right column).

to regress the set of augmented detections SC(t). As shown in Fig. 3.1, our cluster

regression method uses the backbone features [192] with the augmented detections

SC(t) as region proposals (instead of proposals generated using the region proposal

network [1]) to the downstream box and mask heads. To avoid disregarding low-

confidence detections that might correspond to relevant region proposals, we do not

apply non-maximum suppression to the model predictions. Fig. 3.3 shows that cluster

regression significantly increases the accuracy of the bounding boxes generated using

the augmented input, and the corresponding segmentation masks are consequently

also more accurate.

Cluster Mode Detection. As Fig. 3.4 illustrates, detections and their corre-

sponding confidence scores form a non-parametric distribution of the image’s occu-

pancy probability. We use the mean-shift algorithm [100] to identify the modes of

that distribution and cluster detections corresponding to common targets. We cluster

detections according to their bounding boxes bj using a multivariate Gaussian kernel

[100] with bandwidth hC. We use the sample variances of the object bounding boxes
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Algorithm 3 Pseudo-Label Generation

1: function PseudoLabels(DC(t), r)
2: PC(t) = ∅, Θ = {i ·∆θ}ri=1

3: for dj ∈ DC(t) do
4: for θi ∈ Θ do
5: Generate the augmented region proposals

di,j = Rθi(dj)
6: end for
7: Generate the pseudo-label (b̂i, m̂i, αi) using the

region proposals di,j

8: PC(t) = PC(t) ∪
{
(b̂i, m̂i, αi)

}

9: end for
10: return PC(t)
11: end function

at each frame to determine the kernel bandwidth, i.e.,

hC = diag




nC
t∑

j=1

(bCj − b̄Cj )(b
C
j − b̄Cj )

T


 , (3.1)

where b̄Cj is the sample mean of bCj and diag (·) is the diagonal of the covariance

matrix. The correlations among the elements of bj are negligible and can be safely

ignored. Each call to the mean-shift algorithm (line 4 in Alg. 2) produces a set

of clusters OC(t) whose elements are sets of detections assigned to the same target.

We consider the detections of passengers and baggage items separately. Hence, two

separate invocations of the mean-shift procedure are required to produce the sets

Opax(t) and Obag(t). The confidence score η̄Q of cluster Q ∈ OC(t) is defined as the

ratio between the total score of detections within that cluster and the number of

rotation angles considered in the augmentation process, i.e.,

η̄Q =
1

r

∑

dj∈Q

sj. (3.2)

Lines 6-10 of Alg. 2 show that we discard clusters with scores lower than a threshold

λ to remove false positive detections.
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3.3.1.3 Self-Supervised Model Update

Alg. 3 shows the procedure to generate the pseudo-labels used to update

the model. Since our goal is to train the model using labels generated from multi-

ple perspectives, we rotate both the original image and the corresponding predicted

modes to generate pseudo-label proposals at each orientation. That is, for each mode

dj ∈ DC(t), we generate the pseudo-label mask m̂j by using the rotated cluster modes

di,j = Rθi(dj), i = 1, . . . , r as region proposals for the segmentation head, using the

same approach described in Section 3.3.1.2. We then find the bounding box b̂j corre-

sponding to m̂j. The confidence α̂j of the resulting pseudo-label is given by its corre-

sponding cluster score. The set of pseudo-labels PC(t) =
{
(b̂j, m̂j, α̂j) | dj ∈ DC(t)

}

thus contains accurate annotations even for targets that the model is unable to detect

at certain orientations.

Rotation-Invariant Loss. To update the model using rotation-invariant pseudo-

labels in a robust and efficient manner, we propose a novel uncertainty-aware, multi-

task loss function given by

L =
∑

ĉ∈C

∑

(b̂j ,m̂j ,α̂j)∈PC(t)

α̂j

(
Lc(ĉ, c̃) + Lb(b̂j, b̃j) + L

m(m̂j, m̃j)
)
+ Lrpn, (3.3)

where c̃, b̃j, and m̃j are the object class, bounding box, and segmentation mask

predicted by the network; Lc, Lb, and Lm are the classification and bounding box

regression losses defined in [1] and the pixel-wise binary cross entropy mask loss

described in [6]; and Lrpn is the region proposal network loss from [1]. In Eq. 3.3, the

instance head losses are weighted by their corresponding cluster scores. This strategy

ensures that instances with low cluster scores that might correspond to incorrect

pseudo-labels have little impact on the update of the network parameters. As Alg.
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4 indicates, a new set of pseudo-labels is generated at each SSL iteration using the

updated model from the previous iteration.

Algorithm 4 Self-Supervised Detection Model Update

Input: Image sequence I(t), t = 1, . . . , T
Output: Updated detection model DPANet

1: repeat
2: for t = 1, . . . , T do
3: SC(t) = AugmentedProposals(I(t))
4: DC(t) = ClusterRegression(SC(t))
5: PC(t) = PseudoLabels(DC(t))
6: end for
7: Fine-tune the DPANet model using the pseudo-labels

{
PC(t)

}T

t=1
according to

the loss function in Eq. 3.3
8: until Convergence criterion is met

3.4 Results and Discussion

In this section, we first briefly discuss the datasets that we used to evaluate our

algorithms. We then present an assessment of the proposed SSL approach in terms

of passenger and baggage detection. Our evaluation is based on the Multi-Object

Detection (MOD) and Tracking (MOT) metrics [69, 193].

3.4.1 Datasets

The video datasets used in this work were recorded at the Kostas Research

Institute (KRI) video analytics laboratory at Northeastern University, introduced in

Section 2.6. As shown in Fig. 3.5, the laboratory is configured to emulate a realistic

airport checkpoint. It is equipped with 14 standard IP surveillance cameras (Bosch

NDN-832-V03P) with 1920 × 1080 resolution and focal lengths between 3 mm and

9 mm. The cameras are installed approximately three meters from the floor with

partially overlapping fields of view.
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Figure 3.5: Document checking station and divestiture area at the Kostas Research
Institute simulated airport checkpoint.

Several actors traverse the checkpoint with baggage items while performing

a variety of activities commonly observed in real airports.1 These activities range

from simple scenarios in which just a few passengers pass through the checkpoint in

sequential order to crowded scenes in which multiple passengers divest and retrieve

their items in a more erratic manner. We collected two separate video datasets:

CLASP1, which includes relatively simple scenarios, and CLASP2, which is more

complex. Fig. 3.6 shows sample frames of videos from the two datasets. As discussed

1The datasets are available upon request at alert-coe@northeastern.edu. Northeastern Uni-
versity’s Institutional Review Board (IRB) and the Compliance Assurance Program Office (CAPO)
within the DHS Science and Technology Directorate have reviewed the referenced human subjects
research protocol and related research documentation. No compliance issues or concerns related to
the use of human subjects in this protocol have been identified through the review, and the DHS
policy requirements for human subjects research protocol review has been met.

alert-coe@northeastern.edu
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Figure 3.6: Sample images from the datasets collected at the simulated airport check-
point (left: CLASP2 and right: CLASP1 in Table 3.1). The images show the divesti-
ture area (right: camera 9) and item retrieval area (left: camera 11).

Table 3.1: Datasets used to evaluate our algorithms. For each video sequence, the
table shows the number of passengers, baggage items, video frames, annotated frames,
and the total number of annotated bounding boxes.

Dataset
Video Pass- Bag- Video Annotated Bounding
seq. engers gage frames frames/rate [fps] boxes

CLASP1

A 12 10 6,030 288 (1) 995
B 12 10 6,180 564 (2) 1,720
C 8 9 6,030 491 (2) 853
D 12 8 6,030 523 (2) 1,197
E 9 9 4,719 1,648 (10) 4,254

CLASP2
F 20 20 12,910 179 (0.01) 737
G 38 31 10,390 1,346 (3) 4,826
H 35 29 11,200 198 (0.01) 900

Total – 146 126 63,489 5,237 15,482

in Section 2.6.2, among the 14 cameras in the laboratory, most passenger interactions

take place on cameras 9 and 11. Camera 9 monitors the divestiture area and camera

11 observes the baggage retrieval area. Passengers place their belongings into bins or

directly on the conveyor belt in the divestiture area. Then, after passing through the

metal detector, they collect their belongings in the baggage retrieval area.
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Figure 3.7: MODA measures for person (left) and baggage (right) classes during SSL
training.

Table 3.1 shows the specifications of the CLASP datasets used to evaluate our

SSL algorithm. We manually annotate the videos with uniquely identified axis-aligned

bounding boxes. Given the large number of video frames available in the datasets,

the annotation rate for the video sequences varies between 0.01 and 10 frames per

second (fps). We randomly partition each dataset into a training set containing 80%

of the video frames and a test set with the remaining 20%. For a fair comparison, the

Supervised Learning (SL) and SSL models are trained using only the frames from the

training set, but the SSL models are fully self-supervised and do not use any manual

annotations.

3.4.2 Self-Supervised Learning Detection Performance

During training, we freeze the network weights up to the region proposal net-

work layer so that the pre-trained backbone features are effectively used in the down-

stream task. We use an initial learning rate of 5e−3, mini-batch size per image

N = 256, r = 20 different orientations, and a cluster confidence threshold λ = 0.1.

Similar to the baseline model, we use stochastic gradient descent with a momentum

of 0.9, weight decay of 1e−4. At each SSL iteration, we fine-tune the model for 20k
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Figure 3.8: Precision-recall curves for person (left) and baggage (right) detection.
The legend shows the average precision of the models.

iterations, reducing the learning rate by a factor of 10 at every 5k iterations. In our

evaluation, we use an IoU threshold of 0.5, and a non-maximum suppression threshold

ηnms = 0.3 for all the models. The detection threshold for region proposal generation

is ηdet = 0.5.

Fig. 3.7 shows the Multi-Object Detection Accuracy (MODA) of our model

as a function of the number of SSL iterations. To illustrate the impact of the cluster

confidence score, we also evaluate a model in which the samples are not weighed

by their scores (SSL-wo-α). Instead, this model uses a hard threshold λ ≤ 0.4 to

discard noisy detections during training. The figure also shows the performance

of the Multiple-Inference (MI) strategy used to generate the pseudo-labels, which

reflects the quality of the pseudo-labels before SSL training. That is, in the MI

model, the pseudo-labels themselves are used as model predictions. As the figure

indicates, the SSL models gradually approach the performance of the MI strategy.

The incorporation of cluster confidences not only increases the speed of convergence

of the models but also leads to noticeable performance gains, particularly for baggage

items.
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Figure 3.9: Sample results showing failure cases for baggage detection using the
SSL model in CLASP1 (top row) and CLASP2 (bottom row) datasets. The magenta
arrows indicate bag-like object detections that are not annotated (false positives), the
red arrows indicate annotated baggage items the model fails to detect (false negative),
the green bounding boxes show the passenger detections, and the red bounding boxes
indicate the manual annotations for both classes.

Table 3.2: Passenger and baggage detection evaluation.

Model Method ↑Rcll ↑Prcn ↑TP ↓FP ↓FN ↑MODA
α reg. person bag person bag person bag person bag person bag person bag

Baseline ✗ ✗ 73.8 37.1 87.0 82.9 1560 426 228 85 552 724 62.8 29.3
SSL ✗ ✗ 93.8 73.8 92.3 82.5 1989 858 155 194 123 291 86.0 57.6
SSL X ✗ 93.5 75.9 93.5 86.1 1985 863 134 144 127 286 87.1 62.9
SSL ✗ X 93.6 73.1 96.2 92.5 1985 844 73 71 127 305 90.1 67.1
SSL X X 95.7 78.6 96.0 91.8 2025 903 79 83 87 246 91.8 71.5
SL ✗ ✗ 95.6 91.4 96.4 92.8 2022 1048 70 83 90 101 92.1 84.4

Fig. 3.8 shows the precision-recall curves for passenger and baggage detec-

tion using four detector models: pre-trained PANet (baseline), PANet trained using

SL, SSL-wo-α, and SSL. Even though the SSL models are trained without manual

annotations, they perform on par with the SL model for passengers. For baggage

items, the maximum average precision for the baseline model is less than half of the

performance of the SSL models. As illustrated in Fig. 3.9, the performance difference

between the SL and SSL models is due to two main issues: i) appearance similarities

among bags and certain garments/items placed inside security bins, and ii) baggage

items that can only be partially observed before being placed on the conveyor belt.
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(a) (c)(b)

Figure 3.10: Qualitative detection results on the CLASP2 dataset using (a) Baseline,
(b) SSL, and (c) SL models (the SL model only predicts bounding boxes).

Table 3.2 demonstrates the benefits of incorporating cluster uncertainties in

the SSL loss function (column α) and of the proposed cluster regression technique

(column reg.). The method that incorporates both cluster uncertainty and regression

is equivalent to the approach identified as SSL in Figs. 3.7 and 3.8 whereas the method

that does not include cluster confidences corresponds to SSL-wo-α. The results in the

table correspond to the point that maximizes the F1 score of the curves in Fig. 3.8 at

the best performing SSL iteration. The top-performing method in Table 3.2 and in

the remainder of this section is highlighted in boldface, the second-best is underlined,

and ties are broken according to the MODA/MOTA results.

In comparison with the baseline model, our SSL algorithm substantially in-

creases the recall (Rcll) and precision (Prcn) for passenger detection, which is a result

of improvements in true positive (TP), false positive (FP), and false negative (FN)

detections. The cluster confidence scores substantially reduce the contribution of

low-confidence pseudo-labels, especially for baggage items, leading to a noticeable in-

crease in the number of true positives. Cluster regression corrects pseudo-label errors

caused by inaccurate bounding boxes generated from poor segmentation results. As

a result, the reduction in false positives for both classes is even more pronounced

when cluster regression is incorporated. Overall, our SSL framework shows a relative

MODA score improvement of 46% for passengers and 144% for baggage items with

respect to the baseline model.
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Figure 3.11: Precision-recall curves for passenger detection for camera 9 (left) and
11 (right) on dataset A. The dotted lines show the results for YOLO (blue), SSD
(black), and MRCNN (green). The solid lines show the improved results obtained by
incorporating the corresponding detectors into Alg. 1 and 2.

Fig. 3.10 presents qualitative results for all the models under consideration.

Since the SL model is trained using manually generated bounding boxes, it cannot

predict segmentation masks. Our SSL models not only improve the accuracy of the

predicted bounding boxes but also generate improved segmentation masks since they

are trained using automatically generated instance segmentation pseudo-labels.

3.5 Test-time Data Augmentation for Inference

This chapter’s contributions are mainly related to the data augmentation-

based pseudo-labels generation and iterative training of a pre-trained model using

rotation invariant loss. However, test-time data augmentation is already leveraged in

single-stage [54, 194], and multi-stage [6] detection model inference. In this section,

the benefits of our proposed data augmentation technique (Alg. 1 and 2) during

inference are compared against the performance of state-of-the-art object detectors

in overhead camera scenarios.

Passenger Detection. Fig. 3.11 shows the precision-recall curves for passen-

ger detection using three baseline detectors (dotted lines) and for the corresponding
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detectors extended using our proposed multiple inference approach (solid lines). All

the results are based on an IoU threshold of 0.4, which allows for the correct detection

of passengers despite the substantial variability in bounding box size as passengers

change their orientations or as they move their arms to interact with baggage items.

In our evaluation, we use the same detection and non-maximum suppression thresh-

olds of ηdet = 0.5 and ηnms = 0.1 for the three networks. The number of rotation

angles used for data augmentation is n = 20. In the methods augmented with our

proposed approach, because of the low recall values of the detectors based on YOLO

and SSD, we set the cluster confidence score threshold to λ = 0.1, whereas for the

method based on MRCNN, we use λ = 0.5. We have observed that further perfor-

mance improvements are possible by adjusting the value of λ according to the dataset

under consideration, but we refrain from using dataset-specific values to demonstrate

the generalization capability of our method. For a fair comparison, none of the meth-

ods under evaluation is fine-tuned using data from our simulated checkpoint. As

previously mentioned, although fine-tuning the baseline models would lead to per-

formance improvements across the board, it might also limit the applicability of our

method in real-world scenarios. As the figure shows, our algorithm increases the area

under the curve for all three detectors, leading to a maximum of 98% for MRCNN.

As shown in Table 3.3, our detection approach (marked with a ∗) substantially

improves the performance of the three baseline detectors. In most of the scenarios

under consideration, our algorithm substantially increases the true positive (TP) de-

tections while reducing false positive (FP) and false negative (FN) detections, which

results in noticeable improvements in recall (Rcll), precision (Prcn), and MODA re-

sults as well. Again, the results in the table correspond to the point that maximizes

the F1 score of the individual algorithms in Fig. 3.11. Hence, in some scenarios, we

observe a substantial increase in recall values at the cost of some degradation in the

corresponding precision values. As Fig. 3.11 indicates, it is possible to select an oper-
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ating point where both metrics are higher than those obtained by the corresponding

baseline methods, but that would cause an overall degradation of performance when

considering the combined metrics. Overall, our algorithm shows a relative improve-

ment of the MODA scores of 17%, 103%, and 23% with respect to YOLO, SSD, and

MRCNN respectively.

Table 3.3: Passenger detection evaluation on dataset A. The ∗ indicates methods
augmented with our proposed algorithm.

