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We provide a geometric condition that guarantees strong Wilf equivalence in the generalized factor order. This provides a powerful tool for proving specific and general Wilf equivalence results, and several such examples are given.
1. Introduction
We say that a nonempty word  is a factor of a word  if the letters of  appear consecutively in , i.e., if  for some words  and . More generally, given a poset  and words  and  whose letters are from , we say that  is a generalized factor of  if  for a word  of the same length of  with the property that  for all . Each such  is called an embedding of u in w, and if no such embeddings exist, then we say that w avoids u. The poset induced by the generalized factor relation is called the generalized factor order over P.
This paper is concerned only with the case where , the positive integers with the usual order. For a word , we define  to be the length of  and  to be the sum of the letters of . Kitaev, Liese, Remmel, and Sagan [5] introduced the generalized factor order over  and defined two words  and  to be Wilf equivalent if the number of words of length  with sum  that avoid  is the same as the number of words of length  and sum  that avoid , for all  and . Defining the generating function

we see that  and  are Wilf equivalent if and only if .
The notion of Wilf equivalence can be refined. Define  to be the number of embeddings of  in . For example, if  then , because both 165 and 656 are embeddings of  in . Define

Following Pantone and Vatter [8], we say that  and  are strongly Wilf equivalent if

Note that , and so  and  are Wilf equivalent if and only if .
Generalizations of this notion of embedding can be found in the works of Chamberlain, Cochran, Ginsburg, Miceli, Riehl, and Zhang [1] and Langley, Liese, and Remmel [6, 7], while Hadjiloucas, Michos, and Savvidou [4] investigate the similar notion of super-strong Wilf equivalence. Various results about the Wilf equivalence of families of words are known (see [1, 5–7]), yet a tantalizing conjecture from [5] remains open.
Conjecture 1 (Rearrangment Conjecture, [5]). If  and  are Wilf equivalent, then  and  are rearrangements of each other. That is, they have the same multiset of letters.
The converse of this statement is false; it is straightforward to compute  for any particular  and so it can be verified that .
Recent work of Pantone and Vatter [8] uses the Cluster Method to prove a weakening of the Rearrangement Conjecture. They show that if  and  are strongly Wilf equivalent, then they must be rearrangements of each other. Moreover, computational evidence led them to conjecture that, surprisingly, Wilf equivalence and strong Wilf equivalence are the same condition. That is, they conjecture that  and  are Wilf equivalent if and only if they are strongly Wilf equivalent.
Herein, we prove a geometric result that partially classifies when two words are strongly Wilf equivalent. With this tool in hand, we are able to prove in a unified way conjectures from [5] and reprove several theorems from [5] and [8].
2. THE CLUSTER METHOD
The Cluster Method of Goulden and Jackson [2] is a framework that can be used to study consecutive pattern avoidance for many types of combinatorial objects. We will present a brief outline of its application to the generalized factor order; we refer the reader to [8] for a more detailed explanation in this context, and to [3] for an application to permutation pattern avoidance.
Given a nonempty word  over , an m-cluster of  is a word  together with  marked occurrences of  in  such that every letter of  is part of some marked occurrence and each consecutive pair of occurrences overlaps in at least one position. For example,  is a 3-cluster of 3122, while  is a 4-cluster of 3122 with the same underlying word but one additional marking.
Define the cluster generating function of  by

[image: ]
Figure 1: On the left, the skyline diagram of 241625. On the right, the skyline diagram of 122213132.

It follows that the generating function , which counts words by length, sum, and the number of occurrences of , can be derived from  via the formula

Therefore,  and  are strongly Wilf equivalent if and only if  and Wilf equivalent if and only if . Hence one can prove Wilf equivalence results directly using cluster generating functions.
We make one further simplification. A minimal m-cluster of  is an m-cluster of  such that no letter can be decreased without destroying a marked occurrence of . The example  above is not a minimal 3-cluster of 3122, but  is. Define the minimal cluster generating function of u by

