A Rehabilitation Engineering Course for Biomedical Engineers

Document Type




Format of Original

8 p.

Publication Date



Institute of Electrical and Electronics Engineers

Source Publication

IEEE Transactions on Education

Source ISSN


Original Item ID

doi: 10.1109/TE.2002.803402


This paper describes an upper division elective course in rehabilitation engineering that addresses prosthetics and orthotics, wheelchair design, seating and positioning, and automobile modifications for individuals with disabilities. Faculty lectures are enhanced by guest lectures and class field trips. Guest lecturers include a prosthetist and a lower extremity amputee client, an engineer/prosthetist specializing in the upper extremity, and a rehabilitation engineer. The lower extremity prosthetist and his client present a case study for prosthetic prescription, fabrication, fitting, alignment, and evaluation. The engineer/prosthetist contrasts body-powered versus externally powered upper extremity prostheses and associated design, fitting, and functional considerations; he also discusses myoelectric signal conditioning, signal processing, and associated control strategies for upper extremity prosthetic control. Finally, the rehabilitation engineer presents case studies related to assessment and prescription of mobility aids, environmental control systems, and children's toys. The course also includes visits to a local prosthetic and orthotic facility to observe typical fabrication, fitting, and alignment procedures and a driver rehabilitation program for exposure to driver assessment, training, and common vehicle modifications. These applications of biomedical engineering to persons with disabilities have been well received by the students and have furthered interdisciplinary design and research projects.


IEEE Transactions on Education, Vol. 45, No. 4 (November 2002): 299-306. DOI.