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Abstract:
In this paper, the role of human factors associated with the grid operators, e.g., human-error probability (HEP) are modeled as a function of the grid conditions as well as operators' training and experience levels. Moreover, the HEP is embedded in a previously reported Markov-chain model that generates the probability distribution of blackout as a function of time following a trigger. Specifically, through the HEP, the Markov-chains transition matrix includes the dynamics of detailed smart-grid operator attributes. To derive the grid-state dependent HEP, three real-valued performance shaping factors (PSFs), representing key human attributes of the operators, are mapped to the grid-state variables, thereby capturing the correlation between the evolution of the PSF levels and the propagation of transmission-line failures. This mapping is established based on a histogram-equalization principle, which utilizes the experimentally-estimated probability distribution of the PSF levels while assuming a monotone relationship between the HEP values and number of line failures. Further, the distribution of the PSF levels was used to identify the critical combinations of PSF levels that corresponds to an event with high joint probability as well as a high HEP.
SECTION I. Introduction
Human operators are an essential component of the smart-grid, and they introduce a new level of interdependency between the power grid and the communication and control networks. Human operators play a pivotal role in mitigating the propagation of cascading failures. Human operator error (HEP) during propagation of failures can increase the probability of a large blackout astronomically. Historical data analysis of large power-grid blackouts strongly indicates operator error as a critical initiator of cascading failures. Statistical analysis on outage data shows that among all the outage events between 1984-2006, 10.1% OF outage events were caused by operator error [1]. The 2003 Northeast blackout in the United States and Canada occurred due to a combination of transmission-line and generating-unit failures, communication component and server failures, and ineffective and erroneous human-operator responses [2]. Again, according to NERC report, the 2011 southwest blackout in the USA was caused due to human error and poor planning, which affected more than 2.7 million customers [3]. Hence, studying the interplay between the power grid and the smart-grid operators during cascading failures are critical in predicting the reliability of the smart-grid.
In recent years, a substantial amount of work has been done to understand the role of interdependencies between smart grid subsystems and the dynamics of cascading failures [4]–[5][6][7]. Reviews of models modeling cascading failure dynamics in power grids were reported in [8], [9]. Bench-marking of quasi-steady state cascading outage analysis methodologies were reported in [10]. However, none of these works includes the role of human error in modeling cascading failures in power grids. To quantify human error, Standardized Plant Analysis Risk - Human (SPAR-H) [11] methodology was used to identify the key human operator attributes, performance shaping factors, and their associated levels [12], [13].
Recently, based on grid-operator interviews, Joana et. al. [14], proposed HEP formulation depending on the performance shaping factors (PSF's) of the grid operators using the SPAR-H methodology. The probabilities for each of the PSF levels was calculated based on the smart-grid operator interviews [14]. A notion of a comprehensive model including the power grids, communication network, and the role of human operators was introduced in [15], however, the details of the state transition probabilities were absent. Wang et. al. developed a Markov-chain based human-stochastic abstract state evolution (hSASE) model including the role of human error [16], where the space of all detailed power-grid states is partitioned into a collection of equivalence classes. The model captures the cascading failures in the power grid including HEP into the state-space of the Markov chain [16]. To calculate the HEP, the authors used the HEP formulation based on performance shaping factor (PSF) level multipliers adopted from [14]. However, [16] has the following limitations. First, the mapping of the human PSFs with the power grid variables is very coarse. Second, the distribution of the PSFs is not embedded into the dynamics of cascading failures. Third, the model only considered two PSFs that have a direct correlation with the propagation of failures (out of the eight available in [14]). Other factors such as experience, work process, and procedures, etc. are ignored.
In this paper, we propose a Markov-chain based cascading failure model, including human operator actions and decisions in the loop. The joint probability of three PSFs (available time, stress and complexity of the problem) is used to map the grid operators response levels with the grid states of the Markov chain. The other five PSFs (experience of the operators, work process, fitness, ergonomics, and procedures), which are not affected by the propagation of failures, are used as a fixed initial parameter of the Markov chain for calculating the HEP i.e., three PSFs will have varying PSF levels (depending on the grid state of the Markov chain) multipliers and five PSFs will have a fixed PSF level and the associated multipliers during the propagation of failures. Then, the calculated HEP from the PSFs in a grid state is used to evaluate the probability of cascade stopping (in the Markov chain) including the role of human operators. Notably, this incorporation of the correlated and uncorrelated PSFs using our proposed methodology drastically changes the state transition probabilities of the Markov chain compared to [16], which now captures the detailed dynamics of the role of smart-grid operators during cascading failures in the power grid. Finally, we identify a set of critical PSF level combinations from all the possible events consisting of various combinations of PSF levels. We show that only considering the HEP without considering the distribution of the PSFs can be misleading, as in most cases, a combination of PSF events will lead to high HEP but with very small/zero probability of occurrence.