Cam. Method ↑Rcll ↑Prcn ↑TP ↓FP ↓FN ↑MODA

9

YOLO 39.5 91.5 130 12 199 35.9%
YOLO∗ 43.8 96.6 144 5 185 42.2%
SSD 28.6 97.9 94 2 235 28.0%
SSD∗ 71.1 83.6 234 46 95 57.1%
MRCNN 85.7 79.7 282 42 47 63.8%
MRCNN∗ 86.6 96.6 285 10 44 83.6%

11

YOLO 52.3 95.8 115 5 105 50.0%
YOLO∗ 62.7 92.6 138 11 82 57.7%
SSD 39.1 96.6 86 3 134 37.7%
SSD∗ 82.7 82.4 182 39 38 65.0%
MRCNN 88.6 86.7 195 30 25 75.0%
MRCNN∗ 90.5 94.8 199 11 21 85.5%

The high recall, precision, and MODA values indicate that our approach de-

tects most of the passengers correctly in these video sequences. Although the geo-

metric transformations slightly increase the number of false positives caused by the

detection of body parts of passengers near the edges of the scene, by retaining clusters

with normalized probability score above λ, we are able to ignore most of them (see

Fig. 3.2). As shown in chapter 6, Tracktor [23] or MHT [195] effectively handles the

few remaining false positives.

Baggage Detection. Fig. 3.12 shows the precision-recall curves for baggage

items for an IoU threshold of 0.4. In these results, we use ηdet = 0.5 for MRCNN
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and ηdet = 0.25 for YOLO and SSD because these networks show substantially lower

confidence levels in the detection of baggage items. Again, for all three networks,

ηnms = 0.1, and the number of rotation angles is n = 20. As the figure indicates,

the maximum average precision for MRCNN alone is 56%, which is almost 40% lower

than what is obtained using our approach. The average precision of baggage detection

using YOLO or SSD is less than 0.1. Although our approach substantially improves

the average precision for both methods, their performance is still not satisfactory

for any practical application. Therefore, we use MRCNN in the evaluation of our

tracking and association algorithms discussed in the following subsections.

Table 3.4: Baggage detection evaluation on dataset A. The ∗ indicates methods
augmented with our proposed algorithm.

Cam. Method ↑Rcll ↑Prcn ↑TP ↓FP ↓FN ↑MODA

9

YOLO 3.4 63.6 7 4 199 1.5%
YOLO∗ 7.3 78.9 15 4 191 5.3%
SSD 3.9 88.9 8 1 198 3.4%
SSD∗ 12.1 96.2 25 1 181 11.7%
MRCNN 50.5 91.2 104 10 102 45.6%
MRCNN∗ 72.3 90.3 149 16 57 64.6%

11

YOLO 9.8 76.9 20 6 185 6.8%
YOLO∗ 18.5 90.5 38 4 167 16.6%
SSD 2.9 100.0 6 0 199 2.9%
SSD∗ 19.0 83.0 39 8 166 15.1%
MRCNN 47.3 89.8 97 11 108 42.0%
MRCNN∗ 70.2 90.6 144 15 61 62.9%

The additional metrics listed in Table 3.4 further highlight that, for baggage

items, the baseline methods alone fail to detect most of the targets. Our proposed

approach more than doubles the MODA of YOLO and SSD for both cameras. For

MRCNN, we observe a relative improvement of the MODA score of 61.8% for camera

9 and 54.5% for camera 11. The increase in FP for MRCNN is mostly due to the
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Figure 3.12: Precision-recall curves for baggage detection for camera 9 (left) and
11 (right) on dataset A. The dotted lines show the results for YOLO (blue), SSD
(black), and MRCNN (purple). The solid lines show the improved results obtained
by incorporating the corresponding detectors into Alg. 1 and 2.

detection of relevant partially observed items such as small purses, clothes, and bins

as baggage items that have not been annotated in the ground truth dataset 3.9.

3.6 Self-supervision to Semi-supervision

This section presents a breakdown on the performance of our SSL detector

for individual cameras in the CLASP1 and CLASP2 datasets. It also evaluates the

performance when the labeled data are used in a semi-supervised approach.

Self-supervised Learning. Fig. 3.13 shows a detailed breakdown of the

performance of our SSL detection model for individual camera views in the CLASP1

and CLASP2 datasets. The high recall, precision, and MODA values indicate that

our SSL approach detects most passengers correctly in these video sequences. The

average precision (AP) for passenger detection is slightly higher for camera 11 in

both datasets. The main factor contributing to this performance difference is that in

camera 9, passengers are only partially visible most of the time, whereas camera 11

has a better view of the region where the passengers stand next to the conveyor belt.

On the other hand, this also contributes to the lower baggage detection performance
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in camera 11. That is, in camera 11, partially observed baggage items being carried by

passengers (see Fig. 3.9) are much more common than in camera 9. As with passenger

detection, we observed similar baggage detection improvements in the camera-specific

performance comparisons. This performance could be further improved by using

additional unlabelled video frames available in the CLASP1 and CLASP2 datasets

to train the SSL models.

Figure 3.13: Passenger and baggage detection performance in cameras 9 and 11 for
the CLASP1 (CL1) and CLASP2 (CL2) datasets. Here, P stands for passenger and
B for baggage.

Semi-supervised Learning. As Table 3.2 indicates, the performance of

our SSL algorithm is limited by the initial accuracy of the baseline model. Thus, we

extend our method to a semi-supervised approach where we use a certain amount of

manual annotations to initialize our model before initiating SSL training. For the

labeled frames, we employ the same data augmentation procedure used to generate
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augmented labels. Fig. 3.14 shows that training the SSL model using 10% of the

manual labels leads to a performance comparable to the SL model, outperforming

SoftTeacher [14], a state-of-the-art Semi-SL technique. Our method is particularly

effective when small amounts of annotations are used. For example, using only 1%

of the manual labels, our Semi-SL approach outperforms SoftTeacher by 104% and

is only 1.6% behind the SL method (Table 3.5) for baggage items. Furthermore, we

observe a 5.7% MODA improvement over the SL method when we use all the manual

annotations during training.

Table 3.5: Passenger and baggage detection evaluation measures on the CLASP1 and
CLASP2 test sets.

Dataset Model Method ↑Rcll ↑Prcn ↑TP ↓FP ↓FN ↑MODA
α reg. person bag person bag person bag person bag person bag person bag

CLASP1

Baseline ✗ ✗ 73.8 36.2 89.0 87.9 886 233 110 32 314 411 64.7 31.2
SSL ✗ ✗ 96.4 80.4 95.8 78.6 1157 518 51 141 43 126 92.2 58.5
SSL X ✗ 96.9 70.4 94.2 90.9 1163 451 71 45 37 193 91.0 63.0
SSL ✗ X 96.0 76.1 97.7 90.7 1152 490 27 50 48 154 93.8 68.3
SSL X X 96.8 78.6 97.3 90.2 1162 506 32 55 38 138 94.2 70.0
SL ✗ ✗ 96.7 89.4 98.1 91.4 1160 576 23 54 40 68 94.8 81.1

CLASP2

Baseline ✗ ✗ 73.9 38.0 85.1 78.0 674 192 118 53 238 313 61.0 27.5
SSL ✗ ✗ 91.2 67.3 88.9 86.5 832 340 104 53 80 165 79.8 56.8
SSL X ✗ 90.1 81.6 92.9 81.3 822 412 63 95 90 93 83.2 62.8
SSL ✗ X 91.3 70.1 94.8 94.4 833 354 46 21 79 151 86.5 65.9
SSL X X 94.6 78.6 94.8 93.4 863 397 47 28 49 108 89.5 73.1
SL ✗ ✗ 94.5 93.5 94.8 94.2 862 472 47 29 50 33 89.4 87.7

3.7 Parameter Sensitivity and Computation Complexity Analysis

This section evaluate the performance impact of additional data augmentation

strategies, number of rotation angles used for data augmentation, and the computa-

tion complexity of the SSL detector during both training and inference.

Additional Data Augmentation Strategies. We investigate the impact of

other data augmentation strategies during SSL training, including color jittering and
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Figure 3.14: Semi-SL model performance on CLASP2 using a semi-supervised exten-
sion of our proposed SSL method versus SoftTeacher (ST) [14]. Here, P and B stand
for the passenger and baggage categories. The SSL model uses no labeled data and
the SL model is trained with 100% of the samples.

motion blur along with multiple rotations. For color jittering, we increase/decrease

image brightness, contrast, saturation, and hue by a factor sampled uniformly from

the range [0,maxjit], where maxjit is 0.4 for brightness, 0.5 for contrast, 0.2 for satu-

ration, and 0.05 for hue. To emulate motion blur, we use Gaussian blur with kernel

size uniformly sampled from the set {5, . . . , 9} and standard deviation sampled from

the interval [0.1, 5]. We observe that applying color jittering and motion blur on the

pseudo-label augmentation further improves MODA scores by up to 2.9% and 4.8%

for passengers and baggage items, respectively. For a fair comparison, we reduced

the number of rotation angles used for augmentation such that the total number of

augmented images remains the same in both scenarios. Table 3.7 shows the original

number of rotations (r = 20) would further increase performance gains.

Impact of Rotation Resolution. Table 3.7 shows the impact of rotation

resolution r on the generation of pseudo-labels. One SSL iteration with r = 20

improves the MODA scores by up to 3.1% for passengers and 5.6% for baggage items.

The inference time for a single frame increases linearly with the number of rotations,

contributing to longer SSL training iterations. If training time is a concern, r = 10
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Table 3.6: Performance impact of additional data augmentation strategies in the SSL
iterations.

Dataset Method ↑AP ↑ F1 ↑MODA
Rot. C-Jit. Mot.-Blur person bag person bag person bag

CLASP1
X ✗ ✗ 89.2 43.4 92.0 59.7 83.9 41.6
X X X 91.5 48.3 92.3 64.5 84.3 46.4

CLASP2
X ✗ ✗ 79.4 47.4 86.2 62.5 73.6 42.2
X X X 84.2 47.8 88.0 63.0 76.5 43.6

offers a reasonable speed vs. performance trade-off. We use r = 20 for all the

SSL models to demonstrate the potential performance of our framework. As Table

3.7 indicates, further increasing the value of r would likely lead to minor additional

performance gains.

Table 3.7: Performance impact of the number of rotation angles used in the SSL
iterations.

Dataset r ↓Infer. Time ↑ F1 ↑MODA
(secs) person bag person bag

CLASP1

1 0.3 94.5 69.5 89.0 51.7
5 2.2 95.0 70.4 90.1 52.8
10 4.5 95.3 70.8 90.6 53.6
20 9.1 95.8 70.8 91.5 53.7

CLASP2

1 0.3 91.0 74.5 82.3 56.8
5 2.6 92.1 76.4 84.6 59.6
10 4.0 92.1 76.5 84.5 59.8
20 11.7 92.2 76.5 84.9 60.0

Computational Complexity in Self-Supervised Learning. In this sec-

tion, we analyze the theoretical computational complexity of our SSL strategy and

measure the computation time and memory utilization of each step of our algorithm.

All our experiments were performed on a workstation equipped with two RTX-2090Ti
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GPUs and an Intelr Xeonr Silver 4112 CPU @2.6GHz. The computational com-

plexity of our approach increases linearly with the number of rotation angles used for

augmentation in the pseudo-label generation step. That is, for a baseline detection

algorithm with computational complexity Θ(f(I(t)), the complexity of our approach

is Θ(r ·f(I(t)), where r is the number of rotation angles. For example, for r = 20, the

run-time is 20 times that of a single iteration without augmentation. However, these

operations are parallelizable as long as the hardware resources support the simultane-

ous processing of multiple frames. With our unoptimized implementation, the total

time to complete one SSL iteration is approximately six hours for both model training

and pseudo-label generation. However, we have observed that hardware resources are

severely underutilized, which indicates substantial room for reduction in overall com-

putation time. Table 3.8 shows the computation time of the proposed SSL algorithm,

Table 3.8: Computation time of the proposed tracking-by-detection framework.

Data Model Infer. Time (ms) Memory (MB)

CLASP1
Detector 333.3 1,850

SCT 142.8 1,748

CLASP2
Detector 333.3 1,850

SCT 166.6 1,750

employing a PANet detector with a ResNet-50 backbone. The SCT uses the detector

results and a ResNet-50-based Re-Identification (Re-ID) model trained on MOT17 to

re-label tracklets lost due to short-term occlusions. Hence, the computation time and

memory utilization for the SCT are similar to those for the detector model. Since we

are processing single images individually instead of image batches, the inference time

for the detector and the SCT are far from optimal. Preliminary experiments indicate

that processing batches of 10 images simultaneously leads to an approximate six-fold
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reduction in detector inference time without exceeding the memory capacity of the

GPUs. Reusing the backbone features from the detector in the Re-ID model should

also lead to a dramatic reduction in SCT time, since feature generation is the most

computationally demanding element of the tracking algorithm.

3.8 Conclusion

We propose a multistage SSL framework to overcome performance limitations

of object detection in overhead camera videos for which limited training data is avail-

able. Our SSL mechanism fine-tunes object detection models to specific camera views

without the need for manual annotations. Our experiments show that the proposed

framework can accurately detect passengers and baggage items in multi-camera views

of airport checkpoint scenarios. Our framework is flexible and scalable. It requires

no training data, incurs no detection computational overhead at inference time, and

is independent of the number of cameras in the network.

Our framework also allows seamless integration of additional data augmenta-

tion strategies and of manually annotated data when it is available. Our experiments

show that these strategies further improve the selectivity of our detector, particularly

for baggage items.
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CHAPTER 4

SELF-SUPERVISED LEARNING FOR PANOPTIC SEGMENTATION

In this chapter, we extend the SSL method discussed in Chapter 3 for seman-

tic and panoptic segmentation tasks. Convolutional neural networks trained using

manually generated labels are commonly used for semantic or instance segmentation.

In precision agriculture, automated flower detection methods use supervised models

and post-processing techniques that may not perform consistently as the appearance

of the flowers and the data acquisition conditions vary. We propose a self-supervised

learning strategy to enhance the sensitivity of segmentation models to different flower

species using automatically generated pseudo-labels. We employ a data augmenta-

tion and refinement approach to improve the accuracy of the model predictions. The

augmented semantic predictions are then converted to panoptic pseudo-labels to iter-

atively train a multi-task model. The self-supervised model predictions can be refined

with existing post-processing approaches to further improve their accuracy. An eval-

uation on a multi-species fruit tree flower dataset demonstrates that our method out-

performs state-of-the-art models without computationally expensive post-processing

steps, providing a new baseline for flower detection applications.

4.1 Introduction

Computer vision algorithms are becoming increasingly popular in agricultural

applications. Detecting and counting flowers is an important crop management activ-

ity to optimize fruit production [196]. Automatic bloom intensity estimation methods

have the potential to reduce workloads in large production fields. Many machine vi-

sion approaches have been proposed to address the challenges of estimating crop yield.

Most recent flower detection and counting methods based on deep learning models

require a large amount of manually labeled training data to achieve acceptable perfor-
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mance [25, 197, 198]. Although weakly supervised approaches [199] can simplify the

training of convolutional neural networks (CNNs), they are not particularly effective

to adapt large-scale, pre-trained models to unseen object categories.

Data augmentation [88, 87] is a de facto standard technique to reduce the

dependence on manual annotations when training deep neural networks. But in agri-

cultural visual data, the appearance of objects of interest and the scene conditions

vary significantly from one field to another. Besides, since agricultural production en-

vironments usually require images to be acquired from moving vehicles [25, 198, 200],

the sun conditions and dense background clutter make this task challenging in terms

of model generalization. Hence, we still need to generate enough manual labels for

various species of crops to generalize the prediction models across species with signif-

icantly different appearance and backgrounds potentially comprised of semantically

distinct elements.

Although deep CNNs can perform reasonably accurate pixel-level semantic

predictions [103, 25], false alarms due to similarities between flowers, fruits at different

stages of maturation, and background objects limit potential opportunities for the

application of computer vision algorithms to agricultural automation tasks. Instance

[7] and panoptic [9] segmentation models might be able to better identify individual

flowers or clusters of flowers and thus improve detection performance.

To address the above challenges, inspired by the works presented in [9, 18, 25],

we propose a novel self-supervised panoptic segmentation approach that leverages a

small number of annotations for supervised learning (SL) and then adjusts the model

to challenging unlabeled datasets.

Contributions. In summary, the main contributions of this chapter are:

• A robust self-supervised flower segmentation method that addresses typical agri-

cultural visual data challenges in fruit tree orchards.
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Figure 4.1: Proposed self-supervised learning framework for multi-species flower seg-
mentation. Labeled images are used to initialize the model for flower segmentation.
The overlapping sliding window patches of the unlabeled input images are rotated
multiple times to generate augmented semantic predictions from a previously initial-
ized panoptic segmentation model. The remapping step transforms the score maps to
the input coordinate system and then the normalized predictions are used to gener-
ate the panoptic pseudo-labels using a semantic refinement procedure to update the
pre-trained model.

• A novel panoptic pseudo-label generation technique for automatically updating

the model for unlabeled datasets that contain severe clutter and illumination

challenges.

• A robust sliding-window-based training and testing approach that does not

require additional post processing to refine the network predictions.

• Extensive evaluations on multiple-species datasets, which demonstrate superior

generalized performance over state-of-the-art techniques.