The generating functions for clusters and minimal clusters are related by the equality

and therefore  and  are strongly Wilf equivalent if and only if . It follows that one can prove that two words  and  are strongly Wilf equivalent by exhibiting a bijection between minimal clusters of u and minimal clusters of v that preserves length, sum, and number of marked occurrences: this is the technique used in the main result of the next section.
3. RIGID SHIFTS AND STRONG WILF EQUIVALENCE
The skyline diagram of a word  of length  is the geometric figure formed by adjoining  columns of squares such that the th column is made up of  squares. For this definition a picture proves more useful: Figure 1 shows the skyline diagrams of 241625 and 122213132.
With this perspective, one can think of a minimal m-cluster of  as  overlapped copies of the skyline diagram of  that together create a larger skyline diagram. For example, the minimal 3-cluster 313223122 of 3122 is shown in Figure 2.
A rigid shift of a word  is any word  that can be formed by cutting the skyline diagram of  at some height  and rigidly moving together all blocks above the cut line in such a way that each moved column comes to rest on a column of height exactly . To illustrate, consider the word . Figure 3 shows the word  and two rigid shifts of , while Figure 4 demonstrates three deformations of  that are not rigid shifts.
[image: ]
Figure 2: Three overlaid copies of the skyline diagram of 3122 starting in positions 1, 3, and 6. The resulting skyline diagram is that of the minimal 3-cluster  of 3122.
[image: ]
Figure 3: On the left, the skyline diagram of . In the middle, a rigid shift performed by cutting the diagram at height 2 and shifting all blocks above height 2 one column to the right. On the right, a rigid shift performed by cutting the diagram at height 3 and shifting all blocks above height 3 five columns to the left.

The shift equivalence class of a word  is the set of all words that can be obtained by starting with  and performing any sequence of reversals and rigid shifts. By reversals, we mean reversing the order of the letters in the entire word, not just in some subword. We will show in this section that the shift equivalence relation is a refinement of the strong Wilf equivalence relation; that is, any two shift equivalent words must also be strongly Wilf equivalent. The concreteness and geometric nature of the shift equivalence relation is thus a powerful tool for studying Wilf equivalence in the generalized factor order.
Theorem 1. Any two shift equivalent words are strongly Wilf equivalent.
Proof. First we prove that a word and its reverse are strongly Wilf equivalent. Although this case is fairly trivial, it serves as a nice warm up for the latter part of the proof. Let  denote the reverse of . We will show that  and  are strongly Wilf equivalent by exhibiting a bijection between minimal clusters of  and minimal clusters of  that preserves length, sum, and the number of marked occurrences. Let  be the map from -clusters of  to -clusters of  defined by , where in  the placement of the markings is correspondingly reversed. As this is clearly a bijection with the desired properties, . By the results of Section 2,  and  are strongly Wilf equivalent.
We move now to the harder case. Let  be formed from  by performing a rigid shift. We will show that  and  are strongly Wilf equivalent. For concreteness, let  be the height below which all blocks remain in place and above which all blocks shift, and let  be the horizontal shift performed ( is negative if blocks are shifted to the left, and positive if shifted to the right). Let  be a minimal -cluster of  where the  marked occurrences of  begin at positions . Define  be the minimal -cluster of  with marked occurrences of  beginning at the same positions  . To complete the proof, we must show that  is a bijection from minimal clusters minimal clusters of  that preserves length, sum, and number of marked occurrences.
[image: ]
Figure 4: Three deformations of  that are not rigid shifts. On the left, only some, but not all, of the blocks of height at least two have been shifted. In the middle, all blocks of height at least two have been shifted to the left by one column, causing an illegal overhang. On the right, all blocks of height at least three have been shifted to the left by one column, creating a unconnected column of blocks.
The bijectivity of  follows immediately after observing that  and  have the same length and that  and  are the unique minimal -clusters of  and , respectively, that have marked occurrences at positions . It is similarly easy to see that  preserves length and number of marked occurrences. To establish that  is sum-preserving, it suffices to show that  is itself a rigid shift of . In fact,  is obtained from  by performing the same type of rigid shift performed on  to obtain : all blocks of  above height  are shifted horizontally by  units. Before we verify this fact, we present a graphical example. Suppose  and . The corresponding skyline diagrams are shown below.
[image: ]
One transforms  into  by rigidly shifting all blocks of height at least 3 rightward by four units. The minimal 4-clusters of  and  with marked occurrences starting at positions 1, 3, 6, 10 are shown below.
[image: ]
The darkly-shaded boxes are those that do not shift, and they are identical between the minimal 4-cluster of  on the left and the minimal 4-cluster of  on the right. The lightly-shaded boxes correspond to those that shift to form  from . There is no worry that shifting blocks of the cluster will form an unconnected column (as in the rightmost skyline diagram of Figure 4) because the presence of such a defect would imply that  itself had the same defect.
To complete the proof, we now verify algebraically that  is obtained from  by performing the same type of rigid shift performed on  to obtain . Since  is formed from  by shifting all blocks of height greater than  horizontally by  units, we can describe each letter of  in terms of the letters of  in following way:

with the convention that  if  or . The following property follows immediately from the definition of a rigid shift.
Lemma 2. If , then . Equivalently, if , then .
Furthermore, the letters of  and  can be written as

We are ready to prove that  is the rigid shift of  at height  by  units.

The third line follows from Lemma 2, and the last line shows that  is the claimed rigid shift of . As a consequence,  is sum-preserving.
4. APPLICATIONS OF SHIFT EQUIVALENCE
The notion of shift equivalence provides a uniform framework that can be used to prove many of the results of Kitaev, Liese, Remmel, and Sagan [5] and of Pantone and Vatter [8].
Kitaev, Liese, Remmel, and Sagan [5] specifically ask for such a framework, stating the following as an open question about Wilf equivalence over words in , i.e., those of length 5 that contain each letter of  exactly once:
Find a theorem which, together with the results already proved, explains all the Wilf equivalences in .
They state the following as a conjecture, subsequently proved by Pantone and Vatter [8] by an analysis of 15 cases.
Theorem 3 ([5, Conjecture 8.3] and [8, Theorem 5.3]). For any  , the words  and  are Wilf equivalent.
One can easily see that  and  are shift equivalent by considering the possible relative sizes of  and . Therefore, they are strongly Wilf equivalent and the result follows. In fact, as noted by Pantone and Vatter [8], the theorem still holds by the same proof if 1 and 2 are replaced by arbitrary positive integers  and  such that .
The next theorem was originally proved by Kitaev, Liese, Remmel, and Sagan [5], the proof requiring about a page. It follows immediately from the concept of shift equivalence.
Theorem 4 ([5, Theorem 4.3]). Let , , and  be words over  and let . Then, the words  and  are Wilf equivalent.
The words  can be created from the word  by shifting the  topmost blocks of the column of height  to the column of height . Therefore, the words are strongly Wilf equivalent.
Other results follow with slight modifications, such as replacing the assumption “if  and  are Wilf equivalent” to the assumption “if  and  are shift equivalent.” We present just one example here. A word  is said to be weakly increasing (resp., weakly decreasing) if  (resp., ) for .
Theorem 5 (Analogue of [5, Corollary 4.2]). Let  and be weakly increasing words and  and be weakly decreasing words such that  is a rearrangement of . Let m be the maximum letter in . If  and  are shift equivalent words with no letter less than m, then yuz and y, vz, are strongly Wilf equivalent.
5. OPEN QUESTIONS
Shift equivalence and strong Wilf equivalence are not the same relation. Using the computational techniques of Kitaev, Liese, Remmel, and Sagan [5], appropriately adapted to calculate the trivariate generating function  rather than the bivariate , we can find examples of pairs of words that are strongly Wilf equivalent but not shift equivalent.
Examples of least length are found among the permutations of . Here there are three strong Wilf equivalence classes that each split into two shift equivalence classes: each of the pairs , and  consists of words that are strongly Wilf equivalent but not shift equivalent. The unique pair of strongly Wilf equivalent but not shift equivalent words whose digits sum to 14 is , and there is no such pair with a smaller sum.
There may be more geometric relations, like shift equivalence, that imply strong Wilf equivalence and can explain the examples above. Ideally, one would like a small set of such geometric relations that together identify all strongly Wilf equivalent pairs.
One may also ask how many strong Wilf equivalence classes there are among the permutations . Computation shows that this sequence starts , while the counting sequence for the number of shift equivalence classes of  starts . The highly structured nature of shift equivalence could lead to exact enumeration of the latter sequence, upper bound for the former.
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