Table I Mapping of operator response levels with PSF levels and grid variables (nominal PSF levels considered for the other PSFs)

	Operators response
	available time
	stress
	complexity
	HEP
	joint probability
	grid state, index

	level 1
	expansive time
	nominal
	obvious diagnosis
	0.0000
	0.0000528
	(1,20), 1

	level 2
	expansive time
	high
	obvious diagnosis
	0.0000
	0.0000248
	(1,20), 1

	level 3
	expansive time
	extreme
	obvious diagnosis
	0.0001
	0.000024
	(1,20), 1

	level 4
	expansive time
	nominal
	nominal
	0.0001
	0.0000924
	(1,20)-(1,80), (1-3)

	level 5
	extra time
	nominal
	obvious diagnosis
	0.0001
	0.001584
	(1,200), 5

	...
	...
	...
	...
	...
	...
	...

	level 47
	barely time
	high
	moderately complex
	0.5025
	0.008442
	(185,500), 1847

	level 48
	barely time
	extreme
	highly complex
	0.7163
	0.001386
	(185,800), 1849




SECTION II. Markov Chain Based Cascading Failure Model Including Operator in the Loop
A. State Variables and Transition Matrix of the Markov Chain
Using a similar approach reported in [16], [17], the detailed power-grid states in the same class are represented by a few aggregate state variables. The state variables defining each equivalence class are the number of transmission-line failures, , the maximum capacity of the failed lines  and a human-factor variable, , which captures the status of operators' performance (using PSFs) controlling the power grid. Notably, the reduced state variables also include a critical variable, , to capture the complex event of the cascade stopping: if the power grid is in a cascading mode, then  and the cascade will continue. Conversely, the cascading failure terminates if the power grid is in an absorbing state, namely when . The state-dependent cascading-stop probability, , is parametrically expressed in terms of power-grid loading level, , capacity-estimation error, , and load-shedding constraint, θ [17]. The transition matrix of the Markov chain is a  matrix, where  is the total number of failed transmission lines and  is the cardinality of the set of capacities, which in this paper is five, and 2 accounts for the binary variable . In our model, we do not consider any healing capability, thus, transmission-line failure, , increases monotonically with one failure per unit step. The state transition probability, , from state  to the next state , is defined below

(1)
Here  is the probability of cascade-stop at state , and the human factor variable is mapped explicitly using the  and , which is described in the following section. We adopt the formulation of  from [16] and  from [17] (for details see [16], [17]). Note that  is a function that translates HEP for a specific human operator response into the transition matrix of the Markov chain. Next, we describe the formulation of HEP.
During the initial triggering phase (precursor phase) of the cascading failures in power grid, the status of several power-grid operating parameters (i.e., loading level, the capability to implement load shedding, etc.) is critical to trigger cascading failures and to determine the size of the blackout. In addition to these power-grid operating parameters, the human operator attributes during the initiation of a cascade play a critical part. For example, in most of the contingency scenarios, operators are equipped with diagnostic procedures to devise a mitigation strategy, have sufficient time to analyze the problem and implement actions accordingly. In [14], the authors used SPAR-R methodology to calculate the HEP for a given context. Here the HEP is formulated using the PSFs of the operators. The PSF multiplier values for a specific operator context was listed in Table I of [14]. Note that, during the cascade triggering phase, each operator dealing with the scenario can possess a specific set of attributes. The probability that an operator will take a good/bad decision depends on the specific set of attributes. These attributes refer to various PSF levels in Table I. Specifically, the human operator attributes were divided into eight different PSFs, each containing a set of PSF levels. Each PSF level is associated with a multiplier value, which is used to calculate the HEP quantitatively using (2) (adopted from [14]).

