Dynamic relation between expansion and cellular turgor in growing grape (Vitis vinifera L.) leaves

Document Type


Publication Date


Volume Number


Source Publication

Plant Physiology


Measurements of the growth and water relations of expanding grape (Vitis vinifera L.) leaves have been used to determine the relationship between leaf expansion rate and leaf cell turgor. Direct measurement of turgor on the small (approximately 15 micrometer diameter) epidermal cells over the midvein of expanding grape leaves was made possible by improvements in the pressure probe technique. Leaf expansion rate and leaf water status were perturbed by environmentally induced changes in plant transpiration. After establishing a steady state growth rate, a step decrease in plant transpiration resulted in a rapid and large increase in leaf cell turgor (0.25 megapascal in 5 minutes), and leaf expansion rate. Subsequently, leaf expansion rate returned to the original steady state rate with no change in cell turgor. These results indicate that the expansion rate of leaves may not be strongly related to the turgor of the leaf cells, and that substantial control of leaf expansion rate, despite changes in turgor, may be part of normal plant function. It is suggested that a strictly physical interpretation of the parameters most commonly used to describe the relationship between turgor and growth in plant cells (cell wall extensibility and yield threshold) may be inappropriate when considering the process of plant cell expansion.