Prayer written by the Moderator of the St. Francis of Assisi Catholic Physicians' Guild for the Philadelphia Issue.

O God, Who made us all—one family—and Who ordained that we spend our earthly days in Your Service—in and through service to our fellowman—grant to all who read this, who have so manifestly displayed their willingness to serve others—grant that in that service they may be ever aware of the brotherhood of man and the Fatherhood of God. And that in this awareness, they might be brought closer to Your Divine Life.

In serving others, and You through them, may they serve and perfect themselves...so that having done their best in behalf of their brothers, they may be rewarded eternally by You, our Heavenly Father.

Make us one—in peace and strife.
Make us one—in death and life.

Rev. Charles J. Scherer
Moderator, St. Francis of Assisi Catholic Physicians' Guild

Contemplation and Science

LUIGI GEDA, M.D.

Along the expressway which connects Mexico City with the archeological zone of the pyramids, in August of this year, I visited the Shrine of Saint Augustine in Acolman. The facade of plateresque style and the interior of gothic style give homage to the composite Mexican art of the sixteenth century. Near the Shrine, an empty monastery brings to mind the Augustinians who built it: the gardens, the cloisters, the fresco paintings, the refectory, and two corridors with the cells lined up on the outside bring to mind those monks; above all, the cells, with the desks built into the window wall which permitted the monk to read the texts and to meditate on them while viewing the panorama of intense green and of open sky which the Mexican plateau offers the spectator.

A few days earlier, I had visited the Science Faculty of Villanova University which the Augustinians founded in suburban Philadelphia (United States) more than a century ago, in 1842.

"Contemplation" in Acolman and "Science" in Pennsylvania, diverse and complementary perspectives of the fertile and silent work which the Augustinians conducted in America, and elsewhere, to give root to the Christian ideals.

While visiting these places, the dear and familiar figure of an Augustinian came before me, that of Gregory Mendel. I felt I understood him better, and that I could better capture the spirit of the man in that Augustinian environment, a spirit which Mendel was able to fuse in his life and in his mission.

In order of time, the first acknowledgment of Mendel in Catholic circles does not occur at this moment, but it occurred a year ago when the Council Fathers accepted the Constitution Lumen Gentium. There, where the Council thought fit to signal out the religious, along with the hierarchy and the laymen, as essential parts of the Church, it is written — the religious by their state give evidence, in an excellent and singular way, that the world cannot be transformed and offered to God without the spirit of the beatitudes and further on "it is clear to all that the profession of the evangelical counsels, even though supporting the renunciation of certain worldly possessions, is not opposed to the genuine development of the human person, but by its very nature is most helpful to that development."

Mendel is not mentioned there, but is found between the lines which I have read, like a statue under a veil which covers it, before the unveiling. We would not have the scientist Mendel, if we did not have the Augustinian Mendel—nor would his mind, highly prepared for scien-
to absorb the biologic and mathematical direction which permitted him to become the discoverer of the laws of heredity, if monastic obedience had not led him to one of those educational tasks customary to the religious: to teach mathematics, natural science and physics in the secondary schools of Znaim and Brunn, because by "teaching one learns"; nor would Mendel have had the patience to select for two years thirty-four samples of peas and to uninterruptedly cultivate twenty-two varieties for eight years in the orchard, repeating his findings in the hothouses of the monastery, if the beatitude of university failures and the subsequent withdrawal from teaching in the middle schools; and maybe Mendel would not have written that perfect science extract which is included in his communication of forty-eight pages to the Naturalistic Society of Brno, if the purity of his heart had not permitted him to see in all creatures the brightness of God, according to Galileo's notation: "God is known above all through all creatures."

From another point of view, I see a reflection of Christian and monastic justice in the strength that he expended in his duties as Abbot-in-charge since his scientific work practically stopped when he was elected Abbot in 1868, three years after his basic communication. If then, Gregory Mendel was not in life that wise peasant which his birth would have made him, fond of the family and of cultivation of the fields, which he had learned from his father and from his pastor who was the promoter of an experimental farm, we owe it first to the ecclesiastic vocation and then to the Augustinian vocation, because he began his life in the priesthood in the philosophical school of Olmutz and then became a religious in Brno.