• Our source code and pre-trained models are available at https://github.com/

siddiquemu/ssl_flower_semantic.

https://github.com/siddiquemu/ssl_flower_semantic
https://github.com/siddiquemu/ssl_flower_semantic
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4.2 Related Work

In agricultural automation, several supervised [201, 202, 6] and weakly su-

pervised [203] deep learning models have been employed to address the challenges

of detecting flowers [25, 197, 204, 205], fruits [206, 207, 198], or entire plants [208].

Applications of these methods range from robotic harvesting to estimating fruit load

and optimizing fruit production by counting flowers in the early blooming season. Al-

though some of these approaches leverage data augmentation techniques to generate

automatic labels [209, 210, 18], none of these methods addresses model generaliza-

tion ability for significantly different test datasets. In the context of object detection

and segmentation, recent methods attempt to accommodate data distribution shifts

through the following techniques: a) supervised learning, b) semi-supervised learning,

c) self-supervised learning, and d) multi-task panoptic segmentation models.

Supervised Methods. These methods usually employ basic image transformations

[7, 201] or sophisticated data augmentation techniques [30, 211] to improve model

generalization. In addition to data augmentation during training, some methods

incorporate post-processing algorithms at test time [212, 213] or include specialized

input/output units that are easier to fine-tune to new datasets [214, 215]. While

these techniques reduce the dependency on annotations for different datasets, they

do not eliminate it. Model performance is still largely dependent on the amount of

training data available.

Semi-supervised Methods. Using labeled data to bootstrap a model whose pre-

dictions are then employed to fine-tune the initial model (or to train a student model)

is a popular approach to develop methods for multiple object detection [14], as well

as instance [7, 18] and semantic [103] segmentation. This strategy is effective when

labeled and unlabeled data have similar appearance and sufficient labeled data is
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available to bootstrap a deep model. When the characteristics of the labeled and

unlabeled data differ significantly, as is the case among different flower species, more

sophisticated supervision mechanisms are needed [216, 217].

Self-supervised Methods. When no labeled data is available, self-supervision

strategies can be used to automatically generate pseudo-labels from the unlabeled

data [39, 75]. In these scenarios, the initial model is trained to solve a surrogate task

that presumably has a similar representation structure as the target task [218]. Un-

supervised learning techniques are widely used to align latent feature representations

[216]. Self-supervision strategies that use model prediction uncertainties to guide the

learning process, while arguably more interpretable and predictable, are less com-

monly explored. Our approach uses a multi-inference data augmentation mechanism

in conjunction with the region growing refinement (RGR) algorithm [212] to generate

robust and accurate pseudo-labels in an iterative manner. These pseudo-labels allow

our model to continuously improve its performance on previously unseen datasets.

Panoptic Methods. Multi-task learning is commonly used to improve model per-

formance across different tasks [5]. As long as the tasks are similar, the model tends

to generalize better to unseen data [120]. The recently introduced panoptic seg-

mentation approach jointly learns the closely related tasks of instance and semantic

segmentation and currently represents the state of the art in instance and semantic

segmentation [121, 219]. However, training such models requires a significant number

of manual labels containing instance and semantic information. Our approach makes

it possible to apply a panoptic model to significantly different datasets without re-

sorting to manual labels. To our knowledge no self-supervised panoptic segmentation

method has been proposed so far.
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4.3 Self-supervised Panoptic Segmentation

Our proposed self-supervised learning (SSL) technique for panoptic segmen-

tation shown in Fig. 4.1 comprises three main components: i) labeled and unlabeled

data augmentation, ii) panoptic model initialization using the labeled dataset, and

iii) panoptic pseudo-label generation from unlabeled data to update the model. As

shown in Alg. 5, we use images from the training set and their corresponding labels

to train our initial model using an SL strategy. Our SSL approach then updates

the initial model iteratively in a fully self-supervised manner using the pseudo-labels

generated by the model at a previous iteration.

4.3.1 Data Augmentation

Our method is based on the panoptic segmentation model proposed in [9]

pre-trained on the COCO [24] and COCO-stuff [220] datasets. To fine-tune the

Algorithm 5 Self-supervised Learning Algorithm

Input: Set of high resolution labeled images I, their corresponding segmentation
labels Î, and the set of unlabeled images I

′

Output: Self-supervised model fWr for unlabeled data I
′

1: Generate the augmented training set Dl using I and Î according to Eq. 4.1
2: Train the initial model fW0(Dl) using Dl

3: Generate the augmented unlabeled image patches Yθij

4: for r ← 1 to maxIter do
5: Generate the augmented predictions Y θij using Eq. 4.3
6: Compute the normalized score map Oi using Eq. 4.4
7: Compute the binary semantic mask Si from Oi using RGR

8: Generate the augmented binary semantic masks Ŝθij

9: Apply connected component analysis to Ŝθij to find the instance masks m̂
(l)
θij

and bounding boxes b̂
(l)
θij

10: Construct the set of pseudo-labels Ŷθij using Eq. 4.5

11: Construct the set Du = {Yθij , Ŷθij}
12: Update the self-supervised model fWr−1(Du) using Du

13: end for
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model for flower segmentation, we augment the training set introduced in [25] using

a sliding window (SW) technique. That is, we extract from the input image I and

its corresponding semantic label Î, both of size M × N pixels, overlapping patches

of size m × n = ⌊M/K⌋ × ⌊N/K⌋ pixels with a stride of p × q = ⌈m/2⌉ × ⌈n/2⌉, where

K is the window size factor. Let (Xi, X̂i) = SWi(I, Î) be the i-th image patch and

its corresponding semantic label. We augment Xi and X̂i by applying J different

rotations at randomly selected angles {θj}
J
j=1. For the sake of sampling efficiency,

rather than directly sampling from the interval [0, 2π], we employ a stratified sampling

strategy. That is, we partition the circle into five sectors centered at (π/2) · k, k =

0, 1, . . . , 4 and sample each sector uniformly. This strategy increases sample diversity,

ultimately reducing the variance of the pseudo-labels generated using our method.

Thus, the set of labeled image patches and corresponding manual labels used to train

the supervised model is given by

Dl =
{(

Xθij , X̂θij

)}
=

{
Rθj(SWi(I, Î))

}
, (4.1)

where Rθj(·, ·) rotates its two arguments by an angle θj.

We employ the same data augmentation procedure for each unlabeled image of

the test sets to generate the unlabeled augmented samples Yθij from the corresponding

image patches Yi. In the SSL approach, we use the SL model to predict the initial

augmented pseudo-labels Ŷθij used to fine-tune the model for unseen datasets. The

procedure for pseudo-label generation is described in detail in Section 4.3.2. Thus

the unlabeled dataset for each flower species is

Du =
{(

Yθij , Ŷθij

)}
. (4.2)

At test time, we simply apply the sliding window operation to generate the

normalized semantic score maps and combine the predictions corresponding to the

overlapping portions of each window using majority voting. We observed that the
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Figure 4.2: Illustration of the steps of our panoptic pseudo-label generation method.
a) semantic prediction for a single augmented patch, b) normalized average score map
obtained using Eq. 4.4, c) instance bounding boxes, and d) instance segmentation
masks and semantic labels generated during SSL iterations.

benefit of test-time data augmentation is negligible after a few SSL training iterations.

Hence, we do not perform rotation augmentation at inference time, which ensures that

the computational time of the model remains unchanged.

4.3.2 Pseudo-label Generation

Data distribution shifts degrade the accuracy of segmentation models. Strong

data augmentation is an effective strategy to mitigate this problem [221]. Thus, to

improve the sensitivity of our model to different flower species, we apply the data

augmentation procedure described above to Yi and use the previously computed net-

work weights W(r−1) to generate the augmented predictions at the r-th SSL iteration

according to

Y θij = fW (r−1)(Yθij). (4.3)

To remap the semantic predictions back to the original image coordinate frame, we

apply the reverse rotation operator R−θj(·) with bi-linear interpolation to the aug-

mented predictions Y θij . We then normalize the scores using a softmax function and

use the average normalized score map Oi as our final prediction, i.e.,

Oi =
1

J

∑

j

σ
(
R−θj(Y θij)

)
, (4.4)

where σ(·) represents the softmax function applied element-wise to the individual

logits for the classes C ∈ {background, flower}. As Figs. 4.2 (a) and (b) illustrate,
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(b) (c) (d)(a)

Figure 4.3: Comparisons between the pseudo-labels generated using a fixed threshold
τseg (top row) and the RGR-based semantic refinement (bottom row). a) AppleA,
b) AppleB, c) Peach, d) Pear. The segmentation masks in the images at the bottom
row better reflect flower boundaries and the corresponding bounding boxes better
distinguish nearby flower instances.

Oi contains a significantly higher number of flowers segmented with high confidence

than a single augmented patch Y θij .

4.3.3 Semantic Prediction Refinement

Instead of applying a fixed threshold τseg to generate panoptic pseudo-labels

from Oi, we employ RGR, a robust segmentation refinement method [212]. RGR uses

a Monte Carlo strategy to perform an appearance-based refinement of low-confidence

regions in Oi using the corresponding image patch Yi, which allows it to generate

an improved binary segmentation mask. RGR uses three key elements to determine

the boundaries of an object of interest: 1) the confidence of the model predictions,

2) appearance similarities among pixels, and 3) distances among pixels. That is,

every pixel in an image is associated with a nearby pixel of similar appearance whose

semantic class has been predicted with high confidence. As Fig. 4.3 illustrates, RGR

improves the boundary adherence of the pseudo-labels and better distinguishes flower

instances.

Let Si be the semantic binary mask obtained from Oi using RGR. As in

the pseudo-label generation step, we apply J rotations to Si to generate augmented
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semantic binary masks, Ŝθij = Rθj(Si). We then perform connected component anal-

ysis to obtain the corresponding instance masks m̂
(l)
θij

and bounding boxes b̂
(l)
θij

for the

l = 1, . . . , L distinct elements of Ŝθij . The augmented panoptic pseudo-labels are

given by

Ŷθij =
{
(b̂

(l)
θij
, m̂

(l)
θij
), Ŝθij

}L

l=1
. (4.5)

Figs. 4.2 (c) and (d) show that this approach generates high-quality bounding boxes

and instance masks.

4.3.4 Multi-task Loss

In both the SL and SSL models, the instance bounding boxes b̂
(l)
θij

and seg-

mentation masks m̂
(l)
θij

from the augmented labels are used to train the ROI-heads for

the flower class. The augmented semantic masks Ŝθij are used to train the semantic

segmentation head for the background and flower classes. For panoptic segmentation

learning, we consider background as a stuff class and flower as a thing class [222] to

jointly update the model using the following multi-task loss function

L =
∑

ĉ∈C

∑

(b̂θij ,m̂θij
,Ŝθij

)∈Ŷθij

(1− λ)
(
Lc(ĉ, c̃) + Lb(b̂θij , b̃θij) + L

m(m̂θij , m̃θij)
)

+ λLs(Ŝθij , S̃θij), (4.6)

where Lc is the classification loss, Lb is the bounding-box loss, Lm is the mask loss,

and Ls is the segmentation loss, as defined in [9]. By further training the initial

SL model on the unlabeled datasets using the proposed SSL approach where the

augmented panoptic labels are robust to prediction uncertainty and intrinsically in-

corporate rotation invariance, it is possible to iteratively improve the performance of

the model.
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4.4 Experiments

We compare the performance of our method against the state-of-the-art algo-

rithms presented in [25, 197] using the evaluation metrics and procedures described

in [25]. To quantify the benefit of employing RGR as part of our pseudo-label gen-

eration strategy, we evaluate two different techniques to generate the pseudo-labels.

First, we evaluate an approach in which we apply a fixed threshold τseg to the pre-

dicted score maps. For a fair comparison, we determine τseg based on the maximum

F1 score obtained by the model on the training set at a previous iteration (see Fig.

4.5). We call this model SSL. The model in which we employ RGR to refine the score

maps without hard thresholding is deemed SSL+RGR. We also assess the performance

improvements obtained by applying RGR as a post-processing mechanism in con-

junction with our SSL model. We refer to that approach as SSL+RGR (pp), where pp

stands for post-processing. As a baseline, we also assess the performance of the SL

model trained only on the AppleA dataset applied to the other datasets.

4.4.1 Datasets

We evaluate our method on the multi-species flower dataset first introduced

in [25], which comprises four subsets: i) AppleA (train/test), ii) AppleB, iii) Peach,

and iv) Pear. The AppleA and AppleB datasets contain images of the same apple

orchard, but collected on different dates and under distinct conditions. While AppleA

was collected using a hand-held camera, AppleB images were captured by a camera

mounted to a mobile platform. For additional details regarding the datasets, we refer

the reader to Section 2.6.4 and to [25].

We train our SL model using the AppleA training set, which consists of 100

images with a resolution of M × N = 5184 × 3456 pixels [25]. After applying J

rotation augmentation steps, the number of training patches Xθij for each input image
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is J× (2K−1)2 since i = 1, 2, . . . , (2K−1)× (2K−1) and j = 1, 2, . . . , J . Hence, for

K = 4 and J = 20, there are 98, 000 training patches in the AppleA dataset. These

patches are used to train our initial panoptic flower segmentation model.

We consider a randomly selected subset comprising 70% of the 30 images

from the AppleA test set as unlabeled images I
′

to fine-tune the SL model using the

automatically generated panoptic pseudo-labels. Similarly, 70% of the images from

the AppleB, Peach, and Pear datasets (18, 24, and 18 images, respectively), all of

which have a resolution of 2704× 1520 pixels, are considered unlabeled images used

to update the SL model iteratively. The remaining images in each dataset are used

solely for performance evaluation. Given the relatively small size of the test sets, we

evaluate our methods using five-fold cross-validation.

(a) (b)

Figure 4.4: Examples of improved annotations in the AppleA training set. The
cropped sections show (a) incorrect contours containing background pixels, and (b)
improved labels.

The datasets introduced in [25] provide pixel-level, high-resolution annotations

of individual flowers. However, as Fig. 4.4 shows, the annotations have imperfections

that can only be observed when closely inspected. Despite being small, these inac-

curacies comprise a non-negligible portion of the image pixels, especially considering
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that only a fraction of the pixels correspond to flowers. To resolve this issue, we

use the MATLABr image labeler tool to manually correct inaccurate labels and to

label additional smaller but clearly visible unannotated flowers. Fig. 4.4 shows some

examples of the annotations before and after the corrections.

4.4.2 Training Details

The vast majority of image pixels in the datasets correspond to background

pixels. Hence, to provide the model sufficient samples containing flower pixels, we

train the network for 20, 000 iterations using stochastic gradient descent with a batch

size of 512 samples and a base learning rate of 25e−4, which is divided by 10 at

10%, 25%, and 50% of the training period. We freeze the ResNet-101 backbone [49]

during training. To emphasize semantic learning, we use λ = 0.8 in Eq. 4.6. We

have empirically observed that setting RGR’s average spacing between samples to

100 pixels provides an adequate balance between the accuracy of the refined score

map and the computation time required to produce it. We use the values reported

in [25] for the remaining parameters, namely, the number of iterations is 10, the

score map threshold is 0.5, the high-confidence foreground threshold is 0.8, and the

high-confidence background threshold is 0.01.

4.5 Results and Discussion

Table 4.1 compares the performance of the SL and SSL models against the

algorithms presented in [25, 197]. Although the SL model trained using our proposed

data augmentation strategy segments flowers using a fixed threshold τseg, it performs

either on par with or better than the state-of-the-art models on test sets that are

similar to the training set, even without applying our proposed SSL strategy. How-

ever, for datasets with significantly different characteristics, the SL model does not

perform satisfactorily. The SSL approach using a fixed threshold outperforms the
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Table 4.1: Evaluation of flower segmentation performance using our SSL panoptic
model. The best results are shown in boldface and the second-best are underlined.
We report the average value of the evaluation measures and their standard deviations
across five runs.

Dataset Method IoU F1 Rcll Prcn

AppleA

DeepLab+RGR [25] 71.4 83.3 87.7 79.4
DeepLab+SCL [197] 81.1 89.6 91.9 87.3
SL 77.1±0.9 87.0±0.5 86.7±0.6 87.3±0.8
SSL 76.2±0.6 86.1±0.7 88.2±0.9 84.8±0.9
SSL+RGR 77.9±0.6 87.5±0.3 87.8±0.6 87.3±0.6
SSL+RGR (pp) 79.6±0.6 88.6±0.3 89.2±0.6 88.1±0.7

AppleB

DeepLab+RGR [25] 63.0 77.3 91.2 67.1
DeepLab+SCL [197] 65.3 79.6 72.7 87.4
SL 75.8±0.8 86.2±0.5 85.4±1.1 87.1±0.5
SSL 76.8±0.7 86.8±0.4 87.0±0.7 86.7±0.8
SSL+RGR 78.7±0.4 88.1±0.2 87.9±0.3 88.2±0.7
SSL+RGR (pp) 79.9±0.8 88.9±0.5 86.7±1.0 92.2±0.3

Peach

DeepLab+RGR [25] 59.0 74.2 64.8 86.8
DeepLab+SCL [197] 64.3 77.7 70.3 88.2
SL 48.9±3.5 65.6±3.2 62.6±4.2 68.9±2.6
SSL 67.8±4.1 80.7±2.9 85.3±2.1 76.7±3.6
SSL+RGR 75.2±3.2 85.8±2.1 84.6±1.9 86.9±2.4
SSL+RGR (pp) 78.3±3.2 87.8±1.7 84.9±2.1 91.1±3.0

Pear

DeepLab+RGR [25] 75.4 86.0 79.2 94.1
DeepLab+SCL [197] 74.5 85.4 75.4 97.3
SL 77.3±1.9 87.2±1.3 85.1±2.4 89.4±0.7
SSL 78.6±1.7 87.9±1.0 87.9±1.6 88.1±0.8
SSL+RGR 82.4±1.9 90.4±1.2 89.4±1.8 91.3±1.4
SSL+RGR (pp) 84.2±2.1 91.4±1.2 87.4±1.9 95.8±0.9

baseline methods on the AppleB, Peach, and Pear datasets by significant margins

(11.5%, 3.5%, and 4.1% absolute IoU improvement with respect to [197]). For the

AppleA dataset, the SSL method alone outperforms [25] but is slightly worse than

[197]. This is largely due to the fact that the baseline methods perform dramatically

better on the training set, whereas the performance of our model remains relatively

stable across datasets. As discussed in more detail below, background flowers also
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Figure 4.5: Precision-recall curves for the SSL models with and without RGR pseudo-
label refinement. Solid circles represent points that maximize F1 scores.

