The Effects of Clay on the Thermal Degradation Behavior of Poly(Styrene-co-Acrylonitirile)
Document Type
Article
Publication Date
11-14-2005
Source Publication
Polymer
Source ISSN
0032-3861
Abstract
The thermal degradation of poly(acrylonitrile-co-styrene) (SAN) and its clay nanocomposites were studied using TGA/FTIR and GC/MS. Virgin SAN degrades by chain scission followed by β-scission, producing monomers, dimers and trimers. The degradation pathway of SAN in clay nanocomposites contains additional steps; extensive random chain scission, evolving additional compounds having an odd number of carbons in the chain backbones, and radical recombination, producing head-to-head structures. Since acrylonitrile-butadiene-styrene copolymer (ABS) has butadiene rubber incorporated as a grafted phase in a SAN matrix, ABS follows a similar degradation pathway as that of SAN. The effect of butadiene rubber is similar to that of clay, leading to extensive random scission and an increase in thermal stability, but as not effective as clay due to its shorter duration. Eventually, the butadiene rubber phase degrades to small aliphatic molecules.
Recommended Citation
Jang, Bok Nam and Wilkie, Charles A., "The Effects of Clay on the Thermal Degradation Behavior of Poly(Styrene-co-Acrylonitirile)" (2005). Chemistry Faculty Research and Publications. 121.
https://epublications.marquette.edu/chem_fac/121
Comments
Polymer, Vol. 46, No. 23 (November 14, 2005): 9702-9713. DOI.