That Mendel's vocation was real and most serious and that his life was consistent, we know from the fact that his colleagues had the esteem and faith to nominate him unanimously Abbot of the Augustinian monastery of Brno. It wasn't certainly his discoveries in the field of vegetable heredity that won him the votes of the monks, for the same discoveries were not even appreciated in the specific scientific field of the day. In fact, his hobby of studying peas may have seemed an obsession to his colleagues, and they may even have joked about it, in the kindly manner which prevails in monasteries and makes the religious so human, affectionate and intimate. It was his religious spirit and the unquestionable practice of his life which were the reasons that led his colleagues to put themselves under his control for life. When later he became Abbot, one cannot forget among the many, a small but eloquent testimony of his spirituality in the city of Brno: it was Mendel who obtained permission from the political authorities that the custom of the town Procession of the Feast of Corpus Christi would return in all its splendor.

It would, therefore, be most superficial for anyone to think that Mendel's vocation was uncertain, not experienced, brought on by circumstances. Having verified instead the complete religious atmosphere which prevailed in his inner world and in his monastic life, and having established his position as a pioneer in the field of science (since he preceded official research by thirty-five years — only in 1900 De Vries, Correns and Tschermak came to the conclusions which he had reached in 1865, a position which made him proceed alone, without applause or awards) we realize that the dual name "contemplation and science" is found in Gregory Mendel in a pure state, not influenced by external opportunities, by conformity or by a desire for a career.

Providence desired to place this figure of a monk and scientist, who is to biology what Galileo is to physics, at the threshold of a time when science would become a giant and a determining factor in the life of humanity. Morgan, a great man of genetics said of him, "In the ten years in which Gregory Mendel worked on his peas in the garden of his monastery, he made the greatest discovery in the biologic field in the last five hundred years."

It appears to me that Mendel's actual task was to offer to the Church two opportunities: above all to shake from herself every inferiority complex in the area of scientific learning, inasmuch as it can show that it has given a genius to modern science, and in the second place that of studying in Mendel, as a model, the reactions between the two interior worlds of faith and science.

Mendel was baptized John. He took the name of Gregory at age twenty when he entered the monastery of Brno: "The city of Brunn — it can be read in a well known book, written in that time — is the capital of Moravia and here lived the governor of the two provinces of Moravia and Slesia. It is situated in a picturesque valley, which has a certain aspect of richness. Many clothing manufacturers prospered there at that time . . . the population was around thirty thousand souls." The one who gives us this information on Brno which then was called Brunn, is Silvio Pellico, who endured eight years of hard prison in the fortress of Spielberg which dominates the city.

Silvio Pellico came to Brno in the same year that Mendel was born in a town of Slesia called Heinzendorf, that is in 1832. In the succeeding year a certain Augustinian of the Monastery of Brno, P. Giovann Battista Vorthey, was commissioned to help the prisoners of Spielberg. Silvio Pellico wrote of him — "he was an angel of mercy: his manners were most polite and rather elegant, reasoning profoundly about the duties of man. We begged him to visit us often. He would come every month, and more often if he was able. He would even bring us, with the permission of the governor, some books and he would say to us, in the name of his Abbot, that the whole library of the monastery was..."
at our disposal. This would have been a great profit to us if it would have lasted. At any rate we profited from it for many months. After confession, he would stay with us for a long while to talk, and from all his discourses he appeared to be an upright soul, dignified, captivated by the greatness and sanctity of man... He had lived a great deal in the city and in the country, he knew important people and the little man, and had meditated on human injustices; he could describe well the passions and the customs of the different social classes. Everywhere he showed me the strong and downbeaten—The cases which he related were not exceptional; they were in fact entirely obvious, but he related them with words so just and powerful, that they made me strongly feel the lesson to be drawn from them.” (My Prisons. Chapt. 78)

This happened about twenty years before Mendel’s entrance into the Augustinian monastery of Brno. But if we realize that P. Vorthey then lived thirty-three years since we find him in the pictures authoritatively seated to the right of the Abbot Napp, Mendel’s predecessor, it seems to me that nothing can reflect more exactly the climate of that Augustinian monastery and the type of religious that were formed there, than those quotations of Pellico which regard one of them and allows us to reconstruct the psychological and spiritual profile of Mendel.

It was precisely this Abbot Napp who received Mendel into the monastery and followed him in the theological studies up to the priestly ordination which occurred in 1847. It was the Abbot Napp who appointed him to the care of souls in a hospital and then directed him to teaching at a high school, because: “this priest”—in this way Napp wrote to the Bishop—“leads a quiet, modest and virtuous religious life, in complete agreement with his rank, dedicates himself to science with much diligence,” but then he continued: “in the hospital and in his visits to the sick and suffering he was taken by an invincible shyness and he himself fell a prey to a grave illness.” Here we can see that Mendel could have discovered genealogy less easily via the illness of man, than he did via the study of herbaceous plants.