(a) (b) (c)

GT Prediction

Figure 4.6: Qualitative assessment of our proposed SSL approach on test datasets
(a) AppleB, (b) Peach, (c) Pear. Most false positives correspond to small, unlabeled
flowers.

contribute to the performance degradation. When we use RGR to refine the pseudo-

labels, we observe IoU improvements with respect to the fixed threshold SSL method

of 1.9%, 7.4%, and 3.8% for the AppleB, Peach, and Pear datasets, respectively. The

performance improvements obtained with RGR are proportional to the appearance

dissimilarities between the AppleA dataset used for model pre-training and the cor-

responding target dataset. The average hue, saturation, and value difference between
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the AppleA dataset and the AppleB dataset is 30.3, whereas for the Peach and Pear

datasets it is 76.9 and 28.9, respectively. Finally, performing an additional RGR step

at test time leads to an additional average IoU improvement of approximately 1.9%

but at the cost of substantially higher inference times, as discussed in the next sec-

tion. Fig. 4.5 shows the precision-recall curves for the proposed SSL methods with

and without pseudo-label refinement using RGR.

The qualitative results in Fig. 4.6 show that the SSL models are highly sensi-

tive to flowers in complex regions. For some datasets, the SSL methods show slightly

lower precision than [197]. The main reason for the lower precision is the presence

of small, unannotated flowers in the datasets that our model can detect. This can

be observed in Fig. 4.6 (c) where several small flowers are present, especially on

branches farther from the camera. Determining which flowers should be annotated is

an application-specific problem that requires further investigation.

4.5.1 Parameter Sensitivity and Computation Time Analysis

Table 4.2 shows the impact of the sliding window size factor K and the number

of rotation angles J on model performance and average inference time per input

image. This evaluation is performed on the first SSL iteration of a model initialized

with K = 4 and J = 20. That is, the evaluation reflects the impact of model

parameters on the accuracy of the resulting pseudo-labels. The top two rows show

the test-time impact of varying K without employing test-time rotations (i.e., J = 1)

for the AppleA and AppleB datasets, respectively. The last row of the table shows

that the IoU and F1 measures on the Peach dataset gradually increase with J when

rotation augmentation is employed at inference time, but so does the computation

time. Inference times were obtained using one NVIDIAr GeForcer RTX 2080 Ti

GPU without any multi-processing technique. Post-processing times using RGR are

approximately 16× higher than those presented in Table 4.2 on our Intelr Xeonr
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Table 4.2: Performance impact of sliding window size and number of rotation angles.

Dataset M ×N K J IoU F1
Inf. Time

(sec.)

AppleA 5184× 3456
4

1
73.6 84.8 7.2

8 75.4 86.0 15.4
16 53.3 69.5 90.0

AppleB 2704× 1520
2

1
71.6 83.0 1.4

4 76.7 86.8 5.3
8 57.1 72.6 22.1

Peach 2704× 1520 4

1 51.3 67.8 5.5
5 58.2 73.6 34.7
10 60.3 75.2 71.5
20 61.3 76.0 147.8

Silver 4112 CPU @2.6GHz. Results for the remaining datasets are similar and are

omitted for brevity. Fig. 4.7 shows the impact of λ in the multi-task loss (Eq.

4.6) for different flower species. Although the performance of our approach remains

relatively stable as we vary λ, for most datasets, the best results are obtained with

0.7 ≤ λ ≤ 0.9, especially in cross-species scenarios, where appearance variation is

more prominent.

4.6 Conclusion

We introduced a self-supervised learning technique to accurately segment mul-

tiple tree flower species without significant manual labeling efforts. To automatically

generate instance and semantic labels for unlabeled datasets, we propose a data aug-

mentation technique associated with a semantic segmentation refinement strategy

that produces accurate pseudo-labels for self-supervised model training. The pro-

posed SSL technique makes it possible to train a deep multi-task model effectively on

unlabeled fruit flower datasets. Self-supervised learning substantially reduces model

dependency on computationally expensive post-processing steps to further refine the
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Figure 4.7: Impact of the loss weight λ (Eq. 4.6) on flower segmentation performance
at the first SSL iteration with J = 20 and K = 4.

model predictions at inference time. That being said, employing a post-processing

approach with our SSL model can further improve its prediction accuracy. Our novel

SSL method creates a new baseline for the multi-species flower segmentation task.

A robust and accurate multi-species flower detection method is the first step

toward the development of autonomous robotic thinning systems [223]. In the future,

the proposed panoptic flower segmentation algorithm can be further improved in a

number of ways. First, our proposed framework resorts primarily to a data augmen-

tation strategy based on image rotations. Given the characteristics of the problem

under consideration, it stands to reason that additional data augmentation strategies

such as color jittering and image blurring would further contribute to the generation

of accurate pseudo-labels. In addition, instead of using empirically defined weights

for the instance and semantic segmentation tasks, task-dependent uncertainty learn-

ing strategies [17] may better capture appearance variations to optimize the task

weights. Finally, pseudo-label pixels or sometimes entire instances may have low

prediction scores. The uncertainty of the pseudo-labels may be used to weigh the

contributions of individual samples. As shown in Chapter 3, uncertainty-weighed
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loss functions [18] are a promising technique to accomplish that goal.
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CHAPTER 5

UNSUPERVISED SPATIO-TEMPORAL EMBEDDING LEARNING
FOR MULTIPLE OBJECT TRACKING AND SEGMENTATION

This chapter addresses the challenges of joint segmentation and tracking prob-

lems as a single-camera video understanding task that can utilize the previously

discussed image understanding tasks, such as detection and instance segmentation.

Assigning consistent temporal identifiers to multiple moving objects in a video se-

quence is a challenging problem. A solution to that problem would have immediate

ramifications in multiple object tracking and segmentation problems. In this chap-

ter, we propose a strategy that treats the temporal identification task as a spatio-

temporal clustering problem. We propose an unsupervised learning approach using

a convolutional and fully connected autoencoder, which we call deep heterogeneous

autoencoder, to learn discriminative features from segmentation masks and detection

bounding boxes. We extract masks and their corresponding bounding boxes from a

pre-trained instance segmentation network and train the autoencoders jointly using

task-dependent uncertainty weights to generate common latent features. We then

construct constraints graphs that encourage associations among objects that satisfy

a set of known temporal conditions. The feature vectors and the constraints graphs

are then provided to the k-means clustering algorithm to separate the corresponding

data points in the latent space. We evaluate the performance of our method using

challenging synthetic and real-world multiple-object video datasets. Our results show

that our technique outperforms several state-of-the-art methods.

5.1 Introduction

The goal of MOTS algorithms is to establish temporally consistent associations

among segmentation masks of multiple objects observed at different frames of a video

sequence. To accomplish that goal, most state-of-the-art MOTS methods [26, 12] em-



110

ploy supervised learning approaches to generate discriminative embeddings and then

apply feature association algorithms based on sophisticated target behavior models

[41, 27, 129]. This chapter proposes a novel perspective on the problem of temporal

association of segmentation masks based on spatio-temporal clustering strategies.

Subspace clustering algorithms applied to sequential data can separate se-

quences of similar data points into disjoint groups. State-of-the-art subspace cluster-

ing methods have shown promising performance on single object patches [132], video

sequences [148], and face tracking datasets [147]. For video sequences containing

multiple objects, subspace clustering can be used as a data association strategy to

assign a unique temporal identifier to each object. However, due to variations in the

data distribution caused by changes in the appearance of the objects and by misde-

tections, occlusions, and fast motions, subspace clustering in video segments using

only location [224, 225], shape [139, 138, 142, 226], or appearance [147, 140] features

might not produce satisfactory results.

The goal of this work is to increase the discriminative capability of spatio-

temporal latent representations. Traditional subspace clustering techniques are trained

based either on appearance [139, 226, 142] or location information, generally in the

form of bounding boxes [224]. Instead, in this work, we propose a novel approach

that learns location and shape information jointly using a convolutional and fully

connected autoencoder, which we call Deep Heterogeneous Autoencoder (DHAE).

To learn a latent representation that leverages motion and appearance information in

an unsupervised manner, we employ a multi-task loss function with task-dependent

uncertainties [10]. The use of multi-task uncertainty-aware learning automatically

assigns low weights to samples that do not contribute to the desired representation.

A point with high uncertainty would correspond to a point which the self-expressive

layer cannot represent well, i.e., a point whose corresponding subspace is not yet

known.
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Contributions. The major contributions of this chapter are as follows:

• We propose a novel unsupervised mechanism based on task-dependent uncer-

tainties that learns to generate spatially and temporally distinctive latent fea-

tures based on heterogeneous inputs.

• We propose a new data partitioning algorithm that uses constrained clustering

strategies to associate object detections over multiple frames with their corre-

sponding temporal identifiers.

• We evaluate our model on two synthetic and two real-world datasets that include

most of the challenges commonly observed in MOTS problems, such as pose and

appearance variations.

5.2 Related Work

Subspace clustering is an unsupervised learning technique in which data points

are mapped to lower dimensionality subspaces where it is easier to make inferences

about the relationships among different data points. Existing clustering methods

employ two common strategies: i) extract low-dimensional discriminative features,

ii) apply a robust clustering approach to partition the subspaces. Earlier approaches

employed methods based on factorization strategies [131, 132, 133] or kernels [134,

135, 136, 137] to separate the data points into their respective subspaces. More

recent methods employ convolutional neural networks [138, 139, 140], or generative

adversarial networks [141, 142], oftentimes in conjunction with self-expressive layers

[139, 142, 143]. The autoencoder-based DSC-Net [139] uses fully connected layers to

learn an affinity matrix that enhances the discriminative property of the embeddings.

Some autoencoder-based techniques consider both subspace reconstruction error and

cluster assignment error for better sample distribution [144, 138]. Although existing

approaches may be able to find discriminative features to cluster static data, these
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features are not sufficiently distinctive to identify the subspaces corresponding to

multiple objects in sequential data.

Clustering multi-object sequential data is an under-explored problem, partic-

ularly in real-world applications. While existing temporal clustering methods, such

as ordered subspace clustering (OSC) [146] consider sequential data, they focus on

clustering entire video frames, without taking into consideration the spatial aspect

of the problem, which must be addressed when it is necessary to distinguish multiple

objects in a video segment. Few methods [147, 148] address the problem of cluster-

ing objects over video sequences, which must take into account the fact that object

features may change over time [124, 125, 149]. Our approach addresses this challenge

using a simple yet effective unsupervised learning framework.

5.3 Subspace Clustering for Sequential Data

Figure 5.1: Proposed subspace clustering framework. The Multi-task Feature Extrac-
tor detects the bounding boxes and segmentation masks of multiple objects within
a window of sequential data. The Deep Heterogeneous Autoencoder then uses these
features to generate joint embedded representations of the objects. These embeddings
are then clustered into target trajectories using constrained k-means.

As Fig. 5.1 illustrates, our spatio-temporal clustering framework extracts fea-

tures of interest from the objects in each video frame using a multi-task feature
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extractor module. Then, our proposed DHAE generates a discriminative latent rep-

resentation of the pose and appearance of each object based on these features. To

establish temporal coherence among targets, we adopt a graph-based method [227]

to preclude the association of points that violate a set of constraints that are known

to hold and enforce the association of points having common temporal identifiers

within a temporal window. Finally, we use the constrained k-means algorithm [145]

to determine the labels of the targets by minimizing the dissimilarity of their latent

representations while satisfying the association constraints. Alg. 6 summarizes the

steps of the proposed method, which are described in detail below.

Algorithm 6 Subspace clustering

Input: Set of video frames {It}Tt=1

Output: Subspace clusters CK
1: repeat
2: Wt = MTFE({It

′

|t′ ∈ T t })
3: Zt = DHAE(Wt)
4: Compute Gt using Eqs. (5.4)-(5.6)
5: CK = ∅
6: Ct = kmeans(Zt,Gt)
7: for Q ∈ Ct do
8: τ̄ = 1/|Q|

∑
di∈Q (si)

9: if τ̄ > λ then
10: CK = CK ∪ {Q}
11: end if
12: end for
13: until end of the video sequence

5.3.1 Multi-Task Feature Extractor

The multi-task feature extractor (MTFE) module is responsible for generating

segmentation masks and bounding boxes of objects of interest in each video frame (see

Fig. 5.2). This task is independent of the proposed temporal clustering mechanism

and can be performed by any supervised or unsupervised segmentation method such

as [6, 228]. More specifically, let dtb,i ∈ R
N be the detected bounding box of the i-th
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Figure 5.2: Multi-task feature extraction using MTFE [6].

target observed at time t, dtm,i ∈ R
M×M×D be a segmentation mask representing the

appearance of that object, and sti ∈ [0, 1] be the corresponding detection confidence.

The MTFE takes as input a video frame I t and generates the set

X t =
{
[dtm,i, d

t
b,i, s

t
i]
}Ot

i=1
, (5.1)

where Ot is the number of unique objects at time t. The bounding box dtm,i is

represented by the coordinates of its centroid and its dimensions, hence N = 4.

Regarding appearance representation, we propose two closely related models. In the

shape model, the number of channels of the mask D = 1 and dtm,i corresponds to

the binary segmentation mask of the object. In the appearance model, D = 3 and

dtm,i is given by the binary segmentation mask multiplied by the corresponding RGB

contents of the image.

5.3.2 Deep Heterogeneous Autoencoder

Clustering methods that resort only to object appearance information do not

perform well when multiple objects are observed simultaneously in a sequence of video

frames. As the number of objects of a certain category (e.g., pedestrians) observed

in a given frame increases, the average appearance difference among them becomes
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increasingly lower. At the same time, as the duration of the temporal segment in-

creases, so does the variability in the appearance of any given target. Hence, to allow

for sufficient temporal appearance variability while preventing incorrect associations

among temporally proximal observations, we incorporate location information into

the latent feature representation.

K-Means

Decoder

Encoder

Encoder

Decoder

Figure 5.3: Proposed Deep Heterogeneous Autoencoder (DHAE) model architecture,
which jointly learns shape and location information for sequential data clustering.

Fig. 5.3 shows our proposed DHAE architecture. To combine shape and loca-

tion information, we design a network consisting of three parts: i) a pair of encoders

that take as input the N -dimensional location vector1 db and the M×M×D mask dm,

ii) an uncertainty-aware module based on self-expressive layers [139] to reconstruct

the concatenated feature f ′ and learn the latent feature Z, iii) a pair of decoders to

reconstruct the bounding box yb and the mask ym. The DHAE takes the extracted

set of shapes and locations X t, which are generated by the MTFE, and reconstructs

1To simplify the notation, we henceforth drop the subscript i and the superscript t.
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them by minimizing the combined reconstruction loss. To incorporate the location

features db into our model, we employ a fully connected auto-encoder (AE) with N

inputs, which is represented by the yellow boxes in Fig. 5.3. The corresponding

encoded feature vector is fb = hb(db), where hb : R
N → R

F is the encoding function.

The shape information dm is encoded by a convolutional auto-encoder (CAE) with

an input size of M ×M ×D, which is represented by the blue boxes in Fig. 5.3.

Let fm = hm(dm) be the latent feature of the CAE, where hm : RM×M×D → R
F is

the encoding function. A function ha : R2F → R
F takes the concatenated feature

vector f = [fm, fb] and converts it into the latent representation Z ∈ R
F . A function

h′
a : RF → R

2F then takes the latent representation Z and produces a new feature

f
′

= [f
′

m, f
′

b], which combines both shape and location information. We then process

the two components of the feature vector separately using the corresponding decoders.

That is, the outputs produced by the decoding function h
′

m : RF → R
M×M×D and

h
′

b : R
F → R

Nare ym ∈ R
M×M×D and yb ∈ R

N .

5.3.3 Multi-task Likelihood

We train our DHAE using a multi-task loss function using maximum log-

likelihoods with task-dependent uncertainties. Let fW (x) = [fW
m (x), fW

b (x)] be the

output of the DHAE with weights W , input vector x = [dm, db], and predicted output

y = [ym, yb]. The likelihood for the regression task is given by

p(ym, yb|f
W (x), σm, σb) = pm(ym|f

W
m (x), σm) · pb(yb|f

W
b (x), σb), (5.2)

where yb and ym are normally distributed with means fW
b (x), fW

m (x), and variances

σb, σm, respectively. Thus, the cost function is given by

L(W,σm, σb) = − log p(ym, yb|f
W (x), σb, σm)

∝
1

2σ2
b

∥∥yb − fW
b (x)

∥∥2
+

1

2σ2
m

∥∥ym − fW
m (x)

∥∥2
+ log σm + log σb, (5.3)
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where W , σm, and σb are trainable parameters. Unlike traditional multi-task learning

approaches [120, 10], which focus on weighing the contributions of several homoge-

neous outputs, our method weighs the contribution of multiple heterogeneous input

features. Thus, we learn the relative weights of each loss function term based on the

uncertainty of distinct features.

