8-1-2010

Noise Assumptions in Complex-Valued SENSE MR Image Reconstruction

Daniel B. Rowe
Marquette University, daniel.rowe@marquette.edu

Iain P. Bruce
Marquette University - Graduate Student

Noise Assumptions in Complex-Valued SENSE MR Image Reconstruction

Daniel B. Rowe, Ph.D.
(Joint with Iain P. Bruce, M.S.)

Associate Professor
Department of Mathematics,
Statistics, and Computer Science
Marquette University

Adjunct Associate Professor
Department of Biophysics
Medical College of Wisconsin

August 4, 2010
OUTLINE
1. Motivation
2. Background
3. Methods
4. Results
5. Discussion
Motivation
In MRI k-space for images is not measured instantaneously.

In parallel imaging, sub-sampled k-space points are measured in parallel and combined to form a single image.

Image and volume measurement time is decreased at the expense of increased image reconstruction difficulty and time.

The SENSE parallel imaging reconstruction technique utilizes a complex-valued least squares estimation process.

However, in SENSE the covariance is not properly modeled.

Background
In parallel imaging there is more than one receive coil.

Each coil measures a k-space array that is reconstructed into an aliased image then combined to form a single unaliased image.
Background

Image inverse Fourier Reconstruction for single coil.

\[(\Omega_{yR} + i\Omega_{yI}) \ast (F_R + iF_I) \ast (\Omega_{xR} + i\Omega_{xI})^T = (V_R + iV_I)\]
Background
Each coil measures a k-space array that is reconstructed into an aliased image then combined to form a single image.
Background

Each coil measures a k-space array that is reconstructed into an aliased image then combined to form a single image.

Bruce and Rowe: In progress.
Methods

The SENSE model for aliased voxel values from \(n \) coils is

\[
a_C = S_C v_C + \varepsilon_C, \quad \varepsilon_C \sim CN(0, \Psi_C)
\]

where for each voxel

\(a_C \) is a vector of the \(n \) complex-valued aliased voxel values

\(v_C \) is a vector of the \(A \) unaliased voxel values

\(S_C \) is an \(n \times A \) matrix of complex-valued coil sensitivities

\(\varepsilon_C \) is a vector of the \(n \) complex-valued error values

\[
\]
Methods

The SENSE process

\[a_C = S_C v_C + \varepsilon_C \], \quad \varepsilon_C \sim CN(0, \Psi_C) \]

\[\Psi_C = \Psi_R + i\Psi_I \]

uses the complex normal distribution

\[f(\varepsilon_C) = (2\pi)^{-n} |\Psi_C|^{-1} e^{-1/2\varepsilon_C^H \Psi_C^{-1} \varepsilon_C}, \quad H \text{ is the conjugate transpose (Hermetian)} \]

and for \(N_C \) coil measurements

\[f(a_C) = (2\pi)^{-n} |\Psi_C|^{-1} e^{-1/2(a_C - S_C v_C)^H \Psi_C^{-1}(a_C - S_C v_C)} \]
Methods

From the distribution for the n coil measurements

$$f(a_C) = (2\pi)^{-n} \left| \Psi_C \right|^{-1} e^{-1/2(a_C - S_C \nu_C)^H \Psi_C^{-1}(a_C - S_C \nu_C)}$$

the voxel values can be estimated as

$$\nu_C = (S_C^H \Psi_C^{-1} S_C)^{-1} S_C^H \Psi_C^{-1} a_C$$

with knowledge of S_C and Ψ_C.

Bruce and Rowe: In progress.
Methods

Instead of writing the model with complex numbers as

\[a_C \cdot n \times 1 = S_C \cdot n \times A \cdot A \times 1 + \varepsilon_C \cdot n \times 1, \]

\[a_C = a_R + ia_I, \quad S_C = S_R + iS_I, \quad v_C = v_R + iv_I, \quad \varepsilon_C = \varepsilon_R + i\varepsilon_I \]

we can write the model using an isomorphism as

\[a \cdot 2n \times 1 = S \cdot 2n \times 2A \cdot 2A \times 1 + \varepsilon \cdot 2n \times 1 \]

\[a = \begin{pmatrix} a_R \\ a_I \end{pmatrix}, \quad S = \begin{pmatrix} S_R & -S_I \\ S_I & S_R \end{pmatrix}, \quad v = \begin{pmatrix} v_R \\ v_I \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_R \\ \varepsilon_I \end{pmatrix} \]
Methods

