Rotational State-to-State Transition Rate Coefficients for H2O + H2O Collisions at Nonequilibrium Conditions
Document Type
Article
Publication Date
8-2024
Publisher
EDP Sciences
Source Publication
Astronomy & Astrophysics
Source ISSN
0004-6361
Original Item ID
DOI: 10.1051/0004-6361/202450738
Abstract
Aims. The goal is to develop a database of rate coefficients for rotational state-to-state transitions in H2O + H2O collisions that is suitable for the modeling of energy transfer in nonequilibrium conditions, in which the distribution of rotational states of H2O deviates from local thermodynamic equilibrium.
Methods. A two-temperature model was employed that assumed that although there is no equilibrium between all possible degrees of freedom in the system, the translational and rotational degrees of freedom can be expected to achieve their own equilibria independently, and that they can be approximately characterized by Boltzmann distributions at two different temperatures, Tkin and Trot.
Results. Upon introducing our new parameterization of the collisional rates, taking into account their dependence on both Tkin and Trot, we find a change of up to 20% in the H2O rotational level populations for both ortho and para-H2O for the part of the cometary coma where the nonequilibrium regime occurs.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Mandal, Bikramaditya; Zoltowski, Michal; Cordiner, Martin; Lique, François; and Babikov, Dmitri, "Rotational State-to-State Transition Rate Coefficients for H2O + H2O Collisions at Nonequilibrium Conditions" (2024). Chemistry Faculty Research and Publications. 1089.
https://epublications.marquette.edu/chem_fac/1089
Comments
Astronomy & Astrophysics, Vol. 688 (August 2024).
DOI.