His introduction to the priesthood was therefore difficult because of health reasons, as was his introduction to secular studies, where he attended courses on agriculture and tomato cultivation. He also taught literary and scientific subjects in the public schools, but did not attain the certificate of competence. He attended the University of Vienna where he failed, and then abandoned learning and teaching to lead his life, essentially in the Augustinian monastery. By this time his mind had absorbed what was needed from culture and from the experiences of others to be more than sufficient for itself. “His talent” — wrote the Augustinian Bishop Monsignor van Lierde of Mendel—“reached in this peaceful period (1854-1865) its greatest expansion and culminated in the synthesis of his detailed and patient investigations.” Indeed, the serene peace of the monastery will be favorable to Mendel for his determination to open the strongbox of biologic life.

This passage from his biography is described as well as possible in the letter that the Pope sent to the Superior of the Augustinian Order this past February, on the occasion of the centennial of Mendel’s discoveries. Pope Paul VI wrote: “Calculus, in the judgment of scientists, reveals and expresses the law: the hypotheses which differ from it are fallacious, while those which, carefully detailed, are in agreement with it are considered absolutely correct. Gregory Mendel, by inserting calculus in his investigations and by proposing such a goal, must have certainly gained the competence of his own mind; and mathematics in which he was extremely versed was a great help to him. They too are right who believe that he chose this particular avenue of research because, moved by the words of blessed St. Augustine who loved—while discovering and appreciating the number of things, either large or small—to penetrate and to admire the Divine Wisdom which infinitely creates.”

As a matter of fact, Mendel’s ability was that of looking at biologic heredity with pythagorean eyes and of discovering that the transmission which binds the life of one generation to another is divided, inasmuch as it acts upon single and independent units which are connected in a certain fashion when the species produce an individual and then again become separate, when the individual becomes ready to bring forth new beings by means of the sexual reproductive system.

That a living being receives his characteristics from his parents and that he transmits to his own children the characteristics received, was always intuitive knowledge, that is to say a knowledge confirmed by common experience, because the control of this phenomena can happen everyday by observing the effects of reproduction among men, animals and vegetables. But as regards the how, that is, facing the problem of the mechanism of this transmission of characteristics from one generation to another, science was making no progress.

Mendel’s position before the mysterious flux of life which repeats itself for thousands of years, was that of one who tries to understand a secret writing, or unknown language. Each one of us, guided by experience, would strive to find in that writing some symbols, some ideograms, or some groups of letters constructing single words; or else in the case of a language, one would attempt to break it up into coherent groups of sounds. Mendel’s basic intuitiveness was similar, that is he attempted to separate the phenomenon. The heredity which passes
from one generation to another is no longer considered like a trickle of water where the drops are indistinct, but rather like a trickle of sand which falls from the water clock where each granule is an individual one. The result is that the hereditary inheritance is not a fresco, but rather a mosaic, and Mendel's task was to follow the destiny of each piece of the mosaic across the bridge of the generative phenomenon.

Gregory Mendel's basic discovery, simple but resolutive, the cornerstone on which we place his formulas and his laws, consists, therefore, in the discovery of the hereditary units which he called "elements" and which today are called "genes." Being composed of units, the hereditary inheritance can therefore express itself in numbers and his rules can be reflected in mathematical calculus.

Mendel was helped greatly in his discoveries by the legumes which he had chosen, where the generative phenomenon are more easily pursued than in the ornamental plants around which the botanists, and Mendel himself, had done much work to study pollination and development from hybrids. Furthermore artificial pollination in the pea almost always succeeds: "To this end — Mendel wrote — the bud opens not yet entirely developed, the carpina is removed and with the help of a little pincer every stamen is delicately removed, after that it is possible to quickly cover the stamina with the extraneous pollen." This delicate operation was accomplished by Mendel at least ten thousand times.

But the principal help — I dare call it the mental habit which suggested to Mendel to break up the hereditary inheritance into components and which permitted him to follow the destiny of it and to interpret the solutions of it — was the one created in him by mathematics and above all by algebra where values are expressed in forms of letters, and every letter can represent a varied content, simple or complex little or big, as the case may be.

