Document Type


Publication Date




Source Publication


Source ISSN


Original Item ID

DOI: 10.1002/sta4.330


In this paper, we develop a new extension of the singular spectrum analysis (SSA) called functional SSA to analyze functional time series. The new methodology is constructed by integrating ideas from functional data analysis and univariate SSA. Specifically, we introduce a trajectory operator in the functional world, which is equivalent to the trajectory matrix in the regular SSA. In the regular SSA, one needs to obtain the singular value decomposition (SVD) of the trajectory matrix to decompose a given time series. Since there is no procedure to extract the functional SVD (fSVD) of the trajectory operator, we introduce a computationally tractable algorithm to obtain the fSVD components. The effectiveness of the proposed approach is illustrated by an interesting example of remote sensing data. Also, we develop an efficient and user-friendly R package and a shiny web application to allow interactive exploration of the results.


Accepted version. Stat, Vol. 10, No. 1 (December 2021). DOI. © 2021 Wiley. Used with permission.

Maadooliat_15115acc.docx (984 kB)
ADA Accessible Version

Included in

Mathematics Commons