(2)
Here NHEP represents the type of operation (diagnosis or action, having a multiplier for each type) performed by the operators. Further, the distribution of the PSFs (calculated based on grid-operator interviews) are obtained from Table III in [14].
B. Mapping between PSFs and the Markov Chain State-Space
A key objective of this paper is to find a data-driven mapping between power grid states and the PSFs using the distribution of the PSFs. The operator attributes can be characterized using various combinations of the PSF levels, and depending on the combinations, the HEP during the initial triggering phase of a cascading failure event can vary between zero and one. The PSFs such as available time, stress, and complexity are correlated with the grid conditions. Specifically, it is intuitive that as the failures propagate, available time to react for an operator would be less, the stress on operators to mitigate the contingency would be high, and complexity of the problem would become more complicated. On the other hand, performance shaping factors such as ergonomics, fitness of the operators, availability of the procedures, experience of the operators, and work processes do not change during the propagation of the failures. Although these factors do not correlate with the propagation of failures, they are critical and plays a significant role in quantifying the HEP. For example, from Table I in [14], when the available time is inadequate, or the operator is unfit to work, the human error probability is one, which indicates that an unfit worker or an operator with inadequate time would certainly make an error.
As described in the related works, Wang et al. used two PSFs (available time and stress) and coarsely mapped grid states with the operator levels (Table II in [16]). However, as the operators' response is quantized in four operating levels only (each associated with different PSF multipliers as shown in Table II in [16]), there is a limited variation of the human error probability. To overcome this serious limitation, we use all the eight PSFs reported in [14] and their associated multipliers for calculating the HEP. Specifically, we judiciously use the three PSFs (available time, stress and complexity) that are correlated with the propagation of failures to define the operator response levels using the power-grid state variables. Note that, available time, stress and complexity has four, three and four PSF levels respectively. Thus, we have forty-eight  distinct combinations of these PSF levels, i.e., forty-eight distinct operators' response levels compared to only four responses in [16]. The distribution of each PSFs is available in [14]. The joint probability mass function of the PSFs is calculated using the following equation:

(3)
Here  represents the PSF levels for an individual PSF. In this paper, we assume that the PSFs are uncorrelated, i.e., the likelihood that a PSF is independent of the other PSFs. Thus, we can calculate the joint probability mass function from their marginal mass functions using the following equation

(4)
Table II Detailed grid variable and HEP mapping

	
	F=1
	F=2
	F=3
	...
	F=185
	F=186

	
	0.0000
	0.0010
	.0010
	...
	0.5025
	1

	
	0.0001
	0.0010
	0.0010
	...
	.5025
	1

	
	0.0002
	0.0010
	0.0010
	...
	.5025
	1

	
	0.0006
	0.0010
	0.0010
	...
	.5025
	1

	
	0.0010
	0.0010
	0.0010
	...
	.7163
	1



Using (3) and (4), we calculate the joint probability for each of the forty-eight combinations of PSFs. To map these events into the state space of the Markov chain, we first determine the size of the Markov chain from the state variables. Similar to [16], [17], we use the IEEE 118-bus system, which have 186 transmission lines. The flow capacity in transmission lines is quantized to obtain a set of five transmission line capacities, , and each transmission line is assigned with a capacity according to their power-flow capacities. Including the binary absorbing/continuity variable, the state space of the transition matrix is  where the index of a specific state of the Markov chain can be calculated as using, .
To map the forty-eight operator response levels to 1860 grid states, we use the histogram equalization technique [18]. First, we calculate the HEPs for the operator response levels. Then we sort HEP from low to high. We assume that HEP increases monotonically with the grid index, i.e., more failures in the grid and the higher value of maximum capacity will increase HEP. Then we multiply the joint PSF probability with 1850 (maximum StateIndex–10 for IEEE 118-bus system) and round it to the nearest integer value to map the operator response levels to grid StateIndexes as shown in Table I. Finally, when all the transmission lines fail, i.e., for the last ten StateIndexes, HEP of one is assigned since all the lines have failed already. Note that we only take the odd grid StateIndexes since the even states represent the absorbing states. Finally, if multiple operator responses are mapped to a single grid state (due to very low joint probability), we assign the average HEP (of those response levels) for that state. With this, the detailed grid state mapping with HEP is complete and a snapshot (with nominal multipliers of the five uncorrelated PSFs) is shown in Table II.
At the starting state, the grid operators would be attributed with various PSF levels along with the power-grid operating parameters. The five PSFs that are uncorrelated to the propagation of failures would remain unchanged during the cascading failures. However, the other three PSFs would change PSF levels following the power-grid state variables. Compared to [16], this approach will allow the inclusion of the detailed operator PSF levels, which in turn will allow having various HEPs, which was only four in [16].
[image: Fig. 1. - HEP distribution and joint probability of PSFs]
Fig. 1. HEP distribution and joint probability of PSFs