The algebraic symbol was, so to speak, the instrument which was necessary for Mendel to grasp the hereditary unit: isolating it, as piece can be isolated from a mosaic to which it is destined, disregarding its intrinsic characteristics. From the structure of the hereditary unit, which is the same as saying from the composition of the genes, we have learned to entirely understand the complicated formula of deoxyribonucleic acid. The hereditary units were such that they could be isolated and studied as if they were simple values in the game of their reciprocal combinations.

Working in this way, Mendel was able to discover a most delicate network, almost an embroidery, namely a sequence of simple formulas to which those units that he had isolated obeyed, as they had always obeyed, still obey and will always obey.

Inanimate matter can be more easily quantified. In fact, inorganic chemistry and physics succeeded before biology in extracting from the phenomenon constants which have the value of laws. Biology up to Mendel's time had not succeeded in explaining itself except in a descriptive manner and the numbers which were adopted were themselves descriptive and had no causal report. With Mendel the science of life opens and reveals, in turn, mathematical laws which direct it. From that day, the phenomenon of life came within the realm of mathematical interpretation as many centuries earlier the celestial bodies had, and less than three hundred years earlier physics had with Galileo and one hundred years earlier chemistry with Lavoisier.

If we look at Mendel's discoveries to assess his contribution to science, we are struck by the everlasting quality or actuality of his conditions. While other discoveries have been overpowered by successive discoveries which modify them and finally cancel them, the truths arrived at by Mendel are not approximations, but are conclusive truths which anyone who occupies himself with Genetics can verify. This is amazing above all to us doctors who, in our conception of diseases, arrive at truths which are continually being revised and reappraised. Mendel's truths are basic because his thinking goes from qualitative to quantitative, in such a way that he succeeds in distilling from the phenomenon the mathematical rule which guides it and he expresses biology through certain numerical reports.

If, in a photograph which we have seen, Mendel holds between his fingers a flower, we can well say that scientifically he holds life in his hand, because indeed his formulas have revealed a phenomenon of life: namely the transmission of hereditary characteristics of an herbaceous plant and the resulting variability of this plant; his experiments have proved this phenomenon and therefore demonstrate the validity of the report.

Since Mendel's key has forced the door of life, the second conclusion we arrive at, a hundred years later, is that we are not dealing with the key to only one door; but with a universal key which opens all the doors, that is all the hereditary mechanisms of every sexual species, vegetable or animal, and therefore even of man. The genetics of the pea has produced vegetable genetics, which has given origin to animal genetics and thus to human genetics. Infinite are the theoretical and practical consequences of the principles established by Mendel. We can say that science crosses this gap like an invading army in the citadel of nature to select those vegetables and animals which are useful to the life of man, as well as to create new varieties of flowers, plants, fruits, new dimensions and forms of animals, attenuated germs or virulent germs such as it would not be possible to obtain in the wild state.

It would seem that Mendel's principles do not hold true in reverse, that is in the reproduction of asexual beings, or in somatic cells which
reproduce themselves directly. If, however, a sexual being can activate certain phenomena which are controlled by Mendelian laws to the extent that by dividing in half his hereditary patrimony, he produces gametes suitable to his type of reproduction, then it would be just one step further to arrive at a typically Mendelian argument which postulates the existence of hereditary elements which repeat themselves by means of mechanism which is different from that of sexual reproduction, but nevertheless by means of a stereotype and foreseeable duplication of those same hereditary elements. Each individual exists as a result of the combination of his genes, namely of his gene type which reflects the allelic combinations of Mendel for each of his character traits. He reproduces himself because he crosses half of his gene type with that of an organism of the opposite sex, as in the case of sexual reproduction, or else he duplicates himself directly as in the case of asexual reproduction. By this fundamental reason, for example, mutation works clearly on a Mendelian basis when it strikes a gene of a masculine or feminine gamete, or even when it strikes the genes of a protozoa, or of a somatic cell, or of a virus. Similarly, in the Mendelian sense, a phagocyte upsets the gene type of a microbe injecting the organism with the vital substance of its hereditary patrimony. The principle and laws which Mendel discovered in the reproduction of the pea not only embrace all the ramifications of life from the protozoa to man, but they lend themselves to a methodological development which has concerned and still concerns biologists, mathematicians, and demographers. The method that Mendel used is also in the field of genealogical genetics, and expands into the genetics of population and into the genetics of twins, and undertakes the study of the hereditary patrimony by means of cytological genetics which studies the chromosomes and molecular genetics. The methods then are put to the test or study materials even more suitable than the pea, such as Morgan's drosophila melanogaster, or even Beside's neurospora.

