Date of Award

Fall 2013

Document Type


Degree Name

Doctor of Philosophy (PhD)



First Advisor

Hossenlopp, Jeanne M.

Second Advisor

Gardinier, James

Third Advisor

Tran, Chieu


Two-dimensional layered nano composites, which include layered double hydroxides (LDHs), hydroxy double salts (HDSs) and layered hydroxide salts (LHSs) are able to intercalate different molecular species within their gallery space. These materials have a tunable structural composition which has made them applicable as fire retardants, adsorbents, catalysts, catalyst support materials, and ion exchangers. Thermal treatment of these materials results in destruction of the layers and formation of mixed metal oxides (MMOs) and spinels. MMOs have the ability to adsorb anions from solution and may also regenerate layered structures through a phenomenon known as “memory effect”. Zinc-nickel hydroxy nitrate was used for the uptake of a series of halogenated acetates (HAs).HAs are pollutants introduced into water systems as by-products of water chlorination and pesticide degradation; their sequestration from water is thus crucial. Optimization of layered materials for controlled uptake requires an understanding of their ion-exchange kinetics and thermodynamics. Exchange kinetics of these anions was monitored using ex-situ PXRD, UV-vis, HPLC and FTIR. It was revealed that exchange rates and uptake efficiencies are related to electronic spatial extents and the charge on carboxyl-oxygen atoms. In addition, acetate and nitrate-based HDSs were used to explore how altering the hydroxide layer affects uptake of acetate/nitrate ions. Changing the metal identities affects the interaction of the anions with the layers. From FTIR, we observed that nitrates coordinate in a D3h and Cs/C2v symmetry; the nitrates in D3h symmetry were easily exchangeable. Interlayer hydrogen bonding was also revealed to be dependent on metal identity. Substituting divalent cations with trivalent cations produces materials with a higher charge density than HDSs and LHSs. A comparison of the uptake efficiency of zinc-aluminum, zinc-gallium and zinc-nickel hydroxy nitrates was performed using trichloro acetic acid as target anion. Uptake efficiency was better for LDHs than HDS, and between the LDHs, zinc-aluminum hydroxy nitrate was the best material for the uptake of tClAc. Calcined LDHs were applied for the uptake of methyl-orange, model azo-dye. The ability to regenerate the layered structures was helpful for improving adsorption efficiency. It has been reveal that calcined LDHs are also better adsorbents than calcined HDSs.