SECTION III. Results
A. Critical PSF Combinations that Lead to High HEP
A striking observation from the distribution of the PSFs (adopted from Table III in [14]) is that not all the combinations of PSFs are equally likely to occur. For example, all the operators reported that their fitness was nominal, which implies that although there are three distinct PSF levels for fitness (nominal, degraded fitness, unfit), the probability of human operator attribute with a degraded fitness or unfit is zero. This observation is very significant in the sense that not all the 32400 events (a combination of PSF levels, each giving a HEP) have a non-zero probability of occurrence. In fact, using Table III of [14], we observe that from the 32400 events only 3888 events have a non-zero probability of occurring (represents 88% of all the events). Thus, calculating HEP without considering the distribution of the PSFs can be misleading, since the PSF distributions are non-uniform. From the HEP values calculated using equation (2) for all the 32400 events, we can observe that 61% events have human error probability greater than 0.9. However, the joint distribution (considering independence between PSFs) of the PSFs using the PSF distributions tells that only 12% of the total events have a non-zero probability of occurrence. We plot the HEP (left vertical axis) and the probability of the event occurring (right vertical axis) with PSF index (calculated using combinations of PSF multipliers) in Fig. 1. Note that, to visualize the HEP and the probability of the event occurring against various combinations of PSF levels in two dimensions, we use the following equation to transform the eight-dimensional PSF levels into a two dimensional PSF index.

(5)
Observe that the grey colored bar plot in Fig. 1 represents HEP calculated using equation (2) where the PSF multiplier values are taken from Table I of [14]. Clearly, the grey bar, which represents the HEP is one for many indexes (≥0.9 for %61 cases), which seems exaggerated. However, the blue bar plot reveals that only a handful of those events have a non-zero probability of occurrence. The combination of HEP and distribution of PSFs can be used to identify the critical combination of PSF events that have a high probability to occur with a high HEP. We have shown an example of the critical combination of PSF events in Table III. Here we have considered events that have  and the probability of that event occurring . Table III reveals that there are only 12 events filtered using these criteria. This information is critical because it indicates that in general, the probability of an event with high HEP is unlikely. Hence, using this approach, one can quickly identify the combinations of the PSF events (with a high HEP) that are highly likely to occur.
[image: Fig. 2. - Comparison of BS between the proposed vs hSASE model [4].]
Fig. 2. Comparison of BS between the proposed vs hSASE model [4].

B. Comparison of Blackout Size with hSASE Model [16]
We show a comparison between the blackout size distributions obtained using the proposed and the hSASE model in Fig. 2. We simulate the Markov chain numerically for both cases with the same initial conditions . In our proposed model, we consider the detailed mapping of HEP with the grid variables as shown in Table II. Observe that, in Fig. 2, the blackout size distribution in the proposed model is exponential in contrast to power law distribution in the hSASE model. Since the hSASE model considers a coarse mapping between operator attributes and grid variables without considering the distribution of the PSFs, HEP is generally higher when the number of transmission line failures in the power grid is high. For example, in the hSASE model, the authors considered inadequate time for the operators' when the number of transmission line failures was greater than fifty for the IEEE 118-bus system. In contrast, in the proposed model, even if there are high transmission line failures in the power grid, HEP is less than one. HEP is one only when all the transmission lines have failed, and there is nothing an operator can do. Else, operator response levels are mapped accordingly using the joint probability of the PSFs. In Fig. 2, we have used nominal PSF multipliers for the five uncorrelated PSFs as an initial condition and then mapped HEP with grid variables. For this setting, the blue plot (hSASE) shows power law while the Orange plot (proposed model) shows exponential behavior. Changing the uncorrelated PSFs from nominal to high or extreme would increase the initial HEP and hence more drastic impact of human error is observed. This capability is not available in [16] since it do not consider the uncorrelated PSFs. This approach is more realistic because even if there are a high number of transmission line failures due to cascading, grid operators often successfully save the remaining lines by implementing effective strategies. Thus, the proposed work adds more fidelity compared to the hSASE model.