5.3.4 Network Implementation and Training Details

The AE branch of our DHAE has an input size of N = 4 and one fully

connected layer of size 128. The CAE branch uses 5 convolutional layers with kernel

size 3× 3, ReLU activations, and a stride of 2× 2 for downsampling and upsampling

[55]. The size of the input layer is M = 128 and the subsequent layers have half the

size of the previous layer. The number of convolutional channels in each layer is 16,

16, 32, 32, and 64 (the decoder mirrors the structure of the encoder). The functions

ha(·) and h′
a(·) are implemented using fully connected layers of size F = 128. We

train the network using stochastic gradient descent with ADADELTA [229] learning

rate adaptation.To account for the dimensionality of the feature vectors, we initialize

log σ2
b = 1/N and log σ2

m = 1/(M2) . The network weights W are initialized using the

Glorot method [230]. At inference time, the segmentation masks are isotropically

scaled such that the largest dimension of the mask is M . The image is then centered

along the smallest dimension and zero-padded.

5.3.5 Sequential Data Constraints

In spatio-temporal subspace clustering, constraints based on prior knowledge

regarding the sequential data may reduce association mistakes by imposing penalties

on unlikely pairwise matching. We use an undirected graph Gt to encode constraints

among pairs of detections in the temporal window T t. This graph determines which

pairs of detections cannot belong to the same cluster. It also enforces the association
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of detections that were assigned the same temporal identifier in previous temporal

windows.

Constraints Graph Formulation. To incorporate prior knowledge regard-

ing object correspondences in a temporal window, we construct the graph Gt =

(V t, Et) using cannot link and must link constraints. The vertices of the graph

correspond to the set of segmentation masks in all the frames in the window T t, i.e.,

V t =
{
dtm,i

∣∣t ∈ T t, i ∈
{
1, . . . ,Ot

}}
. (5.4)

The set of edges consists of pairs of nodes vi and vj that meet the spatial and temporal

restrictions imposed by the cannot link function fcl(·) and must link function fml(·),

i.e.,

Et
cl =

{
(vi, vj)|vi ∈ V t, vj ∈ V t, fcl = 1

}
,

Et
ml =

{
(vi, vj)|vi ∈ V t, vj ∈ V t, fml = 1

}
.

(5.5)

The function fcl prevents the association of vertices from the same frame or vertices

in close temporal proximity whose segmentation masks do not overlap. Conversely,

fml enforces the association of detections with common temporal identifiers. That

is, if a detection has been assigned an identifier at a previous temporal window, it is

only allowed to be associated with detections that have the same identifier or that

have not been assigned one, i.e.,

fcl(vi, vj) =





1 if ti = tj or γi 6= γj

1 if iou(vi, vj) = 0, ti − tj 6 τ

0 otherwise

,

fml(vi, vj) =





1 if li = lj, γi = γj,

ti 6= tj, l 6= ∅

0 otherwise

,

(5.6)
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where ti, tj are the timestamps for the detections corresponding to vi and vj, the func-

tion iou(·) computes their mask intersection over union, γi, γj are the corresponding

object classes, and li, lj are the initialized cluster identities corresponding to nodes

vi and vj.

5.3.6 Modified Constrained K-means

In the constrained k-means algorithm [145], a node vi may be assigned to

the same cluster as vj only if the edge (vi, vj) /∈ Et
cl and the initialized detections

maintain the same subspace clustering when (vi, vj) ∈ Et
ml. We cluster objects that

do not satisfy the cannot link constraints and whose tracklet identities are not yet

initialized by minimizing the distance between their corresponding latent features zti

and the cluster centroids zk.

The dimensionality of the subspace corresponding to window T t is given by

the total number of objects observed during that period, which is unknown. We

propose a novel mechanism to determine the number of clusters |K| that leverages

our temporal clustering constraints. Our approach consists of initially setting the

number of clusters to the maximum number of targets observed in a single frame

within the window T t, i.e., |K| = maxt′∈T t Ot′ . The centroids of the clusters are then

initialized using the detections in Ot′ . The objective of our algorithm is to associate

each embedded feature zto ∈ Z
t to a unique cluster with centroid zk while minimizing

the cost

L(K) =
∑

zk∈K

∑

zto∈Z
t

∥∥zk − zto
∥∥2

. (5.7)

Thus, our approach groups the nodes into |K| disjoint clusters C1, . . . , C|K| while

assuring that two feature vectors zm, zn can only belong to the same cluster Ci if the

corresponding edge (vi, vj) /∈ Et
cl. That is, the nodes are grouped into subsets which

contain only nodes from distinct frames and such that their corresponding bounding
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boxes have an intersection over union greater than zero when the temporal difference

between them is less than τ . Again, if the clustering constraints cannot be satisfied,

the number of clusters is adjusted accordingly. That is, if a detection does not satisfy

the constraints in Eq. 5.6, it is considered a tentative new target, a new cluster is

created, and as new detections join that cluster in subsequent frames, a new tracklet

is generated. If no subsequent detections join the cluster within a tlag interval, the

new detection is considered a mistake and the corresponding cluster is discarded.

Figure 5.4: Sequence of frames for (a) MNIST-MOT with |O| = 5 targets per frame
and (c) MOTSChallenge (cropped for three pedestrians) sequences. (b) and (d) show
the corresponding subspaces generated by our method.

5.3.7 Spatio-temporal Clustering

To assign unique temporal identifiers to multiple objects in a video sequence,

at each time instant t, we cluster the observations present in the frames within the

window T t = {t− tlag, t− tlag+1, . . . , t} (Fig. 5.4). Since the window is computed at

each frame, there is an overlap of tlag− 1 frames between subsequent windows, which

ensures that most of the data points used to form the subspace cluster in each window

of a video sequence are shared. As shown in Alg. 6, the input to our spatio-temporal

clustering algorithm is the set of frames {I t}Tt=1 where T is the number of frames in

the video. Our algorithm applies the MTFE to each video frame in the window T t
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Table 5.1: Specifications of the evaluation datasets.

Dataset #Seq.#Obj. InstancesShape Challenge: randomly changed
cues

MNIST-
MOT

20 977 22232 28× 28 pose, shape, motion

Sprites-
MOT

20 983 22104 28× 28 entry/exit, pose, scale, shape, mo-
tion

KITTI
MOTS

9 210 10738 128×128 entry/exit, pose, scale, camera
motion

MOTS-
Challenge

4 228 26890 128×128 entry/exit, pose, scale, shape, mo-
tion

to construct the set W t =
{
X t′ |t′ ∈ T t

}
, where X t′ is the output of the MTFE for

frame I t
′

. The algorithm then clusters the detections within each window using the

embeddings Z t =
{
zt

′

i

∣∣t′ ∈ T t, i ∈ {1, . . . ,Ot′}
}

generated by the DHAE. Each call

to the kmeans(·) algorithm produces a set of clusters Ct whose elements are detections

assigned to the same object. For each cluster Q ∈ Ct, we compute its normalized score

τ̄ as the ratio 1/|Q|
∑

di∈Q
(si), where si is the confidence score of detection di. Clusters

with a score higher than a threshold λ are included in the cluster set CK .

5.4 Datasets and Experiments

We evaluate our algorithm on two synthetic and two real-world datasets. The

MNIST-MOT and Sprites-MOT [41] synthetic datasets allow us to simulate challeng-

ing MOTS scenarios involving pose, scale, and shape variations. In addition, their

bounding box and segmentation masks are readily available. To evaluate clustering

performance in real videos using detections generated by a semantic segmentation

algorithm, we employ the MOD [193] metrics. Then, we use the recently published

MOTS [12] benchmark, which includes video sequences from the MOTChallenge [69]

and the KITTI [70] datasets annotated with segmentation masks, to evaluate our

model in real-world videos.
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Table 5.2: Comparison of clustering performance on MNIST-MOT (tlag = 5, k =
|O| = 3) and MNIST-MOT* sequences (tlag = 5, |O| = 5, k varies in a range,
1 . . . |O|).

Configuration
MNIST-MOT MNIST-MOT*

ACC PUR NMI ARI ACC PUR NMI ARI
DEC [138] 0.87 0.89 0.88 0.81 0.84 0.85 0.89 0.78

ClusterGAN [141] 0.81 0.78 0.82 0.80 0.71 0.75 0.58 0.80
Shape Embed 0.90 0.90 0.82 0.75 0.85 0.87 0.84 0.72
Loc Embed 0.96 0.95 0.94 0.91 0.91 0.92 0.92 0.85
Loc+Shape 0.97 0.96 0.95 0.92 0.92 0.93 0.93 0.86

Loc+Shape+Gt 0.99 0.99 0.99 0.98 0.96 0.97 0.97 0.95

To evaluate clustering performance in synthetic data, we adopt the popular

clustering performance asssessment metrics: accuracy (ACC), purity (PUR), nor-

malized mutual information (NMI) [142, 231], and adjusted random index (ARI)

[232]. Since traditional clustering evaluation measures [142, 232, 231] require each

observation to be mapped to exactly one cluster, they are not suitable for real-

world scenarios where incorrect detections may occur. Hence, we adopt the popular

CLEAR-MOT [193] tracking performance assessment measures: MOTA, Fragmenta-

tion (Frag), Identity Switches (IDs), Mostly Tracked (MT), and Mostly Lost (ML)

targets [233]. Finally, we employ the MOTS [12] evaluation measures to quantify

the effectiveness of our algorithm in maintaining the temporal consistency of target

identities in real-world video sequences. Table 5.1 summarizes the characteristics of

the datasets we used in our evaluation.

5.4.1 Synthetic Datasets

We generate synthetic MNIST-MOT and Sprites-MOT sequences using the

procedure described in [41], which we discussed in Chapter 2, section 2.6.3.

Synthetic Digit Clustering. We evaluate the proposed approach on the

MNIST-MOT dataset for clustering multiple moving digits in the temporal segments.
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We apply the extracted cues to DHAE for clustering them in the jointly learned la-

tent space using constrained k-means. Since we update the temporal segment at each

t with stride 1, the final evaluated clustering metrics are the average over all the

possible segments in the entire dataset. Table 5.2 summarizes the clustering results

for different multi-object challenges on MNIST-MOT according to the evaluation

procedure described in [141, 142]. Although location features play a critical role in

clustering multiple moving targets, shape features also contribute significantly to the

performance of our approach. As the t-SNE visualization in Fig. 5.1 illustrates, as

the digits 2 and 1 approach each other, their corresponding embeddings remain sepa-

rable. In Table 5.2, the shape-only model performs worse in comparison with location

since both versions of the MNIST dataset periodically change the target shape, which

reduces the benefits of shape features (Table 5.4 shows that the benefits of shape fea-

tures in real videos are more pronounced). Due to the lack of availability of methods

that perform clustering based on location and shape features, we select two state-of-

the-art clustering methods for performance comparison [141, 138]. Although those

baselines show comparable performance with our model when only shape features

are used (maximum 9% improvement in terms of ACC), Table 5.2 shows how the

different components of our method increase clustering robustness where the best

results are shown in boldface and the second-best are underlined. More concretely,

our joint DHAE model (Loc+Shape) improves over the baselines by 10% and 7%,

7% and 11%, 16% and 18%, 13% and 12% in terms of ACC, PUR, NMI, and ARI

(MNIST-MOT results in Table 5.2). If we increase the object density and incorpo-

rate other multi-object challenges observed in real surveillance videos, our method

also shows improvements in terms of most metrics (MNIST-MOT* results in Table

5.2). Moreover, our jointly learned embeddings achieve much better results than the

baseline when we use Gt. By using constraints we obtain nearly perfect results with

only 1% wrong assignments.
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Synthetic Object Clustering. We also evaluate the clustering performance

on the Sprites-MOT sequential data [41] where randomly selected objects (|O| = 5)

move in random directions while showing most of the multi-object video challenges.

Table 5.1 shows that we obtain highly satisfactory clustering metrics (ACC > 90%)

when all the components of the DHAE-based spatio-temporal clustering technique

are employed.

Synthetic Multi-object Tracking. Due to the lack of availability of meth-

ods that perform clustering based on location and shape features, we select one state-

of-the-art MOT method for performance comparison [41]. We relax the IoU constraint

by imposing a limit on the Euclidean distance between embeddings since the target

displacement among consecutive frames may be relatively large with respect to the

size of the targets due to the low resolution of the frames.

Table 5.3: Performance evaluation on MNIST-MOT and Sprites-MOT with tlag = 3,
|O| = 3.

Method
MNIST-MOT Sprites-MOT

↑IDF1 ↑MT ↓ML ↓FN ↓IDs ↓Frag ↑MOTA ↑IDF1 ↑MT ↓ML ↓FN ↓IDs ↓Frag ↑MOTA
shape embed 89.1 944 0 304 5 132 98.6 86.7 906 4 853 13 275 96.1
loc embed 87.7 905 0 708 61 331 96.5 88.2 920 0 689 56 347 96.6
loc+Gt 86.3 977 0 0 72 0 99.7 85.6 983 0 4 94 0 99.6
loc+shape 89.6 934 0 444 3 189 98.0 88.9 912 0 734 8 314 96.6
loc+shape+Gt 100.0 978 0 0 0 0 100.0 99.5 983 0 45 17 0 99.7
TBA [41] 99.6 978 0 49 22 7 99.5 99.2 985 1 80 30 22 99.2

Table 5.3 summarizes the performance of our method on the MNIST-MOT and

Sprites-MOT datasets according to the evaluation procedure described in [193, 41,

233]. Although location features play a critical role in clustering multiple moving tar-

gets, shape features also contribute significantly to the performance of our approach.

The shape-only model (shape embed) outperforms the location-only model (loc em-

bed) on some of the evaluation criteria because the shapes remain unchanged until
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Table 5.4: Evaluation of clustering quality using MOD metrics for the noisy detections
of MOTSChallenge training set where ResNext-101-based Mask-RCNN [6] is used as
MTFE.

Model F1 Rcll Prcn TP FP FN MODA
loc+shape+Gt 82.7 82.7 82.6 16749 3526 3497 65.3
shape embed 74.8 70.1 80.1 14192 3532 6054 52.7
DEC[138] 71.6 65.6 78.8 13277 3568 6969 48.0
CGAN[141] 67.9 61.3 76.1 12415 3909 7831 42.0

they leave the scene. This effect is more pronounced on the MNIST-MOT dataset be-

cause the appearance of the characters is more distinctive than the shapes in Sprites-

MOT. Although the incorporation of the constraints graph into the location-only

model (loc+Gt) leads to slightly better performance on some evaluation measures

than the joint embedding (loc+shape), the overall method (loc+shape+Gt) achieves

near-perfect results.

5.4.2 Clustering in Real Videos

To evaluate the performance of our proposed clustering algorithm using real

noisy detections, we use detections (bounding box and segmentation mask) generated

by a Mask-RCNN model with a ResNext-101 backbone [6] on MOTSChallenge video

sequences and compute the corresponding MOD evaluation metrics [69, 193]. We

compare the performance of our shape-only model with the DEC [138] and Cluster-

GAN [141] models trained using shape features from the datasets. In our evaluation,

we cluster the multi-task embedded features from the DHAE and retain only the

clusters that satisfy the minimum cluster score λ. Again, we estimate the number of

clusters |K| and utilize the bounding boxes for MOD evaluation. For a fair compari-

son, we use the same values of λ = 0.62, tlag = 5, and minimum IoU = 0.4 for all the

models under consideration.
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Table 5.5: Evaluation of person and car tracking on the KITTI MOTS validation set.

Method
↑sMOTSA ↑MOTSA ↑MOTSP
car ped car ped car ped

loc+shape+Gt 80.4 55.5 89.5 69.7 90.3 82.8
loc+app+Gt 80.8 58.3 89.9 72.5 90.3 82.8
EagerMOT [234] 74.5 58.1 - - - -
GMPHD [129] 76.9 48.8 - - 87.1 76.4
MOTSFusion [27] 77.5 49.9 89.2 66.6 - -
MOTSNet [26] 78.1 54.6 87.2 69.3 89.6 79.7
TR-CNN [12] 76.2 46.8 87.8 65.1 87.2 75.7

Table 5.6: Evaluation of person tracking on the MOTSChallenge training set.

Method ↑sMOTSA ↑MOTSA ↑MOTSP ↑MT
loc+shape 51.3 60.1 86.3 21.5
loc+shape+Gt 65.3 76.3 86.3 53.1
loc+app 56.1 65.5 86.4 26.3
loc+app+Gt 65.5 76.5 86.3 53.1
GMPHD [129] 65.8 77.1 86.1 -
PointTrack [235] 58.1 70.6 - -
MOTSNet [26] 56.8 69.4 82.7 -
TR-CNN [12] 52.7 66.9 80.2 -

5.4.3 MOTS Dataset

The MOTSChallenge dataset consists of four fully annotated videos of crowded

scenes and the KITTI MOTS dataset consists of 21 videos acquired from a moving

vehicle (see Table 5.1). We discuss these datasets in more detail in Chapter 2, section

2.6.1. Both datasets contain objects that show substantial scale and shape variations

over time. We use the segmentation masks and the corresponding RGB content from

12 KITTI MOTS sequences to train the DHAE and use the remaining sequences for

testing.

