Document Type




Publication Date



Institute of Electrical and Electronic Engineers (IEEE)

Source Publication

IEEE Transactions on Parallel and Distributed Systems

Source ISSN



Average service time, quality-of-service (QoS), and service reliability associated with heterogeneous parallel and distributed computing systems (DCSs) are analytically characterized in a realistic setting for which tangible, stochastic communication delays are present with nonexponential distributions. The departure from the traditionally assumed exponential distributions for event times, such as task-execution times, communication arrival times and load-transfer delays, gives rise to a non-Markovian dynamical problem for which a novel age dependent, renewal-based distributed queuing model is developed. Numerical examples offered by the model shed light on the operational and system settings for which the Markovian setting, resulting from employing an exponential-distribution assumption on the event times, yields inaccurate predictions. A key benefit of the model is that it offers a rigorous framework for devising optimal dynamic task reallocation (DTR) policies systematically in heterogeneous DCSs by optimally selecting the fraction of the excess loads that need to be exchanged among the servers, thereby controlling the degree of cooperative processing in a DCSs. Key results on performance prediction and optimization of DCSs are validated using Monte-Carlo (MC) simulation as well as experiments on a distributed computing testbed. The scalability, in the number of servers, of the age-dependent model is studied and a linearly scalable analytical approximation is derived.


Accepted version. IEEE Transactions on Parallel and Distributed Systems, Vol. 23, No. 7 (July 2012): 1288-1301. DOI. © 2012 Institute of Electrical and Electronic Engineers (IEEE). Used with permission.

Majeed M. Hayat was affiliated with the University of New Mexico, Albuquerque at the time of publication.

Hayat_12992acc.docx (206 kB)
ADA Accessible Version