Document Type

Contribution to Book



Publication Date




Source Publication

Terahertz Spectroscopy

Source ISSN



The purpose of this chapter is to familiarize the reader with metamaterials and describe terahertz (THz) spectroscopy within metamaterials research. The introduction provides key background information on metamaterials, describes their history and their unique properties. These properties include negative refraction, backwards phase propagation, and the reversed Doppler Effect. The history and theory of metamaterials are discussed, starting with Veselago’s negative index materials work and Pendry’s publications on physical realization of metamaterials. The next sections cover measurement and analyses of THz metamaterials. THz Time-domain spectroscopy (THz-TDS) will be the key measurement tool used to describe the THz metamaterial measurement process. Sample transmission data from a metamaterial THz-TDS measurement is analyzed to give a better understanding of the different frequency characteristics of metamaterials. The measurement and analysis sections are followed by a section on the fabrication process of metamaterials. After familiarizing the reader with THz metamaterial measurement and fabrication techniques, the final section will provide a review of various methods by which metamaterials are made active and/or tunable. Several novel concepts were demonstrated in recent years to achieve such metamaterials, including photoconductivity, high electron mobility transistor (HEMT), microelectromechanical systems (MEMS), and phase change material (PCM)-based metamaterial structures.


Published version. "THz Metamaterial Characterization Using THz-TDS," in Terahertz Spectroscopy edited by Jamal Uddin. London: IntechOpen, 2017. DOI. © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

coutu_12373acc.docx (3083 kB)
ADA accessible version