In our evaluation, we use the publicly available instance segmentation masks

and bounding boxes [12] from the benchmark validation set. We compare the perfor-

mance of our method against the state-of-the-art approaches presented in [234, 27, 12,
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Figure 5.5: Qualitative results on the (a) KITTI MOTS and (b) MOTSChallenge
dataset.

26, 129, 235]. Table 5.5 shows that, without resorting to sophisticated mechanisms for

target re-identification, trajectory interpolation, or entry/exit detection, our method

outperforms all the baseline methods in the KITTI MOTS dataset even if only the bi-

nary segmentation masks are used in the joint embeddings (loc+shape+Gt). Including

the RGB information (loc+app+Gt) leads to further performance gains, particularly

for the pedestrian class. As Table 5.6 indicates, in the MOTSChallenge sequences,

our joint embeddings alone (loc+app) perform on par with [26, 12, 235], and the incor-

poration of the constraints graph leads to results comparable to [129] using the same

set of detections (whereas [235] and [26] use privately refined detections). Figure 5.5

illustrates some of the results generated by our method. Both datasets are comprised

of crowded scenes with significant amounts of temporary partial and full occlusions,

particularly among pedestrians. Unlike [129], our method does not incorporate occlu-

sion reasoning or motion modelling techniques, which contribute significantly to the

performance of that method and could be easily incorporated into our framework.

To assess the impact of detection noise on the performance of our method,

we evaluate the sMOTSA measure as a function of the minimum confidence score

for a detection to be considered valid. Fig. 5.6 shows that performance increases

until the detection threshold reaches approximately 0.65 and after 0.80 it starts to

decrease again. In the experiments discussed above, we use a detection threshold of

0.70 for all the datasets. Further performance improvements would be achieved with



128

Figure 5.6: MOTS performance as a function of MTFE detection score threshold.

dataset-specific thresholds. For our ablation studies, we use ground truth annotations

instead to evaluate each step of the method independently from the performance of

the underlying detector.

5.4.4 Ablation Study

Table 5.7 shows the impact of the uncertainty-aware multitask learning loss

of Eq. 5.3, of the constraints graph Gt, and of estimating the number of clusters |K|

using the method described in Section 5.3.6 for three different window sizes tlag. The

table demonstrates the positive impact of multi-task learning using task uncertainties

instead of assigning equal weights in Eq. 5.3. We observe that the constraints graph

leads to consistent and substantial improvements in all the evaluation criteria. We

also see that higher values of tlag lead to an increase in the MT measure but also to

an increased number of fragmentations. Since we do not model target motion, the

overlap among detections reduces as tlag increases, leading to violations of the must-

link constraints. As a result, the optimal sMOTSA score is obtained with tlag = 3.

Finally, estimating |K| from the video segments does not degrade the performance of
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our algorithm. In summary, Table 5.7 shows that MTL and Gt lead to improvements

in the sMOTSA measure of 10.8% and 15.5% in the MOTSChallenge, 8.2% and 14.1%

for the car category in the KITTI MOTS, and 11.1% and 26.2% for the person class,

even when |K| is unknown.

Table 5.7: Ablation study to evaluate the impact on tracking based on MOTS [12]
oracle performance of: window size tlag, constraints graph Gt, multi-task learning
(MTL), and number of subspaces |K| as a prior (✗) or estimated (X).

MOTSChallenge KITTI MOTS (car) KITTI MOTS (person)
tlag G

t MTL |K| ↑sMOTSA ↑MT ↓IDs ↓Frag ↑sMOTSA ↑MT ↓IDs ↓Frag ↑sMOTSA ↑MT ↓IDs ↓Frag

3

✗ ✗ X 74.0 43.9 962 1835 77.5 63.6 217 479 62.7 57.4 255 318
✗ X X 82.6 62.3 660 1416 84.4 68.2 115 348 70.5 54.4 138 258
✗ X ✗ 84.0 68.9 653 1367 84.7 70.9 113 343 71.7 52.9 138 248
X X ✗ 97.5 100 636 639 98.1 98.7 127 127 95.6 98.7 119 115
X X X 97.8 99.6 548 548 98.3 98.7 119 121 95.6 98.5 124 124

5

✗ ✗ X 66.4 31.1 939 2000 75.5 58.9 191 474 53.0 52.9 226 282
✗ X X 78.9 50.9 606 1476 76.7 56.3 97 408 63.0 32.4 100 238
✗ X ✗ 80.9 58.3 610 1422 77.4 55.6 94 409 63.2 36.8 92 254
X X ✗ 97.2 100 692 733 97.7 98.7 160 171 94.1 100 186 199
X X X 97.7 100 581 589 97.8 98.7 162 162 94.6 100 180 181

8

✗ ✗ X 56.9 19.7 897 1800 71.4 50.3 218 493 46.0 38.2 141 227
✗ X X 71.8 41.7 447 1499 73.0 47.7 79 376 58.2 30.9 83 246
✗ X ✗ 73.6 46.9 528 1440 74.8 47.0 77 384 57.5 35.3 82 250
X X ✗ 97.0 99.1 765 800 96.8 98.0 223 236 93.5 100 215 217
X X X 97.5 100 657 662 97.2 98.0 210 210 94.1 100 194 196

5.5 Conclusions

Our proposed method uses task-dependent uncertainties to simultaneously

learn the contribution of shape/appearance and location features from multi-object

video datasets and further improves clustering performance by imposing simple con-

straints on acceptable sequential data patterns. Our experimental results show that

our approach can accurately cluster multiple objects using embeddings generated by

the DHAE. This method can be extended without significant modifications to include

additional tasks of interest in similar scenarios such as object motion prediction. In
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the future, we intend to extend our method with target motion models and more ro-

bust entry/exit/occlusion detection techniques so that it can be employed as a robust,

standalone data association mechanism to the problems of multiple object tracking

[236] and video instance segmentation [237].
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CHAPTER 6

UNSUPERVISED MULTI-VIEW DATA ASSOCIATION

In the previous chapters, multiple self-supervised and unsupervised strategies

were designed to address the multiple object detection and segmentation challenges

in unseen data. Although we successfully apply learned detection models for SCT

in overhead scenarios, a systematic approach needs to be designed to track multi-

ple objects across cameras for multi-camera surveillance applications. To accomplish

that goal, we developed an unsupervised multi-camera association technique that

leverages the proposed self-supervised detector models in a single-camera tracking

algorithm to generate temporal identifiers for the targets. Then we incorporate a

multi-view trajectory association mechanism to maintain consistent temporal identi-

fiers as objects travel across camera views. An evaluation of detection, tracking, and

association performances on videos obtained from multiple overhead/lateral cameras

in a realistic airport checkpoint and on a campus environment demonstrates the effec-

tiveness of the proposed approach. Our results show that the self-supervised model

improves SCT accuracy by up to 8% in overhead views and 3.9% in lateral views,

compared with the corresponding baselines, without increasing the inference time of

the model. Our multi-camera association method achieves up to 89% multi-object

tracking accuracy in overhead views with an average computation time of less than

15 ms.

6.1 Introduction

Multi-camera association algorithms [99, 4, 110] track multiple objects across

cameras as they traveled throughout the camera views. In most existing multi-camera

tracking approaches, the initial step involves feeding the single-camera video streams

into an multi-object detector [7, 6] to localize the targets. The detected targets are
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temporally connected with unique identities using several feature extraction tech-

niques such as optical flow [27], motion and appearance [195, 165], and track regres-

sion [23]. Some approaches also include Re-ID [157] technique to enhance association

performance. These approaches leverage supervised models to generate target ROIs

and the Re-ID features. However, the training of camera-specific models or single

generalized models is challenging owing to the necessity of significant manual anno-

tations. To address the camera-specific model deployment issue, we have proposed a

self-supervised model in Chapter 3, which we employ in our SCT algorithm. After

generating the SCT tracks, an automated surveillance system [112, 100, 11] requires

a consistent multi-object temporal association across cameras. Most existing multi-

camera tracking works address cross-camera association using a calibrated overlap-

ping camera networks [11, 37] that employ both appearance and motion models to

track targets in common coordinates, or non-overlapping cameras using multi-view

Re-ID [154, 155] models. Some recent methods address the multi-view feature learn-

ing challenge using self-supervised methods [4, 108, 110], which can be used in both

overlapping and non-overlapping cameras. However, real-time cross-camera associa-

tion is challenging when cameras overlap partially and there is significant perspective

distortion. To address these challenges, we propose a multi-Camera tracklet asso-

ciation (MCTA) algorithm that maintains the temporal identifiers of targets across

cameras. Furthermore, we leverage the fact that our system is comprised of overhead

cameras with partially overlapping fields of view to employ a simple but effective

geometry-based trajectory association method. Our algorithm compares the pro-

jected centroids of target detections on neighboring cameras using the homographies

between their image planes. We also track persons and bags across multiple views and

generate global tracks by combining pairwise associations from partially overlapping

camera views.



133

We evaluate the tracking performance of our algorithms on videos from a

simulated airport checkpoint and campus environment to demonstrate that our self-

supervised model-based SCT approach performs on par with a model trained in an

entirely supervised manner, and substantially outperforms the pre-trained detection

model-based SCT. Our multi-camera evaluation shows that the MCTA method effec-

tively handles the problem of person identity hand-off across cameras.

Contributions. In summary, the key contributions of this work include:

• A new recursive tracklet association algorithm to address the identity hand-off

issue during transitions between crowded overhead camera views.

• A distance-based association algorithm to keep track of the ownership of each

baggage item across an airport checkpoint.

• A real-time end-to-end multi-camera tracking system.

• We provide an extensive evaluation of our methods on a dataset collected using

multiple overhead and lateral cameras in realistic airport and campus scenarios.

• Our SSL models and the corresponding MCTA source code are available at

https://github.com/siddiquemu/SCT_MCTA.

To our knowledge, this is the first approach to solve the overhead or lateral multi-view

association problem in a network of cameras with partially or fully overlapping fields

of view using a self-supervised detection strategy.

6.2 Related Work

In multi-target tracking applications with fully overlapping camera networks,

multiple single-camera tracks mapped to a common coordinate system can be inter-

preted as the probability of occupancy of the area observed by the cameras [100].

Although it is possible to use clustering techniques to map the modes of this distri-

bution to unique target locations, bounding box alignment errors due to perspective

https://github.com/siddiquemu/SCT_MCTA
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challenges generate spurious associations. Hence, we propose a simple stereo cam-

era association using 2D homographies that can be extended for multiple-camera

networks.

A systematic solution to the data association problem is another important

component of multi-target tracking-by-detection methods [238, 239, 236, 240, 241,

242, 243, 244, 245, 12, 123, 128, 246, 17]. Single-camera trackers [23, 247] utilize

detectors trained on multiple datasets [69] to generate bounding boxes and form

track hypotheses for all the targets in each frame. In this chapter, we employ a state-

of-the-art single-camera tracker [23] using a detector based on our self-supervised

models, which achieves unprecedented tracking performance in previously unseen

airport surveillance videos.

Finally, multi-camera tracking systems require sophisticated trajectory asso-

ciation mechanisms to maintain target identities across cameras [28, 150, 151]. Even

within a single-camera, occlusions must be handled using similar strategies [152, 153].

Most association approaches compute trajectory similarity scores based on a combi-

nation of appearance and motion features [28, 150, 151, 152, 153]. These features are

learned using a large number of continuous trajectories, which are difficult to obtain

with typical ceiling-height overhead cameras due to their limited fields of view. Multi-

camera methods also need to project trajectories onto a global 3D coordinate [11]

frame that requires camera calibration information. Some methods utilize camera cal-

ibration information to project tracks onto a common plane and perform association

using occlusion modeling [37] or re-identification techniques [154, 155, 106, 156, 157].

However, dependency on camera calibration further limits the applicability of these

methods to security systems, since calibrating multiple cameras with partially over-

lapping fields of view is a complex task [158, 159, 160, 161].
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Figure 6.1: Real-time multi-camera tracklet association.

6.2.1 Proposed Approach

As Fig. 6.1 shows, our multi-camera tracking framework comprises two main

steps: i) a single-camera, multiple-target tracking-by-detection algorithm, and ii) a

multi-camera trajectory association mechanism. Our single-camera tracker uses the

detections generated by our SSL framework and a single-camera trajectory association

(SCA) method to keep track of the identities of individual passengers and baggage

items within the field of view of each camera. Our MCTA strategy then projects

the trajectories of passengers observed in cameras with overlapping fields of view

onto a common image plane. These trajectories are then compared using the Fréchet

distance and associated using a recursive graph-based mechanism.

6.2.1.1 Single-camera Tracking

We use the Tracktor algorithm [23] as our baseline single-camera tracker. The

output of the algorithm at each image frame is a set T C(t) = {ω1, . . . , ωnC
t
}, where

ωj = [bj, lj], with lj corresponding to a unique identifier label for each person or

baggage item in the frame. These labels remain the same throughout the video se-

quence and hence perform temporal association among detections. The tracklet for

the k-th object is thus given by the set of detections over the entire video sequence

whose temporal identifier is lj = k, i.e., τk = ∪Tt=1

{
ωj | ωj ∈ T C(t), lj = k

}
. Tem-

porary occlusions between passengers may lead to the fragmentation of trajectories
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within the field of view of a camera. Tracktor’s simple re-identification strategy is

unable to accommodate the longer occlusions, appearance variations, and somewhat

erratic motion patterns commonly observed in airport checkpoints or crowded campus

scenes. Thus, we incorporate an SCA mechanism to resolve this issue. Our method

associates new tracklets with recently terminated tracklets such that the Euclidean

distance between the centroids of the last detection of the previous tracklet and the

first detection of the new tracklet is minimized. That is, let τm and τn be two distinct

tracklets, and bt
i

m, bt
f

n be the first detection of τm and the last detection of τn, respec-

tively. Defining δe = ||b
ti

m − bt
f

n ||
2, the association cost between τm and τn is given by

Csc(τm, τn) =





δe if 0 < ti − tf 6 tth, δe < δmax

∞ otherwise,

(6.1)

where tth, δmax are the maximum temporal offset and maximum distance to consider

two tracklets for association. We then compute the optimal tracklet assignment using

the Hungarian algorithm based on the costs Csc(τm, τn).

6.2.1.2 Multi-Camera Tracklet Association

Since passengers may temporarily leave and later re-enter the fields of view of

individual cameras, their corresponding trajectories may be fragmented into multiple

segments. Therefore, to associate tracklets across camera views, we consider the fact

that two tracklets corresponding to the same target include temporally overlapping

detections. Let the camera whose partial tracklets we wish to complete be our primary

camera, and let the auxiliary camera be the one whose tracklets will be used to

complement the tracklets observed by the primary camera. Further, let Tp and Ta be

the sets of tracklets in the primary and auxiliary cameras, respectively. As Alg. 7

shows, we use the homography Hp,a to project detections from the auxiliary camera

onto the primary camera. However, due to projective distortions, the corresponding
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Algorithm 7 Multi-Camera Tracklet Association Algorithm

Input: Set of tracklets from the primary camera Tp and the auxiliary camera Ta, ho-
mography Hp,a mapping the auxiliary camera image plane to that of the primary
camera

Output: Updated set of primary tracklet labels
1: Project the detections of tracklets in Ta onto the image plane of the primary

camera using Hp,a

2: Compute the association costs Cmc(τa, τp) ∀τp ∈ Tp, ∀τa ∈ Ta according to Eq.
6.2

3: Initialize the graph Gmc = (V,E), E = ∅, V = {τ |τ ∈ Tp ∪ Ta}
4: while minτp∈Tp,τa∈Ta (Cmc(τa, τp)) <∞ do
5: Associate tracklet segments using the Hungarian algorithm based on the costs

Cmc
6: Update the costs of the tracklets τ ∈ Ta and τ ′ ∈ Tp for which τ ∩ τa /∈ ∅ and

τ ′ ∩ τp /∈ ∅ to Cmc(τ, τp) = Cmc(τa, τ
′) =∞

7: E = E ∪ (τa, τp)
8: end while
9: for each τp ∈ Tp do

10: Np = DFS(τp,Gmc)
11: Update the labels of tracklets in Np using Eq. 6.3
12: E = E − {(τi, τj)|(τi, τj) ∈ Np}
13: end for

bounding boxes in the two cameras may not necessarily overlap. Hence, we compute

the optimal association cost using the Fréchet distance [64] between the centroids of

the detections in each tracklet as follows:

Cmc(τa, τp) =





f(τ̃p, τ̃a) if τ̃a 6= ∅, τ̃p 6= ∅, f < fmax

∞ otherwise,

(6.2)

where τ̃p and τ̃a are the temporally overlapping segments of tracklets τp ∈ Tp and

τa ∈ Ta, f(τ̃p, τ̃a) is the Fréchet distance of the centroids of the corresponding detec-

tions, and fmax is the maximum distance threshold that allows tracklet pairs to be

considered for association.

