Nitrous Oxide Antinociception in BXD Recombinant Inbred Mouse Strains and Identification of Quantitative Trait Loci
Document Type
Article
Language
eng
Format of Original
7 p.
Publication Date
6-1996
Publisher
Elsevier
Source Publication
Brain Research
Source ISSN
0006-8993
Original Item ID
doi: 10.1016/0006-8993(96)00211-9
Abstract
Among inbred mouse strains, DBA/2 mice are unique because of their poor responsiveness to nitrous oxide (N2O) antinociception. As a first step towards identifying candidate genes involved in determining antinociceptive responsiveness to N2O, male mice from the DBA/2 strain, the more responsive C57BL/6 strain, their B6D2F1 offspring, and 22 BXD recombinant inbred (RI) strains derived from DBA/2 and C57BL/6 mice were exposed to N20 and evaluated using the acetic acid abdominal constriction test. When exposed to 70% N2O, C57BL/6, DBA/2 and B6D2F1 mice exhibited antinociceptive responses of 78, 22 and 55%, respectively. The BXD RI strains demonstrated varying degrees of responsiveness to N2O. Cluster analysis revealed one cluster of 16 strains approximating the C57BL/6 progenitor (61.9–100% antinociceptive response to 70% N2O) and another of six strains around the DBA/2 progenitor (9.1–40% antinociceptive response to 70% N2O). The robust strain differences permitted screening the strain means with 1492 marker loci previously mapped in BXD RI strains. Using a QTL analysis specifically tailored to existing mouse RI strains, we found associations at the 0.01 level on seven chromosomes with the most promising marker loci being Il2ra, Hbb, Hmgl rs7 and Gsl5 on chromosomes 2, 7, 16 and 19, respectively (P < 0.002).
Recommended Citation
Quock, Raymond M.; Mueller, Janet L.; Vaughn, Linda K.; and Belknap, John K., "Nitrous Oxide Antinociception in BXD Recombinant Inbred Mouse Strains and Identification of Quantitative Trait Loci" (1996). Biomedical Sciences Faculty Research and Publications. 76.
https://epublications.marquette.edu/biomedsci_fac/76
Comments
Brain Research, Vol. 725, No. 1 (June 1996): 23-29. DOI.