Episodic Memory Measures Complement Structural and Functional MRI for Predicting Cognitive Decline in Apolipoprotein E ε4 Carriers

John L. Woodard
Wayne State University

Michael Seidenberg
Rosalind Franklin University of Medicine and Science

Kristy A. Nielson
Marquette University, kristy.nielson@marquette.edu

Michael Sugarman
Wayne State University

J. Carson Smith
University of Maryland - College Park

See next page for additional authors

Authors
John L. Woodard, Michael Seidenberg, Kristy A. Nielson, Michael Sugarman, J. Carson Smith, Sally
Durgerian, Alissa Butts, Melissa A. Lancaster, Mary K. Foster, Nathan Hantke, Monica Matthews, and
Stephen M. Rao

This conference proceeding is available at e-Publications@Marquette: https://epublications.marquette.edu/psych_fac/149
LONG-TERM MEMORY: Development & aging

D54

INTER-INDIVIDUAL VARIABILITY IN CRITERION SHIFTING ACROSS THE LIFESPAN

Brian Lopez1, Craig Bennett1, Tyler Santander1, Michael Miller1; 1University of California, Santa Barbara – A critical aspect of recognition memory is the integration of available memory evidence and a decision criterion. Previous work has shown that a wide range of factors can affect the placement of a decision criterion, including cognitive and personality factors. In this study, we attempted to quantify the impact of aging on criterion placement during episodic recognition. To that end, we used fMRI to examine recognition behavior and regional brain activity in 30 young adults (25-35 yrs) and 30 elderly subjects (60-75 yrs) during a task involving criterion shifting. Subjects were first asked to encode 150 words for later recognition. The words were then presented alongside new, unobserved words in conditions of high target probability (70%, old, 30% new) and low target probability (30%, old, 70% new). Subjects had to decide for each word whether it was a target old word or a non-target new word. The results demonstrated that target discrimination ability (d-prime) was lower in the elderly group, and that the elderly group showed increased variability in the degree of criterion shifting between the two probability conditions. We also found that the elderly group had significantly increased inter-individual variability in regional brain activity relative to the young adult group while performing the task. The results suggest that aging is associated with increased variability in criterion shifting and in the regional brain activity that accompanies such criterion shifts.

D55

THE CONTRIBUTION OF BLOOD SERUM BIOMARKERS TO THE PREDICTION OF COGNITIVE DECLINE BY FMRI AND APOLIPROTEIN-E4 CARRIERS IN HEALTHY OLDER ADULTS

Kristy A. Nielsens, Michael A. Sugarman, John L. Woodard, Michael Seidenberg, J. Carson Smith, Sally Dugerian, Stephen M. Rao; 1Marquette University, 2Medical College of Wisconsin, 3Wayne State University, 4Rosalind Franklin University of Medicine and Science, 5University of Maryland, 6Cleveland Clinic – Biomarkers are a promising approach to the prediction and early intervention of Alzheimer’s disease. We demonstrated that cortical functional MRI (fMRI) activation during a semantic memory task and apolipoprotein-E4 (APOE) carriership (APOE 4) effectively predicted cognitive decline after 18-months in healthy, asymptomatic elders. Hippocampal volume added modest prediction, while AD family history and demographics were ineffective. Previous studies have linked plasma homocysteine (tHcy), vitamin B12 and creatinine values to cognitive functioning, cortical atrophy, hippocampal atrophy and neuropathology, and vascular integrity. Here we incorporated total plasma homocysteine (tHcy), B12 and creatinine values into our previous predictive models. Of 78 healthy elders, 27 (34.6%) exhibited significant cognitive decline after 18-months, if Hcy, but not B12 or creatinine, was marginally positively correlated with cortical semantic memory fMRI activation, particularly in stable participants. Logistic regression showed that tHcy, when added to APOE4 and cortical fMRI, was a significant predictor of outcome and strengthened the already significant model (p = .007; C = 80 and R2 = .37). However, control for B12 and creatinine covariates diminished tHcy as a predictor (p = .084), though the model was still stronger than without this factor (C = .78 and R2 = .31). tHcy did not significantly interact with APOE4, as has previously been reported. Neither B12 nor creatinine was similarly effective as a predictor. These results suggest that commonly investigated blood serum biomarkers are at best weakly associated with predicting age- and dementia-related cognitive decline in healthy, asymptomatic elders. fMRI and APOE4 presently provide the best predictive model.

D56

EPISODIC MEMORY MEASURES COMPLEMENT STRUCTURAL AND FUNCTIONAL MRI FOR PREDICTING COGNITIVE DECLINE IN APOLIPROTEIN E4 CARRIERS

John L. Woodard, Michael Seidenberg, Kristy A. Nielsens, Michael A. Sugarman, J. Carson Smith, Sally Dugerian, Alissa M. Butts, Melissa A. Lancaster, Mary K. Foster, Nathan C. Hantke, Monica A. Matthews, Stephen M. Rao; 1Wayne State University, 2Rosalind Franklin University, 3Marquette University, 4University of Maryland, 5Medical College of Wisconsin, 6The Cleveland Clinic – Apolipoprotein E (APOE) 4 allele carriers demonstrate greater risk for cognitive decline and Alzheimer’s disease than non-carriers. However, factors associated with risk of decline among APOE 4 carriers are not well-known. In this longitudinal study, we investigated whether discrete aspects of baseline episodic memory performance and structural (sMRI) and functional (fMRI) magnetic resonance imaging were associated with cognitive decline in older APOE 4 carriers and non-carriers. Seventy-eight healthy older adults underwent cognitive testing at baseline and after 18 months, baseline serum APOE genotyping, manually-traced hippocampal volume measurement from sMRI, and task-activated fMRI. Cognitive decline was defined as one SD or greater reduction from baseline on at least one of three cognitive measures at follow-up (Re Auditory Verbal Learning Test [AVLT] Delayed Recall and Trials 1-5 Sum, Mattis Dementia Rating Scale-2 Total Score). Declining APOE 4 carriers (n=14) exhibited reduced hippocampal volume (p<.009) and fMRI semantic processing activity in cortical (p<.04) and hippocampal (p<.05) regions relative to stable carriers (n=12). On the AVLT, declining APOE 4 carriers showed greater baseline susceptibility to retroactive interference (p<.006), intertrial forgetting (lost access; p<.001) and recognition false alarms (p<.05) compared to stable carriers. Stable (n=39) non-carriers showed slightly more susceptibility to proactive interference than declining (n=13) non-carriers (p<.02). Along with sMRI and fMRI, AVLT measures of rapid forgetting can help to identify APOE 4 carriers with elevated risk for cognitive decline. These effects appear to be largely unique for APOE 4 carriers, perhaps due to preclinical structural and functional alterations in structures subserving memory.