We use the Hungarian algorithm again to determine optimal tracklet associa-

tions according to the costs Cmc(τa, τp). However, since the trajectory of a passenger

that re-enters the field of view of a camera multiple times consists of a sequence of
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tracklets, we iteratively update the association costs until no further associations are

possible. Furthermore, we keep track of indirectly associated tracklets by construct-

ing the reachability graph Gmc = (V,E), which contains one edge for each pair of

associated tracklets. We then set the temporal identifiers of all the tracklets in Tp

associated with a common tracklet τa to the first identifier among them. That is, the

temporal label of a tracklet τ is given by

lτ = min
(τi,τj)∈Np

(lτi), (6.3)

where lτi is the temporal label of tracklet τi, and Np is the set of tracklets that can be

reached from tracklet τp on Gmc, which we obtain through Depth-First Search (DFS).

6.3 Results and Discussions

In this section, we first discuss the datasets and then the evaluation of the

monocular tracking and the multi-view tracklet association algorithms. Our evalua-

tion is based on the Multi-Object Tracking (MOT) metrics [69, 193].

6.3.1 Multi-camera Datasets

To evaluate the MCTA algorithm, we use partially overlapping CLASP1 and

CLASP2 datasets described in Chapter 3, Table 3.1. Since tracking evaluation de-

pends upon frame-by-frame temporal information, rather than substantially limiting

the number of video sequences used in the assessment of our tracking algorithms, we

consider all the annotations listed in Table 3.1 in our experiments. The only method

that uses the training set annotations is the SL approach. Hence, this evaluation

strategy also more accurately reflects the generalization performance of the SSL ap-

proaches although it favors the SL method. We also use the recently published

WILDTRACK multi-camera datasets [11] to evaluate the cross-camera association

performance in fully camera networks with fully overlapping fields of view. This
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Figure 6.2: Sample images from the WILDTRACK dataset.

Figure 6.3: Homography projection from primary to auxiliary camera in CLASP2
datasets: (a) before distortion correction, (b) after distortion correction.

datasets consist of seven significantly overlapped lateral camera views with a reso-

lution of 1980 × 1080 and a frame rate 60 FPS. The total number of bounding box

annotations is 9, 518, which corresponds to 313 persons annotated at 2 fps for each

videos. Fig. 6.2 shows sample images from the WILDTRACK datasets.
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6.3.2 Association in Overhead Camera Networks

In the proposed SSL model-based tracking-by-detection method, we consider

different association mechanisms. Firstly, we associate the detections and their cor-

responding appearance features across single-camera frames using Tracktor [23] to

generate the tracklets. Secondly, we only consider tracklets in the primary camera

for association when there are temporally and geometrically overlapping tracklets in

neighboring auxiliary cameras. Fig. 6.3 shows the 2D homography-based geometrical

relationship between the primary and auxiliary cameras.

Table 6.1: Single-camera tracking evaluation for person and baggage classes.

Class Model α SCA GT ↑IDF1 ↑IDR ↑IDP ↑Rcll ↑Prcn ↓FP ↓FN ↑MT ↓ML ↓IDs ↓FM ↑MOTA ↑MOTP

Person

Base ✗ ✗ 391 84.5 83.3 86.1 91.2 94.6 750 753 283 42 93 152 84.0 85.5
SSL ✗ ✗ 391 87.8 87.2 88.3 95.1 96.4 350 554 319 31 80 123 90.1 85.2
SSL X ✗ 391 88.4 87.9 88.9 95.6 96.6 354 438 326 27 86 122 90.7 85.2
SSL X X 391 88.5 88.1 88.9 95.6 96.5 358 435 326 26 76 123 90.8 85.2
SL ✗ ✗ 391 87.0 86.4 87.7 95.2 96.9 357 457 332 24 86 121 90.5 85.2

Bag

Base ✗ ✗ 255 67.5 57.0 86.4 61.1 92.3 431 1800 108 73 31 89 54.3 81.0
SSL ✗ ✗ 255 78.9 74.2 85.4 81.0 93.7 308 1014 159 38 71 105 72.9 80.4
SSL X ✗ 255 81.3 78.2 85.5 84.4 92.3 401 822 169 28 68 97 75.1 80.4
SSL X X 255 84.3 81.1 88.5 84.4 92.3 401 822 169 28 48 97 75.6 80.4
SL ✗ ✗ 255 85.3 86.6 84.1 94.7 91.7 387 339 226 10 103 69 83.2 80.0

6.3.2.1 Single-Camera Tracking

We compare the performance of our single-camera tracking algorithm using the

proposed SSL detectors with the pre-trained baseline detector and the SL detector.

We also evaluate the impact of our SCA algorithm, described in Section 6.2.1.1,

where we use tth = 3 seconds and δmax = 200 in Eq. 6.1. To preserve the entirely

self-supervised nature of our pipeline, we refrain from fine-tuning the re-identification

module of the baseline tracker, which is pre-trained on the MOT17 [69] dataset. To
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dissociate the evaluation of the tracking method from our MCTA approach, we use

a modified version of the annotations in Table 3.1, where a passenger that re-enters

the field of view of a camera receives a new identifier. Thus, the number of unique

ground truth passenger identifiers (column GT in Table 6.1) is much higher than those

listed in Table 3.1. We evaluate our system’s ability to maintain consistent passenger

identifiers across multiple perspectives in Section 6.3.2.2. Fig. 6.4 shows the SCT

Figure 6.4: Comparison of SCT performance of person and baggage classes in indi-
vidual cameras of the CLASP1 and CLASP2 datasets using the Baseline, SSL-wo-α,
SSL, and SL detectors.

performance of our algorithm for passengers and baggage items in the individual

cameras of the CLASP1 and CLASP2 datasets. For passenger tracking, the SSL

methods outperform the SL approach in terms of IDF1, IDP, and IDR in all the

scenarios under consideration. In both datasets, the SL approach shows slightly

higher MT results for camera 9, largely due to the partial passenger detection problem.

Since CLASP1 has lower object density, we observe more consistent performance

among different methods for both cameras in that dataset. While all the methods
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perform better on the CLASP1 dataset, the benefits of SSL training compared to the

baseline detector are particularly evident in the MT results on the CLASP2 dataset.

Regarding baggage items, although the SSL models lead to a moderate increase

in the number of IDs, these switches are offset by substantial gains in MT. As a

matter of fact, the SL model shows a much more significant degradation in IDs for

the more complex CLASP2 dataset. This is particularly evident for camera 9, and it

explains the lower IDP obtained by the SL method in that dataset. The most evident

performance gains for baggage tracking are observed in camera 11 on the CLASP2

dataset because of the difficulty introduced by partially visible baggage items using

the baseline model.

As Table 6.1 shows, the SSL-wo-α and SSL approaches outperform the tracker

using the baseline detector by a large margin, and the notable improvements in

identity-based F1 (IDF1), recall (IDR), and precision (IDP) [248] as well as in stan-

dard recall and precision are primarily a result of the reduction in false positives

and false negatives generated by the SSL model. Self-supervision also improves the

tracking-specific metrics of mostly tracked (MT), mostly lost (ML), identity switches

(IDs), and fragmented (FM) trajectories [193]. As a result, our method produces

substantial gains in MOTA. Again, both SSL models perform on par with the SL

model for person tracking. For baggage items, we see similar performance improve-

ments; however the challenges illustrated in Fig. 3.9 again preclude the SSL models

from reaching the performance of the SL strategy. Finally, our SCA algorithm leads

to further performance gains, particularly in terms of IDs.

6.3.2.2 Multi-Camera Tracklet Association

From the stereo geometry (discussed in Chapter 2), we can associate the tar-

gets in two adjacent cameras using Eq. 2.5, where we need the calibrated intrinsic

and extrinsic parameters, which is one of the limitations for developing real-world
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Table 6.2: MCTA evaluation. The column labeled Dist. indicates whether we employ
the Hausdorff (dh) or Fréchet (df ) distance to evaluate tracklet similarity.

Dist. SL SSL-wo-α SSL MCTA ↑IDF1 ↑IDR ↑IDP ↓IDs ↑MOTA

-
✗ X ✗ ✗ 82.1 83.2 81.0 157 88.2
✗ ✗ X ✗ 82.0 83.1 80.9 170 88.5
X ✗ ✗ ✗ 81.5 82.8 80.4 170 88.0

dh

✗ X ✗ X 87.4 88.9 86.4 115 88.8
✗ ✗ X X 84.8 88.6 86.2 140 89.0
X ✗ ✗ X 86.2 87.5 85.0 134 88.6

df

✗ X ✗ X 88.0 89.3 86.8 115 88.9
✗ ✗ X X 88.2 89.5 87.0 132 89.1
X ✗ ✗ X 86.7 88.1 85.5 122 89.0

large multi-camera surveillance systems. We use the image feature correspondence-

based homography [249] to address this problem, which has significant projection

error. However, our proposed tracklet association algorithm can handle this error

by leveraging the Fréchet polygonal curve distance as a matching metric. We also

observe a considerable camera distortion, which we correct by estimating the distor-

tion coefficient and the camera intrinsic parameters by calibrating a pair of cameras.

Since the cameras used in CLASP1 and CLASP2 datasets are at ceiling height, the

approximate distortion coefficient works for all the cameras where the camera height

from the ground is Z = 3, 000 pixels (see Fig. 6.3). We find a focal length f = 1, 217

pixels and estimate the distortion coefficients from one camera pair calibration to use

for all other cameras. Fig. 6.3 shows that this approximation generates promising

results without calibrating all the camera pairs. For fully overlapped WILDTRACK

datasets, we use the calibration parameters in our MCTA algorithm to compute the

matching metric. As shown in Fig. 6.5, there is no significant projection error after

correcting the distortion using calibration parameters. The limitation of manual cal-

ibration is that we may need to repeat the manual calibration procedure to extend

the camera networks, or deploy the MCTA algorithm in different camera networks.
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Figure 6.5: 2D homography projection on distortion corrected frames in WILD-
TRACK datasets: (a) C2-to-C1, (b) C3-to-C1, where the green dots in the bottom
cameras (slightly deviated from the bottom centroids) represent the projection from
the corresponding top cameras.

We evaluate the performance of our MCTA algorithm using the same experi-

mental procedure described in the previous section, with the exception that passen-

gers are now assigned unique identifiers as they leave and re-enter the fields of view

of the cameras. Based on the overall flow of passengers through our simulated check-

point, cameras 9 and 11 are the primary cameras for our tracklet association method

(Alg. 7). Cameras 2 and 5, the cameras immediately below them in Fig. 2.13, are the

respective auxiliary cameras. For a fair comparison among the detectors, we generate

tracklets in the auxiliary cameras using the corresponding SL or SSL model used

in the primary cameras (i.e., trained using only frames from the primary camera).

To provide a set of reference performance measures, we first evaluate our tracking

algorithms in the absence of an MCTA mechanism. We then assess the performance

of our association method when tracklet similarity is computed using the Fréchet
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distance and the more traditional Hausdorff distance [153] with fmax = 0.25 in Eq.

6.2.

Table 6.2 shows that tracklet association improves the IDF1 measure by up

to 6.2%, which is mainly a consequence of the dramatic reduction in the number of

identity switches. Using the Fréchet distance to determine tracklet similarity pro-

vides consistent performance improvements in all the metrics under consideration,

especially for the SSL strategy. The more modest gains in MOTA (up to 1.0%)

demonstrate the need for measures that focus specifically on the impact of identity

switches on tracking performance. Fig. 6.6(a) illustrates the tracklet association

#1357
C11

(a) (b)

C05

C11

#2232
C11

#0627
C09

#1652
C09

Figure 6.6: Sample results showing (a) cross-camera passenger association between
cameras 5 and 11 using MCTA, and (b) tracking and association between passengers
and baggage items where the top and bottom rows show image sequences from cam-
eras 9 and 11 respectively. We associate passenger tracklets in cameras 9 and 11 by
leveraging the associations between cameras 2 and 5 (passengers flow in Fig. 2.13:
C9→C2→C5→C11). Baggage items are associated using temporally constrained
distance-based matching when each item receives a unique identifier PiBj, repre-
senting the j-th item from the i-th passenger.

procedure between cameras 5 and 11. As the passengers with identities P2 and P3,

whose trajectories are represented in green and yellow, move from the field of view of

camera 5 to camera 11, their tracklets are projected from the former camera to the



146

latter. The projected trajectories (red for P2 and pink for P3) are successfully asso-

ciated with the tracklets from camera 11 based on the Fréchet distances among their

temporally overlapping segments. In the instant shown in the figure, passenger P2 is

re-entering the field of view of camera 5, and the corresponding tracklet is also cor-

rectly associated with that passenger’s tracklet in camera 11. Hence, the passenger’s

identity is successfully handed off between the cameras. Fig. 6.6(b) demonstrates

a potential application of the proposed system. Baggage items are associated with

passengers when they are divested in camera 9 and their identifiers can be verified at

retrieval time, which is observed in camera 11.

6.3.3 Association in Lateral Camera Networks

We conduct slightly different experiments to see how multi-camera detections,

tracking, and MCTA work in fully calibrated lateral camera networks, so as to com-

pare the performance with the baseline.

Multi-camera Detection. We have addressed the perspective distortions

problem in the WILDTRACK datasets, since the projections from the cameras show

significant localization error, which reduces the tracking performance under severe

occlusion. However, in the WILDTRACK datasets, the cameras are not top-down,

so we address severe occlusion challenges without using any sophisticated algorithm

[37]. In our approach, we employ Faster-RCNN (FRCNN) [1] with Feature Pyramid

Network (FPN) [49] to train on the subsets (90%) of WILDTRACK multi-camera an-

notations, while the remaining portion is used for testing, similar to [11]. We project

the bottom centroids of all the detected bounding boxes from all the cameras C1-C7

to the common ground plane as 3D points (Z = 0). Since the distributions of the pro-

jections are separable in 3D space, we apply a non-parametric mean-shift algorithm to

obtain the possible modes as final detections. We called the mean-shift-based multi-

camera detection method as FRCNN+MS. The main challenge of using the mean-shift
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Figure 6.7: Occlusion reasoning by clustering the projections in a 3D map: (a) NMS
fails to recover the occluded target in a single-camera view, (b) set of predictions
after applying a detection threshold 0.5 without NMS, (C) clustered projections in
the 3D map, (d) cluster modes projected back to the image plane.

clustering algorithm in FRCNN+MS is the bandwidth selection for a Gaussian ker-

nel (see Eq. 3.1). As shown in Table 6.3, we observe competitive results using an

empirically determined bandwidth of 0.029. To ignore the dependency on optimum

bandwidth selection, we propose an iterative clustering approach by a matching al-

gorithm which we called FRCNN+CM that iteratively matches the detections from

the primary (C1) and auxiliary (C2-C7) cameras as bipartite matching using Hun-

garian [126] to update the final set of detections. After finishing the iterations, we

can easily discard false detections if any detection does not find any correspondence.

This algorithm also depends on the maximum matching distance threshold, which

we set at 50 cm (the average footprint of a human body in the 3D world). In Ta-

ble 6.3, we find that the FRCNN+CM method is 1.3% better than FRCNN+MS in

terms of MODA. Again, in the case of NMS, when the persons are occluded from

each other, it is common for two or more detections to significantly overlap, and the

NMS algorithm cannot keep all of the predictions during occlusions. To overcome

this challenge, we propose a new multi-view NMS approach (FRCNN+MV-NMS )

in which we keep all the detections at a particular detection probability score and

project them onto 3D world coordinates using accurate camera calibrations. To find
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Table 6.3: Performance evaluation of our multi-camera detection algorithm on the
WILDTRACK datasets.

Method MODA MODP Prcn Rcll
Deep-Occlusion+KSP 0.75 - - -

Deep-Occlusion 0.74 0.54 0.95 0.80
ResNet-DeepMCD 0.67 0.64 0.85 0.82

DenseNet-DeepMCD 0.63 0.66 0.87 0.74
RCNN-projected 0.11 0.18 0.68 0.43

FRCNN+MV-NMS 0.78 0.93 0.94 0.82
FRCNN+MS 0.76 0.85 0.87 0.89

FRCNN+CM 0.77 0.88 0.90 0.88

the modes of the distributions of all the projected detections from all the cameras

in a network, we leverage the mean-shift algorithm and obtain the unknown modes

of the distributions as final detections. Furthermore, we compute the cluster scores

using Eq. 3.2, an emphirical optimum bandwidth of 0.028 for mean-shift clustering,

and an optimum clustering score threshold of 0.016 from the precision-recall curve

for the validation set. In Table 6.3, we report a 3.9% improvement over the baseline

Deep-Occlusion+KSP [37]. Fig. 6.7 demonstrates the predicted cluster modes in the

3D projection map and their corresponding localization in the 2D image plane after

applying the inverse projection.

Multi-camera Tracking. To demonstrate the benefits of the MCTA algo-

rithm in lateral camera networks, we match tracklets using an approach similar to

the one described in section 6.3.2.2. For WILDTRACK datasets, we consider camera

C1 the primary camera and all others auxiliary cameras, so that the homographies

can project SCT tracks onto a common image plane. As our goal is to evaluate

MCTA, which is designed to track multi-camera tracklets in the image plane, instead

of tracking multiple objects in the 3D map, we apply MCTA to measure the tracking

performance in each camera’s image plane. Table 6.4 shows that Tracktor with our
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MCTA mechanism improves IDF1 by 8.4%, and MOTA by 2.8% in C7. Compared

with the SCT baseline algorithm, our real-time MCTA shows improvements for all

the MOT metrics over all the cameras. Fig. 6.8 shows the qualitative results of our

MCTA algorithm on the WILDTRACK datasets where the same persons are detected

with unique identities when visible across multiple cameras.