Then the distribution for \(n \) coil measurements is

\[
 f(a) = \left(2\pi\right)^{-n} \left|\Psi_{SE}\right|^{-1/2} e^{-1/2(a-Sv)\Psi^{-1}_{SE}(a-Sv)}
\]

with

\[
 a = \begin{pmatrix} a_R \\ a_I \end{pmatrix}, \quad S = \begin{pmatrix} S_R & -S_I \\ S_I & S_R \end{pmatrix}, \quad v = \begin{pmatrix} v_R \\ v_I \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_R \\ \varepsilon_I \end{pmatrix}
\]

and the complex normal distribution imposes skew-symmetric

\[
 \Psi_{SE} = \begin{pmatrix} \Psi_R & -\Psi_I \\ \Psi_I & \Psi_R \end{pmatrix}
\]

Bruce and Rowe: In progress.
Methods

The skew-symmetric covariance structure

\[\Psi_{SE} = \begin{pmatrix} \Psi_R & -\Psi_I \\ \Psi_I & \Psi_R \end{pmatrix} \]

is incorrect.

What this says is that \(\text{cov}(I, I) = \text{cov}(R, R) \)

and that \(\text{cov}(I, R) = -\text{cov}(R, I) \).

The proper covariance structure should be

\[\Psi_{SI} = \begin{pmatrix} \Psi_R & \Psi_{RI} \\ \Psi_{IR}' & \Psi_I \end{pmatrix} \]

(SE for SENSE and SI for new covariance model SENSE-ITIVE)

Bruce and Rowe: In progress.

Methods

Examine the difference between the two covariance structures

\[
\Psi_{SE} = \begin{pmatrix} \Psi_R & -\Psi_I \\ \Psi_I & \Psi_R \end{pmatrix} \quad \Psi_{SI} = \begin{pmatrix} \Psi_R & \Psi_{RI} \\ \Psi_{RI} & \Psi_I \end{pmatrix}
\]

in the distribution

\[
f(a) = (2\pi)^{-n} \left| \Psi_{SE/Sl} \right|^{-1/2} e^{-1/2(a-Sv)' \Psi_{SE/Sl}^{-1} (a-Sv)}
\]

through estimates

\[
\nu_{SE} = (S' \Psi_{SE}^{-1} S)^{-1} S' \Psi_{SE}^{-1} a
\]

\[
\nu_{SI} = (S' \Psi_{SI}^{-1} S)^{-1} S' \Psi_{SI}^{-1} a
\]

Bruce and Rowe: In progress.
Results

Noiseless multi-coil spatial frequency arrays are with

\[
\Psi_{SI} = \begin{pmatrix}
\Psi_R & \Psi_{RI} \\
\Psi'_{RI} & \Psi_I
\end{pmatrix},
\Psi_{R} = \begin{pmatrix}
1 & .33 & .11 & .33 \\
.33 & 1 & .33 & .11 \\
.11 & .33 & 1 & .33 \\
.33 & .11 & .33 & 1
\end{pmatrix},
\Psi_{RI} = \begin{pmatrix}
0 & -.11 & -.07 & -.11 \\
.33 & 0 & -.11 & -.07 \\
.42 & .26 & 0 & -.11 \\
.26 & .42 & .26 & 0
\end{pmatrix}
\]

\[
\Psi_{I} = \Psi_{R}
\]

Bruce and Rowe: In progress.
Results

Magnitude

Bruce and Rowe: In progress.
Results
Phase

SENSE

SENSE-ITIVE
Discussion

The SENSE image reconstruction method was described.

The SENSE reconstruction written with an isomorphism.

The covariance structure of complex SENSE described.

New SENSE-ITIVE method described with proper covariance.

Results of SENSE & SENSE-ITIVE reconstruction presented.

Ghosting present in SENSE magnitude and phase images.

Better reconstruction in SENSE-ITIVE reconstruction especially phase used for complex-valued time series activation.
Thank You

Acknowledgements:
Iain Bruce, Marquette University
Muge Karaman, Marquette University