As for the fields of application beyond the animal and vegetable sector to which we have already referred, genetics confirms the exactness of Mendel's laws concerning man, deriving from them, for example, the procedural norms for hereditary research on the basis of blood groups, norms which are in fact Mendelian-like. Genetics assumes today a particular incidence and importance in human pathology where it extends its light bringing to it a new vision and new possibilities. Originating from the naturalistic fields where it was born, genetics meets an adult medicine, which has completed innumerable, diligent observations and attained conspicuous victories in the phenotypical field, that is in the field of the human body. This medicine, for centuries, has manufactured its own language which now medical genetics has the duty to translate, interpreting its knowledge in the light of interhuman heredity, when clinical genetics applies this knowledge to the individual patient. It is for this reason that genetics is carefully reviewing the classification of diseases and the entire body of medical knowledge, concerning itself also with treatment by pharmacogenetics and substitutive therapy of hereditary deficiencies. Hereditary weakness is present in all human diseases, either because it was transmitted as such or because it was transmitted as a hereditary predisposition to contract diseases which require the presence of an environmental factor as the Koch bacillus in the case of tuberculosis, or as the particle of quartz in the silicosis of miners. Traumatic pathology heredity contains its own healing processes. The study of heredity initiated by Mendel reaches diverse and distant areas, as that of organ transplants from person to person which are conditioned by heredity and that of the probabilities of illness of men not yet born, or not even conceived, which are computed from that preventive branch of genetics which is called eugenics, on the basis of a probabilistic utilization of Mendelian formulas. All of this has occurred after Mendel's scientific reversion of 40 to 1900 years which he lived after his discovery, fifteen of which he governed as Abbot? One thought must have been suggested to him from the circumstances themselves in which he found himself, to have the duty to prefer, because he was Abbot, the contemplation of monastic life to the research which science produces and of which it avails itself. Perhaps there came back to him nostalgic memories of his work in the hothouses, in the orchard or near the bee-hives, of the discussions at the Naturforschender Verein, of those solitary and shining hours in which he noticed that the results of his experiments arranged themselves harmoniously in an algebraic pattern. Perhaps, then, he may have opened the Gospel of Luke where it speaks of Jesus entering the house of Martha who complains of Mary leaving her alone with the household work. And the Lord answers: "Martha, Martha you trouble yourself and you get upset about too many things. Nevertheless only one thing is necessary.” He may have applied those words to himself, not because he didn't want to be Martha, but to continue to be Mary.

A subject for Mendel's contemplation must have been those first chapters of Genesis, so allied to his
naturalist spirit which did not content itself with merely watching natural phenomena, but wishing to penetrate their secrets going beyond the beauty to the truth of things. By now, he could cross a bridge of his own, leaving behind the shore of sensual things and passing on to the shore of the intellect. The bridge over which he had previously passed no longer existed and he could now delight himself in crossing it in his mind during pauses in his work as Abbot, or during the night hours, or during feast days, or during the long hours of monastic meditation; because there is nothing more pleasing to God nor any greater honor rendered to Him, than that which consists in the discovery of new revelations of His wisdom and His justice. What does the scientist do if not to verify the laws which exist, but which first he had opened the great book of nature must have read in that book, with great eagerness, the perfections of the creative act.

Perhaps there resounded in his ear, in a particular way, that mysterious invitation of which St. Augustine speaks in his Confessions: “Take and read.” And Mendel who had opened the great book of nature must have read in that book, with great eagerness, the perfections of the creative act.

We do not have writings of Mendel which develop these thoughts perhaps because he died at age 65, perhaps because he was seriously occupied in defending the monastic life against the interference of the imperial-regal government after the breakup of the Concordat with the Holy See which occurred in 1870, or because he was a man of few words, as he was also in his scientific work which consisted of only forty-eight pages. Probably, and above all, for reasons of discretion and modesty, he did not leave us any autobiographic writings of his mature years. But more worthwhile than a written document, he sealed the thoughts which were dearest to him in his Abbotal coat of arms.