Table III Critical PSF levels with joint probability >0.01 and HEP >0.01

	
SL.
	Available time
	
	Stress
	
	Complexity
	
	Experience
	
	Procedures
	
	Ergonomics
	
	Fitness
	
	Work process
	
	
HEP
(diagnosis)
	
Joint Probability

	
	PSF
multiplier
	probability
	PSF
multiplier
	probability
	PSF
multiplier
	probability
	PSF
multiplier
	probability
	PSF
multiplier
	probability
	PSF
multiplier
	probability
	PSF
multiplier
	probability
	PSF
multiplier
	probability
	
	

	1
	1
	0.55
	1
	0.66
	2
	0.67
	1
	0.36
	1
	0.81
	1
	0.47
	1
	1
	1
	0.69
	0.02
	0.023

	2
	1
	0.55
	2
	0.31
	2
	0.67
	0.5
	0.53
	1
	0.81
	1
	0.47
	1
	1
	1
	0.69
	0.02
	0.016

	3
	1
	0.55
	2
	0.31
	2
	0.67
	1
	0.36
	1
	0.81
	1
	0.47
	1
	1
	1
	0.69
	0.039
	0.011

	4
	10
	0.42
	1
	0.66
	2
	0.67
	0.5
	0.53
	1
	0.81
	1
	0.47
	1
	1
	1
	0.69
	0.092
	0.026

	5
	1
	0.55
	1
	0.66
	2
	0.67
	0.5
	0.53
	1
	0.81
	10
	0.17
	1
	1
	1
	0.69
	0.092
	0.012

	6
	10
	0.42
	1
	0.66
	2
	0.67
	1
	0.36
	1
	0.81
	1
	0.47
	1
	1
	1
	0.69
	0.168
	0.018

	7
	10
	0.42
	2
	0.31
	2
	0.67
	0.5
	0.53
	1
	0.81
	1
	0.47
	1
	1
	1
	0.69
	0.168
	0.012

	8
	1
	0.55
	1
	0.66
	2
	0.67
	0.5
	0.53
	1
	0.81
	50
	0.36
	1
	1
	1
	0.69
	0.336
	0.026

	9
	1
	0.55
	1
	0.66
	2
	0.67
	1
	0.36
	1
	0.81
	50
	0.36
	1
	1
	1
	0.69
	0.503
	0.018

	10
	1
	0.55
	2
	0.31
	2
	0.67
	0.5
	0.53
	1
	0.81
	50
	0.36
	1
	1
	1
	0.69
	0.503
	0.012

	11
	10
	0.42
	1
	0.66
	2
	0.67
	0.5
	0.53
	1
	0.81
	50
	0.36
	1
	1
	1
	0.69
	0.835
	0.02

	12
	10
	0.42
	1
	0.66
	2
	0.67
	1
	0.36
	1
	0.81
	50
	0.36
	1
	1
	1
	0.69
	0.91
	0.013



SECTION IV. Conclusion
Human operators play a critical role in maintaining reliable operation, especially preventing cascading failures in Smart grids. In this paper, we have extended a previously-reported Markov chain model to enhance capturing the correlation between the operators performance attributes with key grid states, e.g., the number of failed transmission lines and the maximum capacity of the failed lines. The HEPs are determined from eight PSFs. Next, the mapping was created to generate an HEP in terms of the grid states and is embedded into the Markov chain transition matrix to capture the role of operator error using the distribution of the PSFs. Next, a set of critical PSF level combinations are identified using the distribution of the PSF levels that have a high probability of occurrence. Then, the blackout size including the human error conditional on initial grid conditions is estimated and a comparison of results with the existing hSASE model is shown. The use of the distribution of the PSFs is that it allows the capture of the detailed role of the human operator into the cascading failure dynamics. This paper is valuable to understand the role of grid operator performance and impact of operators error on the reliability of smart grids.
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