Table 6.4: Monocular tracking evaluation for the person class in the WILDTRACK
datasets. Bold faced entries indicate methods augmented with our proposed algo-
rithm.

Cam. Method ↑IDF1 ↑IDP ↑IDR ↑MT ↓PT ↓ML ↓FP ↓FN ↓IDs ↓FM ↑MOTA ↑MOTP

1

KSP 28.5 18.7 60.7 34 4 0 10050 257 162 58 -140.9 59.0
KSP+ptrack 30.2 20.1 60.6 30 8 0 9173 410 131 51 -123.5 58.0

Tracktor 63.8 71.7 57.5 22 14 2 40 207 52 46 64.7 70.5
Tracktor+MCTA 65.9 74.1 59.4 22 14 2 40 207 48 46 65.2 69.5

2

KSP 29.1 19.4 58.8 28 6 1 8428 265 172 47 -121.3 50.7
KSP+ptrack 31.4 21.2 60.6 28 6 1 7698 249 128 31 -101.6 50.2

Tracktor 24.7 29.0 21.5 5 12 18 304 509 66 50 -11.7 35.1
Tracktor+MCTA 24.7 29.0 21.5 5 12 18 304 509 66 50 -11.7 35.1

3

KSP 25.8 17.0 53.7 35 4 1 9874 286 177 52 -133.5 51.2
KSP+ptrack 27.2 18.1 54.2 33 5 2 9208 402 150 46 -120.5 49.1

Tracktor 62.1 69.4 56.2 21 16 3 55 221 47 52 62.8 76.9
Tracktor+MCTA 64.1 74.1 58 21 16 3 55 221 45 52 63.1 66.9

4

KSP 20.5 12.6 54.4 14 5 1 4362 137 42 16 -255.3 60.5
KSP+ptrack 22.1 13.9 54.4 13 2 5 3904 180 32 11 -222.1 60.3

Tracktor 52.8 78.1 39.8 7 4 8 16 139 9 1 34.7 58.5
Tracktor+MCTA 52.2 77.3 39.4 7 4 8 16 139 9 2 34.7 57.4

5

KSP 39.7 32.6 50.9 20 13 3 2560 598 117 79 5.8 54.2
KSP+ptrack 41.7 35.0 51.7 18 12 6 2334 672 94 54 10.9 55.2

Tracktor 53.0 61.7 46.5 13 16 7 17 186 51 40 63.0 75.7
Tracktor+MCTA 54 64.6 47.4 13 16 7 17 186 47 40 63.6 75.7

6

KSP 26.6 17.5 55.4 34 4 1 10200 375 172 77 -136.1 52.2
KSP+ptrack 29.4 19.9 56.4 30 8 1 8860 498 127 51 -108.4 52.8

Tracktor 46.3 53.2 40.9 18 17 4 103 308 102 81 41.9 61.9
Tracktor+MCTA 48.9 57.3 43.3 18 17 4 103 308 98 81 42.4 61.6

7

KSP 38.6 27.1 67.0 22 3 0 4488 171 72 28 -61.1 65.1
KSP+ptrack 41.7 30.3 66.8 19 3 3 3791 253 49 21 -39.4 64.9

Tracktor 68.7 69.4 68.0 17 6 2 55 66 36 18 72.9 80.1
Tracktor+MCTA 74.5 78.9 73.7 17 6 2 55 66 24 18 75.0 80.0
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Figure 6.8: Sample MCTA results on WILDTRACK datasets. The red arrows indi-
cate the same person with the same identities across multiple cameras, and the colors
of the bounding boxes also represents unique identities.

6.3.4 Computational Complexity Analysis

To achieve real-time performance, we down-sample the 30 fps synchronized

input videos of size 1920× 1080 to 10 fps and size 1080× 720 without hurting overall

tracking performance (shown in Table 6.6). We process input videos using a 4-seconds

batches of 40 frames and assign each camera to a single RTX-2080 GPU for detection

and tracking (see Fig. 6.1). After independently generating single-camera tracks,

MCTA generates cross-camera tracks in the CPU using Alg. 7.

The execution time of the proposed MCTA algorithm depends on the average

length of the overlapping tracklet segments in each camera pair. The algorithm can

be executed in real-time in the CLASP1 dataset, which contains fewer and shorter

tracklets. In CLASP2, it can run at approximately 12 fps. However, the current im-

plementation described in section 6.3.2.2 uses the entire life-span of a tracklet to com-

pute the Fréchet or Hausdorff association distance in the MCTA algorithm. Hence,

the offline-MCTA in Table 6.5 shows 3 fps processing speed for the pre-computed SCT

tracklets in a camera pair where the total number tracklets for Hungarian matching

are Tp = 56, Ta = 52 and the corresponding total unique video frames are 12, 534

and 11, 185 respectively. It is possible to substantially reduce computation time by
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Table 6.5: Computation complexity of offline-MCTA

Dist. Metric Max. Track Size Infer. Time (secs) Memory (MB)

Hausdorff
– 94 18.3

240 16 18.3

Fréchet
– 3995 18.3

240 3779 18.3

Table 6.6: Computation time of the proposed online-MCTA.

Data. Dist. Metric Max. Size Infer. Time (ms) Memory (MB) MOTA

CLASP1
Hausdorff

– 0.52 4.5 94.5
240 0.50 4.5 94.5

Fréchet
– 25.6 9.1 94.6

240 8.20 4.3 94.6

CLASP2
Hausdorff

– 0.64 16.3 78.4
240 0.61 16.3 78.4

Fréchet
– 83.3 22.7 78.5

240 19.6 16.3 78.7

limiting the length of single-camera tracklets compared by the algorithm. Table 6.6

shows that if we limit the size of the tracklets to 240 frames (or eight seconds), it

is possible to achieve real-time performance for both datasets without degrading the

accuracy of the algorithm.

In Table 6.7, we report the evaluation results of a two camera system where

the real-time MCTA integrated with other detector variants such as FRCNN. Here,

we observe real-time tracking by assigning one camera to each GPU and resizing

input images to 1080 × 720 with frame rate 10 fps. The results of our multi-camera

systems shown in Fig. 6.1 can track any number of cameras in real-time. However, the

bottleneck is the multi-stage detector, which can be replaced with a lighter backbone

or a single-stage real-time detector, such as [54].
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Table 6.7: Computation time of the proposed tracking-by-detection framework where
we employ an online-MCTA with FRCNN [1] detector.

#GPU Model Infer. Time (fps) Peak Memory (MiB)

1
Detector 10 8006

SCT 36 864
MCTA 320 9

2
Detector 19.8 6827

SCT 51 861
MCTA 333 9

6.4 Conclusion

In this chapter, we propose an unsupervised MCTA method that only re-

quires the homographies among neighboring cameras. We developed and applied

both offline and online MCTA in overhead and lateral views. Our offline MCTA uses

the pre-computed single-camera tracks to generate and associate all the overlapping

tracklets across the cameras in a single run. However, to apply the MCTA in a real

multi-camera system, we extend it to an online version by processing a four-second

batch at a time. A graph optimization method performs the connection between the

current and previous multi-camera batch results. Our experiments show that the

proposed framework can accurately detect and track multiple objects across camera

views in airport checkpoint scenarios and campus environments. Our MCTA frame-

work is flexible and scalable, i.e., we can include any number of cameras based on

the available computing resources. Since our MCTA employs SSL detectors and a

pre-trained tracker to generate single-camera tracklets, it requires no training data,

and its performance can be further improved by incorporating multi-view SSL-based

appearance models [108].

Our framework can also be extended for a continuous learning scheme, where

multi-view pseudo-labels are generated from the global tracks in the first batch run.
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Since the single-camera tracker already leverages a triplet loss-based Re-ID, we can

update the positive (same camera track state) and negative (different camera track

state) examples to update the Re-ID model and use the SCT embeddings to perform

appearance matching in cross-camera association. Thus, the same Re-ID model can

be used for single and multi-camera associations without additional computation

overhead.
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CHAPTER 7

CONCLUSION & FUTURE WORK

In this chapter, we summarize the contributions and give an overview of the

findings from all the objectives described in chapter 1 as well as possible directions

for future work.

Objective 1: Test-time Data Augmentation for Unfamiliar Camera Per-

spectives

We have proposed a test-time data augmentation approach to enhance the

detection rate in overhead camera views where state-of-the-art pre-trained models

struggle due to the unfamiliar perspective. From the extensive experiments on the

multiple version of the CLASP datasets, we found that the proposed test-time aug-

mentation technique improves passenger and baggage detection in overhead views,

and can discard low score predictions, mostly corresponding to false positives. This

approach can be useful for generating high-quality predictions from unseen data where

manual labels and retraining the pre-trained model for every unseen test perspective

are expensive. Despite its satisfactory performance, our algorithm has two main

limitations. First, we only consider the rotation augmentation, since the dataset

requires the rotation invariance property, i.e., the appearance remains recognizable

even when we rotate images at multiple random angles. We can address this challenge

by incorporating data-specific augmentation such as motion-blur, color, synthetic ob-

jects, and so on. Second, the computational complexity increases linearly as we call

a pre-trained model for each augmented version of the input frames. Even though

distributing the computations across processing units can address this bottleneck to

apply the proposed technique during inference, the findings from this objective clearly

indicate that the pre-trained CNN model should learn about rotation invariance to

allow the model to be deployed in real-world surveillance applications. We have ad-
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dressed the pre-trained model uncertainty problem in object detection and panoptic

segmentation downstream tasks along this direction. In the future, we intend to

further improve the performance of our test-time augmentation-based detection algo-

rithm by employing dynamic mechanisms for choosing the most informative rotation

angles.

Objective 2: Self-supervised Learning for Object Detection

We developed an SSL framework to address the limitations of multiple-object

detection algorithms in an unfamiliar perspective when the availability of manual

training labels is limited. Our SSL approach can generate high-quality pseudo-labels

and incorporate the estimated uncertainty into the pre-trained model to iteratively

update the model weights for unseen perspectives. Our experimental evaluation shows

that a pre-trained model with high uncertainty on unseen multi-camera perspectives

converges after a few iterations and successfully detects the classes of interest in

multi-camera views of complex real-world scenarios. Our SSL framework is flexible

and scalable, i.e, we can apply it for most downstream tasks learning in machine vision

applications, since it requires no training data, works without computational overhead

during inference, and can include any number of cameras in the network. Our frame-

work can also be extended for semi-supervised learning using some manual labels

if available, and can further improve performance compared to fully self-supervised

models.

In the currently proposed SSL method for object detection and instance seg-

mentation, we generate pseudo-labels for all unseen data, which is an inefficient ap-

proach as we need to process significant amounts of redundant information during SSL

training. Instead, we could sample only the most complex samples where the model

needs to improve the image understanding ability of the pre-trained model. How-

ever, unlike image region ranking in semantic segmentation [103] for retraining, for

detection or instance segmentation models, it is difficult to establish image-level rank-
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ing criteria to consider for SSL retraining. To address these challenges, we may use

image-level out-of-distribution (OOD) predictor results (embeddings and free energy

scores) to identify the similarity between the closed set (data used in the pre-trained

model) and open set (unseen data). Furthermore, we can sample hard and easy ex-

amples based on similarity scores, instead of random sampling or using large unseen

datasets.

Objective 3: Self-supervised Learning for Panoptic Segmentation

In Chapter 4, we introduced a self-supervised learning technique to accurately

segment multiple fruit flower species without significant manual labeling efforts. Sim-

ilar to our SSL technique for object detection, we automatically generate panoptic

pseudo-labels by leveraging data augmentation during test time. However, we extend

the SSL approach by including a semantic segmentation refinement strategy that

produces accurate panoptic pseudo-labels for iterative training.

The proposed SSL framework for multi-species flower segmentation can be ex-

tended to design generalized deep learning tools to provide real-time insights into the

growth and health of the fruits/flowers by analyzing the agricultural visual data, so

that farmers can make more informed decisions, improve the quality of the fruits/flowers,

and increase their yield, even though the sensor data drifts significantly across dif-

ferent species, locations, weather condition, and harvesting seasons. Machine vision

algorithms specifically fail to detect dense and cluttered flowers/fruits for multiple-

species orchard fields when the training and testing data are significantly different.

Since agricultural field data distributions drift with time, location, and weather con-

ditions, the machine learning model deployment must be robust to data drift chal-

lenges. To address these challenges, we can extend our multi-species flower detection

approach as a counting model that can also employ a representative sampling tech-

nique for new information, so as to continuously update the predictive model when

data drift takes place in different locations or under various weather conditions.
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Figure 7.1: Continuous learning framework using OOD detections. A closed-set clas-
sification model generates the free energy scores and the latent embeddings for each
input from unseen open-set datasets. The embeddings are used to compute the dis-
tribution of the k-means distances from the closed set clusters. Stratified sampling
leverages the weighted free energy scores to select representative OOD frames for
retraining the closed-set classification model.

As shown in Fig. 7.1, a continuous learning framework can be designed based

on state-of-the-art object detection [7, 9] and recognition architectures [32, 250]. We

can also incorporate an OOD classifier [32] to intelligently sample outliers from new

datasets and employ unsupervised clustering methods [34] to enhance the robustness

of outlier predictions of the OOD model.

The proposed research can significantly benefit agricultural automation and

robotics by estimating the blooming intensity of fruit flowers or counting the density

of multiple fruit species. Our SSL learning framework with representative sampling

can help farmers to assess the yield of the upcoming harvest and plan their harvesting

schedule accordingly. Moreover, by monitoring the number of fruits/flowers on a tree

or a branch, farmers can identify areas of an orchard that need more attention in

terms of fertilization, watering, thinning, and pruning. Also, the proposed models

can be trained to recognize the patterns of diseases in the leaves or fruits and alert

farmers to take action before the infection spreads further. By analyzing the data

from the sensors, the models can provide insights into the best conditions for the

growth of the fruits and alert farmers to take action if any of the factors are not

optimal. Overall, Our proposed models can be a valuable tool for optimizing fruit
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production in agriculture and enhancing safety of deploying SSL methods without

using a significant amount of field data to pre-train the initial models.

Objective 4: Unsupervised Learning for Multiple Object Tracking and

Segmentation

Downstream tasks such as object detection, segmentation, motion prediction,

and appearance similarity assessment are widely used computer vision tools for seg-

menting and tracking multiple objects simultaneously. In Chapter 5, we proposed an

unsupervised multi-task learning method that leverages task-dependent uncertainties

to learn the contribution of shape or appearance and location features from multiple-

objects video datasets. We incorporate the temporal relationships among sequential

multiple-object embeddings as a simple constraint in the clustering algorithm, which

can accommodate various object tracking challenges such as detection mistakes and

entry into or exit from the scenes. Our experimental results show that our approach

outperforms several state-of-the-art MOTS algorithms. However, even though our

proposed technique can cluster multiple object embeddings, it sometimes fails to as-

sociate cluster heads with detections in subsequent frames due to significant motion

and severe occlusions. Therefore, to address these issues, we can extend our algorithm

to include motion prediction as an additional task.

In the future, our goal is to use more robust entry/exit/occlusion detection

techniques to increase the accuracy of data association mechanism to the problems

of multiple-object tracking as well as video instance segmentation [26]. We can also

incorporate our SSL framework for the multi-task feature extractor to deploy the pro-

posed technique in unseen data. Our unsupervised approach can also be extended to

a self-supervised method to capture abrupt object appearance variations in crowded

scenarios. Furthermore, we can train a self-supervised triplet loss model by automat-

ically mining the clusters of our jointly learned embeddings.

Objective 5: Unsupervised Multi-camera Tracklet Association
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Finally, we propose an unsupervised MCTA method that employs our SSL

detector models in a single-camera tracker and uses 2D homographies among neigh-

boring cameras to perform cross-camera associations. We demonstrate the effective-

ness of our MCTA algorithm by evaluating the performance in both fully (lateral

camera views) and partially overlapping (overhead camera views) camera networks.

Our experiments show that the proposed framework can accurately detect multiple

objects across camera views in airport checkpoint and campus environment scenarios.

As our method requires no training data nor camera calibration, it can be applied to

any new camera system and scaled for any number of cameras. We implement and

experiment with both offline and online versions of MCTA to verify our algorithm’s

flexibility.

In the future, our goal is to improve the 2D homographies using deep coarse

feature-based correspondences [168], as we have observed significant projection errors

with the use of a simple RANSAC-based approach. Although we avoid multi-view

appearance modeling due to the challenging overhead perspective and to achieve real-

time inference, we can also include an appearance model using perspective proof de-

tection [251] and incorporate triplet loss-based cross-camera feature learning [108,

107] to enhance cross-camera association. To address the impact of perspective

changes in multi-camera appearances, we can project image patches from one cam-

era to another to compute appearance similarity, or apply a learning technique to

estimate appearance similarity between two cameras at different planes. Finally, we

can employ the idea of SSL for MCTA feature learning. We can efficiently sample

positive and negative examples from multi-camera global tracks for a video segment.

Whereas the easy positive examples would come from the same camera, the complex

examples would come from other cameras. Then we can train a triplet loss-based

deep neural network model to generate embeddings that will be used with motion

features in our current algorithm.
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