There is only one monastery among the many which the Augustinians have established in every part of the world which has this privilege of being an Abbey. Such was the Monastery of Brno when Mendel entered there and then was elected Abbot, three years after the announcement of his discoveries, when his mind was at the zenith of scientific production. It was precisely then that the vote of his colleagues made it necessary for him to have a coat of arms, as it happens for bishops. For the age in which it was composed, for the rapidity with which it had to be created, I think that the Abbotal coat of arms of Gregory Mendel can have a great importance in revealing to us the thoughts of his great soul. The design of the coat of arms, which we have reproduced in the library of the Monastery, is an authentic mental catalyst which is at our disposal and by which we can learn what Mendel thought, and even what he did; but did not write about the relationship between contemplation and science.

Let us read this Mendelian document written with four ideograms as the ethnologists apply themselves to reading the language which certain peoples have entrusted to drawings, in place of writings. In the upper quadrants the life of the fields dominates. It is almost a recapitulation of his youth scented by the flowers which bloomed in the garden, in the orchard, on the window sills of the windows of his house, on the altars of the church and along the streets in the wide expanses of the Bohemian country. At the left is a flower, probably a lily, which Mendel has chosen as a symbol, perhaps to tell us that that flower, as every other flower, is adorned with beauty, but also with truths, with those truths which appeared to his mind.

In the upper right hand quadrant there is a plow surmounted by a cross. Here the thought of the fields, evolves towards the work which man dedicates to agriculture and towards Christian law which must illuminate this work. We are in the era of social upheavals and Mendel affirms with pride his origin from a peasant and Christian family, who at the same time, is heir of the great monks who drained the swamps and cleared the uncultivated lands. In the first lower quarter of the coat of arms, the social spirit of the Abbot Mendel seeks a more explicit form affirming his belonging to the order of St. Augustine and the concrete human consequences which the Augustinian spirit brings with it. The heart which we see in this field is the wounded heart of Augustine which the Augustinians have drawn and sculpted in their monasteries, in
their churches, on their books to portray that vigorous phrase of Augustine directed towards Christ: “You have pierced my heart.” And those clasped hands are the hands of men in whom the love of God arouses love of each other. In the social works to which he attended, is the field of Christian charity and gage Bank of Brno where he was Augustine directed towards

mercy, which produces love among men. Now he wishes to affirm that the various aspects of his thoughts and his life are not independent, but instead related and strengthened in the great chain of causality which embraces both animate and inanimate material, body and soul, natural and supernatural. The vision which comes from God “alpha” of every creature who desires, knowingly or unknowingly, to conduct himself according to the will of God, and to return to God the “omega” of every creature.

This synthesis of Mendel, which strongly expresses the unity, logic, the essentiality of his thought and of his life, is also a message. In the modern world, wonderful because God has given it to each one of us, but imbued much with science and little with contemplation, much with progress and little with civilization, Mendel directs his message to the men who wish to understand nature, to sublimate work and to be brothers. The world has an origin and a destiny; alpha and omega. It is not enough to drug oneself with the sequence of the events which render existence

like a whirlpool, nor to torment oneself because of the harshness of life, nor to become enthusiastic because of the beauty of the existential phenomenon. Man’s nature requires the passage of his thoughts from existence to essence, from science to contemplation.

Perhaps one can say that Mendel’s message has been accepted: in spite of the ostracism, offensive to science, which caused the removal of Mendel’s statute from the public square to the shelter of the monastery and which denied the truth of the Mendelian discoveries. The removal of his bitterest opponent, Trofin Denisovich Lysenko, on January 27th, 1965 as director of the Institute of Genetics of the Academy of Science of the Soviet Union suggests this is so. If we remember, for example, that Professor Jaroslav Krizenecky of Brno, convinced defender of Mendel’s doctrine, has spent three years in jail for having published a scientific monograph in which he argued with Lysenko, we must recognize that there could not have been a more formidable nemesis, in a more significant historical period. In Moscow, in July of this year, the Academy of Science of the Soviet Union has begun the publication of a review entitled Ghereticka whose first issue has Mendel’s picture. At Brno, in the Church of the Assumption which was Mendel’s church, on the 5th of August was celebrated a solemn Mass for the Abbot. The monastery was refurbished and in the cloistered refectory an exhibit explains the origin of genetics.

Departing from the study of matter, Mendel finds therein the truth of God which is that all matters and men find their beginning and end in God.

[DR. GEDDA is Honorary President of the International Federation of Catholic Physicians. This paper read by him to the Gregory Mendel Institute of Rome on the centennial celebration of the discovery of Mendel was translated from Italian to English by Gino G. Papola, M.D., associate editor of this issue of The Linacre Quarterly.]